KR970001005B1 - Wear resistant components coated with a diamond particle dispersed hard ceramic films and its synthesis methods - Google Patents
Wear resistant components coated with a diamond particle dispersed hard ceramic films and its synthesis methods Download PDFInfo
- Publication number
- KR970001005B1 KR970001005B1 KR1019940020919A KR19940020919A KR970001005B1 KR 970001005 B1 KR970001005 B1 KR 970001005B1 KR 1019940020919 A KR1019940020919 A KR 1019940020919A KR 19940020919 A KR19940020919 A KR 19940020919A KR 970001005 B1 KR970001005 B1 KR 970001005B1
- Authority
- KR
- South Korea
- Prior art keywords
- diamond
- layer
- hard ceramic
- particulate
- coating layer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/046—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0617—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0254—Physical treatment to alter the texture of the surface, e.g. scratching or polishing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
- C23C16/271—Diamond only using hot filaments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
- C23C16/272—Diamond only using DC, AC or RF discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/042—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/044—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/40—Coatings including alternating layers following a pattern, a periodic or defined repetition
- C23C28/42—Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Chemical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
제1도는 본 발명에 따른 입자상 다이아몬드층을 증착하기 위한 증착장치의 구성도로서, (a)는 열필라멘트 증착장치,(b)는 고주파 플라즈마 증착장치, (c)는 마이크로 웨이브 플라즈마 증착장치이고, (d)는 직류 플라즈마 증착장치의 구성도.1 is a block diagram of a deposition apparatus for depositing a particulate diamond layer according to the present invention, (a) is a hot filament deposition apparatus, (b) is a high frequency plasma deposition apparatus, (c) is a microwave plasma deposition apparatus, (d) is a block diagram of a DC plasma deposition apparatus.
제2도는 천이금속 Fe에 다이아몬드를 증착한 수트 표면의 조직도.2 is a texture diagram of the soot surface of diamond deposited on the transition metal Fe.
제3도는 본 발명의 일실시예에 따른 입자상 다이아몬드 증착막의 예로서, (a)는 모재를 절단한 상태에서 화학증착 처리나 다이아몬드의 표면 사진이고, (b)는 모재를 에머리 천(#1000)으로 연마한 상태에서 상기 CVD법으로 다이아몬드 코팅처리한 사진이며, (c)는 모재를에머리 천(#1000)으로 연마하고 Al2O3분말로 연마한 뒤 코팅처리한 다이아몬드 입자의 사진.3 is an example of a particulate diamond deposition film according to an embodiment of the present invention, (a) is a chemical vapor deposition treatment or a photograph of the surface of the diamond in the state of cutting the base material, (b) is an emery cloth (# 1000) (C) is a photograph of the diamond particles coated with a diamond coating after the substrate is polished with an emery cloth (# 1000) and polished with Al 2 O 3 powder.
제4도는 본 발명의 경질 세라믹을 증착하기 위한 물리증착장치의 구성도로서, (a)이온 충돌에 의한 스퍼터링 장치, (b)는 저항 가열이나 전자빔 가열에 의한 진공증착 및 이온 플레이팅 장치의 구성도.4 is a configuration diagram of a physical vapor deposition apparatus for depositing a hard ceramic of the present invention, (a) sputtering apparatus by ion collision, (b) vacuum deposition and ion plating apparatus by resistance heating or electron beam heating Degree.
