RU121065U1 - Устройство для исследования динамики упругой системы станка - Google Patents
Устройство для исследования динамики упругой системы станка Download PDFInfo
- Publication number
- RU121065U1 RU121065U1 RU2012123596/28U RU2012123596U RU121065U1 RU 121065 U1 RU121065 U1 RU 121065U1 RU 2012123596/28 U RU2012123596/28 U RU 2012123596/28U RU 2012123596 U RU2012123596 U RU 2012123596U RU 121065 U1 RU121065 U1 RU 121065U1
- Authority
- RU
- Russia
- Prior art keywords
- base
- mandrel
- piezoelectric element
- piezoceramic
- plane
- Prior art date
Links
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Устройство для исследования динамики упругой системы станка, содержащее корпус, пьезоэлемент и систему подвода электрического напряжения к пьезоэлементу, отличающееся тем, что пьезоэлемент выполнен в виде пакета пьезокерамических колец, опирающихся на основание, и к внутренней поверхности которых оппозитно друг другу прикреплены шпоночные элементы, входящие в соответствующие пазы в цилиндрической оправке, имеющей во фронтальном сечении Т-образный профиль, при этом ось симметрии оправки перпендикулярна основанию, а диск, жестко соединенный с оправкой и расположенный в верхней части оправки перпендикулярно ее оси, контактирует своей нижней поверхностью с верхним пьезокерамическим кольцом пьезоэлемента, а на верхней поверхности диска установлены измерительные пьезоэлементы, контактирующие с двухступенчатым цилиндрическим диском, к верхней части которого посредством крепежного элемента присоединен наконечник, передающий изменение линейного размера пакета пьезокерамических колец на деталь станка, при этом внешний диаметр диска равен внешнему диаметру пакета пьезокерамических колец, а основание представляет собой прямоугольной формы пластину с, по крайней мере, четырьмя пазами для крепления к исследуемому объекту, к верхней плоскости которой прикреплен разъем, через который подается электрическое напряжение на пьезоэлемент, и нижнее пьезокерамическое кольцо которого опирается на верхнюю плоскость основания, а нижняя плоскость оправки расположена с зазором по отношению к верхней плоскости основания, причем токонепроводящий корпус, выполненный в виде цилиндрической обечайки, охватывает пьез
Description
Полезная модель относится к испытательной технике и может быть использовано для вибрационных испытаний различных изделий, включая комплексные испытания на металлорежущих станках.
Наиболее близким техническим решением по технической сущности и достигаемому результату является устройство по патенту РФ №2334966, который содержит корпус с пьезоэлементом, виброплатформу для установки испытуемого объекта, связанную с вибратором через элемент передачи колебаний, и средство центрирования виброплатформы относительно корпуса и вибратора. В вибратор дополнительно введен закрепленный в корпусе упругий элемент в виде диафрагмы, на которую установлен пьезоэлемент. Элемент передачи колебаний выполнен в виде стержня, соединенного с центральной частью диафрагмы, а средство центрирования виброплатформы выполнено в виде, по крайней мере, одной прорезной мембраны.
Недостаток известного технического решения заключается в сравнительно узком частотном диапазоне виброускорений при динамическом нагружении и при контактном вибровозбуждении объектов станкостроения.
Технический результат заключается в расширении частотного диапазона виброускорений при приложении заданного спектра вибровозбуждения, а также в расширении динамического нагружения при контактном вибровозбуждении объектов станкостроения.
Это достигается тем, что в устройстве для исследования динамики упругой системы станка, содержащем корпус, пьезоэлемент и систему подвода электрического напряжения к пьезоэлементу, пьезоэлемент выполнен в виде пакета пьезокерамических колец, опирающихся на основание, и к внутренней поверхности которых оппозитно друг другу прикреплены шпоночные элементы, входящие в соответствующие пазы в цилиндрической оправке, имеющей во фронтальном сечении Т-образный профиль, при этом ось симметрии оправки перпендикулярна основанию, а диск, жестко соединенный с оправкой и расположенный в верхней части оправки, перпендикулярно ее оси, контактирует своей нижней поверхностью с верхним пьезокерамическим кольцом пьезоэлемента, а на верхней поверхности диска установлены измерительные пьезоэлементы, контактирующие с двухступенчатым цилиндрическим диском, к верхней части которого посредством крепежного элемента присоединен наконечник, передающий изменение линейного размера пакета пьезокерамических колец на деталь станка, при этом внешний диаметр диска равен внешнему диаметру пакета пьезокерамических колец, а основание представляет собой прямоугольной формы пластину с, по крайней мере, четырьмя пазами для крепления к исследуемому объекту, к верхней плоскости которой прикреплен разъем, через который подается электрическое напряжение на пьезоэлемент, и нижнее пьезокерамическое кольцо которого опирается на верхнюю плоскость основания, а нижняя плоскость оправки расположена с зазором по отношению к верхней плоскости основания, причем токонепроводящий корпус, выполненный в виде цилиндрической обечайки, охватывает пьезоэлемент, при этом нижний торец обечайки опирается на кольцо, жестко прикрепленное к верхней плоскости основания, соосно оправке, а верхний ее торец закрыт крышкой с центральным отверстием под наконечник, при этом в нижней части основания выполнена полость, ось которой соосна с оправкой и отверстием, выполненным в верхней деформируемой части основания, на плоскости которой, обращенной к полости, наклеены тензодатчики, контролирующие величину статического усилия, при этом наклонные отверстия, выполненные в основании, служат для прокладки проводов к тензодатчикам.
