[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR950003126B1 - Refrigerating system - Google Patents

Refrigerating system Download PDF

Info

Publication number
KR950003126B1
KR950003126B1 KR1019860009635A KR860009635A KR950003126B1 KR 950003126 B1 KR950003126 B1 KR 950003126B1 KR 1019860009635 A KR1019860009635 A KR 1019860009635A KR 860009635 A KR860009635 A KR 860009635A KR 950003126 B1 KR950003126 B1 KR 950003126B1
Authority
KR
South Korea
Prior art keywords
solution
liquid
high temperature
liquid level
gas
Prior art date
Application number
KR1019860009635A
Other languages
Korean (ko)
Other versions
KR880006517A (en
Inventor
다까시 야스다
하지메 야바세
Original Assignee
가부시기가이샤 에바라 세이사꾸쇼
하다게야마 세이지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시기가이샤 에바라 세이사꾸쇼, 하다게야마 세이지 filed Critical 가부시기가이샤 에바라 세이사꾸쇼
Publication of KR880006517A publication Critical patent/KR880006517A/en
Application granted granted Critical
Publication of KR950003126B1 publication Critical patent/KR950003126B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

내용 없음.No content.

Description

이중효용 흡수냉동기Dual Effect Absorption Chiller

제1도 및 제2도는 본 발명의 실시예의 계통도.1 and 2 are schematic diagrams of embodiments of the present invention.

제3도는 종래예의 계통도.3 is a schematic diagram of a conventional example.

제4도는 자력식 플로우트(float) 밸브의 구조예를 나타낸 단면도.4 is a cross-sectional view showing an example of the structure of a magnetic float valve.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 흡수기 2 : 증발기1: absorber 2: evaporator

3 : 고온재생기 4 : 저온재생기3: high temperature regenerator 4: low temperature regenerator

5 : 응축기 6 : 고온열교환기5: condenser 6: high temperature heat exchanger

7 : 저온열교환기 8 : 용액펌프7: low temperature heat exchanger 8: solution pump

9 : 냉매펌프 10 : 기액(氣液) 분리기9: refrigerant pump 10: gas-liquid separator

11 : 양액관(揚液管) 12 : 액면검출실11: nutrient solution pipe 12: liquid level detection room

13 : 액면검출기 14 : 용액유량제어밸브13 liquid level detector 14 solution flow control valve

15, 16 : 용액복귀배관 17 : 트로틀기구15, 16: solution return piping 17: throttle mechanism

18 : 축 밀봉부 19 : 용액배관18: shaft seal 19: solution piping

20 : 볼탭(ball tap)방식 자력식 플로우트 밸브20: ball tap magnetic float valve

본 발명은 고온재생기 위쪽에 양액관(揚液管)에 의해 접속된 기액분리기를 가지며 또한 용액펌프 토출측 용액경로에 용액유량제어밸브를 갖는 이중효용 흡수냉동기에 관한 것이다.The present invention relates to a dual-effect absorption chiller having a gas-liquid separator connected by a nutrient solution pipe above a high temperature regenerator and having a solution flow rate control valve in the solution pump discharge side solution path.

종래 이러한 냉동기는 제3도의 계통도에서와 같은 구성을 하고 있다.In the related art, such a refrigerator has the same configuration as in the system diagram of FIG.

제3도에 있어서, 부호 1은 흡수기, 2는 증발기, 3은 고온재생기, 4는 저온재생기, 5는 응축기, 6은 고온열교환기, 7은 저온열교환기, 8은 용액펌프, 9는 냉매펌프, 10은 기액분리기, 11은 양액관, 12는 액면검출실, 13은 액면검출기, 14는 용액유량제어밸브, 15, 16은 용액복귀배관, 17은 트로틀기구를 표시한다.In FIG. 3, reference numeral 1 is an absorber, 2 is an evaporator, 3 is a high temperature regenerator, 4 is a low temperature regenerator, 5 is a condenser, 6 is a high temperature heat exchanger, 7 is a low temperature heat exchanger, 8 is a solution pump, 9 is a refrigerant pump. , 10 is a liquid-liquid separator, 11 is a nutrient solution tube, 12 is a liquid level detection chamber, 13 is a liquid level detector, 14 is a solution flow control valve, 15 is a solution return pipe, and 17 is a throttle mechanism.