제5도는 본 발명의 바람직한 일실시예에 따라 얻어진 입자상 다이아몬드함유 세라믹 코팅층을 갖는 내마모 제품의 단면도이다.5 is a cross-sectional view of a wear resistant article having a particulate diamond-containing ceramic coating layer obtained in accordance with a preferred embodiment of the present invention.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
11,11b,11c,11d : 가스장입장치 13,13b,13c,13d : 진공펌프11,11b, 11c, 11d: Gas charging device 13,13b, 13c, 13d: Vacuum pump
14,14b,14c,14d,44,44b : 진공용기 15 : 텅스텐 필라멘트14,14b, 14c, 14d, 44,44b: vacuum vessel 15: tungsten filament
16,16b,16c,16d,48,48b,50,50b,50c,50c,50d : 모재16,16b, 16c, 16d, 48,48b, 50,50b, 50c, 50c, 50d: Base material
18 : 코일 19 : 고주파 전원공급장치18: coil 19: high frequency power supply
20 : 마그네트론 21 : 웨이브 가이드20: magnetron 21: wave guide
22 : 냉각수 23 : 양극22: coolant 23: anode
24 : 음극 41,41b : 진공배기구24: cathode 41,41b: vacuum exhaust port
42,42b : 가스흡입구 43 : 음극전압42,42b: gas inlet 43: cathode voltage
45 : 타켓 46 : 글로우 방전45: target 46: glow discharge
47 : 증발원 49 : 장입된 금속47: evaporation source 49: charged metal
51 : 탄화물 생성층 52 : 탄화물 생성층51: carbide generating layer 52: carbide generating layer
52 : 다이아몬드 증착층 53 : 세라믹 층52 diamond deposited layer 53 ceramic layer
본 발명은 다이아몬드함유 경질 세라믹 코팅층을 갖는 내마모 제품 및 그의 제조방법에 관한 것으로, 특히 천이금속의 모재에 내마모성이 우수한 입자상 다이아몬드층을 증착하고 그 위에 경질 세라믹층을 코팅하여 제조한 입자상 다이아몬드함유 경질 세라믹 코팅층을 갖는 내마모제품 및 그의 제조방법에 관한 것이다.The present invention relates to a wear-resistant product having a diamond-containing hard ceramic coating layer and a method for manufacturing the same. Particularly, a diamond-containing hard material prepared by depositing a particulate diamond layer having excellent wear resistance on a base metal of a transition metal and coating the hard ceramic layer thereon A wear resistant product having a ceramic coating layer and a method of manufacturing the same.
다이아몬드는 알려진 물질중에서 경도가 제일 높고 전기적 부도체이면서 열전전도가 높고 내화학성 내마모성 등의 특성이 극히 우수하므로 절삭공구, 내마모 기계부품에의 응용은 무한한 가능성을 가지고 있다. 다이아몬드층은 특정 소재에서 핵생성, 성장단계를 거치면서 층을 형성한다. Si, Mo, Ti 등의 탄화물을 형성하는 물질에서는 다이아몬드 박막을 잘 형성하는 반면 Fe, Ni, Co 등의 천이금속에서는 다이아몬드 박막을 잘 형성하지 못하고 수트(soot)나 흑연 박막등을 형성한다. 한편 다이아몬드 박막을 형성한다 하더라도 모재와 다이아몬드 박막과의 밀착력이 좋지 않아 박막의 제특성을 발휘하지 못하므로, 기계부품이나 절삭공구, 금형등에 응용하기 위해서 밀착력의 향상이 필수적이다.Diamond is one of the best known materials, which has the highest hardness, electrical insulator, high thermal conductivity, and excellent chemical resistance and abrasion resistance. Therefore, it has unlimited possibilities for cutting tools and wear-resistant mechanical parts. The diamond layer forms a layer through nucleation and growth in a specific material. Carbide materials such as Si, Mo, Ti and the like form diamond thin films well, while transition metals such as Fe, Ni, and Co do not form diamond thin films well, and soot or graphite thin films are formed. On the other hand, even if a diamond thin film is formed, the adhesion between the base material and the diamond thin film is not good, and thus the thin film cannot be exhibited. Therefore, the improvement of the adhesion force is essential for application to mechanical parts, cutting tools, and molds.
증착볍에 의한 다이아몬드 박막은 천연 다이아몬드와 유사한 특징을 지니고 있기 때문에 이의 응용은 매우 중요한 의미를 지닐 수 있다. 그러나 다이아몬드 박막은 소지 기판과의 밀착력에 있어서 공구, 금형, 기계부품 등의 내마로 요구 부품에서 견딜 수 있는 정도까지 얻을 수 없기 때문에 아직 실용화 되지 못하고 있다.The thin film of deposited diamond has similar characteristics to that of natural diamond, so its application can be very important. However, diamond thin films have not yet been put to practical use because they cannot be obtained to the extent that they can withstand the required parts due to the wear resistance of tools, molds, and mechanical parts in adhesion to the substrate.
따라서 본 발명의 목적은 상기 문제점을 해결하기 위한 것으로 천이금속의 모재에 입자형 다이아몬드의 우수한 경도 및 내마모성과 경질 세라믹 박막의 우수한 밀착력을 함께 갖는 입자상 다이아모드함유 경젤 세락믹 코팅층을 갖는 내마모 제품 및 그의 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to solve the above problems and wear-resistant products having a particulate diamond mode-containing hard gel-ceramic coating layer having excellent hardness and abrasion resistance of the granular diamond and excellent adhesion of the hard ceramic thin film to the base metal of the transition metal and It is to provide a method for producing the same.
