RU1016941C - Способ синтеза монокристаллов алмаза - Google Patents
Способ синтеза монокристаллов алмазаInfo
- Publication number
- RU1016941C RU1016941C SU2999396A RU1016941C RU 1016941 C RU1016941 C RU 1016941C SU 2999396 A SU2999396 A SU 2999396A RU 1016941 C RU1016941 C RU 1016941C
- Authority
- RU
- Russia
- Prior art keywords
- solvent
- diamond
- layer
- copper
- diamonds
- Prior art date
Links
- 239000010432 diamond Substances 0.000 title claims description 41
- 229910003460 diamond Inorganic materials 0.000 title claims description 23
- 230000015572 biosynthetic process Effects 0.000 title claims description 10
- 238000000034 method Methods 0.000 title claims description 9
- 238000003786 synthesis reaction Methods 0.000 title claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 24
- 239000002904 solvent Substances 0.000 claims description 24
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 18
- 229910052802 copper Inorganic materials 0.000 claims description 18
- 239000010949 copper Substances 0.000 claims description 18
- 239000013078 crystal Substances 0.000 claims description 15
- 239000010439 graphite Substances 0.000 claims description 15
- 229910002804 graphite Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000000956 alloy Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 21
- 229910052799 carbon Inorganic materials 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229910003286 Ni-Mn Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
Изобретение относится к области получения сверхтвердых материалов, в частности алмазов, и может быть использовано на предприятиях, производящих искусственные алмазы и инструменты из них.
Известен способ синтеза монокристаллов алмаза, включающий воздействие высокого давления и температуры на послойно расположенные в реакционном объеме графит и растворитель с увеличивающейся от слоя к слою по направлению от периферии к центру температурой плавления, причем в каждый из основных слоев растворителя дополнительно вводят разделяющую слой на две части прослойку растворителя с температурой плавления на 40-150оС меньшей, чем основной слой, в состав растворителя прослойки входят металлы VI-VII групп и легирующие добавки в количестве 0,5-5 мас. например медь.
Способ позволяет увеличить выход алмазов и повысить их механическую прочность по сравнению с алмазами, выращенными без легирующих добавок. Однако теплопроводность кристаллов составляет 400-600 Вт/м˙град К, что не позволяет использовать их в качестве, например, теплостоков. Кроме того, кристаллы содержат по всему объему более 1,5 мас. включений, в основном неориентированной формы.
Наиболее близким к предлагаемому является способ синтеза алмаза, включающий послойное размещение металла или сплава-растворителя, меди и графита и воздействие давления и температуры, лежащих в области термодинамической стабильности алмаза, причем, слой меди размещают между каждыми из 2 смежных слоев графита и растворителя, и он является разделительной перегородкой между последним и графитом в количестве 1,6 мас. В процессе синтеза частичное плавление металлической перегородки из меди создает возможность для образования алмазных зародышей в отдельных участках с постепенным передвижением участков зародышеобразования по мере расплавления разделительного диска меди. Указанное расположение меди приводит к увеличению размеров получаемых алмазов с одновременным уменьшением количества кристаллов.
Недостатком данного синтеза является то, что он позволяет получать кристаллы алмаза несовершенной формы низкого качества, с большим количеством неориентированных включений (2,5-3,0 мас.) со значительными ступенями роста на гранях. Теплопроводность таких кристаллов около 300-400 Вт/м ˙ град К.
Целью изобретения является повышение теплопроводности монокристаллов алмаза и уменьшение количества включений в них.
Поставленная цель достигается тем, что способ включает последовательное размещение в контейнере камеры высокого давления графита, металла или сплава-растворителя, слоя меди при содержании ее 2-25% от массы растворителя, металла или сплава-растворителя, графита и последующее воздействие давления при температуре в области термодинамической стабильности алмаза.
Отличие способа состоит в том, что слой меди размещают между слоями растворителя при содержании ее 2-25% от массы растворителя.
Слой меди в виде диска или порошка размещают в середине слоя растворителя углерода, между слоем растворителя и слоем графита осуществляется прямой контакт, что при воздействии высокого давления при высокой температуре в области термодинамической стабильности алмаза обеспечивает одновременное появление зародышей алмаза на границе контакта. На последующем этапе наращивания алмаза на зародышах происходит диффузия меди к границе контакта и разбавление растворителя медью, не растворяющей углерод, вследствие чего снижается скорость выделения алмазного углерода из расплава в области термодинамической стабильности алмаза и осаждения на зародышах. Вследствие уменьшения скорости роста количество примесей в получаемых кристаллах минимально, алмазы прозрачные с зеркальными гранями высокого качества с высокой теплопроводностью.
Механизм воздействия меди на процесс синтеза алмазов при указанном способе размещения слоя меди в реакционной шихте действует на любых растворителях углерода.
В качестве растворителей углерода предпочтительно использовать элементы, выбранные из группы Fe, Ni, Co, Mn, Cr в виде отдельных металлов, их смесей или сплавов-растворителей из-за их высокой способности раствоpять углерод в значительных количествах, позволяющих обеспечивать высокую степень превращения графита в алмаз в условиях термодинамической стабильности алмаза. В качестве растворителя углерода также могут быть использованы смеси или сплавы металлов с углеродом или карбидами с целью понижения параметров синтеза. Графиты могут быть использованы, например, марок С-3 МГ-ОСЧ, ГМЗ-ОСЧ, ЭГ-1.
Содержание меди 2-25 мас. по отношению к массе металла или сплава-растворителя углерода определенно экспериментально. При этом соотношении либо не достигается цель изобретения, либо снижается выход алмазов.
П р и м е р. В цилиндрическое реакционное пространство контейнере с внутренним диаметром 15 мм, выполненного из литографского камня, помещают графитовый диск (графит марки МГОСЧ) диаметром 15 мм, толщиной 1,5 мм, весом 0,4 г, затем помещают слой стружки сплава-растворителя Ni-Mn-C (Ni 47 мас. С 0,9 мас. Mn остальное) в виде фракции 1000-500 мкм в количестве 0,6 г, слой меди в виде фольги весом 0,06 г, слой стружки сплава-растворителя, описанного выше, в количестве 0,6 г, затем графитовый диск диаметром 15 мм, толщиной 1,5 мм указанной марки весом 0,4 г. Содержание меди составляет 4,75 мас. содержание растворителя 95,25 мас.
Заполненный контейнер помещают в устройство высокого давления, затем в аппарат высокого давления и высоких температур и подвергают воздействию давления 40,5 кбар и температуры 1200оС в течение 20 мин.
Продукт синтеза представляет собой смесь металлов, алмаза и остаточного графита, последний удаляется окислением, например, кислородом воздуха. Металлы удаляются растворением, например, в азотной кислоте.
В результате превращение графита в алмаз составляет 40,6 мас. от массы используемого графита.
Полученные алмазы светло-желтого цвета имели правильную кристаллографическую форму кубооктаэдров с зеркальными гранями. Партия представлена кристаллами без видимых под микроскопом включений при увеличении в 80 раз и с ориентированными точечными включениями в виде прерывистых линий, сходящихся в центре кристалла. Содержание включений в алмазах менее 0,3 мас. по всем зернистостям.
Содержание алмазов фракций 800/630 315/250 мкм, составляющих 66,2 мас. от веса всей партии алмазного сырья, приведено в табл.1.
Прочность алмазов фракции 400/315 мкм составляет 14,4 кг, т.е. в 2,5 раза выше прочности алмазов марки АСС.
Аналогично технологии, изложенной в примере, был осуществлен ряд опытов, результаты которых приведены в табл.2.
Как следует из результатов, изложенных в табл.2, способ синтеза позволяет получать прозрачные кристаллы алмаза с зеркальными гранями либо только с видимыми ориентированными включениями точечного типа в виде пересекающихся в центре кристалла прерывистых линий, либо из видимых с помощью микроскопа включений. Содержание включений в кристаллах алмаза менее 0,9 мас. т.е. в 2,5-3 раза ниже, чем по прототипу. Теплопроводность алмазов 1000-1200 Вт/м ˙град К, т.е. в 3-4 раза выше, чем по прототипу.
Полученные алмазы высокого качества могут быть использованы также для изготовления бурового инструмента (долот, буровых коронок), пил для распиловки твердых пород камня, карандашей для правки шлифовальных кругов и т.д. т. е. эти алмазы могут использоваться в инструментах на металлической связке, где всегда требуются высокие температуры для спекания алмазоносного слоя. Прочность получаемых алмазов в 2,5 раза превышает прочность алмазов марки АСС соответствующих зернистостей по ГОСТу 9206-70.
Claims (1)
- СПОСОБ СИНТЕЗА МОНОКРИСТАЛЛОВ АЛМАЗА, включающий послойное размещение в контейнере камеры высокого давления металла или сплава-растворителя, меди и графита и последующее воздействие давления при температуре в области термодинамической стабильности алмаза, отличающийся тем, что, с целью повышения теплопроводности и уменьшения количества включений в кристаллах, слой меди размещают между слоями растворителя при содержании ее 2-25% от массы растворителя.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU2999396 RU1016941C (ru) | 1980-09-01 | 1980-09-01 | Способ синтеза монокристаллов алмаза |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU2999396 RU1016941C (ru) | 1980-09-01 | 1980-09-01 | Способ синтеза монокристаллов алмаза |
Publications (1)
Publication Number | Publication Date |
---|---|
RU1016941C true RU1016941C (ru) | 1995-06-09 |
Family
ID=20924245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU2999396 RU1016941C (ru) | 1980-09-01 | 1980-09-01 | Способ синтеза монокристаллов алмаза |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU1016941C (ru) |
-
1980
- 1980-09-01 RU SU2999396 patent/RU1016941C/ru active
Non-Patent Citations (1)
Title |
---|
Патент США N 4128625, кл. C 01B 31/06, 1978. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3871840A (en) | Abrasive particles encapsulated with a metal envelope of allotriomorphic dentrites | |
US3841852A (en) | Abraders, abrasive particles and methods for producing same | |
CA1136429A (en) | Abrasive compacts | |
EP0525207B1 (en) | Process for synthesizing diamond | |
US3767371A (en) | Cubic boron nitride/sintered carbide abrasive bodies | |
US4643741A (en) | Thermostable polycrystalline diamond body, method and mold for producing same | |
KR100216619B1 (ko) | 다이아몬드 합성법 | |
JP2009525944A (ja) | 大型のダイヤモンド結晶を製造するための材料および方法 | |
Nassau et al. | The history and present status of synthetic diamond | |
US4220677A (en) | Polycrystalline superhard material and method of producing thereof | |
EP0255327B1 (en) | Cubic boron nitride manufacture | |
JP3259384B2 (ja) | ダイヤモンド単結晶の合成方法 | |
US3525610A (en) | Preparation of cobalt-bonded tungsten carbide bodies | |
JPS61201751A (ja) | 高硬度焼結体およびその製造方法 | |
US4148964A (en) | Polycrystalline superhard material and method of producing thereof | |
RU1016941C (ru) | Способ синтеза монокристаллов алмаза | |
EP1218095B1 (en) | Growth of diamond clusters | |
KR100572418B1 (ko) | 결정을 함유한 물질 | |
RU2061654C1 (ru) | Растворитель для синтеза термостойких монокристаллических алмазов | |
US3890430A (en) | Method of producing diamond materials | |
RU2065834C1 (ru) | Способ получения поликристаллического алмазсодержащего материала | |
RU2060933C1 (ru) | Способ получения поликристаллических алмазов заданной формы | |
JP3291804B2 (ja) | ダイヤモンド単結晶の合成方法 | |
SU737203A1 (ru) | Способ изготовлени магнитно-абразивного материала | |
SE442962B (sv) | Sintrad diamantkropp samt forfarande for dess framstellning |