흡수기(1)내의 희석용액은 용액펌프(8)에 의하여 구동되고 저온열교환기(7), 고온열교환기(6)에 의해 가열되며 고온재생기(3), 저온재생기(4)에 도입된다.The dilution solution in the absorber 1 is driven by the solution pump 8 and heated by the low temperature heat exchanger 7 and the high temperature heat exchanger 6 and introduced into the high temperature regenerator 3 and the low temperature regenerator 4.

고온재생기(3)내에서 가열되어 농축된 용액은 발생된 냉매증기와 함께 양액관(11)에 의해 기액분리기(10)로 도입되어 냉매증기와 용액으로 분리된다, 분리된 용액은 고온재생기(3)내의 압력 즉, 기액분리기(10)내의 압력 H10m용액주(柱)와 저온재생기(4)내의 얍력 H4m용액주와의 압력차에 의하여 액면검출실(12)을 통해 용액복귀배관(15)에 의해 고온열교환기(16)로 도입되며 희석용액을 가열한후 트로틀기구(17)를 통해 용액복귀배관(16)에 의해 저온재생기(4)로 도입된다.The solution heated and concentrated in the high temperature regenerator 3 is introduced into the gas-liquid separator 10 by the nutrient solution pipe 11 together with the generated refrigerant vapor and separated into the refrigerant vapor and the solution. Pressure return between the pressure in the gas-liquid separator 10, the pressure H 10m solution column in the gas-liquid separator 10, and the output H 4m solution column in the low temperature regenerator 4, through the liquid level detection chamber 12. It is introduced into the high temperature heat exchanger (16) by heating the dilution solution and then introduced into the low temperature regenerator (4) by the solution return pipe (16) through the throttle mechanism (17).

액면검출실(12)내의 용액액면이 낮을 경우에는 액면검출기(13)가 용액유량제어밸브(14)를 개방방향으로 제어하여 고온재생기(3)가 빈 상태로 가열되는 것을 방지하고, 반대로 용액액면이 높을 경우에는 액면검출기(13)가 용액유량제어밸브(14)를 폐쇄방향으로 제어하여 액면검출실(12) 및 위쪽의 기액분리기(101)내의 용액액면의 과도한 상승에 의한 냉매증기중으로의 캐리오버(carry over) 현상을 방지할뿐만 아니라 흡수기(1)내의 용액량의 과도한 감소에 의한 용액펌프(8)의 캐비테이션(cavitation) 현상을 방지하고 있다.When the liquid level in the liquid level detection chamber 12 is low, the liquid level detector 13 controls the solution flow control valve 14 in the open direction to prevent the high temperature regenerator 3 from heating to an empty state, and conversely, the liquid level In this case, the liquid level detector 13 controls the solution flow control valve 14 in the closing direction to carry the refrigerant into the refrigerant vapor due to excessive rise of the liquid level in the liquid level detection chamber 12 and the upper gas-liquid separator 101. Not only does it prevent the carry over phenomenon, but also the cavitation phenomenon of the solution pump 8 by the excessive decrease of the amount of the solution in the absorber 1 is prevented.

그러나, 양액관(11)에 의한 기액분리기(10)로의 양액작용은 고온재생기(3)내에서 발생한 냉매증기에 의한 기포펌프작용에 의한 것이기 때문에 단속적(斷續的)이고 균일한 유량을 얻기가 곤란하고 용액복귀배관(15)으로부터의 용액복귀 능력과의 균형이 불안정하게 되기쉬우며, 그 유량이 불안정이 곧 바로 그대로 잉여분은 고여지고 부족분은 액량 감소로 되어 나타나므로 액면검출실(12)내의 용액액면이 불안정하게 되기쉽다. 그 결과 액면검출기(13)의 신호에 의한 용액유량제어밸브(14)의 제어가 불안정하게 되기 쉬운 문제점이 있으며, 또 양액관(11)으로 기액분리기(10)에 용액이 과도하게 도입되었을 경우, 고온재생기(3)내의 용액액면이 저하하여 빈 상태에서 가열되는 위험성이 있는 문제점도 있다.However, since the nutrient solution action to the gas-liquid separator 10 by the nutrient solution pipe 11 is caused by the bubble pump action by the refrigerant vapor generated in the high temperature regenerator 3, it is difficult to obtain an intermittent and uniform flow rate. It is difficult and the balance with the solution return capability from the solution return pipe 15 is likely to become unstable, and the flow rate is unstable, and the surplus is accumulated as it is, and the deficit appears as the amount of liquid decreases. The liquid level is likely to become unstable. As a result, there is a problem that the control of the solution flow rate control valve 14 by the signal of the liquid level detector 13 tends to be unstable, and when the solution is excessively introduced into the gas-liquid separator 10 through the nutrient solution pipe 11, There is also a problem that the liquid level in the high temperature regenerator 3 is lowered and is heated in an empty state.

