KR880002431B1 - Refractory brick for used slag - Google Patents
Refractory brick for used slag Download PDFInfo
- Publication number
- KR880002431B1 KR880002431B1 KR1019850009653A KR850009653A KR880002431B1 KR 880002431 B1 KR880002431 B1 KR 880002431B1 KR 1019850009653 A KR1019850009653 A KR 1019850009653A KR 850009653 A KR850009653 A KR 850009653A KR 880002431 B1 KR880002431 B1 KR 880002431B1
- Authority
- KR
- South Korea
- Prior art keywords
- slag
- refractory
- blast furnace
- bentonite
- added
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/02—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
제1도는 슬래그의 입자크기와 부피비중 관계1 is related to particle size and volume specific gravity of slag
제2도는 소성온도와 첨가제에 따른 부피비중2 is the specific gravity according to the firing temperature and additives
제3도는 소성온도와 첨가제에 따른 압축강도3 is compressive strength according to the firing temperature and additives
제4도는 내화점토와 벤토나이트의 첨가걍에 따른 압축강도4 is compressive strength according to the addition of refractory clay and bentonite
제5도는 재화점토와 벤토나이트의 첨가량에 따른 부피비중5 is the specific gravity of the clay according to the amount of clay and bentonite added
본 발명은 제철공업에서 부생되는 고로수재 슬래그를 주성분으로하여 각종 노체의 열효율 증대에 이용할 수 있는 내와단열 벽돌 제조에 관한 것이다.The present invention relates to the production of internal and insulated bricks which can be used for increasing the thermal efficiency of various furnaces, mainly based on blast furnace slag produced by the steel industry.
종래의 내화단열 벽돌 제조방법으로는 천연의 원료를 팽창시킨 후 제조하는 방법, 가연성(可燃性) 혹은 승화성(昇化性) 물질을 원료내에 첨가시키는 방법, 발포성(發包性) 물질을 첨가시키는 방법들이 공지되었으며 사용원료의 특성별로 구분하면 규조토, 진주암, 흑요석, 내화점토, 질석등을 사용하고 있다.Conventional methods for producing fire-resistant insulation brick include a method of expanding a natural raw material and then manufacturing it, adding a flammable or sublimable material into the raw material, and adding a foamable material. Methods are known and are classified by the nature of the raw materials used diatomaceous earth, pearl rock, obsidian, refractory clay, vermiculite.
또한 고로슬래그의 이용방법에 있어서는 슬래그의 구상화(球狀化) 혹은 경량화(輕量化)하거나 팽창시키는 방법 및 장치에 관하여 공지되었으며 고로슬래그를 시멘트 또는 물유리와 혼합하여 200℃ 이하의 온도에서 건조시키므로 강도가 높은 경화체를 제조, 건축용 부재로 활용할 수 있는 방법이 공지 되었다.In addition, in the method of using blast furnace slag, a method and apparatus for spheroidizing, lightening or expanding the slag are known, and the blast furnace slag is mixed with cement or water glass and dried at a temperature of 200 ° C. or lower. It is known to be able to utilize a high hardened body as a manufacturing and building member.
그러나 이와 같이 공지된 내화단열 벽돌 제조과정은 원료의 예비처리가 필요하며 제조시 승화성 또는 가연성 첨가제가 요구되는 바 제조공정이 복잡하고 원료가격이 높은 것이 결점이며 특히 고로슬래그를 이요한 경화체제조에 관한 공지기술은 내화 단열성 온도로 사용하면 팽창하여 붕괴할 위험성이 수반 되므로 상온에서 건축용으로만 사용 가능한 실정이다.However, the known fireproof insulation brick manufacturing process requires pretreatment of raw materials and requires sublimation or flammable additives in the manufacturing process, which is a disadvantage in that the manufacturing process is complicated and the raw material price is high, particularly in the manufacture of hardened bodies using blast furnace slag. The publicly known technology is used only for construction at room temperature because it involves the risk of expansion and collapse when used at fireproof insulation temperature.
그 이유는 고로 수재 슬래그는 비정질(非晶質)로서 열간에서 슬래그 조성중의 알루미나 성분이 결정화(結晶化)되는 과정중 부피 팽창이 일어나는 특성이 있기에 단열 또는 경량골재로서 이용가치는 있으나 고로슬래그만을 결합시킬때에 자체의 점결력이 없어서 구조체(構造體)를 제조할 경우 형태를 유지할 수 없는 단점이 있는 것이다.The reason is that the blast furnace slag is amorphous and has the characteristics that volume expansion occurs during the process of crystallization of the alumina component in the slag composition during the heat, so it is useful as an insulation or light weight aggregate but combines blast furnace slag only. There is a disadvantage in that the form can not be maintained when manufacturing the structure (構造 體) because it does not have its own cohesive force.
따라서 본 발명의 목적은 수재 슬래그의 고온팽창 특성을 이용하여 슬래그를 주성분으로 하고 벤토나이트와 내화점토를 첨가시켜 성형후 소성하므로서 내화단열 벽돌을 제조하여 제선공정에서 다량 부생되는 슬래그의 활용도를 높이고 재가열 수축이 적은 내화 단열 벽돌을 얻는데 그 목적이 있다.Therefore, the object of the present invention is to make a refractory insulation brick by adding slag as a main component and adding bentonite and refractory clay by using high-temperature expansion characteristics of wood slag to produce fire-retardant bricks to increase the utilization of slag which is a by-product in the steelmaking process and reheat shrinkage. The goal is to obtain this less fireproof insulating brick.
이하 본 발명의 구성을 설명한다.Hereinafter, the configuration of the present invention.
성형된 구조체의 저온강도와 성형을 향상시키기 위하여 유기질 결합재로 사용되는 카아복실메틸 셀룰로오즈를 물과 중량비 50 : 50으로 혼합한 용액을 시료에 대한 중량비 12%이하로 첨가시켰으며 이러한 유기질 결합재는 300℃이상의 온도에서는 분해되어 점결력이 없어지므로 1200℃이상의 고온에서 구조체의 강도(强度)유지를 위하여 무기질 결합재로 널리 이용되고 있는 벤토나이트와 내화점토를 첨가 시켰다. 벤토나이트와 내화점토는 제4도 에서와 같이 첨가된 양에 비례하여 구조체의 강도는 향상 되지만 제5도에서 보는 바와 같이 첨가량에 따라 부피비중이 증가되어 경량(輕量)의 적정 강도를 지닌 구조체의 제조를 위해서 부피비중이 낮은 벤토나이트와 부피비중이 높은 반면 압축강도를 향상시키는 내화점토를 각각 중량비 4%씩 첨가 하였다. 또한 제1도에서와 같이 고로슬래그의 입도에 따라 부피부중이 크게 달라지는바, 1㎜이상 2㎜이하의 입도를 갖는 슬래그를 시료로하여 상기 결합재를 첨가한 후 10분간 혼합기에서 혼합후 글 혼합물을 모울드(mold)에 넣고 수타(手打)로 성형하여 이 성형체를 110℃에서 2시간동안 건조시킨후 분당 10℃의 속도로 승온하여 전기로내에서 1250℃온도하에 2시간동안 유지하였다. 종래의 단열 내화물(점토질 혹은 규조토질)은 고온에서 수축하므로 재가열 수축이 문제시 되지만 본 발명에 의한 내화 단열벽돌은 1250℃이하의 온도에서는 약간의 부피팽창이 일어나는 바 재강열 수축의 문제점을 보완하였으며 팽창질석 및 팽창 진주암 팽창 슬래그, 유리기포등을 사용한 내화물에 비하여 원료의 예비처리가 생략 될 수 있으므로 제조공정의 단순화를 피할 수 있으며 폐기물을 원료로 하므로 원가절감과 폐기물 활용의 잇점이 있다.In order to improve the low temperature strength and the molding of the molded structure, a solution containing carboxymethyl cellulose, which is used as an organic binder, in water and a weight ratio of 50:50 was added at a weight ratio of 12% or less, and the organic binder was 300 ° C. At the above temperature, decay and loss of caking have been added, and bentonite and refractory clay, which are widely used as inorganic binders, were added to maintain the strength of the structure at a high temperature of more than 1200 ° C. Bentonite and refractory clay improve the strength of the structure in proportion to the amount added as shown in FIG. 4, but as shown in FIG. 5, the specific gravity of the structure increases due to the added volume. For the production, bentonite having a low volume specific gravity and refractory clay which improves the compressive strength while increasing the volume specific gravity were added by 4% by weight, respectively. In addition, as shown in FIG. 1, the volumetric load varies greatly depending on the particle size of the blast furnace slag, and after mixing the mixture with a slag having a particle size of 1 mm or more and 2 mm or less for 10 minutes and mixing in a mixer for 10 minutes The molded product was molded into a mold and dried at 110 ° C. for 2 hours, and then heated at a rate of 10 ° C. per minute and maintained at 1250 ° C. in an electric furnace for 2 hours. Conventional insulation refractory (clay or diatomaceous) shrinks at high temperature, so reheating shrinkage is a problem, but the fireproof insulation brick according to the present invention compensates for the problem of reheating shrinkage due to slight volume expansion at temperatures below 1250 ° C. Compared with refractory materials using expanded vermiculite, expanded pearlite expanded slag, and glass bubbles, pretreatment of raw materials can be omitted, which simplifies the manufacturing process, and uses waste as raw materials, which has advantages in cost reduction and waste utilization.