상기한 목적을 달성하기 위하여 본 발명은 천이금속의 모재와, 상기 모재 표면에 코팅된 탄화물 생성층과, 상기 탄화물 생성층의 표면에 입자상으로 증착되는 다이아몬드층과, 상기 입자상 다이아몬드 증착층 위에 증착된 경질 세라믹층으로 구성되는 것을 특지으로하는 입자상 다이아몬드함유 경질 세라믹 코팅층을 갖는 내마모 제품을 제공한다.In order to achieve the above object, the present invention provides a base metal of a transition metal, a carbide generation layer coated on the surface of the base material, a diamond layer deposited on the surface of the carbide generation layer in a particulate form, and deposited on the particulate diamond deposition layer. A wear resistant product having a particulate diamond-containing hard ceramic coating layer, which is characterized by being composed of a hard ceramic layer, is provided.
본 발명은 또한 탄화물 생성이 용이한 모재와, 상기 모재의 표면에 입자상으로 증착되는 다이아몬드층과, 상기 입자상 다이아몬드 증착층 위에 증착된 경질 세라믹층으로 구성되는 것을 특징으로 하는 입자상 다이아몬드함유 경질 세라믹 코팅층을 갖는 내마모 제품을 제공한다.The present invention also provides a particulate diamond-containing hard ceramic coating layer comprising a base material that is easy to generate carbide, a diamond layer deposited on the surface of the base material in a particulate form, and a hard ceramic layer deposited on the particulate diamond deposition layer. To provide a wear resistant product.
본 발명은 더욱이 천이금속의 모재 표면에 탄화물 생성물질을 코팅하는 단계와, 상기 탄화물 생성층을 표면의 핵생성 밀도를 조절하기 위한 전처리하는 단계, 탄화물 생성층 위에 입자상 다이아몬드 코팅층으로 증착시키는 단계와, 상기 다이아몬드 증착층 위에 경질 세라믹층을 증착시키는 단계로 구성되는 것을 특징으로 하는 다이아몬드함유 경질 세라믹 코팅층을 갖는 내마모 제품의 제조방법을 제공한다.The present invention further comprises the steps of coating a carbide generating material on the surface of the base metal of the transition metal, pretreating the carbide generating layer to control the nucleation density of the surface, depositing a particulate diamond coating layer on the carbide generating layer, It provides a method for producing a wear-resistant product having a diamond-containing hard ceramic coating layer comprising the step of depositing a hard ceramic layer on the diamond deposition layer.
본 발명의 또다른 특징에 따르면 본 발명은 탄화물 생성물질을 표면의 핵생성 밀도를 조절하기 위한 전처리하는 단계와, 탄화물 생성물 위에 입자상 다이아몬드 코팅층으로 증착시키는 단계와, 상기 입자상 다이아몬드 증착층 위에 경질 세라믹층을 증착시키는 단계로 구성되는 것을 특징으로 하는 다이아몬드함유 경질 세라믹 코팅층을 갖는 내마모 제품의 제조방법을 제공한다.According to another feature of the invention, the present invention comprises the steps of pretreatment to control the nucleation density of the surface of the carbide generating material, depositing a particulate diamond coating layer on the carbide product, and a hard ceramic layer on the particulate diamond deposition layer It provides a method for producing a wear-resistant product having a diamond-containing hard ceramic coating layer, characterized in that comprising the step of depositing.
이하 본 발명의 구성 및 작용을 첨부도면을 참조하여 설명하면 다음과 같다.Hereinafter, the configuration and operation of the present invention will be described with reference to the accompanying drawings.
입자상 다이아몬드층을 제조하는 공정은 다음과 같다.The process of manufacturing a particulate diamond layer is as follows.
일반적으로 다이아몬드 박막이나 입자를 코팅할 때 양질의 다이아몬드를 코팅시키는 금속(Si, Mo, Ti)이 있는 반면에, Fe, Ni, Co 등과 같은 천이금속은 양질의 다이아몬드를 코팅시키지 못한다.In general, there are metals (Si, Mo, Ti) that coat high-quality diamonds when coating diamond films or particles, while transition metals such as Fe, Ni, Co, and the like do not coat high-quality diamonds.