또 이러한 냉동기에서는 통상 용액유량제어밸브(14)로서 냉동기 바깥으로 새나오지 않게 제4도에 도시한 바와 같이 자력식 플로우트 밸브를 액면검출실(12)내에 배치하고 있다.In such a refrigerator, a magnetic float valve is disposed in the liquid level detection chamber 12, as shown in FIG. 4, so that the liquid flow rate control valve 14 does not leak out of the freezer.

그런데 용액유량제어밸브(14)로서의 자력식 플로우트 밸브의 밸브부가 용액펌프(8)의 토출측에 있기 때문에 밸브부가 폐쇄측에 있을 경우 자력식 플로우트 밸브의 축 밀봉부에서의 입력이 높아져서 제4도에서와 같이 축 밀봉부(18)를 통과하여 희석용액의 용액복귀배관(15)으로의 새들어오는 양이 무시할 수 없는 량으로 되어 효율의 저하를 초래하는 문제점도 가지는 것이었다.However, since the valve portion of the magnetic float valve as the solution flow control valve 14 is on the discharge side of the solution pump 8, when the valve portion is on the closing side, the input from the shaft sealing portion of the magnetic float valve becomes high and the result is shown in FIG. As described above, the amount of leaking of the dilute solution into the solution return pipe 15 through the shaft seal 18 becomes a non-negligible amount, causing a problem of lowering efficiency.

또 특히 냉동부하가 높고 냉각수온도가 낮은 상태에서는 고온재생기(3)내의 압력, 즉 기액분리기(10)내의 압력 H10m용액주와 저온재생기(4)내의 압력 H4m용액주의 압력차가 적게되어 용액복귀능력이 부족하기 쉽게 된다. 이 경우 액면검출실(12)내의 용액액면이 상승하고 액면검출기(13)가 용액유량제어밸브(14)를 트로틀링하기 때문에 고온재생기(3)내의 용액온도와 흡수기(1)내의 용액농도의 차가 너무 벌어져서 결정화(結晶化)의 위험성이 생기는 문제점도 갖는 것이었다.In particular, when the freezing load is high and the cooling water temperature is low, the pressure difference between the pressure in the high temperature regenerator 3, that is, the pressure H 10 m solution column in the gas-liquid separator 10 and the pressure H 4 m solution column in the low temperature regenerator 4 decreases. It is easy to lack the ability. In this case, since the liquid level in the liquid level detection chamber 12 rises and the liquid level detector 13 throttles the solution flow control valve 14, the difference between the solution temperature in the high temperature regenerator 3 and the solution concentration in the absorber 1 is different. There was also a problem that too wide a risk of crystallization.

본 발명은 종래의 것의 이러한 문제점을 해결하고 액면검출실내의 액면을 안정되게 하여 용액유량제어가 안정적으로 되고 또 자력식 플로우트 밸브를 사용할 경우에도 새나온 희석용액이 저온재생기(4)로 도입되지 않고 효율의 저하를 방지할 수 있는 이중효용 흡수냉동기를 제공하는 것을 목적으로 한다.The present invention solves this problem of the conventional one and stabilizes the liquid level in the liquid level detection chamber so that the solution flow rate control is stable, and even when the magnetic float valve is used, the leaked dilution solution is not introduced into the low temperature regenerator (4). It is an object of the present invention to provide a dual-effect absorption chiller that can prevent a decrease in efficiency.