На фиг.1 показан общий вид устройства для исследования динамики упругой системы станка, в частности фронтальный разрез, а на фиг.2 - сечение, перпендикулярное оси симметрии предлагаемого устройства, на фиг.3 показаны этапы преобразования сигнала и спектров в спектроанализаторе, на фиг.4 представлен график для выбора оптимальной оценки частотной характеристики, на фиг.5 - график оценка линейности связи входного и выходного сигналов по функции когерентности
Устройство для исследования динамики упругой системы станка (фиг.1 и 2) содержит пьезоэлемент, выполненный в виде пакета пьезокерамических колец 3, опирающихся на основание 1, и к внутренней поверхности которых оппозитно друг другу прикреплены шпоночные элементы 14, входящие в соответствующие пазы в цилиндрической оправке 4, имеющей во фронтальном сечении Т-образный профиль. Ось симметрии оправки 4 перпендикулярна основанию 1, при этом диск 10, жестко соединенный с оправкой 4 и расположенный в верхней части оправки 4, перпендикулярно ее оси, контактирует своей нижней поверхностью с верхним пьезокерамическим кольцом 3 пьезоэлемента, а на верхней поверхности диска 10 установлены измерительные пьезоэлементы 6, контактирующие с двухступенчатым цилиндрическим диском 11, к верхней части которого посредством крепежного элемента 13 присоединен наконечник 5, передающий изменение линейного размера пакета пьезокерамических колец 3 на деталь станка. При этом внешний диаметр диска 10 равен внешнему диаметру пакета пьезокерамических колец 3.
Основание 1 представляет собой прямоугольной формы пластину с, по крайней мере, четырьмя пазами 18 для крепления к исследуемому объекту, к верхней плоскости которой прикреплен разъем 7, через который подается электрическое напряжение на пьезоэлемент, нижнее пьезокерамическое кольцо 3 которого опирается на верхнюю плоскость основания 1, а нижняя плоскость оправки 4 расположена с зазором по отношению к верхней плоскости основания 1.
Токонепроводящий корпус 2, выполненный в виде цилиндрической обечайки, охватывающей пьезоэлемент, защищает исследователя от высокого напряжения, подаваемого на пьезоэлемент, при этом нижний торец обечайки опирается на кольцо 19, жестко прикрепленное к верхней плоскости основания 1, соосно оправке 4, а верхний ее торец закрыт крышкой 12 с центральным отверстием под наконечник 5. В нижней части основания выполнена полость 17, ось которой соосна с оправкой 4 и отверстием 9, выполненным в верхней деформируемой части 16 основания, на плоскости которой, обращенной к полости 17, наклеены тензодатчики 8, контролирующие величину статического усилия. Наклонные отверстия 15, выполненные в основании 1, служат для прокладки проводов к тензодатчикам 8 от разъема 7.
Устройство для исследования динамики упругой системы станка работает следующим образом.
Переменное усилие создается пьезокерамическими кольцами 3, на которые подается электрическое напряжение через разъем 7. Из-за этого напряжения изменяется толщина пьезоэлемента. Изменение линейного размера столбика пьезоэлементов через оправку 4, измерительные пьезоэлементы 6, наконечник 5 передается на деталь станка, на которое требуется подать силовое воздействие. Величина статического усилия контролируется с помощью тензодатчиков 8, наклеенных на деформирующуюся часть основания 1. Токонепроводящий корпус 2 защищает исследователя от высокого напряжения, подаваемого на пьезоэлементы.