[표 1]TABLE 1
1-2㎜의 입도슬래그의 가열후 팽창특성Expansion Characteristics after Heating of 1-2 ㎜ Particle Slag
슬래그의 적정 입도선정, 시편의 소성온도 결정, 첨가제의 종류 및 양(量)결정을 위하여 실험을 실시한 결과 제1도 및 표1에서 수재처리된 슬래그중 1-2㎜크기가 1250℃에서 가장 낮은 부피비중을 나타내었다. 첨가제는 제2도 및 제3도에 나타난 바와 같이 벤토나이트, 내화점토, 알루미나 시멘트를 각각 입자크기 1-2㎜크기의 슬래그에 중량이 8%씩 첨가하여 1150-1350℃에서 50℃간격으로 소성(燒成)한 결과 벤토나이트와 내화점토를 첨가한 경우 1250℃에서 가장 낮은 부피비중과 가장 높은 압축강도값을 나타내었다.Experiments were conducted to determine the appropriate particle size of the slag, to determine the firing temperature of the specimen, and to determine the type and amount of the additives. As a result, 1-2 mm of the slag retreated in Fig. 1 and Table 1 was the lowest at 1250 ℃. Volume specific gravity is shown. As shown in FIG. 2 and FIG. 3, the bentonite, refractory clay, and alumina cement were added to the slag having a particle size of 1-2 mm each by 8% by weight, and then fired at an interval of 50 ° C. at 1150-1350 ° C. As a result, bentonite and refractory clay showed the lowest volume specific gravity and the highest compressive strength at 1250 ℃.
그러나 1350℃에서 소성한 경우에는 골재(骨材)가 연화(軟化) 하였다.However, when fired at 1350 ° C., the aggregates softened.
내화단열 벽돌의 구비용건으로는 부피비중이 낮아야 하며 열전도율이 낮아야하고 압축강도가 높아야 한다. 본 발명의 고로 수재 슬래그는 고온에서 팽창하는 특성을 지니고 있으나 자체의 점결력이 없어 단독으로 일정한 형태를 유지 할 수 없어 건조후 강도 발휘를 위하여 유기질 결합재(카아복시메틸 셀룰로오즈)를 사용하였으며 시편의 성형과 건조시간의 효율관계에서 12%이하의 수분량이 첨가 되었다.Fireproof insulation brick should have low specific gravity, low thermal conductivity and high compressive strength. Blast furnace slag of the present invention has the property of expanding at high temperature, but because it does not have its own cohesion, it can not maintain a certain form alone, so the organic binder (carboxymethyl cellulose) was used to exert strength after drying and molding of the specimen The water content of less than 12% was added in relation to the efficiency of drying time.
고온소성후 강도의 유지를 위하여 1200℃ 정도에서 강도를 나타낼 수 있는 베토나이트와 내화점토를 첨가시켰으며 적정 첨가량의 결정은 제2도-제5도 및 표2의 결과와 같이 슬래그의 팽창된 골재경계면에 첨가제가 분포되어 결합력을 발휘하여 최대의 압축강도치와 최저의 열전도율 및 부피 비중을 얻을 수 있는 8%이하의 영역이었다.In order to maintain the strength after high temperature firing, betonite and refractory clay, which can exhibit strength at about 1200 ° C, were added, and the optimum amount of the slag was determined by expanding slag of aggregate as shown in FIG. 2 through FIG. The additives were distributed at the interface and showed the bonding force, which was 8% or less in which the maximum compressive strength value, the lowest thermal conductivity and the bulk specific gravity could be obtained.
