LV14938B - Gaseous-discharge electron gun - Google Patents
Gaseous-discharge electron gun Download PDFInfo
- Publication number
- LV14938B LV14938B LVP-13-73A LV130073A LV14938B LV 14938 B LV14938 B LV 14938B LV 130073 A LV130073 A LV 130073A LV 14938 B LV14938 B LV 14938B
- Authority
- LV
- Latvia
- Prior art keywords
- gas
- electron
- anode
- discharge
- conductivity
- Prior art date
Links
- 238000010894 electron beam technology Methods 0.000 claims abstract description 17
- 239000012212 insulator Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 abstract description 14
- 238000005516 engineering process Methods 0.000 abstract description 5
- 230000008018 melting Effects 0.000 abstract description 4
- 238000002844 melting Methods 0.000 abstract description 4
- 230000008020 evaporation Effects 0.000 abstract description 2
- 238000001704 evaporation Methods 0.000 abstract description 2
- 238000007872 degassing Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 40
- 238000005086 pumping Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/301—Arrangements enabling beams to pass between regions of different pressure
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/16—Remelting metals
- C22B9/22—Remelting metals with heating by wave energy or particle radiation
- C22B9/228—Remelting metals with heating by wave energy or particle radiation by particle radiation, e.g. electron beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/06—Electron sources; Electron guns
- H01J37/077—Electron guns using discharge in gases or vapours as electron sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/305—Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/06—Sources
- H01J2237/063—Electron sources
- H01J2237/06325—Cold-cathode sources
- H01J2237/06366—Gas discharge electron sources
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Toxicology (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electron Sources, Ion Sources (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Izgudrojuma aprakstsDescription of the Invention
Izgudrojums attiecas uz elektronisko tehniku, konkrētāk, - uz tehnoloģiska pielietojuma gāzizlādes elektronu lielgabaliem, un var tikt izmantots kausēšanai ar elektronstaru, iztvaicēšanai un citiem termiskiem procesiem, ko veic vakuumā, izmantojot jaudīgus elektronu kūļus.BACKGROUND OF THE INVENTION The invention relates to electronic technology, more particularly to gas discharge electron guns for technological applications, and may be used for electron beam melting, evaporation and other thermal processes carried out under vacuum using powerful electron beams.
Ir zināmi gāzizlādes elektronu lielgabali, kuros elektronu kūļa ģenerēšanai un veidošanai izmanto augstsprieguma mirdzizlādi ar aukstu katodu /1, 2, 3/. Elektronu kūļa emisija šādos lielgabalos notiek, auksta metāliska katoda virsmu bombardējot ar pozitīviem joniem no plazmas, kas ir lokalizēta pie anoda. Potenciāla katoda krišanās zonā elektroni paātrinās un atkarībā no elektriskā lauka konfigurācijas, ko nosaka katoda ieliektā virsma, veido konvergento kūli, kuru ar magnētisku fokusējošu lēcu palīdzību izvada uz tehnoloģisku kameru (materiālu termoapstrādes zonu). Izlādes strāvu, un tātad - nemainīga paātrinošā sprieguma apstākļos - kūļa jaudu nosaka spiediena lielums starpelektrodu izlādes spraugā, kurš var sastādīt vienības un desmitus Pa atkarībā no elektrodu sistēmas izmēriem, izlādes degšanas režīmiem, izmantojamas gāzes veida.Gas discharge electron guns are known which use a high-voltage, cold-cathode, high-voltage glow discharge to generate and form an electron beam / 1, 2, 3 /. Electron beam emission in such guns occurs by bombardment of the cold metal cathode surface with positive ions from the plasma localized at the anode. Electrons accelerate in the potential cathode drop zone and, depending on the configuration of the electric field determined by the cathode's convex surface, form a convergent beam which is led to the process chamber (material heat treatment zone) by means of magnetic focusing lenses. The discharge current, and hence, under constant accelerating voltage, the power of the beam, is determined by the pressure at the inter-electrode discharge gap, which can be in units of tens of Pa, depending on the electrode system size, discharge combustion modes, gas type.
Veicot tehnoloģiskos procesus spiedienu diapazonā, kas zemāks par minētajiem, gāzizlādes lielgabala atsūknēšanu parasti veic kopā ar tehnoloģiskās kameras atsūknēšanu, bet izlādes strāvu kontrolē ar regulējamu gāzes padevi lielgabalā. Turklāt spiedienu diapazons tehnoloģiskajā kamerā var sastādīt no 10'1 līdz 10'2 Pa efektīvās atsūknēšanas gadījumā.In the case of technological processes at pressures below these, the gas discharge gun is usually pumped together with the process chamber pumping, but the discharge current is controlled by an adjustable gas supply to the gun. In addition, the pressure range in the process chamber can range from 10 ' 1 to 10' 2 Pa in the case of efficient pumping.
Par piedāvātā izgudrojuma prototipu ir izvēlēts gāzizlādes elektronu lielgabalu ar aukstu katodu /4/. Elektronu kūļa virzīšanai lielgabalā izmanto staruvadu ar minimālo šķērsizmēru, kas samazina gāzes vadītspēju un ļauj tehnoloģiskajā kamerā izveidot paliekošo spiedienu, kas atšķiras no paliekošā spiediena gāzizlādes kamerā 10-15 reizes. Šāda gāzizlādes lielgabala un tehnoloģiskās kameras atkarība pēc vakuuma sašaurina darba spiedienu diapazonu, veicot tehnoloģiskos procesus, un pasliktina lielgabalu darba stabilitāti strauju spiediena izmaiņu apstākļos tehnoloģiskajā kamerā.A gas discharge electron gun with a cold cathode has been chosen as a prototype of the present invention / 4 /. The electron beam is propelled by a beam barrel with a minimum cross-sectional diameter, which reduces the conductivity of the gas and allows the pressure chamber to generate a residual pressure different from that of the gas discharge chamber 10 to 15 times. This vacuum dependence of the gas cannon and the technology chamber reduces the range of operating pressures by technological processes and worsens the stability of the cannon in the event of rapid pressure changes in the technology chamber.
Izgudrojuma mērķis un būtībaPurpose and substance of the invention
Piedāvātā izgudrojuma mērķis ir darba spiedienu diapazona paplašināšana, termiskajos procesos izmantojot gāzizlādes elektronu lielgabalus un palielinot to darba stabilitāti. Minētais mērķis ir sasniegts tādējādi, ka gāzizlādes elektronu lielgabalā, kas satur hermētiskā korpusā uz augstsprieguma izolatora izvietotus aukstu ieliektu katodu, anodu, kura ass sakrīt ar katoda asi un kurā ir atvērums elektronu staru izvadei. Pie anoda ir pievienots staruvads ar divām fokusējošām lēcām un kūli novirzošām spolēm, kuras ir piestiprinātas pie staruvada. Starp fokusējošo lēcu un novirzošajām spolēm ir izvietota gāzes balasta kamera, kas aptver staruvadu, ir aprīkota ar atsūknēšanai paredzēto īscauruli un ar staruvadu ir savienota ar atvērumiem, kuru šķērsizmērs nepārsniedz 5 līdz 6 mm, bet to summārā gāzes vadītspēja pārsniedz staruvada vadītspēju starp gāzes balasta kameru un tā griezumu.The object of the present invention is to extend the range of operating pressures by using gas discharge electron guns in thermal processes and increasing their working stability. This object is achieved by providing a gas discharge electron in a gun containing a cold concave cathode located in a hermetic casing on a high voltage insulator, the anode of which coincides with the axis of the cathode and having an opening for the electron beam. Attached to the anode is a beam coil with two focusing lenses and a beam deflection coil attached to the beam line. Between the focusing lens and the deflecting coils is a gas ballast chamber enclosing a beam tube, fitted with a suction tube and connected to a beam tube with openings of a transverse dimension not exceeding 5 mm but having a conductivity greater than that of the beam tube and its cut.
Vajadzības gadījumā gāzes balasta kameru var izvietot starp fokusējošajām lēcām.If necessary, the gas-ballast chamber may be located between the focusing lenses.
Piedāvātajā lielgabalā gāzes atsūknēšana lielgabala darba procesā tiek veikta galvenokārt caur gāzes balasta kameru, pie kam gāzes vadītspēja caur šo kameru ir lielāka par gāzes vadītspēja caur staruvadu posmā starp gāzes balasta kameru un staruvada griezumu. Gāzes vadītspēju caur balasta kameru nosaka galvenokārt atvērumu caurlaides spēja staruvada sieniņā, un tāpēc atvērumu summārā gāzes vadītspēja pārsniedz staruvada vadītspēju. Tā kā balasta kameras telpā ir jānovērš gāzes izlādes veidošanās gāzes jonizācijas rezultātā ar kūla elektroniem, atvērumu škērsizmēram staruvada sienā ir jāatbilst 5 līdz 6 mm, kas atbilst 2 līdz 3 Debaja ekranēšanas rādiusiem zema spiediena izlādes plazmai. Nepieciešamo summāro atvērumu vadītspēju šajā gadījumā nodrošina to garenizmērs un skaits.In the proposed gun, the pumping of gas through the gun's working process is performed mainly through a gas ballast chamber, the gas conductivity of which through this chamber is greater than the conductivity of the gas through the beam between the gas ballast chamber and the beam line. The conductivity of the gas through the ballast chamber is mainly determined by the throughput of the apertures in the wall of the ray tube, and therefore the total gas conductivity of the apertures exceeds that of the ray tube. Because ballast chamber space must prevent gas discharge from gas ionization by beam electrons, the cross-sectional apertures in the beam must be 5 to 6 mm, corresponding to 2 to 3 Debian shielding radii for low pressure discharge plasma. The conductivity of the required total apertures in this case is provided by their length and number.
Lai samazinātu elektronu kūļa izkliedēšanu gāzē, elektronu kūlim virzoties pa staruvadu lielgabalā, kurš ir paredzēts tehnoloģisko procesu veikšanai zemā vakuumā (ap 1 Pa un augstākā vakuumā), gāzes balasta kamera ir jāizvieto tuvāk pie kūļa izejas no staruvada. Lielgabalu darbinot augstajā vakuumā, jo īpaši, ja pastāv nepieciešamība pēc kūļa īpatnējās jaudas palielināšanas, ir lietderīgi balasta kameru izvietot starp fokusējošajām lēcām, līdz ar to būtiskā lielā staruvada posmā nodrošinot zemu spiedienu uz gāzes atsūknēšanas rēķina uz iekārtas tehnoloģisko kameru.To reduce electron beam dispersion in the gas as the electron beam moves through the beam at a gun designed for low-vacuum (about 1 Pa and higher) technological processes, the gas-ballast must be positioned closer to the beam exit from the beam. When operating the gun in a high vacuum, especially when it is necessary to increase the specific power of the beam, it is useful to place the ballast chamber between the focusing lenses, thereby providing low pressure at the expense of gas evacuation on the process chamber of the machine.
Ja spiediens strauji mainās (svārstās) iekārtas tehnoloģiskajā kamerā, gāzes balasta kamerai ir balasta apjoma loma, kurš izlīdzina šīs svārstības, novērš to ietekmi uz spiedienu lielgabalā un tādējādi palielina lielgabala darba stabilitāti.If the pressure changes rapidly (oscillates) in the technological chamber of the machine, the gas ballast chamber plays the role of a ballast volume that compensates for these oscillations, eliminates their effect on the gun pressure and thus increases the stability of the cannon.
Gāzizlādes elektronu lielgabala konstrukcijas detalizēts apraksts un darbībaDetailed description and operation of the gas discharge electron gun design
Izgudrojuma būtību paskaidro izgudrojuma aprakstam pievienotie rasējumi, kur 1 .zīm. ir parādīta gāzizlādes elektronu lielgabala shēma kopā ar gāzes balasta kameru, kas ir izvietota starp lēcu un novirzošajām spolēm, betBRIEF DESCRIPTION OF THE DRAWINGS The invention is illustrated by the accompanying drawings, in which: FIG. shows a gas discharge electron gun diagram with a gas ballast chamber positioned between the lens and the deflection coils, but
2.zīm. ir parādīta lielgabala shēma kopā ar gāzes balasta kameru, kas ir izvietota starp fokusējošajām lēcām.Fig. 2 a gun diagram is shown with a gas ballast chamber located between the focusing lenses.
Piedāvātais gāzizlādes elektronu lielgabals satur hermētisku korpusu 1, kurā uz augstsprieguma izolatora 2 ir nostiprināts aukstais metāla katods 3 un koaksiāli ar katoda asi ir pievienots anods 4, bet pie anoda ir pievienots cilindriskais staruvads 5. Uz staruvada ir uzstādītas divas magnētiskās fokusējošās lēcas 6 un 7 un novirzošās spoles 8. Gāzes balasta kamera 9 ir izvietota starp lēcu 7 un spolēm 8 vai starp lēcām 6 un 7 (2.zīm.). Gāzes balasta kamera ar staruvadu ir savienota ar atvērumiem 10. Anodā 4 ir izpildīts kanāls 11 darba gāzes padevei lielgabalā.The proposed gas discharge electron gun contains an airtight housing 1, in which a cold metal cathode 3 is mounted on the high voltage insulator 2 and an anode 4 is attached coaxially to the cathode axis, while a cylindrical beam 6 is attached to the anode. and a deflection coil 8. The gas ballast chamber 9 is disposed between the lens 7 and the coils 8 or between the lenses 6 and 7 (Fig. 2). The gas ballast chamber is connected to the apertures 10 by a barrel 10.
Piedāvātais gāzizlādes elektronu lielgabals darbojas šādi: lielgabalā veido nepieciešamo darba spiedienu, nepārtraukti atsūknējot gāzi no lielgabala caur gāzes balasta kameru un vakuuma iekārtas tehnoloģisko kameru, kā arī padodot darba gāzi (piemēram, ūdeņradi, skābekli u.c.) pa kanālu 11; uz katodu padod paātrinošo spriegumu robežās no 25 līdz 30 kV un ierosina augstsprieguma mirdzizlādi, kas veido elektronu kūli; izlādes strāvas lielumu, tātad arī kūļa strāvu, regulē, mainot lielgabalā spiedienu dažu Pa diapazonā ar gāzes plūsmas lielumu, kuru padodot pa kanālu 11; ar magnētisko fokusējošo lēcu 6 un 7 palīdzību elektronu kūli ievada tehnoloģiskajā kamerā un fokusē uz termiskās apstrādes objektu; kūļa novirzīšanu un skenēšanu pēc atbilstošas programmas veic ar novirzošo spoļu 8 palīdzību.The proposed gas-discharge electron gun functions as follows: The gun generates the required operating pressure by continuously pumping gas from the cannon through a gas ballast chamber and vacuum chamber technology chamber, and by supplying working gas (e.g., hydrogen, oxygen, etc.) through conduit 11; Delivering an accelerating voltage to the cathode, between 25 and 30 kV, and producing a high-voltage glow discharge that produces an electron beam; the magnitude of the discharge current, and hence the current of the beam, is controlled by varying the pressure of the cannon in the range of a few Pa with the magnitude of the gas flow fed through channel 11; by means of magnetic focusing lenses 6 and 7, the electron beam is introduced into the technological chamber and focused on the heat treatment object; beams are routed and scanned according to the appropriate program by means of diverting coils 8.
Saskaņā ar izgudrojumu tika izstrādāts eksperimentāls gāzizlādes lielgabala paraugs ar jaudu līdz 100 kW pie paātrinošā sprieguma 30 kV. Lielgabals tika izmēģināts elektronstaru iekārtā, kas bija paredzēta silicija kausēšanai. Iekārtas kameras atsūknēšana tika veikta ar tvaika un eļļas sūkni ar jaudu 4000 litri sekundē. Lielgabala papildu atsūknēšanai caur balasta kameru tika izmantots turbomolekulārais sūknis ar jaudu 500 litri sekundē. Dažādu lielgabala darba režīma un kausējamā materiāla stāvokļa gadījumā spiedienu tehnoloģiskajā kamerā varēja uzturēt uzdotajā līmenī diapazonā no 10 līdz 10’2 Pa. Lielgabala darbu varēja raksturot ar labu stabilitāti.According to the invention, an experimental gas discharge gun sample with a power up to 100 kW at an accelerating voltage of 30 kV was designed. The gun was tested in an electron beam melting device. The machine chamber was pumped out with a steam and oil pump of 4000 liters per second. A turbomolecular pump of 500 liters per second was used to pump the cannon further through the ballast chamber. In the case of a variety of cannon modes and the state of the molten material, the pressure in the process chamber could be maintained within the range of 10 to 10 ' 2 Pa. The work of the cannon could be characterized with good stability.
Piedāvātais gāzizlādes elektronu lielgabals ir paredzēts galvenokārt materiālu kausēšanai ar elektronstaru, bet var tikt izmantots arī citos termiskos procesos, ko veic vakuumā ar dažādu gāžu izmantošanu, ieskaitot reaktīvās gāzes. Gāzes nodalītā atsūknēšana caur balasta kameru nodrošina plašu spiedienu diapazonu materiālu termiskās apstrādes zonā (no 10 Pa līdz 10'2 Pa), kas būtiski paplašina šī tipa elektronu lielgabalu tehniskās iespējas.The proposed gas discharge electron gun is mainly intended for the melting of materials with electron beam, but can also be used in other thermal processes carried out under vacuum with various gases, including reactive gases. Separated gas pumping through a ballast chamber provides a wide range of pressures in the heat treatment area of the material (from 10 Pa to 10 ' 2 Pa), which significantly expands the technical capabilities of this type of electron gun.
Informācijas avoti:Sources of information:
1. M.A. 3aeb&rioe, IO.E. Kpeimdejib, A.A. HoeuKoe, JĪ.JĪ. UIaHmypuu. nnasMeHHbīe npoiļeccbi e mexH0Ji02uuecKux 3JieKmpombix ηγιακαχ, M., 3HepzoamoMU3dam, 1989, 97-145 c.;1. M.A. 3aeb & rioe, IO.E. Kpeimdejib, A.A. HoeuKoe, Yeah. UIaHmypuu. nnasMeHHbīe npolicecbi e mexH0Ji02uuecKux 3JieKmpombix ηγιακαχ, M., 3HepzoamoMU3dam, 1989, 97-145 c .;
2. Autorapliecība SU222571 (pieteikuma numurs 1119696/26-22, pieteikuma datums 17.12.1966); starptautiskās klasifikācijas indekss (SKI) H01J3/04;2. Author Certificate SU222571 (Application Number 1119696 / 26-22, filed December 17, 1966); International Classification Index (SKI) H01J3 / 04;
3. Pieteikums SU1123436 Al, kas publicēts 10.07.2000; starptautiskās klasifikācijas indekss H01J3/02;3. Application SU1123436 Al, published 10.07.2000; International Classification Index H01J3 / 02;
4. Patents RU2006123882, kas publicēts 10.01.2008; starptautiskās klasifikācijas indekss H01J37/06.4. Patent RU2006123882, published Jan. 10, 2008; International Classification Index H01J37 / 06.
Claims (2)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LVP-13-73A LV14938B (en) | 2013-05-31 | 2013-05-31 | Gaseous-discharge electron gun |
PCT/LV2013/000013 WO2014193207A1 (en) | 2013-05-31 | 2013-11-27 | The gas-discharge electron gun |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LVP-13-73A LV14938B (en) | 2013-05-31 | 2013-05-31 | Gaseous-discharge electron gun |
Publications (2)
Publication Number | Publication Date |
---|---|
LV14938A LV14938A (en) | 2014-12-20 |
LV14938B true LV14938B (en) | 2015-02-20 |
Family
ID=49958646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
LVP-13-73A LV14938B (en) | 2013-05-31 | 2013-05-31 | Gaseous-discharge electron gun |
Country Status (2)
Country | Link |
---|---|
LV (1) | LV14938B (en) |
WO (1) | WO2014193207A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104505325B (en) * | 2014-12-15 | 2016-08-17 | 中国航空工业集团公司北京航空制造工程研究所 | A kind of high voltage gas discharge electron gun arrangements |
CN105992449A (en) * | 2015-02-26 | 2016-10-05 | 李晓粉 | Beam leading-out device of accelerator |
LV15213B (en) * | 2016-10-21 | 2017-04-20 | Kepp Eu, Sia | Gaseous-discharge electron-beam gun |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3308325A (en) * | 1962-09-08 | 1967-03-07 | Bendix Balzers Vacuum Inc | Electron beam tube with ion shield |
US3271556A (en) * | 1963-10-31 | 1966-09-06 | Lockheed Aircraft Corp | Atmospheric charged particle beam welding |
RU2323502C1 (en) | 2006-07-03 | 2008-04-27 | Открытое акционерное общество "Чепецкий механический завод" (ОАО ЧМЗ) | Gaseous-discharge electron gun |
UA18148U (en) * | 2006-07-04 | 2006-10-16 | Mykola Petrovych Kondratii | Gas-discharge electron gun |
-
2013
- 2013-05-31 LV LVP-13-73A patent/LV14938B/en unknown
- 2013-11-27 WO PCT/LV2013/000013 patent/WO2014193207A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
LV14938A (en) | 2014-12-20 |
WO2014193207A1 (en) | 2014-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101112692B1 (en) | Method of controlling electron beam focusing of pierce type electron gun and control device therefor | |
Osipov et al. | A plasma–cathode electron source designed for industrial use | |
NZ503060A (en) | A charged particle beam emitting assembly to reduce beam fringe and optimise beam focus | |
LV14938B (en) | Gaseous-discharge electron gun | |
GB2296369A (en) | Radio frequency ion source | |
EP0928495B1 (en) | Ion source for generating ions of a gas or vapour | |
US5078950A (en) | Neutron tube comprising a multi-cell ion source with magnetic confinement | |
US11367587B2 (en) | Gas field ionization source | |
CN112164644A (en) | Penning ion source | |
RU2323502C1 (en) | Gaseous-discharge electron gun | |
CN209087761U (en) | A kind of novel plasma cathode electronics electron gun and 3D printer | |
CN109411319A (en) | A kind of novel plasma cathode electronics electron gun and 3D printer | |
RU159300U1 (en) | ELECTRONIC SOURCE WITH PLASMA EMITTER | |
RU2740146C1 (en) | Ion source (ion gun) | |
RU2454046C1 (en) | Plasma electron emitter | |
KR101954541B1 (en) | An ion source device for optimizing magnetic field | |
UA120300C2 (en) | GAS DISCHARGE ELECTRONIC GUN AND METHOD OF CONTROLLING ITS CURRENT | |
LV15213B (en) | Gaseous-discharge electron-beam gun | |
UA123969U (en) | GAS RELEASE ELECTRONIC CAN | |
Bohlender et al. | A PLASMA WINDOW AS A PRESSURE VALVE FOR FAIR | |
RU2080684C1 (en) | Cathode-ray device | |
RU2479884C2 (en) | Axial electron gun | |
RU2654493C1 (en) | Vacuum arrester | |
UA18148U (en) | Gas-discharge electron gun | |
RU165525U1 (en) | ELECTRON BEAM ELECTRON BEAM |