При случайном и импульсном возбуждении частотные характеристики получают с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье. Принципы спектрального анализа рассмотрены на примере двухканального спектроанализатора (на чертеже не показано), выполняющего быстрое преобразование Фурье. Спектроанализатор можно применять в качестве "черного ящика", измеряющего сигналы возбуждения и реакций и определяющего частотные характеристики на основе этих измерений. Поступающие на входы анализатора аналоговые сигналы фильтруют, отбирают и преобразуют с помощью аналого-цифрового преобразователя в цифровую форму для получения серий цифровых данных, называемых реализациями. Эти реализации представляют временную историю сигналов на протяжении соответствующих временных интервалов. Скоростью выборки и продолжительностью реализации определяют частотный диапазон и разрешающую способность при анализе.
На фиг.3 представлены этапы преобразования сигнала и спектров в спектроанализаторе. Зарегистрированные реализации могут быть умножены на весовую функцию. Тем самым проводится сужение данных в начале и конце реализации, что делает их более удобными для блочного анализа. Взвешенные реализации преобразуются в частотную область в виде комплексных спектров с помощью дискретного преобразования Фурье. Этот процесс обратимый - в результате обратного преобразования получаются исходные временные последовательности. Для определения спектральной плотности должен быть использован какой-либо метод усреднения, в результате чего происходит устранение шума и улучшение степени статистической достоверности. Собственные спектры определяются путем умножения комплексных спектров на соответствующие комплексно сопряженные спектры (с противоположным знаком фазы) и затем усреднения ряда независимых произведений. При умножении комплексно сопряженного спектра на другой комплексный спектр получается взаимный спектр. Взаимный спектр - это комплексная функция, фаза которой показывает сдвиг фаз между выходом и входом и модуль которой представляет когерентное произведение мощности на входе и выходе. Собственные спектры силы и реакции совместно с взаимным спектром силы и реакции представляют собой именно те функции, которые необходимы для оценки частотной характеристики и функции когерентности.
Оценочная функция W1, равная отношению взаимного спектра реакции и силы к собственному спектру силы, используется для минимизации шума на выходе системы; случайный шум на выходе удаляется в процессе усреднения взаимного спектра. При увеличении числа усреднений W1 стремится к истинной частотной характеристике W(ω) (фиг.4).
Оценочная функция W2, равная , используется для минимизации влияния шума на входе, поскольку он удаляется из взаимного спектра в процессе усреднения. При увеличении числа циклов усреднения W2 стремится к истинной частотной характеристике W(ω). При случайном возбуждении и исследовании резонансов лучшей оценкой частотной характеристики является W2, так как она компенсирует шум на входе и менее чувствительна к рассеянию. При исследовании антирезонансных зон лучшей оценкой частотной характеристики считается W1, так как главным в этом случае является ее малая чувствительность к шуму на выходе. Когда шум имеется на выходе и на входе, функции W1 и W2 можно считать пределами доверительного интервала для истинной частотной характеристики W(ω). Однако это не относится к нелинейным системам и к случаям с когерентными шумами на входе и выходе.
Функция когерентности дает средство для оценки степени линейности связи входных и выходных сигналов:
, где 0≤γ2(ω)≤1.
Граничными значениями функции когерентности являются 1 при отсутствии шума и 0 при наличии чистых шумов. В качестве интерпретации функции когерентности можно сказать, что для каждой частоты она указывает степень линейной зависимости между сигналами на входе и выходе системы (фиг.5). При динамических исследованиях это важное свойство функции когерентности используется для выявления целого ряда возможных ошибок.
По полученным тем или иным способом частотным характеристикам можно оценить виброустойчивость динамической системы станка. Например, при лезвийной обработке предельная ширина срезаемого слоя: ,
где К - коэффициент резания (удельная сила резания); - отрезок, отсекаемый годографом упругой системы станка на отрицательной части вещественной оси. Чем больше отрезок , тем меньше предельная ширина срезаемого слоя и ниже виброустойчивость динамической системы станка.