본 발명은 상기의 문제점을 해결하는 수단으로서 흡수기, 증발기, 응축기, 저온재생기, 고온재생기, 고온용액열교환기, 저온용액열교환기, 용액펌프 및 이들을 접속하는 용액경로, 냉매경로로 이중효용 흡수냉동싸이클을 형성하고, 고온재생기 위쪽에 양액관에 의해 접속된 기액분리기를 가지며 또한 용액펌프 토출측 용액경로에 고온재생기로의 용액유입량을 제어하는 용액유량제어밸브를 갖는 이중 효용 흡수냉동기에 있어서, 기액분리기의 아래쪽에 액면검출실을 구비하고 이 액면검출실은 기액분리기에서 흘러내리는 용액을 받아 이 기액분리기의 액면보다도 낮은 위치에 검출용액면을 형성하고, 이 검출용액면의 높이를 검출하는 액면검출기를 구비하며, 기액분리기의 하부는 용액경로를 경유하여 고온용액교환기에 접속하고, 상기 액면검출실의 하부는 용액경로를 경유하여 고온재생기의 하부에 접속하여 액면검출기의 검출신호에 의하여 상기 용액유량제어밸브를 제어하도록 한 것을 특징으로 하는 이중효용 흡수냉동기를 제공하는 것이다.The present invention provides a dual-effect absorption refrigeration cycle as an absorber, an evaporator, a condenser, a low temperature regenerator, a high temperature regenerator, a high temperature solution heat exchanger, a low temperature solution heat exchanger, a solution pump and a solution path connecting them, and a refrigerant path. In the dual-effect absorption chiller having a gas flow separator connected to the high temperature regenerator above the high temperature regenerator and having a solution flow control valve for controlling the flow rate of the solution into the high temperature regenerator in the solution path of the solution pump discharge side. A liquid level detection chamber is provided below, and the liquid level detection chamber receives a solution flowing down from the gas-liquid separator, forms a detection liquid surface at a position lower than that of the gas-liquid separator, and has a liquid level detector for detecting the height of the detection liquid surface. The lower part of the gas-liquid separator is connected to the high temperature solution exchanger via the solution path, and the liquid level detection chamber The lower part of is to provide a dual-effect absorption chiller characterized in that connected to the lower portion of the high temperature regenerator via the solution path to control the solution flow control valve in accordance with the detection signal of the liquid level detector.

본 발명의 실시예를 제1도에 의하여 설명한다.An embodiment of the present invention will be described with reference to FIG.

부호 19는 액면검출실(12)의 하부와 고온재생기(3)를 접속하는 용액배관이다. 용액복귀배관(15)은 기액분리기(10)의 하부와 고온열교환기(6)를 접속하고 있다. 그외 제1도에 있어서 제3도와 동일부호의 부분은 동일한 구성작용을 가진다.Reference numeral 19 is a solution pipe connecting the lower part of the liquid level detection chamber 12 and the high temperature regenerator 3. The solution return piping 15 connects the lower portion of the gas-liquid separator 10 and the high temperature heat exchanger 6. In Fig. 1, parts having the same reference numerals as those in Fig. 3 have the same construction.

고온재생기(3)내에서 가열되어 농출된 용액은 발생한 냉매증기와 함께 양액관(11)에 의해 기액분리기(10)로 도입되며 냉매증기와 용액으로 분리된다. 분리된 용액은 고온재생기(3)내의 압력, 즉 기액분리기(10)내의 압력 H10m용액주와 저온재생기(4)내의 압력 H4m용액주의 압력차 △Hz에 의하여 기액분리기(10)의 하부에서 직접 용액복귀배관(15)에 의해 고온열교환기(6)로 도입되며 희석용액을 가열한후 트로틀기구(17)를 통해 용액복귀배관(16)에 의해 저온재생기(4)로 도입된다.The solution heated and concentrated in the high temperature regenerator 3 is introduced into the gas-liquid separator 10 by the nutrient solution pipe 11 together with the generated refrigerant vapor and separated into the refrigerant vapor and the solution. The separated solution is separated from the lower portion of the gas-liquid separator 10 by the pressure difference ΔHz in the hot regenerator 3, that is, the pressure H 10 m solution column in the gas-liquid separator 10 and the pressure H 4 m solution column in the low-temperature regenerator 4. Directly introduced into the high temperature heat exchanger (6) by the solution return pipe (15) and the dilution solution is heated and introduced into the low temperature regenerator (4) by the solution return pipe (16) through the throttle mechanism (17).

한편 양액관(11)에 의해 과도하게 기액분리기(10)로 도입된 용액은 용액복귀배관(15)에서 복귀하지 못하기 때문에 기액분리기(10)의 아래쪽에 배치한 액면검출실(12)로 유입되어 액면검출실(12)의 하부에서 용액배관(19)에 의하여 고온재생기(3)로 신속하게 복귀된다.On the other hand, the solution introduced into the gas-liquid separator 10 excessively by the nutrient solution pipe 11 does not return from the solution return pipe 15 so that the solution flows into the liquid level detection chamber 12 disposed below the gas-liquid separator 10. It is quickly returned to the high temperature regenerator 3 by the solution pipe 19 in the lower part of the liquid level detection chamber 12.

이 결과 고온재생기(3)내의 용액액면이 안정적으로 유지되어 빈 상태에서 가열되는 위험성이 없어질뿐만 아니라, 종래의 것에서 처럼 잉여분이 액면검출실에 고이는 일없이 액면검출실(12)내의 용액액면도 안정적으로 유지되므로 액면검출기(13)의 신호에 의한 용액유량제어밸브(14)의 제어도 안정되게 이루어진다.As a result, the liquid level of the liquid in the high temperature regenerator 3 is stably maintained, thereby eliminating the risk of heating in an empty state, and the liquid level of the liquid in the liquid level detecting chamber 12 without the surplus accumulated in the liquid level detecting chamber as in the conventional one. Since it is kept stable, the control of the solution flow rate control valve 14 by the signal of the liquid level detector 13 is also made stable.

또 용액복귀배관(15)을 접속한 용액복귀구가 기액분리기(10) 하부에 있기 때문에, 종래의 용액복귀구가 액면검출실(12) 하부에 있을 경우와 비교하여 복귀저항이 △hm 용액주(=△H1m용액주-△H2m용액주)만큼 감소하기 때문에 용액복귀능력이 개선된다.In addition, since the solution return port connecting the solution return pipe 15 is located in the lower part of the gas-liquid separator 10, the return resistance is lower than that in the case where the conventional solution return port is located in the lower part of the liquid level detection chamber 12. (= DELTA H 1m solution column-DELTA H 2m solution column), the solution return capability is improved.

또 이와 같이 △hm의 용액주분의 압력만큼 용액의 복귀능력(고온재생기 3→저온재생기 4)을 증대시키는 것에 의하여 액면검출기(12)내의 액면상승(복귀능력부족에 의함)을 방지하여 용액유량제어밸브(14)가 불필요하게 트로틀링되는 것을 방지하는 것에 의하여 고온재생기(3)내의 용액농도가 과대하게 되는 것을 방지하며 결정화를 방지할 수가 있다.In this way, by increasing the solution return capacity (high temperature regenerator 3 to low temperature regenerator 4) by the pressure of the solution injection of Δhm, the liquid level rise in the liquid level detector 12 is prevented (due to the lack of the return capacity) to control the solution flow rate. By preventing the valve 14 from unnecessarily throttling, it is possible to prevent the solution concentration in the high temperature regenerator 3 from becoming excessive and to prevent crystallization.

또 고온열교환기(6)로의 용액복귀배관(15)이 기액분리기(10) 하부에 직접 접속되고, 액면검출실(12)의 하부의 용액배관(19)에 의해 고온재생기(3)의 하부와 접속되어 있으므로 액면검출기(13)와 용액유량제어밸브(14)의 기능을 겸비한 제4도에 도시한 자력식 플로우트 밸브를 액면검출실(12)내에 배치하더라도 자력식 플로우트 밸브의 축 밀봉부(18)로부터 새들어온 희석용액이 고온열교환기(6)로 도입되지 않고 고온재생기(3)내로 도입되므로 손실이 없게 되어 효율이 저하되지 않는다.In addition, the solution return pipe 15 to the high temperature heat exchanger 6 is directly connected to the lower part of the gas-liquid separator 10, and the lower part of the high temperature regenerator 3 is connected to the lower part of the high temperature regenerator 3 by the solution pipe 19 of the lower part of the liquid level detection chamber 12. Since the magnetic float valve shown in FIG. 4 having the functions of the liquid level detector 13 and the solution flow control valve 14 is disposed in the liquid level detection chamber 12, the shaft seal 18 of the magnetic float valve is connected. The dilution solution leaked from) is introduced into the high temperature regenerator 3 without being introduced into the high temperature heat exchanger 6, so that there is no loss and the efficiency is not lowered.

또한 제4도에 도시한 자력식 플로우트 밸브 대신에 볼탭 방식의 자력식 플로우트 밸브를 사용할 수도 있다. 제2도는 그 실시예의 계통도이며 부호 20는 볼탭방식의 자력식 플로우트 밸브이다.In addition, a ball tap type magnetic float valve may be used instead of the magnetic float valve shown in FIG. 2 is a system diagram of the embodiment, and reference numeral 20 denotes a ball tap type magnetic float valve.

본 방식에서는 플로우트 밸브 주위의 배관도 감소시킬 수 있으며 플루우트 밸브 자체의 가격도 염가이므로 대폭적인 원가절감을 도모할 수 있다.In this method, the piping around the float valve can be reduced, and the cost of the flute valve itself can be reduced, resulting in a significant cost reduction.

본 발명에 의하면 액면검출실의 액면이 안정되어 용액유량제어가 안정적으로 이루어지며 고온재생기의 용액액면이 안정되어 빈 상태로 가열되는 위험성이 없어지고, 자력식 플루우트 밸브를 사용할 경우라도 농축 용액복귀배관에 희석용액이 새들어가는 일어 없게 되며, 농축용액복귀구를 높은 위치에 두는 것이 가능하여 용액복귀능력이 높아지며 또한 용액농도의 과대화를 방지하고 염가인 볼탭방식의 자력식 플로우트 밸브가 채용될 수 있으므로 안전하고 제어성과 효율성이 좋으며 신뢰성이 높고 또한 염가의 이중효율 흡수냉동기를 제공할 수 있어 실용상 매우 큰 효과를 발휘한다.According to the present invention, the liquid level of the liquid level detection chamber is stabilized, so that the solution flow rate control is stable, and the liquid level of the high temperature regenerator is stabilized so that there is no risk of heating to an empty state, and even when a magnetic flute valve is used, the concentrated solution returns Diluent solution does not leak into the pipe, and it is possible to put the concentrated solution return port at a high position, which increases the solution return capability, and prevents excessive concentration of the solution, and a cheap ball tap type magnetic float valve can be adopted. Therefore, it is possible to provide safe, controllable, efficient, reliable, and inexpensive dual-efficiency absorption chiller, which is very practical.

Claims (3)

흡수기(1), 증발기(2), 응축기(5), 고온재생기(3), 고온용액열교환기(6), 저온용액열교환기(7), 용액펌프(8) 및 이들을 접속하는 용액경로, 냉매경로로 이중효용 흡수냉동 싸이클을 형성하고, 상기 고온재생기(3) 위쪽에 양액관(11)으로 접속된 기액분리기(10)를 가지며 또한 상기 용액펌프(8) 토출측 용액경로에 상기 고온재생기(3)로의 용액유입량을 제어하는 용액유량제어밸브(14)를 가진 이중효율 흡수냉동기에 있어서, 상기 기액분리기(10)의 아래쪽에 액면검출실(13)을 배치하고 이 액면검출실(13)은 기액분리기(10)에서 흘러내리는 용액을 받아 기액분리기(10)의 액면보다도 낮은 위치에 검출용액면을 형성하고, 이 검출용액면 높이를 검출하는 액면검출기(13)를 구비하고 상기 기액분리기(10)의 하부는 용액경로를 거쳐서 상기 고온용액열교환기(6)에 접속하고, 상기 액면검출실(12)의 하부는 용액경로를 거쳐서 상기 고온재생기(13)의 하부에 접속하고, 상기 액면검출기(13)의 검출신호에 의하여 상기 용액유량제어밸브(14)를 제어하도록 한 것을 특징으로 하는 이중효용 흡수냉동기.Absorber (1), evaporator (2), condenser (5), high temperature regenerator (3), high temperature solution heat exchanger (6), low temperature solution heat exchanger (7), solution pump (8), solution path connecting them, refrigerant A dual-effect absorption refrigeration cycle is formed in the path, and the gas-liquid separator 10 is connected to the nutrient solution pipe 11 above the high temperature regenerator 3, and the high temperature regenerator 3 is connected to the solution path of the solution pump 8 at the discharge side. In a dual-efficiency absorption chiller having a solution flow control valve 14 for controlling the flow rate of the solution into the tank, a liquid level detection chamber 13 is disposed below the gas liquid separator 10, and the liquid level detection chamber 13 is a gas liquid. The detection liquid surface is formed at a position lower than the liquid surface of the gas-liquid separator 10 by receiving the solution flowing down from the separator 10, and is provided with the liquid-level detector 13 which detects this detection liquid surface height, The said gas-liquid separator 10 The lower part of is connected to the high temperature solution heat exchanger (6) via a solution path, The lower portion of the gas liquid level detection chamber 12 is connected to the lower portion of the high temperature regenerator 13 via a solution path, and the liquid flow rate control valve 14 is controlled by the detection signal of the liquid level detector 13. Dual-effect absorption chiller characterized by. 제1항에 있어서 상기 액면검출기(13)와 용액유량제어밸브(14)가 자력식 플로우트 밸브로 이중효용 흡수냉동기.The dual effect absorption chiller according to claim 1, wherein the liquid level detector (13) and the solution flow rate control valve (14) are magnetic float valves. 제2항에 있어서 상기 자력식 프로우트 밸브가 볼탭 방식의 밸브(20)로 되는 이중효용 흡수냉동기.The dual-effect absorption chiller according to claim 2, wherein the magnetically operated valve is a ball tap valve (20).
KR1019860009635A 1985-08-08 1986-11-14 Refrigerating system KR950003126B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60173270A JPS6237652A (en) 1985-08-08 1985-08-08 Double effect absorption refrigerator

Publications (2)

Publication Number Publication Date
KR880006517A KR880006517A (en) 1988-07-23
KR950003126B1 true KR950003126B1 (en) 1995-04-01

Family

ID=15957335

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019860009635A KR950003126B1 (en) 1985-08-08 1986-11-14 Refrigerating system

Country Status (2)

Country Link
JP (1) JPS6237652A (en)
KR (1) KR950003126B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226681A (en) * 2010-04-16 2011-11-10 Kawasaki Thermal Engineering Co Ltd Fluid heating device

Also Published As

Publication number Publication date
JPS6237652A (en) 1987-02-18
KR880006517A (en) 1988-07-23
JPH0447225B2 (en) 1992-08-03

Similar Documents

Publication Publication Date Title
US5186012A (en) Refrigerant composition control system for use in heat pumps using non-azeotropic refrigerant mixtures
RU2224189C2 (en) Cooling absorption plant
KR950003126B1 (en) Refrigerating system
KR930004386B1 (en) Absorption refrigerator
US3874193A (en) Absorption refrigerator with additional means for defrosting the refrigerator
CN212457500U (en) Absorption type refrigerating unit
KR970011689A (en) Phase Separation Structure of Time Division Double Evaporator (CYCLE) Refrigerator
KR100472685B1 (en) Absorption cooling system with refrigerant management for dilution and part load operation
JPS6050245B2 (en) Refrigeration equipment
JPS6316018B2 (en)
JP2002213836A (en) Control method for ammonia absorption refrigerating machine, and ammonia absorption refrigerating machine
JP2003194426A (en) Cooling device
JPS5896963A (en) Controller for absorption refrigerator
JP2883372B2 (en) Absorption chiller / heater
JPS62138663A (en) Absorption refrigerator
JP3077977B1 (en) Absorption refrigerator
KR840000421Y1 (en) Refrigerating apparatus
JPS5840104B2 (en) absorption refrigerator
JP3182233B2 (en) Operation control method in absorption refrigerator
CN111503930A (en) Absorption type refrigerating unit and control method
JPH01234767A (en) Bleeding device for absorbing refrigerating machine
JPS58130972A (en) Absorption type refrigerator
JPS5818139Y2 (en) Double effect absorption chiller
JP2651239B2 (en) Double-effect air-cooled absorption refrigerator
JPH0692855B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020401

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee