[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR960011320B1 - Method for cement composite material of lightweight using steelmesh and steel fiber - Google Patents

Method for cement composite material of lightweight using steelmesh and steel fiber Download PDF

Info

Publication number
KR960011320B1
KR960011320B1 KR1019930021360A KR930021360A KR960011320B1 KR 960011320 B1 KR960011320 B1 KR 960011320B1 KR 1019930021360 A KR1019930021360 A KR 1019930021360A KR 930021360 A KR930021360 A KR 930021360A KR 960011320 B1 KR960011320 B1 KR 960011320B1
Authority
KR
South Korea
Prior art keywords
binder
weight ratio
steel
carbon fiber
cement
Prior art date
Application number
KR1019930021360A
Other languages
Korean (ko)
Other versions
KR950011358A (en
Inventor
이성영
박양덕
Original Assignee
포항종합제철 주식회사
조말수
재단법인 산업과학기술연구소
백덕현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 조말수, 재단법인 산업과학기술연구소, 백덕현 filed Critical 포항종합제철 주식회사
Priority to KR1019930021360A priority Critical patent/KR960011320B1/en
Publication of KR950011358A publication Critical patent/KR950011358A/en
Application granted granted Critical
Publication of KR960011320B1 publication Critical patent/KR960011320B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/146Silica fume
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/304Air-entrainers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The process for producing a cement composite of lightweight foam comprises adding and mixing 0.5-4.0 vol.% carbon fiber as a primary reinforcing material to a cement matrix containing a mixed solution of 0.001-0.005 wt.% water reducing agent(water reducing agent/binder, binder = cement + silica fume), 0.001-0.005 wt.% air carrying agent(air carrying agent/binder) and 0.05-0.3 wt.% silica fume(silica fume/binder), which are dissolved in 0.3-0.4 wt.% mixed water(mixed water/binder); and molding and dehydrating while adding 0.1-2.0 vol.% steel materials as a secondary reinforced material.

Description

탄소섬유 및 강재보강 경량기포 시멘트 복합재료의 제조방법Manufacturing method of carbon fiber and steel reinforced lightweight foam cement composites

제1도는 탄소섬유보강 경량기포 시멘트 복합재에 있어서 공기연행제의 함량변화에 따른 비중, 굴곡강도 및 압축강도의 변화를 나타내는 그래프.1 is a graph showing changes in specific gravity, flexural strength and compressive strength according to the content of air entrainer in carbon fiber reinforced lightweight foam cement composites.

제2도는 탄소섬유보강 경량기로 시멘트 복합재에 있어서 실리카흄의 함량변화에 따른, 굴곡강도, 압축강도 및 비중의 변화를 나타내는 그래프.FIG. 2 is a graph showing changes in flexural strength, compressive strength and specific gravity according to the change of silica fume content in cement composites.

제3도는 탄소섬유보강 경량기포 시멘트 복합재에 있어서 탄소섬유 함량변화에 따른 성형체의 굴곡강도, 압축강도 및 비중의 변화를 나타내는 그래프.3 is a graph showing the changes in flexural strength, compressive strength and specific gravity of the molded body according to the carbon fiber content change in the carbon fiber reinforced lightweight foam cement composite.

제4도는 탄소섬유 및 강재(강메쉬)보강 경량기로 시멘트 복합재에 있어서 강재의 함량변화에 따른 굴곡하중-휨변형을 나타내는 그래프.Figure 4 is a graph showing the flexural load-deflection according to the change of steel content in cement composites with carbon fiber and steel (steel mesh) reinforcement lightweight.

제5도는 탄소섬유 및 강재(강섬유)보강 경량기포 시멘트 복합재에 있어서 강재의 함량변화에 따른 굴곡하중-휨변형을 나타내는 그래프.5 is a graph showing the flexural load-deflection according to the change of steel content in carbon fiber and steel (steel fiber) reinforced lightweight foam cement composites.

본 발명은 건축용재등으로 사용되는 경량기포 시멘트 복합재료를 제조하는 방법에 관한 것으로써, 보다 상세하게는, 1차 보강재인 탄소섬유를 3차원 랜덤(RANDOM) 배향 시킴과 동시에 공기를 연행시킨 후, 2차 보강재로서 강재를 첨가하는 탄소섬유 및 강재보강 경량기포 시멘트 복합재료를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a lightweight foam cement composite material used for building materials, and more particularly, after the carbon fiber as the primary reinforcing material to align the three-dimensional random (RANDOM) orientation and entrain air The present invention relates to a method for producing carbon fiber and steel reinforced lightweight foam cement composites containing steel as a secondary reinforcing material.