Claims (1)
- Устройство для исследования динамики упругой системы станка, содержащее корпус, пьезоэлемент и систему подвода электрического напряжения к пьезоэлементу, отличающееся тем, что пьезоэлемент выполнен в виде пакета пьезокерамических колец, опирающихся на основание, и к внутренней поверхности которых оппозитно друг другу прикреплены шпоночные элементы, входящие в соответствующие пазы в цилиндрической оправке, имеющей во фронтальном сечении Т-образный профиль, при этом ось симметрии оправки перпендикулярна основанию, а диск, жестко соединенный с оправкой и расположенный в верхней части оправки перпендикулярно ее оси, контактирует своей нижней поверхностью с верхним пьезокерамическим кольцом пьезоэлемента, а на верхней поверхности диска установлены измерительные пьезоэлементы, контактирующие с двухступенчатым цилиндрическим диском, к верхней части которого посредством крепежного элемента присоединен наконечник, передающий изменение линейного размера пакета пьезокерамических колец на деталь станка, при этом внешний диаметр диска равен внешнему диаметру пакета пьезокерамических колец, а основание представляет собой прямоугольной формы пластину с, по крайней мере, четырьмя пазами для крепления к исследуемому объекту, к верхней плоскости которой прикреплен разъем, через который подается электрическое напряжение на пьезоэлемент, и нижнее пьезокерамическое кольцо которого опирается на верхнюю плоскость основания, а нижняя плоскость оправки расположена с зазором по отношению к верхней плоскости основания, причем токонепроводящий корпус, выполненный в виде цилиндрической обечайки, охватывает пьезоэлемент, при этом нижний торец обечайки опирается на кольцо, жестко прикрепленное к верхней плоскости основания, соосно с оправкой, а верхний ее торец закрыт крышкой с центральным отверстием под наконечник, при этом в нижней части основания выполнена полость, ось которой соосна с оправкой и отверстием, выполненным в верхней деформируемой части основания, на плоскости которой, обращенной к полости, наклеены тензодатчики, контролирующие величину статического усилия, при этом наклонные отверстия, выполненные в основании, служат для прокладки проводов к тензодатчикам.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012123596/28U RU121065U1 (ru) | 2012-06-07 | 2012-06-07 | Устройство для исследования динамики упругой системы станка |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012123596/28U RU121065U1 (ru) | 2012-06-07 | 2012-06-07 | Устройство для исследования динамики упругой системы станка |
Publications (1)
Publication Number | Publication Date |
---|---|
RU121065U1 true RU121065U1 (ru) | 2012-10-10 |
Family
ID=47079965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012123596/28U RU121065U1 (ru) | 2012-06-07 | 2012-06-07 | Устройство для исследования динамики упругой системы станка |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU121065U1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2643193C1 (ru) * | 2016-12-19 | 2018-01-31 | Олег Савельевич Кочетов | Стенд для испытаний упругих элементов виброизоляторов с пьезовибратором |
-
2012
- 2012-06-07 RU RU2012123596/28U patent/RU121065U1/ru not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2643193C1 (ru) * | 2016-12-19 | 2018-01-31 | Олег Савельевич Кочетов | Стенд для испытаний упругих элементов виброизоляторов с пьезовибратором |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3423850B1 (en) | Device and method for measuring internal impedance of a test battery using frequency response | |
RU121070U1 (ru) | Стенд для вибродиагностики упругой системы станка | |
TWI791628B (zh) | 可攜式裝置中的電池之聲學測試 | |
Feeney et al. | High-frequency measurement of ultrasound using flexural ultrasonic transducers | |
Gaponenko et al. | Device for calibration of piezoelectric sensors | |
CN203672533U (zh) | 一种基于pvdf的落锤试验机冲击力测量装置 | |
Tan et al. | Low-cost Structural Health Monitoring scheme using MEMS-based accelerometers | |
RU121065U1 (ru) | Устройство для исследования динамики упругой системы станка | |
JP6714462B2 (ja) | 無線センサ端末、無線センサシステムおよびセンサデータ収集方法 | |
RU152648U1 (ru) | Двухканальный акселерометр | |
CN113325242A (zh) | 适用于不同条件下原位实测压电陶瓷d33的温控激振系统及方法 | |
RU2605503C1 (ru) | Стенд для испытаний упругих элементов виброизоляторов с пьезовибратором | |
CN110658053B (zh) | 一种基于小波变换的卫星组件冲击试验条件制定系统及方法 | |
Keprt et al. | The determination of uncertainty in the calibration of acoustic emission sensors | |
CN109579976A (zh) | 一种压电式加速度传感器灵敏度系数校验方法 | |
RU2535334C2 (ru) | Способ вибродиагностики упругой системы станка с применением генератора силового воздействия, входящего в систему "станок-приспособление-инструмент-деталь" | |
US10955462B2 (en) | Apparatus and method for frequency characterization of an electronic system | |
KR102131215B1 (ko) | Ac 스트레인 게이지 앰프의 주파수 응답특성 시험장치 | |
Bin et al. | Study of dynamic modeling method for quartz flexible accelerometer | |
Camacho-Tauta et al. | Frequency domain method in bender element testing–experimental observations | |
RU2643193C1 (ru) | Стенд для испытаний упругих элементов виброизоляторов с пьезовибратором | |
CN108061598B (zh) | 一种地震模型速度检测方法 | |
RU2584719C1 (ru) | Цифровой способ измерения параметров пьезоэлектрических элементов | |
CN108061597B (zh) | 地震模型速度检测系统 | |
RU2569636C2 (ru) | Способ динамических испытаний конструкций и систем на механические и электронные воздействия |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM9K | Utility model has become invalid (non-payment of fees) |
Effective date: 20180608 |