[표 2]TABLE 2
슬래그에 첨가제 혼합후 제조한 단열 벽돌의 물성Properties of Insulation Bricks Prepared after Mixing Additives in Slag
이와 같이 본 발명은 KSL 3301에서 규정한 B-5급의 내화단열 벽돌을 고로 슬래그를 이용하여 제조하므로서 기공지된 점토질 내화단열 벽돌의 재가열 수축 문제를 개선하였으며 팽창된 슬래그 및 질석, 진주암 흑요석등을 사용한 내화단열 벽돌 제조에 비하여 원료의 예비처리가 생략 되므로 공정의 단순화를 이루었고 제철공업에서 다량부생되는 고로슬레그의 활용도와 부가가치를 높인데 그 효과가 있다.As described above, the present invention improves the reheat shrinkage problem of the pore-known clay fireproof insulation brick by manufacturing the B-5 grade fireproof insulation brick prescribed in KSL 3301 using blast furnace slag, and expands slag and vermiculite, pearlite obsidian, etc. Compared with the manufacture of used fireproof insulation bricks, the pretreatment of raw materials is omitted, which simplifies the process and increases the utilization and added value of the blast furnace slag, which is a by-product of the steel industry.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019850009653A KR880002431B1 (en) | 1985-12-20 | 1985-12-20 | Refractory brick for used slag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019850009653A KR880002431B1 (en) | 1985-12-20 | 1985-12-20 | Refractory brick for used slag |
Publications (2)
Publication Number | Publication Date |
---|---|
KR870005926A KR870005926A (en) | 1987-07-08 |
KR880002431B1 true KR880002431B1 (en) | 1988-11-12 |
Family
ID=19244293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019850009653A KR880002431B1 (en) | 1985-12-20 | 1985-12-20 | Refractory brick for used slag |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR880002431B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016084999A1 (en) * | 2014-11-27 | 2016-06-02 | 주식회사 네오엔 | Method for producing cured body for civil engineering and construction using blast furnace slag |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110734293A (en) * | 2018-07-19 | 2020-01-31 | 中国石油化工股份有限公司 | Refractory composition, refractory and preparation method thereof |
-
1985
- 1985-12-20 KR KR1019850009653A patent/KR880002431B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016084999A1 (en) * | 2014-11-27 | 2016-06-02 | 주식회사 네오엔 | Method for producing cured body for civil engineering and construction using blast furnace slag |
Also Published As
Publication number | Publication date |
---|---|
KR870005926A (en) | 1987-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5015606A (en) | Lightweight ceramic material for building purposes | |
CN103130524A (en) | Energy-saving light cordierite-mullite kiln furnace material, kiln furnace and preparation method of material | |
US2684913A (en) | Refractories and bonding agents therefor | |
CN106518115A (en) | Refractory material and preparation method thereof | |
KR950701301A (en) | Ceramic water and its manufacturing method | |
KR880002431B1 (en) | Refractory brick for used slag | |
Suvorov et al. | High-temperature heat-insulating materials based on vermiculite | |
US5118544A (en) | Heat resistant composition processable by vacuum forming | |
CN106747620A (en) | A kind of low energy consumption sintering seepage brick and its manufacture method | |
RU2154618C2 (en) | Method of manufacturing heat-isolation material based on siliceous rock | |
US4328035A (en) | Construction of building materials | |
JPH0524102B2 (en) | ||
US3784385A (en) | Method of preparing mix for producing refractory gas concrete and the product obtained thereby | |
CN108101498B (en) | High-heat-resistance phosphoaluminate cement-based foam concrete material | |
KR920005400B1 (en) | Preparation method of fireproofing adiabatic material | |
CN1032754A (en) | High-strength insulation rising head class material and manufacturing process | |
RU2323191C2 (en) | Method of manufacture of heat-insulating material | |
US3752684A (en) | Insulating refractory and a method for manufacturing same | |
Emelianov et al. | Fast-Hardening Slag-Alkaline Heat-Resistant Aerated Concrete of Increased Heat Resistance with Additives of Fly Ash of Novocherkassk SDPP | |
JPS6215510B2 (en) | ||
JPS6321244A (en) | Artificial lightweight aggregate | |
SU1219578A1 (en) | Raw mixture for producing heat insulation | |
SU910559A1 (en) | Heat insulating mix | |
CN107827424A (en) | Water proof type self-heat conserving autoclave aerated concrete building block and preparation method thereof | |
SU1404488A1 (en) | Initial material mixture for producing porous filler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 19961028 Year of fee payment: 9 |
|
LAPS | Lapse due to unpaid annual fee |