최근, 콘크리트 구조물의 경우 고층화추세에 따른 구조 및 시공의 합리화가 요구되고 있으며, 이러한 요구를 충족시킬 수 있는 경량인 동시에 고강도인 콘크리트 경화제의 개발이 요구되고 있다. 이러한 추세에 따라 선진국의 경우, 철골조 건축물에 경량부재인 ALC(AUTOCLAVED LIGHTWEIGHT CONCRETE) 등을 사용함으호써 구조체의 하중감소 및 건설공기의 단축 등의 효과를 유도함으로써 건설비의 대폭적인 감소를 도모하고 있다.Recently, in the case of concrete structures, there is a demand for rationalization of structures and constructions according to the trend of higher layers, and development of lightweight and high-strength concrete hardeners capable of meeting such demands is required. In accordance with this trend, advanced countries are trying to drastically reduce construction costs by using ALC (AUTOCLAVED LIGHTWEIGHT CONCRETE), which is a lightweight member, for steel framed buildings.

콘크리트를 경량화하는 수단으로는 경량골재를 이용하거나 기포를 연행시키는 것이 일반적이며 특히 1.5 이하의 저비중을 달성하기 위하여는 기포의 연행이 효과적이나, 이러한 기포연행을 이용해서 제조되는 대표적인 경량부재로서 ALC를 들 수 있으며, 최근에는 안정한 건축재료로서 ALC가 많이 이용되고 있다 ALC의 제조법은 시멘트 성형물을 고온고압하의 오토크래이브(Autoclave)에서 열처리함으로써 Preformed Product를 제조하며 이러한 열처리 과정에서 토버모라이트(Tobermorite)라고 부르는 칼슘 실리케이트 하이드레이트(Calcium Silicate Hydrate)가 생성하게 된다. 이와 같은 경량기로 시멘트복합재의 제조공정은 포스트-포옴 프로세서(Post-foam Process)와 프리-포옴 프로세스(Pre-foam Process)의 두가지로 분류된다. Post-foam Process는 시멘크 슬러리를 몰드에 놓은 후, 열처리를 행함으로써 시멘트 혼합물에 첨가된 알류미늄분말 (Powder)과 시멘트 또는 라임(Lime)과 같은 알칼리 성분의 상호반응에 의해서 수소가 발생하게 되며, 내부에 많은 기포를 함유한 시멘트 경화제를 형성하게 된다. 이러한 공정은 특수 몰드가 사용되어야 함은 물론, 크고 복잡한 형태의 패널(Panel) 등의 제조가 어려운 단점이 있다.As a means of lightening the concrete, it is common to use lightweight aggregate or entrain air bubbles, and in particular, entraining air bubbles is effective to achieve low specific gravity of 1.5 or less, but ALC is a representative light weight member manufactured using such air entrainment. Recently, ALC is widely used as a stable building material. The manufacturing method of ALC manufactures preformed products by heat-treating cement moldings in an autoclave under high temperature and high pressure. Calcium Silicate Hydrate, called Tobermorite, is produced. Such lightweight composites can be categorized into two types: post-foam process and pre-foam process. In the post-foam process, hydrogen is generated by the interaction between the aluminum powder (powder) added to the cement mixture and an alkali component such as cement or lime (lime) by placing the cement slurry in a mold and then performing heat treatment. To form a cement hardener containing a lot of bubbles inside. This process has a disadvantage that it is difficult to manufacture a large and complicated panel (Panel), as well as a special mold to be used.

따라서, 이러한 문제점을 해결하는 방안으로 슬러리 내에서 알루미늄분말(Powder)과 알칼리 성분과의 반응을 미리 일으켜 기포를 주입하거나(US Pat. No. 3,551,174), 공기를 직접 슬러리 중에 불어 넣은 후(US Pat. No. 3,979,217) 기포안정제 등으로 기포를 균일 분산하여 그 슬러리를 몰드에 도입하는 Pre-foam Process가 제안되었다. 그러나 상기의 방법들은 특수 장비를 필요로 함으로써 설비비 부담이 클 뿐만 아니라 다공의 비중을 얻기 위하여 크기의 가스발생제를 사용하여야 하는 단점이 있다. 또한, 공기연행제를 첨가한 후, 혼합에 따른 공기연행을 유도하여 경량기로 시멘트 복합제를 제조하는 방법(US Pat. No. 4,683,003)이 제안되고 있으나, 이러한 방법에 따른 경량기포 시멘트 복합제를 제조할 경우 일반적으로 부피비로 10% 연행된 공기는 콘크리트 경화물의 비중을 0.14~0.18g/㎤ 정도 감소시키는 반면, 콘크리트 강도 역시 30~50% 감소시킴으로써 매우 위약해질 뿐만 아니라 굴곡강도가 약 10㎏/㎤ 미만으로 매우 낮음으로써, 건축용재로서의 사용이 매우 제한되고 있는 실정이다.Therefore, in order to solve this problem, after the reaction between the aluminum powder (powder) and the alkali component in the slurry in advance to inject bubbles (US Pat. No. 3,551,174), or directly blow air into the slurry (US Pat) No. 3,979,217) A pre-foam process for uniformly dispersing bubbles with a bubble stabilizer and introducing the slurry into a mold has been proposed. However, the above methods have a disadvantage in that a large amount of equipment cost is required by using special equipment, and a gas generator having a size is used to obtain specific gravity of the pores. In addition, after adding the air entrainer, a method for producing a cement composite with a light weight by inducing air entrainment by mixing (US Pat. No. 4,683,003) has been proposed, but a lightweight foam cement composite according to such a method In general, 10% entrained air reduces the specific gravity of the cured concrete by 0.14 to 0.18 g / cm3, while the concrete strength is also reduced by 30 to 50%, which leads to very weakness and flexural strength of less than about 10 kg / cm3. As it is very low, the use as building materials is very limited.

본 발명은 상기의 문제점을 해결하기 위하여 제안된 것으로써, 탄소섬유 및 강재를 보강재로 사용함으로써 일반캐스팅(Casting)법에 의하여 경량이면서 최대하중 이후의 거동이 우수한 탄소섬유 및 강재보강 경량기포 시멘트 복합재료를 제조하고자 하는데 그 목적이 있다.The present invention has been proposed to solve the above problems, by using carbon fiber and steel as reinforcing material, carbon fiber and steel reinforcement lightweight foam cement composite having excellent behavior after maximum load by light weight by the general casting (Casting) method The purpose is to produce the material.

이하, 본 발명에 대하여 설면한다.Hereinafter, the present invention will be described.

본 발명은 경량기포 시멘트 복합재료를 제조하는 방법에 있어서 감수제 0.001~0.005(감수제/바인더, 중량비, 바인더=시멘트+실리카홈) 및 공기연행제 0.001~0.005(공기연행제/바인더, 중량비)를 혼합수 0.3~0.4(혼합수/바인더, 중량비)에 융해시킨 혼합용액 및 실리카흄 0.05~0.3(실리카흄/바인더, 중량비)으로 이루어진 시멘트 메트릭스에 1차 보강제인 탄소섬유를 0.5~4.0vol% 첨가하여 충분히 혼합한 후, 2차 보강재인 강재를 0.1~2.0vol% 첨가하여 통상의 방법으로 성형 및 양생하여 탄소섬유 및 강재보강 경량기로 시멘트 복합재료를 제조하는 방법에 관한 것이다.The present invention is a method for producing a lightweight foam cement composite material mixed with a water reducing agent 0.001 ~ 0.005 (reducing agent / binder, weight ratio, binder = cement + silica groove) and air emollient 0.001 ~ 0.005 (air emulsifier / binder, weight ratio) 0.5 to 4.0 vol% of the primary reinforcing agent was added to the cement matrix consisting of a mixed solution melted in 0.3 to 0.4 (mixed water / binder, weight ratio) and silica fume 0.05 to 0.3 (silica fume / binder, weight ratio). After that, the secondary reinforcing material is added to 0.1 ~ 2.0vol% of the steel by molding and curing in a conventional manner to a method for producing a cement composite material with carbon fiber and steel reinforcement lightweight.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

시멘트는 일반적으로 보통포틀랜드 시멘트가 바람직하며, 그 이외에도 고로슬래그 시멘트, 포조란시멘트, 플라이애쉬시멘트와 같은 혼합시멘트 및 알루미나 시멘트 등의 특수시멘트로 사용할 수 있다.The cement is generally preferably portland cement, and in addition, it can be used as a special cement such as alumina cement and mixed cement such as blast furnace slag cement, pozzolan cement, and fly ash cement.

실리카흄은 고반응성 물질로서 시멘트 혼합물의 분산 및 작업도 향상을 도모할 수 있다. 실리카흄의 첨가량이 바인더에 대하여 중량비로 0.05보다 적을 경우에는 섬유사이의 충진효과를 충분히 제공하지 못함으로써 보강제인 탄소섬유(14.5㎛)의 분산효과를 기대할 수 없으며 0.3 이상일 경우에는 공기연행효과의 감소에 따른 비중의 증가를 초래하므로 바람직하지 못하다.Silica fume is a highly reactive substance which can improve the dispersion and workability of the cement mixture. When the addition amount of silica fume is less than 0.05 by weight to the binder, it does not provide sufficient filling effect between the fibers, so that the dispersion effect of carbon fiber (14.5㎛), which is a reinforcing agent, cannot be expected. This is undesirable because it leads to an increase in specific gravity.

감수제로는 축합나프타렌 술폰산 나트륨염계가 효과적이나, 감수효과를 줄 수 있는 감수제는 모두 사용될 수 있다. 감수제의 함량이 바인더에 대하여 중량비로 0.001 이하일 경우에는 감수효과를 얻을 수 없으며, 0.005 이상일 경우에는 그 첨가효과를 기대할 수 없으므로 바람직하지 못하다.As a sensitizer, condensed naphthalene sulfonate sodium salt system is effective, but any sensitizer which can give a sensitizing effect can be used. If the content of the water reducing agent is 0.001 or less in weight ratio with respect to the binder, the water reducing effect may not be obtained, and if the content of the water reducing agent is 0.005 or more, the effect of addition may not be expected.

공기연행제는 Sodutm Lauretl Sulfate에 소량의 기포안정제인TEA(Triethanol Amine) Lauryl Sulfate가 첨가된 것으로서 그 밖에도 고온 및 고 pH 분위기를 견딜 수 있는 표면활성제는 어떠한 것도 이용될 수 있다. 공기연행제의 함량이 바인더에 대하여 중량비로 0.001 이하일 경우에는 공기연행효과를 얻을 수 없으며 0.005 이상일 경우에는 그 첨가효과를 기대할 수 없으므로 바람직하지 못하다.The air entrainer is a small amount of foam stabilizer, Triethanol Amine (TEA) Lauryl Sulfate, added to Sodutm Lauretl Sulfate, and any surface active agent that can withstand high temperature and high pH atmosphere can be used. When the content of the air entrainer is 0.001 or less by weight relative to the binder, the air entraining effect is not obtained, and when the content of the air entraining agent is more than 0.005, the additive effect cannot be expected.

혼합수가 바인더에 대하여 중량비로 0.3보다 적을 경우에는 공기연행효과를 효율적으로 얻을 수 없으며, 0.4 이상일 경우에도 공기연행 효과를 얻을 수 없을 뿐만 아니라 흡착수 증가에 따른 비표면에너지의 감소에 따라 강도저하를 유발하므로 바람직하지 못하다.When the mixed water is less than 0.3 by weight to the binder, the air entraining effect cannot be obtained efficiently, and when 0.4 or more, air entraining effect is not obtained, and the strength decreases due to the decrease of specific surface energy due to the increase in the number of adsorption water. Therefore, it is not preferable.

1차 보강재로 사용되는 탄소섬유는 섬유길이가 짧은 단섬유를 사용하며, 그 첨가량이 체적비로 0.5% 이하의 경우는 보강효과를 기대할 수 없으며 4% 이상의 경우는 균일혼합이 어려울 뿐만 아니라 메트릭스의 부족을 야기하여 성형성을 저하할 뿐만 아니라 강도의 저하를 유발하므로 바람직하지 못하다.The carbon fiber used as the primary reinforcing material uses short fibers with short fiber length, and if the added amount is less than 0.5% by volume ratio, the reinforcing effect cannot be expected, and in the case of more than 4%, it is difficult to uniformly mix and lack of matrix. It is not preferable because it not only lowers the moldability and causes a decrease in strength.

2차 보강재로 사용되는 강세는 일반 탄소강이면 모두 사용할 수 있다. 강재의 첨가량이 0.1vol% 이하의 경우는 보강효과를 기대할 수 없으며, 2vol% 이상의 경우는 혼합시 강재의 뒤엉킴 현상이 발생하므로 바람직하지 못하다. 그리고, 상기 강재의 대표적인 것으로는 강메쉬(Steel mesh) 및 강섬유(Steel fiber) 등을 들 수 있다.The stresses used as secondary reinforcements can be used as long as ordinary carbon steel. If the amount of steel added is less than 0.1 vol%, the reinforcing effect is not expected, and if it is more than 2 vol%, it is not preferable because entanglement of the steel occurs during mixing. In addition, representative examples of the steel may include a steel mesh and steel fiber.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

비교예 1~4Comparative Examples 1 to 4

하기 표1에 나타난 바와 같이 시멘트에 실리카흄을 바인더에 대하여 중량비로 0.1 및 탄소섬유를 바인더에 대하여 중량비로 0.025 첨가·혼합하여 드라이 믹스쳐(dry mixture)를 제조하여 감수제 0.005(감수제/바인더, 중량비) 및 공기연행제 0~0.005(공기연행제/바인더, 중량비)를 혼합수 0.4(혼합수/바인더, 중량비)에 용해시킨 후, 이 혼합용액을 드라이 믹스쳐와 혼련함으로써 공기를 연행시켜 40×40×160㎜의 성형체를 얻었으며 24시간 양생한 후 탈형한 다음, 오토클레이브에서 180℃~10㎏f/㎤의 조건으로 3시간 유지시켜 양생을 완료하여 경화체(탄소섬유보강 경량기포 시멘트 복합체)를 제조하였다.As shown in Table 1 below, silica fume was added to cement in a weight ratio of binder to 0.1 and carbon fibers in a weight ratio of binder to 0.025, followed by mixing to prepare a dry mixture (dryer) as a water reducing agent 0.005 (resin / binder, weight ratio). And 0 to 0.005 of air entrainer (air entrainer / binder, weight ratio) in 0.4 (mixed water / binder, weight ratio) of mixed water, followed by kneading the mixed solution with dry mix to entrain air to 40 × 40. A molded product of 160 × 160 mm was obtained and cured for 24 hours, followed by demolding. The cured product (carbon fiber-reinforced lightweight foam cement composite) was completed by maintaining in an autoclave for 3 hours at 180 ° C. to 10 kgf / cm 3. Prepared.

상기와 같은 양생완료된 경화체에 대하여 비중, 굴곡강도 및 압축강도를 측정하고, 그 측정결과를 공기연행제/바인더(중량비) 변화에 따른 값으로 제1도에 나타내었다.Specific gravity, flexural strength and compressive strength were measured for the cured cured product as described above, and the measurement results are shown in FIG. 1 as a value according to a change in air entrainer / binder (weight ratio).

제1도에 나타나 바와 같이 공기연행제의 첨가량이 증가함에 따라 연행공기가 증가함으로써 비중이 감소하며 그에 따라 강도도 감소하며, 첨가된 탄소섬유와 중량이 일정함에도 불구하고, 경화체에 있어서의 탄소섬유의 체적함량은 감소함을 알 수 있다.As shown in FIG. 1, as the amount of air entraining agent is increased, the specific air decreases as the entrained air increases, and thus the strength decreases, and the carbon fiber in the cured product, although the added carbon fiber and weight are constant. It can be seen that the volume content of is decreased.

비교예 5~8Comparative Examples 5-8

하기표 2에 나타난 바와 같이 시멘트에 실리카흄을 바인더에 대하여 중량비로 0~0.3 및 탄소섬유를 바인더에 대하여 중량비로 0.025 첨가·혼합하여 드라이 믹스쳐를 제조하여, 감수제 0.005(감수제/바인더, 중량비) 및 공기연행제 0.003(공기연행제/바인더, 중량비)를 혼합수 0.4(혼합수/바인더, 중량비)에 용해시킨 후, 이 혼합용액을 드라이 믹스쳐와 혼련함으로써 상기 비교예와 동일한 방법으로 40×40×160㎜의 성형체를 제조한 다음 탈형 후 오토클레이브에서 양생시켜 경화체(탄소섬유보강 경량기포시멘트 복합재)를 제조하였다.As shown in Table 2 below, silica fume was added to cement in a weight ratio of 0 to 0.3 and carbon fibers in a weight ratio of binder to 0.025, and a dry mixture was prepared to prepare a dry mix, a water reducing agent 0.005 (a reducing agent / binder, a weight ratio) and After dissolving 0.003 of air entrainer (air entrainer / binder, weight ratio) in 0.4 of mixed water (mixed water / binder, weight ratio), the mixed solution was kneaded with dry mix to obtain 40 × 40 in the same manner as in Comparative Example. A molded article of 160 mm was prepared and then cured in an autoclave to form a cured product (carbon fiber reinforced lightweight foam cement composite).

상기와 같은 양생완료된 경화체에 대하여 비중, 비압축강도, 및 비굴곡강도를 측정하고, 그 측정결과를 실리카흄/바인더(중량비) 변화에 따른 값으로 제2도에 나타내었다.Specific gravity, specific compressive strength, and specific flexural strength of the cured cured product as described above were measured, and the results of the measurement are shown in FIG.

제2도에 나타난 바와 같이, 실리카흄의 연속적인 첨가는 비중의 증대를 유발하는 반면 비강도(강도/비중)도 역시 증대시킴을 알 수 있다.As shown in FIG. 2, it can be seen that the continuous addition of silica fume causes an increase in specific gravity, while also increasing specific strength (strength / specific gravity).

비교예 9~13Comparative Examples 9-13

하기 표 3에 나타난 바와 같이 시멘트에 실리카흄을 바인더에 대하여 중량비로 0.1 및 탄소섬유를 바인더에 대하여 중량비로 0~0.109 첨가·혼합하여 드라이 믹스쳐를 제조하며, 감수제 0.005(감수제/바인더, 중량비) 및 공기연행제 0.003(공기연행제/바인더, 중량비)를 혼합수 0.4(혼합수/바인더, 중량비)에 용해시킨 후, 이 혼합용액을 드라이 믹스쳐와 혼련함으로써 상기 비교예와 동일한 방법으로 40×40×140㎜의 성형체를 제조한 다음 탈형 후 오토클레이브에서 양생시켜 경화체(탄소섬유보강 경량기포시멘트 복합재)를 제조하였다.As shown in Table 3 below, silica fume was added to the cement in a weight ratio of binder to 0.1 and carbon fibers in a weight ratio of binder to 0 to 0.109, followed by mixing to prepare a dry mix, a water reducing agent of 0.005 (a reducing agent / binder, a weight ratio) and After dissolving 0.003 of air entrainer (air entrainer / binder, weight ratio) in 0.4 of mixed water (mixed water / binder, weight ratio), the mixed solution was kneaded with dry mix to obtain 40 × 40 in the same manner as in Comparative Example. After molding a × 140 mm molded body and cured in an autoclave to produce a cured body (carbon fiber reinforced lightweight foam cement composite).

상기와 같은 양생완료된 경화체에 대하여 비중, 비압축강도 및 비굴곡강도를 측정하고, 그 측정결과를 탄소섬유 함량에 따른 값으로 제3도에 나타내었다.Specific gravity, specific compressive strength and specific flexural strength were measured for the cured cured product as described above, and the measurement results are shown in FIG.

제3도에 나타난 바와 같이 탄소섬유 함량이 증가함에 따라 보다 많은 공기가 연행됨으로써 비중이 감소하였고 비굴곡강도는 증가하면 비압축강도는 감소함을 알 수 있다.As shown in FIG. 3, as the carbon fiber content increases, the specific gravity decreases as more air is entrained, and the specific compressive strength decreases as the specific flexural strength increases.

발명예 1~4Inventive Examples 1 to 4

하기 표 4에 나타난 바와 같이 시멘트에 실리카흄을 바인더에 대하여 중량비로 0.1 및 탄소섬유를 바인더에 대하여 중량비로 0~0.027첨가·혼합하여 드라이 믹스쳐를 제조하여, 감수제 0.005(감수제/바인더, 중량비) 및 공기연행제 0.003(공기연행제/바인더, 중량비)를 혼합수 0.4(혼합수/바인더, 중량비)에 용해시킨 후, 이 혼합용액을 드라이 믹스쳐와 혼련함으로써 공기를 연행시킨 뒤 강메쉬의 경우는 함께 몰드에 채워넣고, 강섬유의 경우는 강섬유 첨가 후 혼련을 다시 행하여 230×114×65㎜의 블록몰드에 부어넣어 상기 비교예와 동일한 방법으로 탈형후 오토클레이브에서 양생시켜 경화체(탄소섬유 및 강재보강 경량기포시멘트 복합재)를 제조하였다.As shown in Table 4 below, silica fume was added to the cement in a weight ratio of binder to 0.1 and carbon fiber in a weight ratio of 0 to 0.027 in a weight ratio of the binder, and mixed to prepare a dry mix, a water reducing agent 0.005 (a reducing agent / binder, a weight ratio) and After dissolving 0.003 of air entrainer (air entrainer / binder, weight ratio) in 0.4 of mixed water (mixed water / binder, weight ratio), the mixed solution is kneaded with a dry mix, followed by air mixing. Fill the mold together, and in the case of steel fibers, knead again after addition of steel fibers, pour them into a block mold of 230 × 114 × 65 mm, demoulding in the same manner as the comparative example, curing in an autoclave, and curing the hardened body (carbon fiber and steel reinforcement). Lightweight foam cement composite) was prepared.

상기와 같은 양생완료된 경화체에 대하여 밀도, 굴곡강도, 압축강도 및 포스트피크 거동을 조사하고, 그 조사결과를 하기 표 5에 나타내었다. 또한 상기 경화체에 대하여 굴곡하중-휨변형 관계를 관찰하고, 그 결과를 제4도 및 제5도에 나타내었다.Density, flexural strength, compressive strength and post peak behavior were investigated for the cured cured product as described above, and the results are shown in Table 5 below. In addition, the flexural load-deflection relationship was observed for the cured product, and the results are shown in FIGS. 4 and 5.

a : 항복시점까지의 에너지 b : 파괴시점까지의 에너지a: energy up to yield point b: energy up to breakdown point

상기 표 5에 나타난 바와 같은 강재첨가에 따라 굴곡강도는 개선되었으며 최대하중 이전 및 이후의 에너지홈수량의 비를 나타내는 포스트피크 거동(post-peakbehavior)은 약 3배의 증가를 보였다. 또한, 제4,5도에 나타난 바와 같이, 강재첨가에 따라 최대하중 이후의 거동이 개선되었음을 알 수 있다.The flexural strength was improved with the addition of steel as shown in Table 5, and the post-peak behavior, which represents the ratio of the amount of energy grooves before and after the maximum load, was increased by about three times. In addition, as shown in Figures 4 and 5, it can be seen that the behavior after the maximum load is improved by the addition of steel.

Claims (3)

경량기포시멘트 복합재료를 제조하는 방법에 있어서, 감수제 0.001~0.005(감수제/바인더, 중량비, 바인더=시멘트+실리카흄) 및 공기연행제 0.001~0.005(공기연행제/바인더, 중량비)를 혼합수 0.3~0.4(혼합수/바인더, 중량비)에 융해시킨 혼합용액 및 실리카홈 0.05~0.3(실리카흄/바인더, 중량비)으로 이루어진 시멘트 메트릭스에 1차 보강제인 탄소섬유를 0.5~4.0vol% 첨가하여 충분히 혼합한 후, 2차 보강재인 강재를 0.1~2.0vol% 첨가하여 통상의 방법으로 성형 및 양생하는 것을 특징으로 하는 탄소섬유 및 강재보강 경량기포시멘트 복합재료의 제조방법.In the method for producing a lightweight foam cement composite material, a water reducing agent of 0.001 ~ 0.005 (reducing agent / binder, weight ratio, binder = cement + silica fume) and air emollient 0.001 ~ 0.005 (air emulsifier / binder, weight ratio) 0.3 ~ 0.5 to 4.0 vol% of the primary reinforcing agent was added to the cement matrix consisting of a mixed solution melted at 0.4 (mixed water / binder, weight ratio) and silica grooves 0.05 to 0.3 (silica fume / binder, weight ratio), followed by sufficient mixing. , The method of manufacturing a carbon fiber and steel reinforced lightweight foam cement composite material, characterized in that the molding and curing in the usual manner by adding 0.1 ~ 2.0vol% of the steel is a secondary reinforcing material. 제1항에 있어서, 감수제가 축합나프타렌 술폰산 나트륨염계인 것을 특징으로 하는 탄소섬유 및 강재보강 경량기포시멘트 복합재료의 제조방법.The method of producing a carbon fiber and steel reinforced lightweight foam cement composite according to claim 1, wherein the water reducing agent is a condensed naphthalene sulfonic acid sodium salt system. 제1항 또는 제2항에 있어서, 2차 보강재인 강재가 강메쉬 또는 강성유인 것을 특징으로 하는 탄소섬유 및 강재보강 경량기포시멘트 복합재료의 제조방법.The method for producing a carbon fiber and steel reinforced lightweight foam cement composite according to claim 1 or 2, wherein the secondary steel is a steel mesh or a rigid oil.
KR1019930021360A 1993-10-14 1993-10-14 Method for cement composite material of lightweight using steelmesh and steel fiber KR960011320B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930021360A KR960011320B1 (en) 1993-10-14 1993-10-14 Method for cement composite material of lightweight using steelmesh and steel fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930021360A KR960011320B1 (en) 1993-10-14 1993-10-14 Method for cement composite material of lightweight using steelmesh and steel fiber

Publications (2)

Publication Number Publication Date
KR950011358A KR950011358A (en) 1995-05-15
KR960011320B1 true KR960011320B1 (en) 1996-08-22

Family

ID=19365852

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930021360A KR960011320B1 (en) 1993-10-14 1993-10-14 Method for cement composite material of lightweight using steelmesh and steel fiber

Country Status (1)

Country Link
KR (1) KR960011320B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101138828B1 (en) * 2010-10-01 2012-05-10 박승주 A light weight block and method formanufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101138828B1 (en) * 2010-10-01 2012-05-10 박승주 A light weight block and method formanufacturing the same

Also Published As

Publication number Publication date
KR950011358A (en) 1995-05-15

Similar Documents

Publication Publication Date Title
FI82440C (en) Process for the preparation of a building and / or construction material, a polymer-stabilized aqueous dispersion, and its use for the preparation of a building and / or construction material
JPH0665618B2 (en) Non-expanding, high hardening speed cement
NZ528311A (en) Low bulk density calcium silicate hydrate strength accelerant additive for curing cementitious products
US4684407A (en) Hydraulic cement composition and process for producing cement shapings
CN110317018B (en) Inorganic plasticized microporous insulation board with ultralow water absorption and preparation method thereof
CN113248205A (en) Large-mixing-amount solid waste non-steamed lightweight concrete wallboard and preparation method thereof
KR20230086613A (en) lightweight foam concrete composition and method for menufacturing the same
CN108947442A (en) A kind of steam pressure porcelain powder air entrained concrete Self-insulation wall plate
KR960011320B1 (en) Method for cement composite material of lightweight using steelmesh and steel fiber
CN106747093A (en) A kind of early strengthening and high strengthening concrete and preparation method thereof
CN115448680A (en) Low-carbon rapid demoulding prefabricated part prepared from solid waste base cementing material containing cement, fly ash and desulfurized gypsum and preparation method thereof
RU2447040C2 (en) Composition for making composite foamed polystyrene concrete and method of making said composition
JP3769911B2 (en) Method for producing mortar composition
JPH01172253A (en) Production of lightweight aerated concrete
Ashik et al. Strength properties of concrete using metakaolin
CN113060990A (en) Recycled concrete composite self-insulation building block and preparation method and application thereof
KR960011321B1 (en) Process for the preparation of composite of lightweight cement
CN115432967B (en) High-toughness cement-based artificial stone and preparation method thereof
JPS6293037A (en) Press die
KR100474968B1 (en) The method for manufacturing and composition for height-intensity concrete compound
KR20110033494A (en) Method for manufacturing porous material of calcium silicate using cement kiln by-pass dust and porous material of calcium silicate manufactured with this
KR20050014197A (en) High Strength Lightweight Aerated Concrete Composite and Process for The Same
JPH05310454A (en) Production of light-weight concrete having low shrinkage
JPH1160346A (en) Lightweight block
Akhil et al. An Experimental Investigation on the Characteristics of Metakaolin in Concrete

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20010807

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee