[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR850000323B1 - Control circuit for refrigerator - Google Patents

Control circuit for refrigerator Download PDF

Info

Publication number
KR850000323B1
KR850000323B1 KR8205825A KR820005825A KR850000323B1 KR 850000323 B1 KR850000323 B1 KR 850000323B1 KR 8205825 A KR8205825 A KR 8205825A KR 820005825 A KR820005825 A KR 820005825A KR 850000323 B1 KR850000323 B1 KR 850000323B1
Authority
KR
South Korea
Prior art keywords
temperature
compressor
frequency
refrigerator
frequency converter
Prior art date
Application number
KR8205825A
Other languages
Korean (ko)
Other versions
KR840002972A (en
Inventor
김정수
Original Assignee
강진구
삼성전자공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강진구, 삼성전자공업 주식회사 filed Critical 강진구
Priority to KR8205825A priority Critical patent/KR850000323B1/en
Priority to GB08317726A priority patent/GB2133586A/en
Publication of KR840002972A publication Critical patent/KR840002972A/en
Application granted granted Critical
Publication of KR850000323B1 publication Critical patent/KR850000323B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Abstract

A refrigerator has a compressor with the compressor rotation controlled by a digital-controlled frequency inverter. Because the difference bands between the real room temperature and setting value of the refrigerator are divided into plural numbers, the rotation of the compressor is controlled by the digital signal based on the load through the frequency inverter.

Description

부하에 대응하는 냉동능력 자동 조정 냉장고 회로Refrigeration capacity automatic adjustment refrigerator corresponding to load

제1도는 본 발명의 회로도,1 is a circuit diagram of the present invention,

제2도는 본 발명에서 온도변동 범위를 복수 구역으로 나눈 상태를 나타내는 그래프.2 is a graph showing a state in which the temperature fluctuation range is divided into a plurality of zones in the present invention.

제3도 및 제4도는 온도와 주파수에 대한 관계로서 비교적 부하가 큰 상태와 작은 상태의 경우를 나타내는 그래프.3 and 4 are graphs showing relatively high loads and small loads in relation to temperature and frequency.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

블록 A' : 주파수 변환부 A : 주파수 변환제어회로Block A ': Frequency converter A: Frequency conversion control circuit

B : 정류회로 C : 제어부B: rectifier circuit C: control unit

D : 제상부D: defrost

본 발명은 냉장고의 압축기를 제어함에 있어서, 고네온도와 설정온도치의 벌위를 복수구역으로 분할하여 압축기의 회전수가 각 구역에 따라 자동변환되도록 하므로 서 고네 온도를 항상 균일하게 유지시킬 수 있는 부하에 대응하는 냉동능력 자동조정 냉장고 회로에 관한 것이다.The present invention is to control the compressor of the refrigerator, by dividing the bee temperature and set temperature value into a plurality of zones so that the rotation speed of the compressor is automatically converted according to each zone to cope with the load that can maintain the constant high temperature always It relates to a freezing capacity automatic adjustment refrigerator circuit.

종래의 냉장고 회로는 프레온 가스 주입형 때머 스탯(thermo-stat)과 온도 감지센서를 사용한 전자식 F-더머 등을 설치하여서 고네온도를 설정한 후 일정한 회전수로운전되는 압축기에 의하여 일정한 냉동능력을 발휘할 수 있도록 되어 있는데, 이는 이미 설정된 하한선 온도에 도달하면 압축기가 운전을 정지하고, 설정된 상한선 온도로 고네온도가 상승하면 압축기가 재가동되어 압축기가 ON-OFF 동작을 반복하므로서 냉동냉장부하(여기서 부하라 함은 냉동·냉장실 온도를 요구하는 상태로 유지시키기 위하여 단위시간에 뺏는 열량을 말한다)에 대응하여 고네온도를 요구하는 상태로 유지시키고 있기 때문에 압축기의 냉동 능력이 일정하므로 인해 외기온도가 높은 여름철에 있어서 식품을 많이 저장할 경우, 즉 부하가 클 경우에는 고네온도가 설정온도를 크게 상회하는 것이며, 저장식품이 적을 경우, 부하가 작을때는 고네온도가 설정온도보다 크게 내려가는 것으로서 이때에는 압축기를 필요이상의 고속회전시키게 되는 관계로 불필요한 전력손실을 초래하는 것이다.Conventional refrigerator circuits have a constant refrigeration capacity by a compressor operating at a constant rotational speed after setting a high temperature by installing an electronic F-dimmer using a freon gas injection type thermo-stat and a temperature sensor. The compressor stops when the preset lower limit temperature is reached, and when the Gone temperature rises to the set upper limit temperature, the compressor is restarted and the compressor repeats the ON-OFF operation. Refers to the amount of heat taken in unit time in order to maintain the required temperature of the freezer and freezer compartment.) Because the compressor is kept at the required temperature, the freezing capacity of the compressor is constant. So that when you store a lot of food, If the stored food is small, when the load is small, the high temperature is lower than the set temperature. At this time, the compressor is rotated at a higher speed than necessary, causing unnecessary power loss.

따라서, 쾌속냉동이 불가능하고, 식품 저장능력에 한계가 있는 것이며, 또한 빈번한 ON-OFF 동작으로 압축기를 매 기동시 요구되는 과전류로 인하여 전력소모가 많을뿐만 아니라, 매기동시마다 소음이 발생하고 기동 릴레이의 사용으로 릴레이의 수명이 문제시되는 등 많은 결점이 내포되어 있는 것이다.Therefore, rapid freezing is impossible, and there is a limit in food storage capacity, and due to the frequent ON-OFF operation, the compressor consumes a lot of power due to the overcurrent required at every start-up. Many defects are inherent, such as the problem of relay life.

본 발명은 이러한 제반 결점을 해소시키고저 압축기의 회전수를 변환시키는 제어장치로서 디지탈 제어형의 주파수 변환장치를 사용하고, 고네온도와 온도설정치의 차의 범위를 복수구역으로 나눠 각 구역에 대응하는 디지탈신호가 주파수 변환장치에 전송되도록 구성하여서 냉동·냉장부하에 대응하여 압축기의 회전수가 변환되는 회로를 발명한 것으로, 이를 도면에서 의거 상세히 설명하면 다음과 같다.The present invention uses a digitally controlled frequency converter as a control device for eliminating these shortcomings and converting the rotational speed of the low compressor, and dividing the difference between the high temperature and the temperature set value into a plurality of zones and corresponding to each zone. Invented a circuit for converting the rotational speed of the compressor in response to the refrigeration and refrigeration load by configuring a signal to be transmitted to the frequency converter, which will be described in detail based on the drawings.

제1도와 같이 AC전원단으로 부터 입력전원 절환스위치(SW1)와 전원트랜스(T1)를 통하여 제상동작 스위치(SW2), 제상히타(1)로 구성된 제상부(D)와 팬 모우터(2)를 연결하는 한편, 브릿지 정류회로(B)를 거쳐 주파수 변환부(A')의 트랜지스터(Q1,Q3,Q5)에 연결하고, 온도설정부(3)의 설정온도, 고네온도센서 (4), 냉매온도센서(5)의 온도 데이타, 과전류 검출기(T2)의 신호, 압축기 더머(6) 및 전압검출용 저항(R), 제상부 바이메탈(7)등의 신호를 입력으로 하는 마이크로 프로세서를 주축으로한 제어부(C)를 연결하며, 이의 출력단에는 파워스위칭 트랜지스터(Q1-Q6)와 주파수 변환 제어회로(A)로 구성된 주파수 변환부(A')를 연결하여 상기 트랜지스터(Q1,Q3,Q5)의 에미터단 즉, 트랜지스터(Q2,Q4,Q6)의 콜렉터를 압축기의 3상 모우터(M) 3단자에 각기 연결하여서 된 것이다.As shown in FIG. 1, a defrosting part (D) and a fan motor composed of a defrost operation switch (SW 2 ) and a defrost heater (1) through an input power switching switch (SW 1 ) and a power transformer (T 1 ) from an AC power supply terminal. (2) is connected to the transistors Q 1 , Q 3 and Q 5 of the frequency converter A 'via the bridge rectifying circuit B, and the set temperature and high temperature of the temperature setting unit 3 are high. Signals such as the neon degree sensor 4, the temperature data of the refrigerant temperature sensor 5, the signal of the overcurrent detector T 2 , the compressor duster 6 and the voltage detection resistor R, and the defrosting part bimetal 7 A control unit C having a microprocessor as an input is connected, and an output terminal thereof has a frequency conversion unit A 'composed of a power switching transistor Q 1 -Q 6 and a frequency conversion control circuit A. the transistor (Q 1, Q 3, Q 5) of the emitter teodan That is, transistor (Q 2, Q 4, Q 6) respectively connected to the collectors of the three-phase Motor (M) terminal 3 of the compressor It will cost.

미설명부호 T3는 강압트랜스, L는 고네등, SW3은 도어스위치, F1,F2는 전원휴우즈,F3는 온도 휴우즈이다.Unmarked T 3 is the step-down transformer, L is the swash lamp, SW 3 is the door switch, F 1 and F 2 are the power supply fuses, and F 3 is the temperature fuse.

이와같이 구성된 본 발멍의 동작상태를 설명하면, 제어부(C)로부터 온도 설정부(3)의 설정치와 고네온도센서(4)온도의 차를 검출하여 출력으로 나타나는 디지탈 신호의 주파수 설정신호를 주파수 변환 제어회로(A)에 보내면 고네온도와 온도 설정치의 차에 따르는 설정된 주파수로서 압축기 3상 모우터(M)의 3단에 각기 결선된 트랜지스터(Q1, Q2)와 트랜지스터(Q3,Q4) 및 트랜지스터(Q5,Q6)가 순차적인 스위칭 동작을 하게되므로 압축기 모우터(M에는 설정된 주파수를 갖는 3상교류(펄스출력)가 공급되고, 이 펄스출력은 압축기 모우터(M)를 고효율로 운전시키기 위하여 적분파형이 정형파형이 되도록 성형시킴과 동시에 전압이 주파수에 거의 비례하게 변화하도록 제어되어 있으며, 출력 주파수는 30Hz-75Hz 의 범위로서 연속적으로 변화되며, 이에 따라 압축기의 회전수도 대략 1700-4400rpm의 범위에서 변환되는 것인데, 여기에서 주파수 변환부(A')에 가해지는 디지탈신호 즉, 주파수 설정신호는 온도 설정신호, 고네온도센서, 냉매온도센서 과전류검출기의 신호, 압축기의 더머 전압 검출용 저항등의 신호를 마이크로 프로세서의 입력으로 하여 기 설정한 프로그램에 의하여 논리연산처리된 후 주파수 설정신호로서 전송되는 것이다.When the operation state of the present configuration configured as described above is described, the frequency setting signal of the digital signal displayed as an output is detected by detecting the difference between the set value of the temperature setting unit 3 and the temperature of the Gone temperature sensor 4 from the control unit C. When sent to the control circuit (A), the transistors (Q 1 , Q 2 ) and transistors (Q 3 , Q 4 ) connected to the three stages of the compressor three-phase motor (M), respectively, are set frequencies according to the difference between the high temperature and the set temperature. ) And the transistors Q 5 and Q 6 perform sequential switching operations, so that the compressor motor M is supplied with a three-phase alternating current (pulse output) having a set frequency, and this pulse output supplies the compressor motor M. In order to operate with high efficiency, the integral waveform is shaped to be a square waveform and the voltage is controlled to change almost in proportion to the frequency. The output frequency is continuously changed in the range of 30 Hz to 75 Hz. The rotation speed of the gear is also converted in the range of approximately 1700-4400rpm. Here, the digital signal applied to the frequency converter A ', that is, the frequency setting signal, is a temperature setting signal, a Gone temperature sensor, a refrigerant temperature sensor, and an overcurrent detector. A signal, such as a compressor voltage detection resistor of a compressor, is input to a microprocessor, is logically operated by a predetermined program, and then transmitted as a frequency setting signal.

한편, 제상기능에 있어서는 제어부(C)의 마이크로 프로세서에 있는 타이머기능을 이용하여 일정시간 운전을 한후 제어부(C)의 지령신호에 의해 제상스위치(SW2)가 제상히타(1)쪽으로 절환되어 제상을 행하고, 제상동작이 완료되면 제상부 바이메탈(7)이 작동하여 신호를 다시 제어부(C)에 입력시켜 제어부(C)로 하여금 제상동작 스위치(SW2)에 신호를 보내 팬 모우터(2)쪽으로 절환시켜 냉동·냉장고를 재가동시킨다.On the other hand, in the defrosting function, after definite period of operation using the timer function in the microprocessor of the control unit C, the defrost switch SW 2 is switched to the defrost heater 1 by the command signal of the control unit C, and thus defrosting. When the defrosting operation is completed, the defrosting bimetal 7 is operated to input a signal back to the control unit C to send a signal to the control unit C to the defrosting operation switch SW 2 , and the fan motor 2. Switch to the side and restart the freezer / freezer.

다음으로, 제 2,3,4도에 따라 고네온도와 온도설정치의 온도차를 복수구역으로 나눈상태에서 부하에 대응하는 압축기 모우터의 회전수 변환과정을 설명하고자 한다.Next, the process of converting the number of revolutions of the compressor motor corresponding to the load in a state in which the temperature difference between the high temperature and the set temperature is divided into a plurality of zones according to the second, third and fourth degrees.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

Figure kpo00002
Figure kpo00002

일예로, 상기(표 6과 같이 고네온도와 온도설정치의 차에 따른 범위를 6개구역(A,B,C,D,E,F)으로 나눠 각 구역에 대응하는 주파수 설정치를 정해놓으면, 고네온도와 온도설정치에 따른 압축기 운전 주파수의 변화상태가 제2도와 같이 나타난다. 여기서 X는 고내온도가 하강하는 영역이고, Y는 고내온도가 상승하는 영역이다. 이를 구체적으로 설명하면, 처음 고내온도가 하강하기 시작하였을 때 고내온도가 온도설정치보다 1oC 이상 높은 A구역에서는 75Hz의 주파수 설정신호가 가해져서 고내온도가 종래의 냉동·냉장고 보다 급견히 강하하고, 1oC 이하의 B구역으로 가면 제어부(C)로부터의 지령신호에 의하여 주파수 변환부(A')에 60Hz의 주파수 설정신호가 가해지며, 점차 고내온도가 내려가서 (D)구역에 이르면 40Hz의 주파수 설정신호가 가해지게 되는데, 고내온도가 온도설정치보다 0-0.5oC 낮은 상태 즉, D구역에 있는한 40Hz의 주파수 설정신호가 계속 가해져서 냉동·냉장부하가 증가하여, 고내온도가 온도설정치보다 0-0.5oC 높은 상태로 옮겨가더라도 이 범위는 고내 온도가 상승하는 영역(Y)에 속하는 D구역이 되므로 계속하여 40Hz의 주파 수설정신호가 가해진다.For example, by dividing the range according to the difference between the high temperature and the temperature set value into six zones (A, B, C, D, E, F) as shown in Table 6, the frequency set values corresponding to each zone are determined. The change of the operating frequency of the compressor according to the neon value and the temperature set value is shown in Fig. 2. Here, X is the area where the internal temperature decreases, and Y is the area where the internal temperature rises. In the A zone where the internal temperature is 1 o C or more higher than the temperature set point when the temperature starts to fall, a frequency setting signal of 75 Hz is applied so that the internal temperature drops sharply than the conventional freezer and refrigerator, and goes to the B zone below 1 o C. The frequency setting signal of 60 Hz is applied to the frequency converter A 'by the command signal from the control unit C, and the frequency setting signal of 40 Hz is applied when the internal temperature decreases and reaches the area (D). 0-0.5 degrees C o low state, that is, to set so that the frequency signal of 40Hz in the zone D continues to increase the refrigeration load is applied and transferred to the Durable 0-0.5 o C higher than the temperature set point temperature than the temperature set point Even if it is, this range becomes the zone D belonging to the region Y in which the internal temperature rises, so that a frequency setting signal of 40 Hz is continuously applied.

따라서, 고내온도가 상승하는 영역(Y)과 하강하는 영역(X) 사이에는 각 구역의 설정온도가 0.5oC의 차를 갖게되는 관계로 고내온도가 설정치에 도달한 후에는 주파수 설정신호가 빈번하게 변환되지 않고 원활한 운전을 계속하게 된다.Therefore, since the set temperature of each zone has a difference of 0.5 o C between the region Y where the internal temperature rises and the region X which descends, the frequency setting signal frequently occurs after the internal temperature reaches the set value. It will not be converted and will continue to run smoothly.

다음으로 제3도, 제4도를 설명하면, 제3도는 비교적 부하가 큰 상태에서의 온도, 주파수 변환상태를 예시한 것이고, 제4도는 비교적 부하가 작은 상태에서의 온도, 주파수 변화상태를 나타내는 그래프로서, 그래프상에서 보면 알 수 있듯이, 고내온도가 온도설정치보다 낮은 D구역에서 40Hz주파수 설정치로 운전하다가 부하가 작으므로 해서 고내온도가 계속내려가 E구역에 도달하면 35Hz의 주파수 설정신호가 가해지게 된다.Next, referring to FIG. 3 and FIG. 4, FIG. 3 illustrates a temperature and frequency conversion state under a relatively high load, and FIG. 4 illustrates a temperature and frequency change state under a relatively low load. As the graph shows, when the internal temperature is lower than the temperature setting, the operation is performed at the 40Hz frequency setting value in the D zone lower than the temperature setting value, and the load is small. Therefore, when the internal temperature keeps falling and reaches the E zone, the frequency setting signal of 35Hz is applied. .

그에따라, 35Hz의 주파수로 운전을 계속하여 3분이 경과할때까지 고내온도가 계속 E 구역에 있으면 시각 T5부터30Hz로 운전하게 되는데, 이때부터 고내온도는 상승하기 시작하여 고내온도와 온도설정치의 차가 고내온도가 상승하는 영역(Y)의 D구역에 이르는 시각 T6부터 35Hz로 운전하게 되는 것으로서, 이와같이 부하가 작을 경우에는 운전 주파수를 5Hz 하강시켜 과냉각을 방지하고, 압축기가 정지하는 것을 극도로 억제하게 된다.Accordingly, if the temperature inside the zone is in the E zone until 3 minutes after continuing operation at the frequency of 35Hz, the operation is performed from time T 5 to 30Hz, from which the temperature inside the temperature starts to rise, as the difference that the driving at 35Hz from time T 6 leading to D zone of the area (Y), which raised the internal temperature, in this way extremely that when the load is small is to lower the operating frequency 5Hz prevent super-cooling, and the compressor is stopped Will be suppressed.

이상에서와 같이, 본 발명은 고내온도 변환 폭을 분할하여 각 구역에 따라 냉동능력을 자동조절하게 되는 것으로서, 압축기의 ON/OFF 동작을 극도로 제한하여 매 기동시마다 정상운전 상태에 이르는 동안 소비되는 불필요한 전력소모를 억제할 수 있으며,이에 현격한 성에너지 효과를 기대할 수 있을뿐만 아니라 압기축의 빈번한 기동 충격이 없으므로 제품에 대한 신뢰성이 크게 향상되고, 기동횟수가 극도로 제한되어 기동시마다 발생되는 소음을 줄이고 정숙 운전을 할 수 있는 것으로서 고내온도가 정밀하게 제어되므로 저장 식품에 쾌적한 환경을 부여할 수 있는 등 여러 가지 유익한 특징을 지닌 것이다.As described above, the present invention is to automatically adjust the refrigeration capacity according to each zone by dividing the high temperature conversion width, it is extremely limited to the ON / OFF operation of the compressor is consumed during the normal operation state at every start Unnecessary power consumption can be suppressed, and a significant energy energy effect can be expected, and since there are no frequent starting shocks of the indenter shaft, the reliability of the product is greatly improved, and the number of startups is extremely limited, resulting in noise generated at every startup. It is possible to operate quietly and quietly, and because the internal temperature is precisely controlled, it has various beneficial features such as giving a pleasant environment to the stored food.

Claims (2)

전원단에 제상부(D) 및 팬 모우터(2)를 연결하고, 브릿지 정류회로(B)를 거쳐서는 통상의 온도설정부(3), 고내온도 센서(4), 냉매온도센서(5), 과전류검출기(T2), 압축기 더머(6), 전압검출용 저항(R), 제상부 바이메탈(7) 등의 신호를 감지하는 제어부(C)를 연결하며, 이의 출력단에는 주파수 변환부(A')를 통하여 3상 모우터(M) 에 연결하여 구성됨을 특징으로 하는 부하에 대응하는 냉동능력 자동조정 냉장고 회로.The defrosting part (D) and the fan motor (2) are connected to the power supply terminal, and the normal temperature setting part (3), the high temperature sensor (4), and the refrigerant temperature sensor (5) are connected via the bridge rectifier circuit (B). , A control unit (C) for detecting signals such as an overcurrent detector (T 2 ), a compressor duster (6), a voltage detection resistor (R), a defroster bimetal (7), and a frequency converter (A) at its output terminal. Refrigeration capacity automatic adjustment refrigerator circuit corresponding to the load, characterized in that configured to connect to the three-phase motor (M) through '). 제1항에 있어서, 주파수 변환부(A')는 상기 제어부(C)의 출력에 따라 주파수를 제어하는 주파수 변환제어회로(A)와 트랜지스터(Q1,Q2), (Q5,Q6)로서 구성하여 됨을 특징으로 하는 것.2. The frequency converter A 'according to claim 1, wherein the frequency converter A' is a frequency conversion control circuit A for controlling the frequency according to the output of the controller C, transistors Q 1 , Q 2 , (Q 5 , Q 6). Characterized in that it is configured as).
KR8205825A 1982-12-27 1982-12-27 Control circuit for refrigerator KR850000323B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR8205825A KR850000323B1 (en) 1982-12-27 1982-12-27 Control circuit for refrigerator
GB08317726A GB2133586A (en) 1982-12-27 1983-06-30 Temperature control of a refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR8205825A KR850000323B1 (en) 1982-12-27 1982-12-27 Control circuit for refrigerator

Publications (2)

Publication Number Publication Date
KR840002972A KR840002972A (en) 1984-07-21
KR850000323B1 true KR850000323B1 (en) 1985-03-20

Family

ID=19226365

Family Applications (1)

Application Number Title Priority Date Filing Date
KR8205825A KR850000323B1 (en) 1982-12-27 1982-12-27 Control circuit for refrigerator

Country Status (2)

Country Link
KR (1) KR850000323B1 (en)
GB (1) GB2133586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101964925B1 (en) * 2018-10-05 2019-04-03 김용열 Control Method of Evaporation Temperature for High Humidity Storage in Low Temperature Storage

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1247635B (en) * 1990-12-11 1994-12-28 Zanussi Elettromecc IMPROVEMENT IN REFRIGERATING MOTOR-COMPRESSORS WITH ELECTRONIC CONTROL
DE4226966A1 (en) * 1992-08-14 1994-02-17 Bosch Siemens Hausgeraete Refrigerator and / or freezer equipped for single-phase AC connection
CN100375881C (en) * 2003-05-22 2008-03-19 乐金电子(天津)电器有限公司 Apparatus and method for controlling operation of electric refrigerator utilizing forward or backward rotary compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257238A (en) * 1979-09-28 1981-03-24 Borg-Warner Corporation Microcomputer control for an inverter-driven heat pump
GB2059646B (en) * 1980-09-25 1983-07-13 Borg Warner Microcomputer control for supplemental heating in a heat pump
JPS6012532B2 (en) * 1980-10-13 1985-04-02 株式会社東芝 Air conditioner control method
IT1147229B (en) * 1981-03-18 1986-11-19 Necchi Spa REFRIGERATING EQUIPMENT WITH VARIABLE POWER SUPPLY MOTOR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101964925B1 (en) * 2018-10-05 2019-04-03 김용열 Control Method of Evaporation Temperature for High Humidity Storage in Low Temperature Storage

Also Published As

Publication number Publication date
GB2133586A (en) 1984-07-25
GB8317726D0 (en) 1983-08-03
KR840002972A (en) 1984-07-21

Similar Documents

Publication Publication Date Title
KR900005721B1 (en) Control apparatus for airconditioner
EP2140213B1 (en) Refrigerator and operating method thereof
JP4482028B2 (en) Start-up control system and method for multiple compressor cooling system
KR850000323B1 (en) Control circuit for refrigerator
EP0484860A1 (en) Refrigerating apparatus having a single thermostatic temperature control system
EP1325271B1 (en) Refrigerating apparatus control method
EP0388726B1 (en) Refrigerating appliance with single thermostatic temperature control device
KR19980043379A (en) Compressor Frequency Transition Speed Control of Air Conditioner and Its Method
KR100222981B1 (en) Controller of inverter refrigerator
EP0387680A2 (en) Refrigerating appliance with thermostatic temperature control arrangement
JPH062918A (en) Controller for air conditioner
JP2000179925A (en) Fan controller for air conditioner
KR960010659B1 (en) Refrigerator
JPS6024910B2 (en) Refrigeration equipment control circuit
KR200193593Y1 (en) Defrosting apparatus for a refrigerator
KR910002896Y1 (en) Driving circuit for deorderizer
JPS61138043A (en) Method of controlling capability variable freezer
KR820000613Y1 (en) Indicating circuit on over voltaye in cold store
JPH03122478A (en) Control device for freezer refrigerator
JP2007046829A (en) Refrigerator
KR20030056635A (en) Refrigeration system control appratus and method
JPH0349039B2 (en)
JPH0688665A (en) Refrigerator
JPS6014033A (en) Air conditioner
KR19990025835A (en) How to control the freezer weak cooling of the freezer

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
G160 Decision to publish patent application
O035 Opposition [patent]: request for opposition

Free format text: OPPOSITION NUMBER: 001985001329001985001331; OPPOSITION DATE: 24560316

O035 Opposition [patent]: request for opposition

Free format text: OPPOSITION NUMBER: 001985000245001985000246001985001328001985001330; OPPOSITION DATE: 25380506