KR960016594B1 - Method for manufacturing thermoplastic composite - Google Patents
Method for manufacturing thermoplastic composite Download PDFInfo
- Publication number
- KR960016594B1 KR960016594B1 KR1019930019397A KR930019397A KR960016594B1 KR 960016594 B1 KR960016594 B1 KR 960016594B1 KR 1019930019397 A KR1019930019397 A KR 1019930019397A KR 930019397 A KR930019397 A KR 930019397A KR 960016594 B1 KR960016594 B1 KR 960016594B1
- Authority
- KR
- South Korea
- Prior art keywords
- polypropylene
- mat
- glass fiber
- thermoplastic composite
- prepreg
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/247—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using fibres of at least two types
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/043—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/046—Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/047—Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
- C08J5/048—Macromolecular compound to be reinforced also in fibrous form
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/244—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/246—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using polymer based synthetic fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/16—Ethene-propene or ethene-propene-diene copolymers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
제1도는 본 발명의 복합재료 프리프레그의 내부구조를 나타내는 종단면도이다.1 is a longitudinal sectional view showing the internal structure of the composite material prepreg of the present invention.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
A : 에틸렌-프로필렌-디엔 3원 공중합체가 분산된 고유동성의 폴리프로필렌시트A: Highly flexible polypropylene sheet in which ethylene-propylene-diene terpolymer is dispersed
B : 무배향 유리섬유매트B: Oriented Glass Fiber Mat
C : 경사는 유리장섬유, 위사는 폴리프로필렌 섬유를 사용한 매트C: Matte made of glass long fiber and weft made of polypropylene fiber
D : 압출기로 용융된 폴리프로필렌 수지D: Polypropylene resin melted by extruder
본 발명은 판상의 열가소성 복합재료 프리프레그의 제조방법에 관한 것으로, 보다 상세하게는 열가소성 수지와 섬유상 또는 매트(MAT) 형상의 유리섬유 보강재를 사용하여 재사용이 가능하고 기계적 강도가 뛰어나며, 또 내열성, 유동성, 함침성이 우수한 열가소성 프리프레그 성형체를 제조하기 위한 열가소성 복합재료 프리프레그의 제조방법에 관한 것이다.The present invention relates to a method for producing a plate-shaped thermoplastic composite prepreg, and more particularly, using a thermoplastic resin and a fibrous or mat-like glass fiber reinforcement, reusable, excellent mechanical strength, and heat resistance, The present invention relates to a method for producing a thermoplastic composite prepreg for producing a thermoplastic prepreg molded article having excellent fluidity and impregnation.
일반적으로 섬유강화 열가소성 플라스틱에서는 유리섬유의 길이를 작게 한 단섬유를 강화한 재료가 개발되고 있으나 펠릿 제조공정 및 사출성형 공정에서 유리섬유가 단절되어 강도, 강성은 향상되지만 내충격성은 향상되지 못하고 유리섬유 배향에 의한 성형물의 치수안정성을 저하시키고 있다.In general, fiber-reinforced thermoplastics have been developed in which short fiber-reinforced materials have been shortened. However, in the pellet manufacturing process and injection molding process, glass fibers are cut off to improve strength and stiffness, but impact resistance is not improved. The dimensional stability of the molded product is reduced.
그리고, 열경화성 복합재료는 내열성은 우수하지만 경화시간에 의한 생산성 저하 및 내충격성이 문제시되고 있는 실정이다.In addition, although the thermosetting composite material is excellent in heat resistance, the productivity decrease and impact resistance by the curing time are problematic.
판상의 섬유강화 열가소성 플라스틱은 통상적으로 스탬핑 성형법(STAMPING MOLDING)에 의해 성형되는데 열가소성 플라스틱의 스탬핑 성형법은 판상의 프리프레그를 수지의 용융온도 이상으로 가열하여 판상의 재료가 유동성을 갖게 하여 가열된 금형내에 투입하여 압축성형한 후 금형을 냉각시켜 임의의 성형품을 제조하는 방법으로, 이러한 방법을 제조된 열가소성 복합수지는 가벼우면서 기계적 강도가 뛰어나 자동차 부품, 토목, 건축용의 거푸집등에 널리 사용되고 있다.Plate-shaped fiber-reinforced thermoplastics are usually molded by stamping molding, which is used to heat plate-shaped prepregs above the melting temperature of the resin to make the plate-like material flowable, It is a method of manufacturing an arbitrary molded article by cooling the mold after injection molding by compression molding. The thermoplastic composite resin produced by such a method is light and has high mechanical strength, and is widely used for automobile parts, civil engineering, building formwork, and the like.
판상의 열가소성 복합재료의 성형시 프리프레그를 금형내에 투입하여 압축성형하여 성형품을 제조하는 경우에 섬유상의 보강재는 수지와같이 유동하여 금형내에 충진하는 것을 목적으로 하기 때문에 유동하기 쉬운 형태를 가지는 무배향 유리섬유매트를 니들펀칭(NEEDLE PUNCHING)하여 사용하는 것이 일반적이다.When molding a plate-like thermoplastic composite material, prepreg is injected into a mold to make a molded article, and a fibrous reinforcing material flows like a resin and is filled in the mold, so it is easy to flow. It is common to use a needle punched (NEEDLE PUNCHING) glass fiber mat.
그러나, 수지와 무배향 유리섬유매트를 사용할 때에는 기계적 성질은 향상되지만 표면특성이 좋지 않으며 특히, 한쪽방향으로 힘이 걸리는 성형물에서는 기계적 성질이 부족하게 된다. 또한 복합재료의 성질은 기재(MATRIX)와 유리섬유매트의 형상 및 함량, 배열상태, 응집상태에 의하여 결정되며, 기재와 유리섬유매트와의 계면 접착력 및 수지가 유리섬유매트로 함침되는 것도 중요한데 이는 복합재료내의 기공발생으로 인하여 물성저하에 영향을 미치기 때문이다.However, when the resin and the non-oriented glass fiber mat are used, the mechanical properties are improved, but the surface properties are not good, and in particular, the moldings are forced in one direction and the mechanical properties are insufficient. In addition, the properties of the composite material are determined by the shape and content of the MATRIX and the glass fiber mat, the arrangement state, and the aggregation state. It is also important that the interfacial adhesion between the substrate and the glass fiber mat and the resin are impregnated with the glass fiber mat. This is because porosity in the composite material affects the deterioration of physical properties.
판상 복합재료 프리프레그 제조방법에 대해서는 미국특허 제3,664,909호, 제3,684,645호등에, 유리섬유매트의 특수가공에 대해서는 미국특허 제3,883,333호, 제3,664,909호등에, 또한 유리섬유매트에 적절한 사이징(SIZING)방법은 미국특허 제3,849,148호등에 기술되어 있으나, 이러한 방법들은 내충격성, 강성이 우수한 복합재료를 제조할 수 있으나, 수지의 함침성이 충분치 못하여 성형시 유동성이 좋지 못한 결점이 있다.SIZING method suitable for U.S. Patent Nos. 3,664,909, 3,684,645, etc. for the production of plate-shaped composite material prepregs, and U.S. Patents 3,883,333, 3,664,909, etc. for the special processing of glass fiber mats. Although described in U.S. Patent No. 3,849,148 and the like, these methods can produce a composite having excellent impact resistance and rigidity, but the resin impregnability is not sufficient enough to have a poor fluidity during molding.
수치의 함침성을 개선하기 위한 방법으로는 고유동성 플리프로필렌을 사용하는 방안이 유럽특허 제211,249호에 제안되어 있으나, 표면특성이 좋지 못하고 복합재료 프리프레그를 압축성형할때 성형품이 복잡한 형상을 가지거나 리브(RIB)등의 형상을 가지는 경우에는 유동성이 나빠져서 수지만 충진되어 보강효과가 떨어지는 단점이 있다.In order to improve the impregnation of the numerical value, a method of using high flow polypropylene is proposed in EP 211,249. However, the surface characteristics are poor and the molded part has a complicated shape when compressing the composite prepreg. In the case of having a shape such as a rib or a rib, there is a disadvantage in that the fluidity is deteriorated and the resin is filled but the reinforcing effect is decreased.
또한, 보강재로써 무배향 유리섬유층과 일반향 유리섬유층을 기계적으로 결합한 유리섬유매트를 사용하는 방법이 유럽특허 제434,846호에 기술되어 있으나 유리섬유가 한방향으로 배열된 곳에서 수지의 함침이 문제가 되고 장섬유 무배향 유리섬유매트로 인하여 유동성이 좋지 못한 결점이 있다.In addition, a method of using a glass fiber mat mechanically combining an unoriented glass fiber layer and a general-oriented glass fiber layer as a reinforcing material is described in European Patent No. 434,846, but impregnation of the resin becomes a problem when the glass fibers are arranged in one direction. Due to the long fiber oriented glass fiber mat, there is a drawback of poor fluidity.
따라서, 본 발명의 목적은 유동성, 함침성, 표면특성, 기계적 물성, 특히, 한 방향으로의 기계적 성질을 보강시킨 열가소성 복합재료 프리프레그의 제조방법을 제공하기 위한 것이다.Accordingly, it is an object of the present invention to provide a method for producing a thermoplastic composite prepreg with enhanced fluidity, impregnation, surface properties, mechanical properties, in particular mechanical properties in one direction.
상기한 목적 뿐만 아니라 용이하게 표출되는 또 다른 목적을 달성하기 위하여 본 발명에서는 에틸렌-프로필렌-디엔 3원 공중합체(ethylene propylene diene terpolymer)로 내충격성을 향상시킨 고유동성의 폴리프로필렌 시트(A), 무배향 유리섬유매트(B), 경사는 유리장섬유, 위사는 폴리프로필렌 섬유를 사용한 매트 즉, 한방향으로 유리섬유가 배열된 매트(C)와 압출기로 용융된 폴리프로필렌 수지(D)를 A/B/C/D/C/B/A순으로 적층하고 수지의 용융온도 이상의 분위기에서 열용융 함침시켜 프리프레그를 제조하되 무배향 유리섬유매트(B)와 경사는 유리장섬유, 위사는 폴리프로필렌 섬유를 사용한 매트 즉, 한방향으로 유리섬유가 배열된 매트(C)는 니들펀칭수 20∼70회/cm2로 니들펀칭한 것을 사용하므로서 제반특성이 우수한 열가소성 복합재료 프리프레그를 얻을 수 있었다.In order to achieve the above object as well as another object easily expressed in the present invention, a highly flexible polypropylene sheet (A), which has improved impact resistance with ethylene propylene diene terpolymer, Unoriented glass fiber mat (B), inclined glass filament, weft yarns made of polypropylene fibers, that is, mats (C) with glass fibers arranged in one direction, and polypropylene resin (D) melted with an extruder. Prepreg is prepared by laminating in the order of B / C / D / C / B / A and heat-melting impregnating in the atmosphere above the melting temperature of the resin. Oriented glass fiber mat (B) and inclined glass filament and weft polypropylene mats with a fiber that is, one direction can be obtained a glass fiber is arranged mat (C) is a needle punching number of 20 to 70 times / cm 2 with a needle having excellent various properties hameuroseo using the punched thermoplastic composite material prepreg The.
본 발명을 더욱 상세히 설명하면 다음과 같다.The present invention is described in more detail as follows.
본 발명에 사용된 고유동성의 폴리프로필렌 시트(A)는 ASTM D 1238에 의거하여 230℃, 2.16Kg의 하중으로 측정한 결과, 용융지수(MELT INDEX)가 20∼40g/10min 범위에 있는 폴리프로필렌 수지를 시트화한 것으로 열가소성 복합재료에 사용되는 폴리프로필렌 수지는 총 중량의 50∼70wt%의 범위에 들도록 시트의 두께를 조절하였다.Highly flexible polypropylene sheet (A) used in the present invention is a polypropylene having a melt index (MELT INDEX) in the range of 20 to 40 g / 10 min as measured by a load of 2.16 Kg at 230 ° C. in accordance with ASTM D 1238. The thickness of the sheet was adjusted so that the polypropylene resin used in the thermoplastic composite material by sheeting the resin was in the range of 50 to 70 wt% of the total weight.
또한, 폴리프로필렌 수지는 유리섬유와의 접착력을 개선하기 위해 말레인산, 아크릴산등으로 개질하여 사용하였으며, 유동성을 향상시키기 위해 니들펀칭수를 높게 하고 또한, 유리섬유가 절단되어 내충격성이 저하되는 것을 방지하기 위해 최외층 폴리프로필렌 수지에 에틸렌-프로필렌-디엔 3원 공중합체를 1∼20wt%, 더욱 바람직하게는 5∼15wt%를 혼합하여 시트화하여 사용하였다.In addition, polypropylene resin was modified with maleic acid, acrylic acid, etc. to improve adhesion to glass fiber, and increased needle punching number to improve fluidity, and also prevented glass fiber from being cut and lowered impact resistance. To this end, 1 to 20 wt% of the ethylene-propylene-diene terpolymer was mixed with the outermost polypropylene resin, more preferably 5 to 15 wt%, and used as a sheet.
보강재로는 무배향 유리섬유매트(B)와 한방향으로 유리섬유가 배열된 매트(C)를 니들펀칭수를 20∼70회/cm2, 더욱 바람직하게는 30∼50회/cm2로 니들펀칭하여 사용하였다. 이때, 무배향 유리섬유매트(B)의 유리섬유 직경은 10∼25㎛, 더욱 좋기로는 17∼22㎛, 유리섬유 모노필라멘트가 100∼500개, 더욱 좋기로는 300∼400개로 집속되어 있고 유기실란 화합물로 표면처리된 무배향된 유리섬유매트를 사용하며, 복합재료의 총중량에 대해 10∼30wt%, 더욱 좋기로는 15∼20wt%의 범위가 되도록 하였다.As a reinforcing material, needle-punching was performed with an unoriented glass fiber mat (B) and a mat (C) with glass fibers arranged in one direction with a needle punching number of 20 to 70 times / cm 2 , more preferably 30 to 50 times / cm 2 . Was used. At this time, the glass fiber diameter of the non-oriented glass fiber mat (B) is 10-25 μm, more preferably 17-22 μm, and 100-500 glass fiber monofilaments, more preferably 300-400. An unoriented glass fiber mat surface-treated with an organosilane compound was used, and was in the range of 10 to 30 wt%, more preferably 15 to 20 wt%, based on the total weight of the composite material.
한방향으로 유리섬유가 배열된 매트(C)는 경사방향으로 유리장섬유를 이용하였고, 위사방향으로는 폴리프로필렌 섬유를 사용하여 매트를 제조하여 사용하였다. 이때 유리장섬유를 모노필라멘트의 직경은 15∼25㎛, 더욱 좋기로는 18∼22㎛이며, 집속도는 300∼400개로 된 것을 사용하였다. 경사방향의 유리섬유의 함량은 복합재료의 총중량에 대해 10∼30wt%, 더욱 좋기로는 20∼25wt%의 범위가 바람직하다.Mat (C) in which the glass fibers are arranged in one direction was used for the glass filament in the oblique direction, and the mat was prepared using polypropylene fibers in the weft direction. At this time, the glass filament was used in a monofilament having a diameter of 15 to 25 µm, more preferably 18 to 22 µm, and a collection speed of 300 to 400. The content of the glass fibers in the diagonal direction is preferably in the range of 10 to 30 wt%, more preferably 20 to 25 wt%, based on the total weight of the composite material.
무배향 유리섬유매트(B)와 한방향으로 유리섬유가 배열된 매트(C)를 니들펀칭할 때는 서로 얽히게 제조하여 니들펀칭을 함으로서 유리섬유가 절단되어 단섬유가 생성되는데 단섬유의 함량은 바늘의 크기, 형태, 니들펀칭의 횟수등에 따라 다르지만 3cm 이하의 길이를 갖는 유리단섬유의 함량이 무배향 유리섬유 총함량에 대하여 40-80wt%, 더욱 좋기로는 50∼60wt% 범위에 들도록 니들펀칭한다.When needle-punching an unoriented glass fiber mat (B) and a mat (C) in which glass fibers are arranged in one direction, they are entangled with each other and needle punched to cut glass fibers to produce short fibers. Depending on the size, shape, and number of needle punchings, needle punching is carried out so that the content of short glass fibers having a length of 3 cm or less is in the range of 40-80 wt%, more preferably in the range of 50 to 60 wt%, based on the total amount of unoriented glass fibers. .
유리섬유의 총함량은 열가소성 복합재료 프리프레그에 대하여 30∼50wt%로 하고 무배향 유리섬유매트(B)의 함량/경사는 유리장섬유, 위사는 폴리프로필렌 섬유로 제작된 매트(C)의 함량은 40/60∼60/40으로 조절한다.The total content of glass fiber is 30 ~ 50wt% with respect to the thermoplastic composite prepreg, the content of non-oriented glass fiber mat (B) / slope is glass long fiber and weft is polypropylene fiber. Is adjusted to 40/60 to 60/40.
상술한 바와같이 본 발명에 따라 제조된 열가소성 복합재료의 프리프레그는 유리섬유가 한방향으로 배열된 방향으로의 기계적 성질이 특히 우수하였으며, 함침성 및 유동성도 개량할 수 있었으며 이러한 판상의 복합재료를 압축성형하여 자동차 부품중 범퍼 빔등에 사용할 수 있고, 건축자재, 기계부품등의 각종 분야에 사용할 수 있다.As described above, the prepreg of the thermoplastic composite material prepared according to the present invention has particularly excellent mechanical properties in the direction in which the glass fibers are arranged in one direction, and impregnation and flowability can be improved. It can be molded and used for bumper beams among automobile parts, and can be used for various fields such as building materials and mechanical parts.
다음의 실시예 및 비교예는 본 발명을 더욱 상세히 설명하는 것이지만, 본 발명의 범주를 한정하는 것은 아니다. 실시예 및 비교예에 있어서, 제조한 열가소성 복합재료 프리프레그의 물성 및 특성은 다음의 방법으로 평가하였다.The following examples and comparative examples further illustrate the invention but do not limit the scope of the invention. In Examples and Comparative Examples, the physical properties and properties of the prepared thermoplastic composite prepreg were evaluated by the following method.
1) 인장강도 : ASTM D 6381) Tensile Strength: ASTM D 638
2) 충격강도 : ASTM D 3562) Impact Strength: ASTM D 356
3) 열변형강도 : ASTM D 7463) Heat Strain Strength: ASTM D 746
4) 수지의 함침성 : 복합재료 프리프레그를 자동밀도 측정기로 밀도 측정4) Impregnation of resin: Density measurement of composite prepreg with automatic density meter
5) 유동성 : 복합재료 프리프레그를 가로×세로 10×50cm으로 절단한 후 적외선 오븐(OVEN)내에서 200℃로 20분간 예열한 후 금형 온도 70℃, 가로×세로가 10×10cm인 금형에서 80bar의 압력으로 압축성형하였다. 이후 복합재료의 유동성을 아래의 식으로 계산하였다.5) Fluidity: The composite prepreg is cut into 10 × 50cm in width × length, preheated to 200 ° C for 20 minutes in an infrared oven (OVEN), and then 80bar in a mold with mold temperature of 70 ° C and width × length of 10 × 10cm. Compression molding at a pressure of Since the flowability of the composite material was calculated by the following equation.
실시예 1Example 1
최외층의 폴리프로필렌 시트는 개시제로 말레인산을 그라프(GRAFING)한 폴리프로필렌 수지에 에틸렌-프로필렌-디엔 3원 공중합체가 모노머가 15wt% 분산되고 두께가 0.5mm인 것(A)을 사용하였고, 유리 섬유매트 사이에 용융지수가 22g/10min이고, 말레인산이 그라프팅된 고유동성 폴리프로필렌 수지를 플랫시트 다이가 부착된 압출기를 이용하여 2.5mm 두께로 용융된 폴리프로필렌(D)를 압출시켜 적층시켰다. 또한 글리시딜에테르트리메톡시실란으로 표면처리되고 단위 면적당 무게가 450g/m2인 연속 스트랜드의 무배향 유리섬유매트(B)를 열가소성 복합재료 프리프레그 총중량에 대해 20wt%로 하고, 직경이 22㎛, 집속도가 350인 유리장섬유가 경사이고 폴리프로필렌 섬유가 위사이며 유리섬유의 함량은 열가소성 복합재료 프리프레그 총중량에 대해 22wt%로 제직된 매트(C)를 적층하되 적층순서를 에틸렌-프로필렌-디엔 3원 공중합체가 분산된 고유동성 폴리프로필렌 시트(A)/무배향 유리섬유매트(B)/경사는 유리장섬유, 위사는 폴리프로필렌 섬유로 제직된 매트(C)/폴리프로필렌 시트(D)/경사는 유리장섬유, 위사는 폴리프로필렌 섬유로 제직된 매트(C)/무배향 유리섬유 매트(B)/에틸렌-프로필렌-디엔 3원 공중합체가 분산된 고유동성 폴리프로필렌 시트(A)로 하였다. 이때 무배향 유리섬유매트(B)와 경사는 유리장섬유, 위사는 폴리프로필렌 섬유로 제직된 매트(C)는 1cm2당 니들펀칭 수 30회/cm2로 니들펀칭하여 사용하였다. 위와 같은 적층순으로 더블벨트프레스(DOUBLE BELT PRESS)로 210℃, 30psi의 조건으로 가열, 가압 프레스하여 수지를 냉각한 후 3.7mm의 판상의 열가소성 복합재료 프리프레그를 제조하였다.The outermost polypropylene sheet used was an ethylene-propylene-diene terpolymer obtained by dispersing 15 wt% of monomer in a polypropylene resin grafted with maleic acid as an initiator and having a thickness of 0.5 mm (A). A high flow polypropylene resin having a melt index of 22 g / 10 min and a maleic acid grafted between the fiber mats was extruded and laminated by melting the polypropylene (D) melted to a thickness of 2.5 mm using an extruder having a flat sheet die. In addition, an unoriented glass fiber mat (B) of continuous strand surface-treated with glycidyl ether trimethoxysilane and having a weight of 450 g / m 2 per unit area was 20 wt% based on the total weight of the thermoplastic composite prepreg, and the diameter was 22 Laminate mat (C) woven with a glass fiber having a collecting speed of 350 μm, a polypropylene fiber with a weft yarn, and a glass fiber content of 22 wt% based on the total weight of the thermoplastic composite prepreg. -Highly flexible polypropylene sheet (A) / non-oriented glass fiber mat (B) / slanted fiber long fiber, weft mat (C) / polypropylene sheet woven from polypropylene fiber D) / Slant fiberglass, Weft fiberglass mat (C) / Oriented glass fiber mat (B) / Highly flexible polypropylene sheet in which ethylene-propylene-diene terpolymer is dispersed (A ). The non-oriented glass-fiber mat (B) and the slope was used to needle into the mat (C) is a 1cm 2 needle be 30 times / cm 2 per punched woven polypropylene fiber, glass fiber sheet living above, punching. In the lamination order described above, the resin was cooled by heating and pressing under a condition of 210 ° C. and 30 psi by a double belt press (DOUBLE BELT PRESS) to prepare a thermoplastic composite material prepreg of 3.7 mm.
상기의 방법으로 제조한 열가소성 복합재료 프리프레그의 물성결과는 다음 표 1과 같다.Physical properties of the thermoplastic composite prepreg prepared by the above method are shown in Table 1 below.
실시예 2Example 2
부배향 유리섬유매트를 열가소성 복합재료 프리프레그의 총중량에 대해 18wt%, 직경이 22㎛,집속도가 350인 유리장섬유가 경사이고, 폴리프로필렌 섬유가 위사로 제직된 매트를 유리섬유 함량이 열가소성 복합재료 프리프레그의 총중량에 대해 24wt%로 한 것을 제외하고는 실시예 1에서 행한것과 동일하게 실시하였고, 그 물성을 평가하여 다음 표 1에 나타내었다.The sub-orientated glass fiber mat is 18wt% of the total weight of the thermoplastic composite material prepreg, the glass long fiber with a diameter of 22 µm and the collecting speed of 350 is inclined. Except for 24wt% of the total weight of the composite material prepreg was carried out in the same manner as in Example 1, the physical properties are shown in Table 1 below.
실시예 3Example 3
최외층의 폴리프로필렌 시트를 에틸렌-프로필렌-디엔 3원 공중합체가 폴리프로필렌 수지함량에 대하여 10wt% 분산된 것으로 사용하는 것을 제외하고는 실시예 1에서 행한 것과 동일하게 실시하였고, 그 물성을 평가하여 다음 표 1에 나타내었다.The polypropylene sheet of the outermost layer was carried out in the same manner as in Example 1 except that the ethylene-propylene-diene terpolymer was dispersed in 10wt% of the polypropylene resin content, and the physical properties thereof were evaluated. It is shown in Table 1 below.
실시예 4Example 4
무배향 유리섬유매트(B)와 경사는 유리장섬유, 위사는 폴리프로필렌 섬유로 제직된 매트(C)의 나들펀칭수를 50회/cm2로 한것을 제외하고는 실시예 1에서 행한 것과 동일하게 실시하였고, 그 물성을 평가하여 다음 표 1에 나타내었다.The non-oriented glass fiber mat (B) and the warp yarn are the same as those in Example 1 except that the number of punchings of the mat (C) woven from polypropylene fiber was 50 times / cm 2 . It was carried out, and the physical properties are shown in Table 1 below.
비교예 1Comparative Example 1
유리장섬유가 경사이고, 폴리프로필렌 섬유가 위사로 제직된 매트(C) 대신 직경이 20㎛, 집속도가 350인 유리장섬유를 한방향으로만 배열된 것을 사용하여 니들펀칭수를 10회/cm2로 한 것을 제외하고는 실시예 1에서 행한 것과 동일하게 실시하였고, 그 물성을 평가하여 다음 표 1에 나타내었다.The needle punching number is 10 times / cm by using only one direction of glass filaments having a diameter of 20 µm and a collecting speed of 350 in one direction instead of a mat (C) in which the glass filaments are inclined and the polypropylene fibers are woven with a weft. Except that 2 was carried out in the same manner as in Example 1, the physical properties were evaluated and shown in the following Table 1.
비교예 2Comparative Example 2
무배향 유리섬유매트를 열가소성 복합재료 프리프레그의 총중량에 대해 20wt%, 직경이 13㎛, 집속도가 350인 유리장섬유가 경사이고, 폴리프로필렌 섬유가 위사로 제직된 매트를 니들펀칭수를 10회/cm2로 하여 유리섬유의 함량이 열가소성 복합재료 프리프레그의 총중량에 대해 22wt%로 한것을 제외하고는 실시예 1에서 행한 것과 동일하게 실시하였고, 그 물성을 평가하여 다음 표 1에 나타내었다.The non-oriented glass fiber mat is 20wt% of the total weight of the thermoplastic composite material prepreg, the glass long fiber with a diameter of 13 µm and the focal speed of 350 is inclined, and the polypropylene fiber is woven with a weft yarn. times / cm to 2 was and is the same manner as that conducted in example 1 except that the content of the glass fibers to 22wt% for the total weight of the thermoplastic composite material prepreg, to evaluate its physical properties are indicated in Table 1 .
비교예 3Comparative Example 3
최외층의 폴리프로필렌 시트를 에틸렌-프로필렌-디엔 3원 공중합체가 분산되지 않은 것으로 사용한 것을 제외하고는 실시예 1에서 행한 것과 동일하게 실시하였고, 그 물성을 평가하여 다음 표 1에 나타내었다.The polypropylene sheet of the outermost layer was carried out in the same manner as in Example 1 except that the ethylene-propylene-diene terpolymer was not dispersed, and the physical properties thereof were shown in Table 1 below.
[표 1]TABLE 1
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019930019397A KR960016594B1 (en) | 1993-09-23 | 1993-09-23 | Method for manufacturing thermoplastic composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019930019397A KR960016594B1 (en) | 1993-09-23 | 1993-09-23 | Method for manufacturing thermoplastic composite |
Publications (2)
Publication Number | Publication Date |
---|---|
KR950008584A KR950008584A (en) | 1995-04-19 |
KR960016594B1 true KR960016594B1 (en) | 1996-12-16 |
Family
ID=19364321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019930019397A KR960016594B1 (en) | 1993-09-23 | 1993-09-23 | Method for manufacturing thermoplastic composite |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR960016594B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100340804B1 (en) * | 2000-03-23 | 2002-06-20 | 이상신 | A liquid crystal manufacturing method |
JP2003062093A (en) * | 2001-08-23 | 2003-03-04 | Koichi Imai | Powder far-infrared radiator and its manufacturing method |
-
1993
- 1993-09-23 KR KR1019930019397A patent/KR960016594B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR950008584A (en) | 1995-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cabrera et al. | Processing of all-polypropylene composites for ultimate recyclability | |
KR100814860B1 (en) | Thermoplastic compound plate-shaped material, method for manufacturing the same | |
EP0056703B1 (en) | Fibre-reinforced compositions and methods for producing such compositions | |
US6524690B1 (en) | Method of prepregging with resin and novel prepregs produced by such method | |
US4559262A (en) | Fibre reinforced compositions and methods for producing such compositions | |
US4549920A (en) | Method for impregnating filaments with thermoplastic | |
KR960012439B1 (en) | Method for manufacturing thermoplastic composite resin | |
JP3290035B2 (en) | Fiber reinforced thermoplastic sheet | |
CN115431564A (en) | Pultruded impregnated fibers and uses thereof | |
JP3675380B2 (en) | Glass fiber composite mat for glass fiber reinforced stampable sheet and method for producing the same, glass fiber reinforced stampable sheet, method for producing the same and molded product | |
EP0042006A1 (en) | Manufacture of molded articles of carbon fiber-reinforced thermoplastic resin | |
EP0532715B1 (en) | Method for manufacturing a composite article and composite article | |
KR960016594B1 (en) | Method for manufacturing thermoplastic composite | |
KR20180079729A (en) | Quasi-Isotropic Product using the fiber reinforced composite material and manufacturing method therof | |
KR960016595B1 (en) | Prepreg | |
KR0130429B1 (en) | Process for making glass fiber reinforced thermoplastic composite material prepreg | |
GB2237583A (en) | Fibre reinforced thermoplastic composites | |
KR950011714B1 (en) | Method for manufacturing fiber reinforced thermoplastic composite | |
JPH0617027B2 (en) | Method for producing composite | |
KR102318250B1 (en) | Method for preparing fiber reinforced plastic composite material and fiber reinforced plastic composite material using the same | |
KR101054954B1 (en) | Formwork plates made of thermoplastic composites | |
CN115771322A (en) | Bio-based polyamide composite board and preparation method and application thereof | |
KR950013880B1 (en) | Method for manufacturing glass fiber reinforced plate like thermoplastic composite | |
WO2009127864A1 (en) | Improvements in or relating to self-reinforced plastics | |
KR970001183B1 (en) | Method of manufacturing the thermoplastic shaped material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20040930 Year of fee payment: 9 |
|
LAPS | Lapse due to unpaid annual fee |