따라서 본 발명에서는 예를들어 WC-Co(초경합금) SiC, Si3N4및 Al2O3등과 같은 양질의 다이아몬드 층을 코팅시키는 금속에는 표면처리만 하여 입자상 다이아몬드를 코팅하고, 천이금속의 경우에는 Si, Mo, Ti 등과 같은 금속을 0.5~200㎛ 두께로 코팅하여 입자상 다이아몬드를 코팅한다.Therefore, in the present invention, for example, metals coated with high-quality diamond layers such as WC-Co (carbide) SiC, Si 3 N 4, and Al 2 O 3 are coated with particulate diamond only by surface treatment, and in the case of transition metals, A diamond such as Si, Mo, Ti, etc. is coated to a thickness of 0.5 ~ 200㎛ to coat the particulate diamond.
먼저 천이금속의 경우는 Si, Mo, Ti 등의 탄화물을 생성하는 금속을 먼저 코팅한다. 이와 같이 코팅괸 모재를 핵생성의 밀도를 적당한 수준으로 유지하기 위하여 다이아몬드 분말, SiC 분말, SiO2분말, Al2O3분말 및 Cr2O3분말중 어느 하나 혹은 이들중 어느 하나로 처리하고나서 다른 분말로 모재와 함께 넣어 모재를 들려주는 동안에 분말이 모재 표면을 연마해주거나 ; 상기 분말을 아세톤, 알콜, 물등과 섞고 초음파 진동처리를 해주거나 ; 상기 분말을 풀상태로 만들어 모재를 문질러주는 것으로 행해진다.First, in the case of transition metals, metals that produce carbides such as Si, Mo, and Ti are first coated. The coated substrate is treated with one or any of diamond powder, SiC powder, SiO 2 powder, Al 2 O 3 powder and Cr 2 O 3 powder to maintain the density of nucleation at an appropriate level. The powder grinds the surface of the base material while it is put together with the base material as a powder to lift the base material; Mixing the powder with acetone, alcohol, water and the like and performing ultrasonic vibration treatment; It is done by rubbing the base material by making the powder into a paste state.
이어서 상기 표면처리한 모재를 다이아몬드 입자의 밀도를 조정하기 위하여 수소 플라즈마상태에 소정시간(0.5~30분)동안 노출시키거나 또는 진공열처리에서 200℃에서 1400℃ 범위의 진공 열처리과정을 거친다.Subsequently, the surface-treated base material is exposed to a hydrogen plasma state for a predetermined time (0.5 to 30 minutes) in order to adjust the density of diamond particles, or undergoes a vacuum heat treatment process in a vacuum heat treatment ranging from 200 ° C. to 1400 ° C.
그후 열필라멘트 화학증착법(CVD ; Chemical Vapor Deposition), RF 플라즈마 CVD, 마이크로 웨이브 플라즈마 CVD, 또는 직류(DC) 플라즈마 CVD 등의 화학증착법으로 두께 0.2~100㎛, 크기 0.2~100㎛ 입자상 다이아몬드층을 모재 표면에 증착시킨다. 이 경우 다이아몬드입자의 두께는 전처리의 종류와 코팅시간에 따라서 조절할 수 있다.Subsequently, a matrix of 0.2-100 μm thick and 0.2-100 μm granular diamond layer is formed by chemical vapor deposition such as thermal filament chemical vapor deposition (CVD), RF plasma CVD, microwave plasma CVD, or direct current (DC) plasma CVD. Deposit on the surface. In this case, the thickness of the diamond particles can be adjusted according to the type of pretreatment and the coating time.
상기한 입자상 다이아몬드 박막을 증착시키는 화학증착법에는 먼저 제1도(a)에 도시된 열필라멘트 화학증착장치에 의하여 진공용기(14)를 진공펌프(13)로 진공을 10-3~10-1토르(Torr)까지 뽑은 후, H2와 CH4가스(CH4가스 농도를 0.1%에서 10%의 범위에서 변화)를 가스장입장치(11)를 통하여 장입하면서 진공용기(14)내의 압력을 1토르에서 100코르까지 유지하면서 텅스텐 필라멘트(15)를 1500℃에서 2500℃까지 가열한 상태에서 탄화수소의 분해에 의하여 모재(16)에 입자상 다이아몬드층을 증착하는 열필라멘트 화학증착법이 이용될 수 있다.In chemical vapor deposition to deposit the above-described first granular diamond thin film of claim 1 also (a) a vacuum to the vacuum container 14 by a hot-filament chemical vapor deposition apparatus shown in the vacuum pump 13 is 10 -3 to 10 -1 Torr After drawing up to (Torr), the pressure in the vacuum vessel 14 was charged by 1 torr while charging H 2 and CH 4 gas (the CH 4 gas concentration was changed in the range of 0.1% to 10%) through the gas charging device 11. Thermal filament chemical vapor deposition may be used to deposit a particulate diamond layer on the base material 16 by decomposition of hydrocarbons while the tungsten filament 15 is heated from 1500 ° C. to 2500 ° C. while maintaining up to 100 cor at.
또한 제1도(b)에 도시된 RF 플라즈마 CVD 장치에 의하여 진공용기(14b)를 진공펌프(13b)로 진공을 10-3~10-1토르까지 뽑은 다음, H2와 CH4혼합가스를 장입하고 진공용기(13b)내의 압력을 10-2에서 200토르까지 가스를 채워서 고주파 전원공급장치(11b)에 연결된 코일(18)에 의하여 모재(16b)에 입자상 다이아몬드 박막을 증착할 수 있는 RF 플라즈마 CVD 법도 이용될 수 있다.In addition, the vacuum vessel 14b is extracted with a vacuum pump 13b to 10 -3 to 10 -1 Torr by the RF plasma CVD apparatus shown in FIG. 1 (b), and then a mixture of H 2 and CH 4 RF plasma which can deposit a particulate diamond thin film on the base material 16b by charging and filling the gas in the vacuum vessel 13b from 10 -2 to 200 Torr by the coil 18 connected to the high frequency power supply 11b. CVD methods may also be used.
또한, 제1도(c)의 마이크로 웨이브 플라즈마 CVD 장치에 의한 진공용기(14c)에 초기 진공을 진공펌프(13c)에 의해 10-3~10-1토르까지 뽑은 다음 CH4와 H2혼합가스를 흘려주면서 1토르에서 500토르까지 유지하면서 마그네트론(20)으로 마이크로파를 웨이브 가이드(17)를 통해서 공급할 경우 모재(16c)주위에 플라즈마가 발생되며 탄화수소 가스가 분해하여 상기 모재(16c)에 입자형 다이아몬드 박막이 증착되게 하는 마이크로 웨이브 플라즈마 CVD 법도 이용될 수 있다.In addition, the initial vacuum was extracted from the vacuum vessel 14c by the microwave plasma CVD apparatus of FIG. 1 (c) to 10 -3 to 10 -1 Torr by the vacuum pump 13c, and then the mixed gas of CH 4 and H 2 was When supplying microwaves through the wave guide 17 to the magnetron 20 while maintaining 1 to 500 torr while flowing a plasma is generated around the base material 16c and hydrocarbon gas decomposes to form the particulate material in the base material 16c. Microwave plasma CVD can also be used to allow diamond thin films to be deposited.
또한 제1도(d)의 DC 플라즈마 CVD 장치에 의하여 진공용기(14d)에 부착된 진공펌프(13d)로 초기에 10-3~10-1토르까지 진공을 만들고 가스공급기(11d)를 통해서 CH4와 H2혼합가스를 장입하고 탄화물 생성물질의 코팅층을 갖는 모재(16d)상단에 음극(24)에 전원을 공급할 경우 플라즈마가 발생하게 되는데 상기 모재(16d) 주위에서 발생하는 양광주를 다이아몬드 증착에 이용하여 입자형 다이아몬드를 증착할 수 있다. 이때 양광주에 의해서 상기 모재(16d)는 온도가 많이 올라가므로 양극으로 되어 있는 시편(16d)에는 냉각수(23)를 흘려주는 DC 플라즈마 CVD 법이 이용되며, 이밖에도 플라즈마 제트 화학증착법, 산소-아세틸렌 도치법 등이 이용될 수 있다. 제1도에서 미설명 부호(12)는 전기로, (23)은 양그, (25)는 플런저(26)는 직류 전원,(27)는 셔터, (54,54b)는 시료대를 나타낸다. 상기 장치를 이용한 다이아몬드 증착처리에 의한 입자형 다이아몬드 증착은 증착조건과 방법에 의존하기 보다는 다이아몬드 증착전 모재의 전처리 조건에 의해 결정된다.In addition, the vacuum pump 13d attached to the vacuum vessel 14d by the DC plasma CVD apparatus of FIG. 1 (d) is initially used to make a vacuum from 10 -3 to 10 -1 Torr, and the CH is supplied through the gas supply 11d. When charging 4 and H 2 mixed gas and supplying power to the cathode 24 on the base material 16d having the coating layer of carbide generating material, plasma is generated, and diamonds are deposited on the light poles generated around the base material 16d. It can be used to deposit the granular diamond. At this time, since the base material 16d is increased in temperature due to a positive liquor, a DC plasma CVD method for flowing a coolant 23 is used for the specimen 16d, which is an anode. And the like can be used. In FIG. 1, reference numeral 12 denotes an electric furnace, 23 denotes a sheep, 25 denotes a plunger 26, a DC power supply, 27 denotes a shutter, and 5454 and 54b denote a sample stage. Particle diamond deposition by the diamond deposition treatment using the apparatus is determined by the pretreatment conditions of the base material before diamond deposition, rather than depending on the deposition conditions and methods.
제2도는 천이금속 Fe에 다이아몬드 코팅조건으로 증착한 수트 표면의 조직도이고, 제3도는 본 발명의 일실시예에 따른 입자상 다이아몬드 증착막의 예로서, (a)는 모재를 절단한 상태에서 화학증착 처리한 입자상 다이아몬드의 표면 사진이고, (b)는 모재를 에머리 천(#1000)으로 연마한 상태에서 상기 CVD 법으로 다이아몬드 코팅처리한 사진이며, (c)는 모재를 에머리 천(#1000)으로 연마하고 Al2O3분말로 연마한 뒤 코팅처리한 다이아몬드 입자의 사진이다.FIG. 2 is a texture diagram of the surface of a soot deposited on a transition metal Fe under diamond coating conditions, and FIG. 3 is an example of a particulate diamond deposition film according to an embodiment of the present invention. A photograph of the surface of a particulate diamond, (b) is a photograph of the diamond coating treatment by the CVD method while the base material is polished with an emery cloth (# 1000), (c) is a polishing of the base material with an emery cloth (# 1000) And a photograph of diamond particles coated with Al 2 O 3 powder and then coated.
이와 같이 모재에 입자상 다이아몬드 증착츠을 형성한 후, 제4도에 도시된 바와 같이 물리중측장치에 의하여 밀착력이 약한 상기 다이아몬드 증착층 위에 경질 세라믹층을 증착시켜 입자상 다이아몬드를 잡아주는 지지층을 형성한다.After forming the particulate diamond deposited on the base material as described above, as shown in FIG. 4, a hard ceramic layer is deposited on the diamond deposited layer having poor adhesion by physical physical devices to form a support layer to hold the particulate diamond.
물리증착방법에는 제4도(a)에는 스퍼터링 방법을 나타낸 것인데, 진공용기(44)를 진공배기구(41)를 통해서 초기 진공도를 10-7에서 10-4토르까지 배기한 뒤 가스흡입구(42)를 통해서 Ar 가스와 N2, C2H2, O2, CH4등의 반응가스를 장입하여 10-4에서 9×10-1토르까지 채워 넣어 음극전압(43)을 가하고, 타켓(45)에서 글로우 방전(46)을 발생시켜 Ti, Ni Fe, Co, Cr, Mo, Al, Cu, Zr, Hf, Si, Ge, Ga 등의 금속(Me) 이온을 스퍼터링시킴에 의해 경질 세라믹층을 상기 입자상 다이아몬드층 위에 증착시킨다.In the physical vapor deposition method, a sputtering method is shown in FIG. 4 (a). The vacuum chamber 44 is evacuated from the initial vacuum degree of 10 -7 to 10 -4 torr through the vacuum exhaust port 41, and then the gas inlet 42 is discharged. Through Ar gas and the reaction gas such as N 2 , C 2 H 2 , O 2 , CH 4 and charged from 10 -4 to 9 × 10 -1 Torr to apply a negative voltage (43), the target 45 The hard ceramic layer is formed by sputtering metal (Me) ions such as Ti, Ni Fe, Co, Cr, Mo, Al, Cu, Zr, Hf, Si, Ge, Ga Deposited on the particulate diamond layer.
이 경우 만약, 예를 들어 반응가스가 N2, NH3일 경우에는 이들의 질화물(MexNy, 여기서 x,y : 0~4) : 반응가스로서 CH4C2H2같은 탄화수소 가스를 장입할 경우에는 이들의 탄화물(MexNy, 여기서 x,y : 0~4) : 반응가스로서 산소를 장입할 경우에는 산화물(MexO, 여기서 x,y : 0~4)의 경질 세라믹층을 각각 상기 입자상 다이아몬드층 위에 증착시킬 수 있다.In this case, for example, when the reaction gas is N 2 , NH 3 , these nitrides (MexNy, where x, y: 0 ~ 4): when charging a hydrocarbon gas such as CH 4 C 2 H 2 as the reaction gas These carbides (MexNy, where x, y: 0-4): When charged with oxygen as a reaction gas, a hard ceramic layer of oxide (MexO, where x, y: 0-4) is respectively placed on the particulate diamond layer. Can be deposited.
또한 제4도(b)에 나타낸 것과 같이 금속을 가열할 수 있는 증발원(47)에 장입된 금속(48)을, 저항가열이나 전자빔 가열에 의하여 가열하여 증발시키면서 상기한 제4도(A)와 같이 상기 이온 충돌에 의한 스퍼터링의 경우에서와 마찬가지로 가스흡입구(42)를통해서 유입하는 가스의 종류에 따라서 금속, 질화물, 탄화물, 산화물 등을 증착시키는 저항 가열이나 전자빔 가열에 의한 진공증착법 및 이온 플레이팅이 이용될 수 있다.In addition, as shown in FIG. 4 (b), the metal 48 loaded in the evaporation source 47 capable of heating the metal is heated and evaporated by resistance heating or electron beam heating, and as shown in FIG. As in the case of sputtering by ion collision as described above, vacuum deposition and ion plating by resistance heating or electron beam heating to deposit metals, nitrides, carbides, oxides, etc. according to the type of gas flowing through the gas inlet 42 are performed. This can be used.
이밖에도 아크 이온 플리이팅에 의한 상기 금속, 질화물, 탄화물, 산화물 등의 경질 세라믹층을 코팅하여 입자상 다이아몬드층을 잡아주는 목적으로 이용할 수 있다.In addition, it can be used for the purpose of holding a particulate diamond layer by coating a hard ceramic layer of the metal, nitride, carbide, oxide, etc. by arc ion plating.
상기한 경질 세라믹층(53)의 두께는 제5도(a)에 나타낸 것과 같이 입자상 다이아몬드층의 높이 보다 얇게 할 수도 있고, 제5도(b)에 나타낸 것과 같이 두께를 거의 같이 할 수도 있고, 제5도(c)에 나타낸 것과 같이 입자상 다이아몬드층이 경질 세라믹층(53)에 묻히게 할 수도 있다. 한편 제5도(d)에 나타낸 바와 가티 모재(50d)에 입자상 다이아몬드층(52d)를 코팅하고 경질 세라믹층(53d)을 증착시키는 공정을 1회에서 100회에까지 반복해서 수행하여 입자상 다이아몬드가 경질 세라믹층에 분산되어 증착층의 내구성을 향상시킬 수 있다.The thickness of the hard ceramic layer 53 may be thinner than the height of the particulate diamond layer as shown in FIG. 5 (a), or may be substantially the same as shown in FIG. 5 (b), As shown in FIG. 5C, the particulate diamond layer may be buried in the hard ceramic layer 53. On the other hand, as shown in Fig. 5 (d), the process of coating the granular diamond layer 52d on the Gati base material 50d and depositing the hard ceramic layer 53d is repeated from one to 100 times to make the particulate diamond hard. It may be dispersed in the ceramic layer to improve durability of the deposition layer.
한편 또 다른 실시예로서 제5도(e)와 같이 천이금속을 대신 WC-Co(초경합금),SiC, Si3N4및 AlO3와 같은 탄화물 생성이 용이한 모재를 사용하여 상기한 방법으로 내마모 제품을 얻을 수 있다.Meanwhile, as another example, as shown in FIG. 5 (e), the base metal can be easily formed into a carbide such as WC-Co (carbide carbide), SiC, Si 3 N 4, and AlO 3 , instead of the transition metal. Wear products can be obtained.
상기한 바와 같이 본 발명은입자상 다이아몬드의 우수한 경도, 내마모성 등의 특성과 경질 세라믹층의 우수한 밀착력을 복합으로 적용하여 기계 및 전자부품, 절삭공구, 금형 등의 부품에 성능과 내구성을 향상시킬 수 있다.As described above, the present invention may improve the performance and durability of components such as mechanical and electronic parts, cutting tools, and molds by applying a combination of excellent hardness, wear resistance, and the like and excellent adhesion of the hard ceramic layer. .
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940020919A KR970001005B1 (en) | 1994-08-24 | 1994-08-24 | Wear resistant components coated with a diamond particle dispersed hard ceramic films and its synthesis methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940020919A KR970001005B1 (en) | 1994-08-24 | 1994-08-24 | Wear resistant components coated with a diamond particle dispersed hard ceramic films and its synthesis methods |
Publications (2)
Publication Number | Publication Date |
---|---|
KR960007171A KR960007171A (en) | 1996-03-22 |
KR970001005B1 true KR970001005B1 (en) | 1997-01-25 |
Family
ID=19391028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019940020919A KR970001005B1 (en) | 1994-08-24 | 1994-08-24 | Wear resistant components coated with a diamond particle dispersed hard ceramic films and its synthesis methods |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR970001005B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011029096A3 (en) * | 2009-09-05 | 2011-05-05 | General Plasma, Inc. | Plasma enhanced chemical vapor deposition apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020095805A (en) * | 2001-06-15 | 2002-12-28 | 조대형 | A Method of Coating Body with Parylene |
-
1994
- 1994-08-24 KR KR1019940020919A patent/KR970001005B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011029096A3 (en) * | 2009-09-05 | 2011-05-05 | General Plasma, Inc. | Plasma enhanced chemical vapor deposition apparatus |
JP2013503974A (en) * | 2009-09-05 | 2013-02-04 | ジェネラル・プラズマ・インコーポレーテッド | Plasma chemical vapor deposition equipment |
Also Published As
Publication number | Publication date |
---|---|
KR960007171A (en) | 1996-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6372303B1 (en) | Method and device for vacuum-coating a substrate | |
KR900008505B1 (en) | Microwave enhanced cvd method for depositing carbon | |
EP1034320B1 (en) | Method and apparatus for coating diamond-like carbon onto particles | |
Deshpandey et al. | Diamond and diamondlike films: Deposition processes and properties | |
KR930003605B1 (en) | Microwave enhanced cvd method for coating plastic articles with carbon films and its products | |
EP0797688B1 (en) | Method for deposition of diamondlike carbon films | |
CN100467664C (en) | Method for manufacturing diamond-like film and part with coating manufactured thereby | |
US5013579A (en) | Microwave enhanced CVD method for coating mechanical parts for improved wear resistance | |
CA2185217A1 (en) | Process to produce diamond films | |
JP4122387B2 (en) | Composite hard coating, method for producing the same, and film forming apparatus | |
CN114703452B (en) | CoCrFeNi high-entropy alloy doped amorphous carbon film and preparation method thereof | |
Geng et al. | Synthesis of diamond films on W mono-blocks by MWCVD for modification of fusion materials | |
KR970001005B1 (en) | Wear resistant components coated with a diamond particle dispersed hard ceramic films and its synthesis methods | |
US5270029A (en) | Carbon substance and its manufacturing method | |
US5266363A (en) | Plasma processing method utilizing a microwave and a magnetic field at high pressure | |
CN113403602B (en) | PCBN cutter with nano-diamond film coating on surface and preparation method thereof | |
EP0230927B1 (en) | Diamond manufacturing | |
JP2807790B2 (en) | Photoconductor production method | |
JPH04124272A (en) | Cubic boron nitride coating member and its production | |
Yan et al. | High power density pulsed plasma deposition of titanium carbonitride | |
RU2118206C1 (en) | Process of manufacture of alloyed of diamond-like coats | |
RU2141006C1 (en) | Method of production of alloyed carbon-containing coatings | |
JPH01103987A (en) | Method for synthesizing diamond by vapor phase method | |
Ling et al. | A Recent Patent on Microwave Plasma Chemical Vapor-Deposited Diamond Film on Cutting Tools | |
JPH0623437B2 (en) | Method for producing carbon and boron nitride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20020126 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |