[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20240112755A - A Novel Liquid Formulation for Preventing or Treating Thrombotic Disease - Google Patents

A Novel Liquid Formulation for Preventing or Treating Thrombotic Disease Download PDF

Info

Publication number
KR20240112755A
KR20240112755A KR1020240004681A KR20240004681A KR20240112755A KR 20240112755 A KR20240112755 A KR 20240112755A KR 1020240004681 A KR1020240004681 A KR 1020240004681A KR 20240004681 A KR20240004681 A KR 20240004681A KR 20240112755 A KR20240112755 A KR 20240112755A
Authority
KR
South Korea
Prior art keywords
residue
substitution
composition
adamts13
residues
Prior art date
Application number
KR1020240004681A
Other languages
Korean (ko)
Inventor
남현자
곽희천
최가희
박지민
강성재
박진현
Original Assignee
주식회사 녹십자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 녹십자 filed Critical 주식회사 녹십자
Publication of KR20240112755A publication Critical patent/KR20240112755A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4886Metalloendopeptidases (3.4.24), e.g. collagenase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/183Amino acids, e.g. glycine, EDTA or aspartame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6489Metalloendopeptidases (3.4.24)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Dermatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 혈장 단백질, 구체적으로는 ADAMTS13 단백질, 이의 변이체 및 이의 기능적 일부 절편에 대한 약제학적 제형 조성물 및 이를 포함하는 혈전성 질환의 예방 또는 치료용 조성물에 관한 것이다. 본 발명의 조성물은 ADAMTS-13의 주요 도메인에 높은 결합력을 가지는 것으로 알려진 대표적 자가항체를 효율적으로 회피할 뿐 아니라 효율적인 제형 성분의 조합으로 인해 콜로이드 안정성, 냉장 안정성, 순도 및 응집 차단율을 장기간 동안 높은 수준으로 유지할 수 있다. 본 발명의 조성물은 또한 상용화된 효소대체치료제 대비 현저히 낮은 치료학적 유효량(therapeutically effective amount)을 가져 장기 투여에 적합한 안전성과 환자 순응도를 가지는 효율적인 치료제로 이용될 수 있다. The present invention relates to a pharmaceutical formulation composition for plasma proteins, specifically ADAMTS13 protein, variants and functional fragments thereof, and compositions for preventing or treating thrombotic diseases containing the same. The composition of the present invention not only efficiently avoids representative autoantibodies known to have high binding affinity to the main domain of ADAMTS-13, but also maintains colloidal stability, refrigeration stability, purity, and aggregation blocking rate at high levels for a long period of time due to the combination of efficient formulation components. can be maintained. The composition of the present invention also has a significantly lower therapeutically effective amount compared to commercially available enzyme replacement treatments, so it can be used as an efficient treatment with safety and patient compliance suitable for long-term administration.

Description

혈전성 질환의 예방 또는 치료를 위한 신규한 액상 제형물{A Novel Liquid Formulation for Preventing or Treating Thrombotic Disease}Novel liquid formulation for preventing or treating thrombotic disease {A Novel Liquid Formulation for Preventing or Treating Thrombotic Disease}

본 발명은 혈장 단백질, 구체적으로는 ADAMTS-13 단백질의 액상 제형 조성물 및 이의 용법 용량에 관한 것이다.The present invention relates to liquid formulation compositions for plasma proteins, specifically ADAMTS-13 protein, and dosages for their use.

혈전성 혈소판 감소성 자반증은 몸 전체의 작은 혈관에서 혈전이 형성되어 즉시 치료받지 못하면 사망에 이르는 혈전성 미세혈관병증(thrombotic microangiopathy)에 속하는 희귀한 혈액질환이다. 발병률은 연간 100 만명 당 1.5-6 건 정도로 알려져 있으며 주로 평균 40세의 성인과 여성에서 발병 확률이 높다. 병리학적 특징으로는 혈소판의 감소, 적혈구 감소, HCT(hematocrit)의 증가 등이 보이며, 혈전으로 인한 여러 장기(신장, 심장, 뇌 등)의 기능 장애가 발생되는 것으로 알려져 있다. 증상으로는 멍이 들고, 발열, 권태, 호흡곤란, 의식혼란, 두통 등이 나타난다. Thrombotic thrombocytopenic purpura is a rare blood disease belonging to thrombotic microangiopathy in which blood clots form in small blood vessels throughout the body and can lead to death if not treated immediately. The incidence rate is known to be about 1.5-6 cases per million people per year, and the incidence rate is high mainly in adults and women with an average age of 40. Pathological characteristics include a decrease in platelets, a decrease in red blood cells, and an increase in HCT (hematocrit), and it is known that dysfunction of various organs (kidneys, heart, brain, etc.) occurs due to blood clots. Symptoms include bruising, fever, fatigue, difficulty breathing, confusion of consciousness, and headache.

혈전성 혈소판 감소성 자반증은 ADAMTS13(a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) 단백질을 코딩하는 유전자의 기능 이상으로 인해 선천성 ADAMTS13 기능 결핍을 야기하는 cTTP (congenital TTP)와, 후천적인 원인으로 인한 ADAMTS13 활성 감소에 의해 발생하는 aTTP(aquired TTP)의 두 가지로 구분된다. 일반적으로 ADAMTS13의 활성이 정상 대비 10% 미만일 경우 TTP로 진단된다. aTTP의 원인으로는 박테리아에 의한 감염, 특정 약물, 루푸스(lupus)와 같은 자가면역질환, 임신 등이 관련되어 있음이 보고되었으며, 발병의 주된 기전 중 하나로서 ADAMTS13를 인식하는 자가항체로 인한 ADAMTS13 효소 활성 저해가 보고되었다(GARD program, 2018). ADAMTS13 효소는 폰빌레브란트인자(von Willebrand factor, vWF)의 큰 다량체를 작은 단위로 분해하는 역할을 하는데, aTTP 환자에서 발견되는 항체는 ADAMTS13에 결합하여 기능을 저해함으로써 vWF가 분해되지 못하며, 결과적으로 혈소판과 함께 혈전을 과다 생성하여 질환을 유발한다.Thrombotic thrombocytopenic purpura is caused by abnormalities in the function of the gene encoding the ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) protein, resulting in congenital ADAMTS13 functional deficiency, cTTP (congenital TTP), and acquired causes. It is divided into two types: aTTP (aquired TTP) caused by decreased ADAMTS13 activity. In general, TTP is diagnosed when ADAMTS13 activity is less than 10% of normal. It has been reported that the causes of aTTP are bacterial infections, certain drugs, autoimmune diseases such as lupus, and pregnancy, and one of the main mechanisms of development is ADAMTS13 enzyme caused by autoantibodies that recognize ADAMTS13. Activity inhibition has been reported (GARD program, 2018). The ADAMTS13 enzyme is responsible for breaking down large multimers of von Willebrand factor (vWF) into smaller units. Antibodies found in aTTP patients bind to ADAMTS13 and inhibit its function, preventing vWF from being broken down, resulting in This causes excessive formation of blood clots along with platelets, causing disease.

표준 치료법으로서 cTTP 환자에게는 신선동결혈장(fresh frozen plasma)의 주입을 통해 부족한 분해 효소를 넣어주는 보충요법이 이용되며, aTTP 환자의 경우는 혈장교환술(plasma exchange, PEX)을 실시하여 혈장 내 ADAMTS13 중화항체를 제거하여 증상을 완화시키는 것을 목적으로 한다. aTTP 환자의 경우 면역억제제(prednisolone, corticosteroid 등)를 병용 투여하여 치료의 효과를 증대시키고 재발을 방지하며, 중화항체의 생성을 감소시키도록 B 세포 사멸을 유도하는 리툭시맙(rituximab)을 사용하기도 한다. 혈장교환술의 횟수는 질환의 심각도 및 증상의 진행에 따라 다르지만, 보통 혈소판 수를 정상화하는 데에 여러 번의 혈장교환이 요구된다. 현재의 치료법은 반복된 혈장교환의 번거로움과 면역 억제제를 사용하는 과정에서 오는 감염에 대한 취약성의 증가라는 한계점을 가지고 있다. As a standard treatment, for cTTP patients, supplementation therapy is used to add insufficient decomposition enzymes through injection of fresh frozen plasma, and for aTTP patients, plasma exchange (PEX) is performed to increase ADAMTS13 levels in plasma. The purpose is to relieve symptoms by removing neutralizing antibodies. For aTTP patients, immunosuppressants (prednisolone, corticosteroid, etc.) are administered together to increase the effect of treatment and prevent recurrence, and rituximab, which induces B cell death to reduce the production of neutralizing antibodies, is also used. do. The number of plasma exchange procedures varies depending on the severity of the disease and progression of symptoms, but usually multiple plasma exchanges are required to normalize the platelet count. Current treatment methods have limitations such as the inconvenience of repeated plasma exchange and increased vulnerability to infection due to the use of immunosuppressants.

이에, 본 발명자들은 TTP에 대한 종래 치료법의 한계점 극복을 위해 ADAMTS13 단백질, 구체적으로는 본 발명자들에 의해 동정된 자가항체 회피 변이체를 제작하여 aTTP-mimic 마우스 모델에서 치료적 효력 및 유지력을 확인하였다. 뿐만 아니라, aTTP-mimic 질환 마우스 혹은 aTTP 환자 혈장에서 TTP 치료제로 기 승인된 약물(Cablivi®)이나 개발 중인 약물(recombinant human wild type-ADAMTS13, rh WT-ADAMTS13)과의 효력 비교 평가함으로써 상용화된 경쟁 물질 대비 우수함을 확인하였다. Accordingly, to overcome the limitations of conventional treatments for TTP, the present inventors produced ADAMTS13 protein, specifically an autoantibody-evading variant identified by the present inventors, and confirmed its therapeutic efficacy and maintenance in an aTTP-mimic mouse model. In addition, commercialized competition is being conducted by comparatively evaluating the efficacy of a drug already approved as a TTP treatment (Cablivi ® ) or a drug under development (recombinant human wild type-ADAMTS13, rh WT-ADAMTS13) in aTTP-mimic disease mouse or aTTP patient plasma. It was confirmed that it was superior to the material.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Numerous papers and patent documents are referenced and citations are indicated throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to more clearly explain the content of the present invention and the level of technical field to which the present invention pertains.

특허문헌 1. 일본공개특허공보 제2018-203781호Patent Document 1. Japanese Patent Publication No. 2018-203781

본 발명자들은 대부분이 난치성 희귀질환에 속하는 다양한 ADAMTS13 기능이상 질환들에 대한 효과적이고 근원적인 치료 방법을 개발하기 위해 예의 연구 노력하였다. 그 결과, ADAMTS13의 자가항체가 인식하는 핵심 영역을 동정하고, 이들 영역 내 일부 아미노산에 치환을 가할 경우 자가항체와의 결합이 차단되고 vWF 분해 및 혈전 억제 활성이 유지됨을 규명하였으며, 또한 혈액으로부터 분리 정제되는 순간부터 오염 및 변성의 위험이 높은 ADAMTS13 단백질의 안정성을 개선하기 위한액상 제형 성분 및 이의 치료 효율을 극대화하기 위한 최적의 투여 용량을 규명함으로써 본 발명을 완성하게 되었다.The present inventors have made extensive research efforts to develop effective and fundamental treatment methods for various ADAMTS13 dysfunction diseases, most of which are incurable rare diseases. As a result, we identified the core regions recognized by autoantibodies of ADAMTS13 and found that when substitutions were made to some amino acids in these regions, binding to autoantibodies was blocked and VWF decomposition and thrombosis inhibitory activities were maintained. In addition, the The present invention was completed by identifying liquid formulation components to improve the stability of ADAMTS13 protein, which has a high risk of contamination and denaturation from the moment of purification, and the optimal administration dose to maximize its treatment efficiency.

따라서 본 발명의 목적은 ADAMTS13 단백질, 이의 변이체 및 이의 기능적 일부 절편으로 구성된 군으로부터 선택되는 혈장 단백질을 포함하는 약제학적 제형 조성물을 제공하는 데 있다.Therefore, the purpose of the present invention is to provide a pharmaceutical formulation composition comprising a plasma protein selected from the group consisting of ADAMTS13 protein, its variant, and some functional fragments thereof.

본 발명의 다른 목적은 혈전성 질환의 예방 또는 치료용 조성물을 제공하는 데 있다.Another object of the present invention is to provide a composition for preventing or treating thrombotic diseases.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become clearer from the following detailed description, claims, and drawings.

본 발명의 일 양태에 따르면, 본 발명은 ADAMTS13(a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) 단백질, 이의 변이체 및 이의 기능적 일부 절편으로 구성된 군으로부터 선택되는 혈장 단백질을 포함하는 약제학적 제형 조성물로서, 상기 혈장 단백질은 대상체의 체중 1kg 당 0.02 mg 내지 0.25 mg으로 투여되도록 상기 조성물 내에 포함되는 것을 특징으로 하는 조성물을 제공한다. According to one aspect of the present invention, the present invention provides a pharmaceutical formulation comprising a plasma protein selected from the group consisting of ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) protein, variants thereof, and functional partial fragments thereof. Provided is a composition, wherein the plasma protein is included in the composition to be administered in an amount of 0.02 mg to 0.25 mg per kg of body weight of the subject.

본 발명자들은 대부분이 난치성 희귀질환에 속하는 다양한 ADAMTS13 기능이상 질환들에 대한 효과적이고 근원적인 치료 방법을 개발하기 위해 예의 연구 노력하였다. 그 결과, ADAMTS13의 자가항체가 인식하는 핵심 영역을 동정하고, 이들 영역 내 일부 아미노산에 치환을 가할 경우 자가항체와의 결합이 차단되고 vWF 분해 및 혈전 억제 활성이 유지됨을 규명하였으며, 또한 혈액으로부터 분리 정제되는 순간부터 오염 및 변성의 위험이 높은 ADAMTS13 단백질의 안정성을 개선하기 위한액상 제형 성분 및 이의 치료 효율을 극대화하기 위한 최적의 투여 용량을 규명하였다.The present inventors have made extensive research efforts to develop effective and fundamental treatment methods for various ADAMTS13 dysfunction diseases, most of which are incurable rare diseases. As a result, we identified the core regions recognized by autoantibodies of ADAMTS13 and found that when substitutions were made to some amino acids in these regions, binding to autoantibodies was blocked and VWF decomposition and thrombosis inhibitory activities were maintained. In addition, the Liquid formulation ingredients to improve the stability of ADAMTS13 protein, which has a high risk of contamination and denaturation from the moment of purification, and the optimal administration dose to maximize its treatment efficiency were identified.

본 발명의 구체적인 구현예에 따르면, 용어 “대상체”는 인간일 수 있으며, “성체 대상체”는 “성인”일 수 있다.According to a specific embodiment of the present invention, the term “subject” may be a human, and the term “adult subject” may be an “adult.”

본 명세서에서 용어 "단백질"은 펩타이드 결합에 의해 아미노산 잔기들이 서로 결합되어 형성된 선형의 분자를 의미한다. As used herein, the term “protein” refers to a linear molecule formed by linking amino acid residues together through peptide bonds.

본 명세서에서 용어 “기능적 일부”는 전장 단백질에서 일부 아미노산 잔기가 삭제된 절편으로서 그 본연의 생물학적 활성 및 기능을 유지하는 전장 단백질의 유사체를 의미한다. As used herein, the term “functional portion” refers to a fragment in which some amino acid residues have been deleted from a full-length protein and an analogue of the full-length protein that maintains its original biological activity and function.

보다 구체적으로는, 상기 혈장 단백질은 대상체의 체중 1kg 당 0.03 mg 내지 0.2 mg으로 투여되도록 상기 조성물 내에 포함된다.More specifically, the plasma protein is included in the composition to be administered at 0.03 mg to 0.2 mg per kg of body weight of the subject.

본 발명의 구체적인 구현예에 따르면, 상기 조성물은 정맥 투여된다. According to a specific embodiment of the present invention, the composition is administered intravenously.

본 발명의 구체적인 구현예에 따르면, 본 발명의 조성물은 0.2 mg/ml 내지 1.2 mg/ml의 혈장 단백질 및 40 mM 내지 200 mM의 아미노산 안정화제(stabilizer)를 포함한다.According to a specific embodiment of the present invention, the composition of the present invention includes 0.2 mg/ml to 1.2 mg/ml of plasma protein and 40mM to 200mM of amino acid stabilizer.

본 발명자들은 혈액으로부터 분리 정제되는 순간부터 오염 및 변성의 위험이 높은 혈장 단백질의 안정성을 개선하고, 특히 동결 건조시에도 그 물성, 생물학적 활성 및 약리 효과를 장기간 유지시킬 수 있는 우수한 액상 제형 조성물을 개발하기 위하여 예의 연구 노력하였다. 그 결과, 제형 내에 약리성분인 혈장 단백질이 0.2 mg/ml 내지 1.2 mg/ml, 구체적으로는 0.25 mg/ml 내지 1.0 mg/ml, 보다 구체적으로는 0.3 mg/ml 내지 0.7 mg/ml, 보다 더 구체적으로는 0.3 mg/ml 내지 0.4 mg/ml, 가장 구체적으로는 약 0.36 mg/ml로 포함되면서 아미노산 안정화제, 구체적으로는 아르기닌(Arginine)이 40 mM 내지 200 mM, 보다 구체적으로는 60 mM 내지 180 mM, 보다 더 구체적으로는 60 mM 내지 160 mM, 보다 더 구체적으로는 60 mM 내지 140 mM, 보다 더 구체적으로는 80 mM 내지 135 mM, 보다 더 구체적으로는 100 mM 내지 130 mM, 가장 구체적으로는 약 120 mM로 포함될 경우 콜로이드 안정성, 냉장 안정성, 풀림(unfolding) 억제, 응집 차단 및 동결 건조 후의 케익 성상을 비롯한 다각적인 지표에서 현저히 우수한 안정성을 나타냄을 발견하였다. The present inventors have developed an excellent liquid formulation composition that improves the stability of plasma proteins, which have a high risk of contamination and denaturation from the moment they are separated and purified from blood, and can maintain their physical properties, biological activity, and pharmacological effects for a long period of time, especially even when freeze-dried. To this end, diligent research efforts were made. As a result, the plasma protein, which is a pharmacological ingredient, in the formulation is 0.2 mg/ml to 1.2 mg/ml, specifically 0.25 mg/ml to 1.0 mg/ml, more specifically 0.3 mg/ml to 0.7 mg/ml, and more. Specifically, it is included at 0.3 mg/ml to 0.4 mg/ml, most specifically about 0.36 mg/ml, and the amino acid stabilizer, specifically arginine, is included at 40 mM to 200 mM, more specifically 60 mM to 60 mM. 180mM, more specifically 60mM to 160mM, even more specifically 60mM to 140mM, even more specifically 80mM to 135mM, even more specifically 100mM to 130mM, most specifically It was found that when contained at about 120mM, it showed significantly excellent stability in various indicators including colloidal stability, refrigeration stability, unfolding inhibition, aggregation blocking, and cake properties after freeze-drying.

본 명세서에서 용어 “혈장 단백질(Plasma protein)”은 인간 또는 동물의 혈장에 존재하는 수용성 단백질을 총칭하는 의미로서, 혈액 속에 포함된 단백질 중 백혈구와 적혈구에 포함된 것 이외의 모든 단백질 성분을 포괄한다. 혈장단백질은 전체 혈장의 약 8% 정도를 차지하며, 지혈작용(프로트롬빈, 피브리노겐), 호르몬의 수송(혈청알부민과 지질단백질 등), 면역작용(면역글로불린과 보체 단백질)을 담당한다. 혈장 단백질은 당업계에 알려진 다양한 분획 및 정제 방법에 의해 수득될 수 있으나, 장기간 보관 및 환경 변화에 따른 화학적 불안정성 및 물리적 불안정성 문제가 극복되어야 한다. 물리적 불안정성은 단백질에서 공유결합 변화를 유도하지 않는 변형, 즉 흡착, 응집 및 침전을 형성하며, 화학적 불안정성은 탈아미드화, 라세미체화, 가수분해, 산화, 베타 제거 및 디설파이드 교환 등의 변형을 수반한다. 이러한 불안정성은 고유의 생물학적 활성의 왜곡 및 약리 효과의 감소로 이어진다.As used herein, the term “plasma protein” refers to the general term for water-soluble proteins present in the plasma of humans or animals, and includes all protein components other than those contained in white blood cells and red blood cells among the proteins contained in the blood. . Plasma proteins account for approximately 8% of total plasma and are responsible for hemostatic function (prothrombin, fibrinogen), transport of hormones (serum albumin and lipoprotein, etc.), and immune function (immunoglobulin and complement protein). Plasma proteins can be obtained by various fractionation and purification methods known in the art, but problems of chemical instability and physical instability due to long-term storage and environmental changes must be overcome. Physical instability involves modifications that do not induce covalent changes in the protein, such as adsorption, aggregation, and precipitation, while chemical instability involves modifications such as deamidation, racemization, hydrolysis, oxidation, beta elimination, and disulfide exchange. do. This instability leads to distortion of the intrinsic biological activity and reduction of the pharmacological effect.

본 명세서에서 용어“안정화제(stabilizer)”는 활성성분의 안정성을 증가시키고, 활성성분이 임의로 변성, 산화, 응집 또는 결정화되거나 유연물질로 변성되어 종국적으로 약리 활성이 상실되거나 저하되는 것을 방지하기 위하여 제형 내에 첨가되는 임의의 첨가제를 의미하며, 약학적으로 허용 가능한 것이라면 크게 제한되지 않는다. 용어“아미노산 안정화제”란 아미노산을 주성분 또는 보조적 성분으로 제형에 첨가하여 상술한 안정화 효과를 유도하는 안정화제를 의미한다. In this specification, the term “stabilizer” is used to increase the stability of the active ingredient and to prevent the active ingredient from being arbitrarily denatured, oxidized, aggregated, crystallized, or converted into related substances, ultimately resulting in loss or deterioration of pharmacological activity. It refers to any additive added to the formulation, and is not particularly limited as long as it is pharmaceutically acceptable. The term “amino acid stabilizer” refers to a stabilizer that induces the above-described stabilizing effect by adding amino acids to the formulation as a main or auxiliary ingredient.

본 발명의 구체적인 구현예에 따르면, 상기 아미노산은 아르기닌(Arg), 프롤린(Pro) 및 이들의 약제학적으로 허용되는 염으로 구성된 군으로부터 선택되는 하나 이상이다.According to a specific embodiment of the present invention, the amino acid is at least one selected from the group consisting of arginine (Arg), proline (Pro), and pharmaceutically acceptable salts thereof.

본 명세서에서 용어“약제학적으로 허용되는 염”은 약학적으로 허용되는 무기산, 유기산, 또는 염기로부터 유도된 염을 포함한다. 적합한 산의 예로는 염산, 브롬산, 황산, 질산, 과염소산, 푸마르산, 말레산, 인산, 글리콜산, 락트산, 살리실산, 숙신산, 톨루엔-p-설폰산, 타르타르산, 아세트산, 트리플루로초산, 시트르산, 메탄설폰산, 포름산, 벤조산, 말론산, 나프탈렌-2-설폰산, 벤젠설폰산 등을 들 수 있다. 적합한 염기로부터 유도된 염은 나트륨 등의 알칼리 금속, 마그네슘 등의 알칼리 토금속, 및 암모늄 등을 포함할 수 있다.As used herein, the term “pharmaceutically acceptable salt” includes salts derived from pharmaceutically acceptable inorganic acids, organic acids, or bases. Examples of suitable acids include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, perchloric acid, fumaric acid, maleic acid, phosphoric acid, glycolic acid, lactic acid, salicylic acid, succinic acid, toluene-p-sulfonic acid, tartaric acid, acetic acid, trifluoroacetic acid, citric acid, methane. Examples include sulfonic acid, formic acid, benzoic acid, malonic acid, naphthalene-2-sulfonic acid, and benzenesulfonic acid. Salts derived from suitable bases may include alkali metals such as sodium, alkaline earth metals such as magnesium, ammonium, and the like.

본 발명의 구체적인 구현예에 따르면, 상기 조성물은 전체 조성물에 대해 0 내지 1.5 w/v%의 당(sugar) 안정화제를 추가적으로 포함한다.According to a specific embodiment of the present invention, the composition additionally includes 0 to 1.5 w/v% of a sugar stabilizer based on the total composition.

보다 구체적으로는 0.2 - 1.5 w/v%, 보다 더 구체적으로는 0.3 - 1.5 w/v%, 보다 더 구체적으로는 0.5 내지 1.5w/v%, 보다 더 구체적으로는 0.7 내지 1.3 w/v%, 보다 더 구체적으로는 0.9 내지 1.1w/v%, 가장 구체적으로는 약 1w/v%의 당 안정화제를 추가적으로 포함한다.More specifically 0.2 - 1.5 w/v%, even more specifically 0.3 - 1.5 w/v%, even more specifically 0.5 - 1.5 w/v%, even more specifically 0.7 - 1.3 w/v%. , more specifically 0.9 to 1.1 w/v%, and most specifically about 1 w/v% of a sugar stabilizer.

본 발명의 구체적인 구현예에 따르면, 상기 당은 수크로스, 트레할로스 및 이들의 약제학적으로 허용되는 염으로 구성된 군으로부터 선택되는 하나 이상이다.According to a specific embodiment of the present invention, the sugar is one or more selected from the group consisting of sucrose, trehalose, and pharmaceutically acceptable salts thereof.

본 발명의 구체적인 구현예에 따르면, 상기 조성물은 100 mM 내지 400 mM의 무기염을 추가적으로 포함한다.According to a specific embodiment of the present invention, the composition additionally includes 100mM to 400mM of an inorganic salt.

본 명세서에서 용어“무기염”은 수용액 상에서 양이온 및 음이온이 서로 이온 결합을 통해 조합된 염으로서 C-H 결합을 포함하지 않는 무기물 유래의 염을 의미한다. 본 발명에서 사용될 수 있는 무기염은 예를 들어 NaCl, CaCl2, KCl, MgCl2 및 이들의 조합을 포함하나, 이에 제한되는 것은 아니다. 구체적으로는, 본 발명의 무기염은 NaCl 및 CaCl2의 혼합물이다.As used herein, the term “inorganic salt” refers to a salt in which cations and anions are combined through ionic bonds in an aqueous solution and is derived from an inorganic substance and does not contain a CH bond. Inorganic salts that can be used in the present invention include, but are not limited to, for example NaCl, CaCl 2 , KCl, MgCl 2 and combinations thereof. Specifically, the inorganic salt of the present invention is a mixture of NaCl and CaCl 2 .

본 발명의 구체적인 구현예에 따르면, 상기 무기염 중 NaCl은 140 mM 내지 370 mM이 포함될 수 있으며, 보다 구체적으로는 180 내지 340 mM이 포함될 수 있고, 보다 더 구체적으로는 220 내지 310 mM이 포함될 수 있고, 보다 더 구체적으로는 260 내지 300 mM이 포함될 수 있고, 가장 구체적으로는 약 280 mM이 포함될 수 있다. According to a specific embodiment of the present invention, among the inorganic salts, NaCl may be included in an amount of 140 to 370mM, more specifically, 180 to 340mM, and even more specifically, 220 to 310mM. and, more specifically, 260 to 300mM may be included, and most specifically, about 280mM may be included.

본 발명의 구체적인 구현예에 따르면, 상기 무기염 중 CaCl2은 2 mM 내지 6 mM이 포함될 수 있으며, 보다 구체적으로는 3 내지 5 mM이 포함될 수 있고, 가장 구체적으로는 약 4 mM이 포함될 수 있다. According to a specific embodiment of the present invention, among the inorganic salts, CaCl 2 may be included in an amount of 2mM to 6mM, more specifically, 3 to 5mM, and most specifically, about 4mM. .

본 발명의 구체적인 구현예에 따르면, 본 발명의 조성물은 10 mM 내지 30 mM의 히스티딘을 포함하며, 보다 구체적으로는 15 mM 내지 25 mM의 히스티딘을 포함하며, 가장 구체적으로는 약 20 mM의 히스티딘을 포함한다.According to a specific embodiment of the present invention, the composition of the present invention contains 10mM to 30mM histidine, more specifically 15mM to 25mM histidine, and most specifically about 20mM histidine. Includes.

본 발명의 구체적인 구현예에 따르면, 상기 조성물은 전체 조성물에 대해 0.01 내지 0.1 v/v %의 비이온성 계면활성제를 추가적으로 포함한다.According to a specific embodiment of the present invention, the composition additionally includes 0.01 to 0.1 v/v % of a nonionic surfactant based on the total composition.

본 발명의 명세서에서 사용되는 용어“계면활성제”는 소수성 물질의 수용해도를 증가시키거나 상이한 소수성을 갖는 복수의 물질의 혼화성을 증가시키기 위해 사용되는 가용성 화합물을 의미한다. 용어“비이온성 계면활성제”는 전체 분자 내에 이온화되는 작용기 또는 원자단이 포함되지 않아 수용액 상태에서도 해리되지 않은 채 용해되는 계면활성제를 의미한다.The term “surfactant” used in the specification of the present invention refers to a soluble compound used to increase the water solubility of a hydrophobic substance or to increase the miscibility of a plurality of substances having different hydrophobicities. The term “nonionic surfactant” refers to a surfactant that does not contain ionized functional groups or atomic groups in the entire molecule and thus dissolves without dissociation even in aqueous solution.

본 발명의 구체적인 구현예에 따르면 본 발명에서 사용될 수 있는 비이온성 계면활성제는 폴리소르베이트 80, 폴리소르베이트 60 및 폴리소르베이트 40으로 구성된 군으로부터 선택되는 하나 이상이며, 보다 구체적으로는 폴리소르베이트 80이다.According to a specific embodiment of the present invention, the nonionic surfactant that can be used in the present invention is at least one selected from the group consisting of polysorbate 80, polysorbate 60, and polysorbate 40, and more specifically, polysorbate It's 80.

본 발명의 구체적인 구현예에 따르면, 본 발명의 조성물은 0.03 내지 0.08 v/v %의 비이온성 계면활성제를 가장 구체적으로는 약 0.05 v/v %의 비이온성 계면활성제를 포함한다.According to a specific embodiment of the invention, the composition of the invention comprises 0.03 to 0.08 v/v % of a nonionic surfactant, most specifically about 0.05 v/v % of a nonionic surfactant.

본 발명의 구체적인 구현예에 따르면, 상기 ADAMTS13 단백질의 변이체는 서열목록 제1서열의 85, 93, 126, 135, 278, 282, 308, 314, 317, 334, 364, 376, 413, 427, 452, 465, 567, 578, 585, 589, 607, 608, 609, 612, 618, 624, 630, 635, 643, 650, 651, 654, 655, 656, 658, 664 및 672번째 잔기로 구성된 군으로부터 선택되는 하나 이상의 아미노산 잔기의 치환을 포함한다.According to a specific embodiment of the present invention, the variant of the ADAMTS13 protein is 85, 93, 126, 135, 278, 282, 308, 314, 317, 334, 364, 376, 413, 427, 452 of the first sequence of the sequence listing. , 465, 567, 578, 585, 589, 607, 608, 609, 612, 618, 624, 630, 635, 643, 650, 651, 654, 655, 656, 658, 664 and 672 from the group consisting of residues and substitution of one or more amino acid residues of choice.

본 발명에 따르면, 서열목록 제1서열은 1427개 아미노산으로 구성된 ADAMTS13 단백질의 아미노산 서열이다. 이에, 본 발명의 ADAMTS13 변이 단백질 또는 이의 기능적 일부 절편은 전장(1427a.a) ADAMTS13 단백질 또는 75-685번 영역을 포함하는 이의 일부 절편 내에 상기 나열된 변이가 도입된 ADAMTS13 변이체일 수 있다. 75-685번 영역을 포함하는 일부 절편은 예를 들어 1-685 (685 a.a) 또는 75-685 (611 a.a)일 수 있다. According to the present invention, the first sequence in the sequence list is the amino acid sequence of the ADAMTS13 protein consisting of 1427 amino acids. Accordingly, the ADAMTS13 mutant protein of the present invention or a functional partial fragment thereof may be an ADAMTS13 variant in which the mutations listed above are introduced into the full-length (1427a.a) ADAMTS13 protein or a partial fragment thereof including the region 75-685. Some fragments containing region 75-685 may be, for example, 1-685 (685 a.a) or 75-685 (611 a.a).

본 발명의 ADAMTS13 단백질 및 이의 기능적 일부 절편이 필수적으로 포함하는 아미노산 서열인 서열목록 제1서열은 상기 서열과 실질적인 동일성(substantial identity)을 나타내는 아미노산 서열도 포함한다. 실질적인 동일성이란, 상기 아미노산 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석할 시, 최소 70%의 상동성, 구체적으로는 최소 80%의 상동성, 보다 구체적으로는 최소 90%의 상동성, 가장 구체적으로는 최소 95%의 상동성을 나타내는 아미노산 서열을 의미한다.The first sequence of the sequence listing, which is the amino acid sequence essentially included in the ADAMTS13 protein and some functional fragments thereof of the present invention, also includes an amino acid sequence showing substantial identity with the above sequence. Substantial identity means that the amino acid sequence and any other sequence are aligned to correspond as much as possible, and when the aligned sequence is analyzed using an algorithm commonly used in the art, homology is at least 70%, specifically, It refers to an amino acid sequence that exhibits at least 80% homology, more specifically at least 90% homology, and most specifically at least 95% homology.

본 발명자들은 ADAMTS13의 자가항체가 인식하는 핵심 영역을 동정하고, 이들 영역 내 일부 아미노산에 치환을 가할 경우 자가항체와의 결합이 차단되고 vWF 분해 활성 및 혈전 억제 활성이 유지됨으로써, 혈전성 혈소판 감소성 자반증(TTP)을 비롯하여 과도한 혈전 형성을 원인으로 하는 다양한 질환에 대해 효율적인 치료 조성물로 사용될 수 있음을 발견하였다. The present inventors identified the core regions recognized by autoantibodies of ADAMTS13, and when substitutions were made to some amino acids in these regions, binding to autoantibodies was blocked and vWF decomposition activity and thrombosis inhibitory activity were maintained, thereby preventing thrombotic thrombocytopenia. It was discovered that it can be used as an effective treatment composition for various diseases caused by excessive blood clot formation, including purpura (TTP).

본 명세서에서 용어“자가 항체(autoantibody)”는 항원의 에피토프에 결합하는 하나 이상의 가변 도메인을 포함하여 해당 항원을 특이적으로 인식하는 면역글로불린 단백질의 하나로써, 개체 자신의 면역 시스템에 의해 생성되어 개체 자신의 단백질을 인식하고 표적화하는 항체를 의미한다. 자가항체의 존재는 해당 자가항체에 의해 특이적으로 인식되는 단백질의 고유 기능 또는 생물학적 활성의 저하 또는 상실을 야기하므로, 다양한 질환의 원인이 된다.As used herein, the term “autoantibody” refers to an immunoglobulin protein that includes one or more variable domains that bind to an epitope of an antigen and specifically recognizes the corresponding antigen. It is produced by the individual's own immune system and is transmitted to the individual. It refers to an antibody that recognizes and targets its own protein. The presence of autoantibodies causes a decrease or loss of the intrinsic function or biological activity of the protein specifically recognized by the autoantibody, thereby causing various diseases.

본 발명의 구체적인 구현예에 따르면, 상기 ADAMTS13 단백질의 변이체는 하기의 위치에서의 하나 이상의 아미노산 잔기의 치환을 포함하는 각 변이 단백질들로 구성된 군으로부터 선택된다: According to a specific embodiment of the present invention, the variant of the ADAMTS13 protein is selected from the group consisting of mutant proteins each containing a substitution of one or more amino acid residues at the following positions:

- 85 및 317번째 잔기; 612번째 잔기; 282, 465 및 672번째 잔기 중 둘 이상; 635번째 잔기; 452 및 612번째 잔기; 278, 334 및 427번째 잔기 중 둘 이상; 618번째 잔기; 135번째 잔기; 126, 567 및 651번째 잔기 중 둘 이상; 413번째 잔기; 334번째 잔기; 314번째 잔기; 93, 364 및 376번째 잔기 중 둘 이상; 308번째 잔기; 656번째 잔기; 607번째 잔기; 612 및 624번째 잔기; 589번째 잔기; 650 및 656번째 잔기; 643번째 잔기; 585 및 658번째 잔기; 630, 654 및 664번째 잔기 중 둘 이상; 589, 608, 609, 624 및 655번째 잔기 중 넷 이상; 578번째 잔기; 585번째 잔기; 314 및 635번째 잔기; 및 314 및 612번째 잔기.- Residues 85 and 317; Residue 612; two or more of residues 282, 465, and 672; residue 635; residues 452 and 612; two or more of residues 278, 334, and 427; Residue 618; residue 135; two or more of residues 126, 567, and 651; residue 413; Residue 334; residue 314; two or more of residues 93, 364, and 376; Residue 308; Residue 656; Residue 607; Residues 612 and 624; residue 589; Residues 650 and 656; Residue 643; Residues 585 and 658; Two or more of residues 630, 654, and 664; Four or more of residues 589, 608, 609, 624, and 655; Residue 578; residue 585; Residues 314 and 635; and residues 314 and 612.

보다 구체적으로는, 상기 아미노산 잔기의 치환은 85번째 잔기의 Phe로의 치환, 93번째 잔기의 Val으로의 치환, 126번째 잔기의 Met으로의 치환, 135번째 잔기의 Ile으로의 치환, 278번째 잔기의 Ile으로의 치환, 282번째 잔기의 Ala으로의 치환, 308번째 잔기의 Lys으로의 치환, 314번째 잔기의 Thr으로의 치환, 317번째 잔기의 His으로의 치환, 334번째 잔기의 Thr 또는 Val으로의 치환, 364번째 잔기의 Arg으로의 치환, 376번째 잔기의 Asp으로의 치환, 413번째 잔기의 Asp으로의 치환, 427번째 잔기의 Asn으로의 치환, 452번째 잔기의 Ile으로의 치환, 465번째 잔기의 Asp으로의 치환, 567번째 잔기의 Ser으로의 치환, 578번째 잔기의 Leu으로의 치환, 585번째 잔기의 Asn 또는 Met으로의 치환, 589번째 잔기의 Gln으로의 치환, 607번째 잔기의 Arg으로의 치환, 608번째 잔기의 Met으로의 치환, 609번째 잔기의 Leu으로의 치환, 612번째 잔기의 Phe 또는 Tyr으로의 치환, 618번째 잔기의 Ser으로의 치환, 624번째 잔기의 Asp 또는 Cys으로의 치환, 630번째 잔기의 Leu으로의 치환, 635번째 잔기의 Val으로의 치환, 643번째 잔기의 Phe으로의 치환, 650번째 잔기의 His으로의 치환, 651번째 잔기의 Asp으로의 치환, 654번째 잔기의 Gly으로의 치환, 655번째 잔기의 Val으로의 치환, 656번째 잔기의 Arg 또는 His으로의 치환, 658번째 잔기의 His으로의 치환, 664번째 잔기의 Asn으로의 치환 및 672번째 잔기의 Val으로의 치환으로 구성된 군으로부터 선택되는 하나 이상이다.More specifically, the substitution of the amino acid residues includes substitution of the 85th residue with Phe, substitution of the 93rd residue with Val, substitution of the 126th residue with Met, substitution of the 135th residue with Ile, and substitution of the 278th residue with Substitution with Ile, substitution of residue 282 with Ala, substitution of residue 308 with Lys, substitution of residue 314 with Thr, substitution of residue 317 with His, substitution of residue 334 with Thr or Val. Substitution, substitution of residue 364 with Arg, substitution of residue 376 with Asp, substitution of residue 413 with Asp, substitution of residue 427 with Asn, substitution of residue 452 with Ile, substitution of residue 465 substitution of Asp, substitution of residue 567 with Ser, substitution of residue 578 with Leu, substitution of residue 585 with Asn or Met, substitution of residue 589 with Gln, substitution of residue 607 with Arg. Substitution of, substitution of residue 608 with Met, substitution of residue 609 with Leu, substitution of residue 612 with Phe or Tyr, substitution of residue 618 with Ser, substitution of residue 624 with Asp or Cys. Substitutions, substitution of residue 630 with Leu, substitution of residue 635 with Val, substitution of residue 643 with Phe, substitution of residue 650 with His, substitution of residue 651 with Asp, substitution of residue 654 substitution of Gly, substitution of residue 655 with Val, substitution of residue 656 with Arg or His, substitution of residue 658 with His, substitution of residue 664 with Asn and substitution of residue 672 with Val. It is one or more selected from the group consisting of the substitution of.

본 발명의 구체적인 구현예에 따르면, 전술한 본 발명의 ADAMTS13 단백질, 이의 변이체 및 이의 기능적 일부 절편으로 구성된 군으로부터 선택되는 혈장 단백질은 IgG4 면역글로불린의 Fc 영역이 접합된다. According to a specific embodiment of the present invention, the Fc region of IgG4 immunoglobulin is conjugated to the plasma protein selected from the group consisting of the above-described ADAMTS13 protein of the present invention, its variant, and some functional fragments thereof.

본 발명자들은 본 발명에서 발굴된 ADAMTS13 변이 단백질에 IgG4 면역글로불린 유래의 Fc 영역을 접합시킬 경우, 고유의 vWF 절단 활성 및 중화항체 회피 활성을 그대로 유지하면서도 생체 내 안정성이 크게 증가하며, 특히 ADAMTS13의 C-말단 일부가 제거된 개방형(open form) 절편들에서 나타나는 구조적 불안정성이 현저히 개선됨을 발견하였다. The present inventors found that when an Fc region derived from IgG4 immunoglobulin is conjugated to the ADAMTS13 mutant protein discovered in the present invention, in vivo stability is greatly increased while maintaining the inherent vWF cleavage activity and neutralizing antibody evasion activity, and in particular, the C of ADAMTS13 - It was found that the structural instability that appears in open form fragments with some of the ends removed was significantly improved.

본 발명의 구체적인 구현예에 따르면, 상기 Fc 영역은 서열목록 제2서열의 22, 24 및 26번째 잔기로 구성된 군으로부터 선택되는 하나 이상의 아미노산 잔기의 치환을 포함한다. 보다 구체적으로는, 상기 22번째 잔기는 Tyr, 24번째 잔기는 Thr, 26번째 잔기는 Glu으로 각각 치환된다.According to a specific embodiment of the present invention, the Fc region includes the substitution of one or more amino acid residues selected from the group consisting of residues 22, 24, and 26 of the second sequence of the sequence listing. More specifically, the 22nd residue is substituted with Tyr, the 24th residue with Thr, and the 26th residue with Glu.

본 발명에 따르면, 서열목록 제2서열은 IgG4 면역글로불린 유래의 Fc 영역(217a.a)이다. 본 발명자들은 전술한 ADAMTS13 변이 단백질 또는 이의 기능적 일부 절편에 22, 24 및 26번째 잔기가 각각 Tyr, Thr 및 Glu으로 치환된 IgG4 면역글로불린 유래의 Fc 영역[IgG4 (YTE)]을 융합시킬 경우 혈중 반감기가 극대화되어 투여 후 생리 활성이 장기간 지속될 수 있음을 발견하였다.According to the present invention, the second sequence in the sequence list is the Fc region (217a.a) derived from IgG4 immunoglobulin. The present inventors found that when fusing the above-described ADAMTS13 mutant protein or a functional fragment thereof with an Fc region derived from an IgG4 immunoglobulin [IgG4 (YTE)] in which residues 22, 24, and 26 are substituted with Tyr, Thr, and Glu, respectively, the blood half-life It was found that the physiological activity could be maintained for a long period of time after administration.

본 발명의 구체적인 구현예에 따르면, 본 발명의 전술한 융합단백질은 상기 혈장 단백질과 상기 IgG4 면역글로불린의 Fc 영역 사이에 IgG1 면역글로불린의 힌지(hinge) 영역을 추가적으로 포함한다.According to a specific embodiment of the present invention, the above-described fusion protein of the present invention additionally includes a hinge region of IgG1 immunoglobulin between the plasma protein and the Fc region of the IgG4 immunoglobulin.

본 발명에 따르면, IgG1 면역글로불린 유래의 힌지(hinge) 영역은 서열목록 제3서열(15a.a)로 표시될 수 있다. According to the present invention, the hinge region derived from IgG1 immunoglobulin may be represented by sequence number 3 (15a.a) in the sequence listing.

본 발명의 또 다른 양태에 따르면, 본 발명은 전술한 본 발명의 약제학적 제형 조성물을 유효성분으로 포함하는 혈전성 질환의 예방 또는 치료용 조성물을 제공한다. According to another aspect of the present invention, the present invention provides a composition for preventing or treating thrombotic diseases comprising the above-described pharmaceutical formulation composition of the present invention as an active ingredient.

본 발명의 또 다른 양태에 따르면, 본 발명은 전술한 본 발명의 약제학적 제형 조성물을 대상체에 투여하는 단계를 포함하는 혈전성 질환의 예방 또는 치료 방법을 제공한다. According to another aspect of the present invention, the present invention provides a method for preventing or treating thrombotic disease comprising administering the above-described pharmaceutical formulation composition of the present invention to a subject.

본 발명의 또 다른 양태에 따르면, 본 발명은 전술한 본 발명의 약제학적 제형 조성물의 혈전성 질환의 예방 또는 치료에 사용하기 위한 용도를 제공한다. According to another aspect of the present invention, the present invention provides the use of the above-described pharmaceutical formulation composition of the present invention for preventing or treating thrombotic diseases.

본 명세서에서 용어“혈전성 질환”은 혈관의 미세순환계에 혈소판이 응집되면서 생성된 혈전으로 인해 혈류가 감소 또는 차단되고, 이로 인해 신장, 심장, 뇌 등의 각 기관에 허혈성 손상이 유발되는 전신 질환을 의미한다.As used herein, the term “thrombotic disease” refers to a systemic disease in which blood flow is reduced or blocked due to blood clots formed when platelets agglomerate in the microcirculatory system of blood vessels, resulting in ischemic damage to each organ such as the kidneys, heart, and brain. means.

ADAMTS13 효소가 중화항체에 의해 활성이 억제되어 폰빌레란트인자(vWF)를 제대로 분해하지 못할 경우, 과도한 혈소판 응집 및 혈전 과생성이 발생한다. 따라서, 중화항체를 높은 효율로 회피하면서도 vWF 분해 활성이 유지 또는 개선된 본 발명의 ADAMTS13 변이 단백질은 다양한 혈전성 질환에 대한 효율적인 예방 또는 치료 조성물로 이용될 수 있다.When the ADAMTS13 enzyme is inhibited by neutralizing antibodies and cannot properly decompose von Willerant factor (vWF), excessive platelet aggregation and thrombus formation occur. Therefore, the ADAMTS13 mutant protein of the present invention, which evades neutralizing antibodies with high efficiency and maintains or improves vWF decomposition activity, can be used as an efficient prevention or treatment composition for various thrombotic diseases.

본 명세서에서 용어“예방”은 질환 또는 질병을 보유하고 있다고 진단된 적은 없으나, 이러한 질환 또는 질병에 걸릴 가능성이 있는 대상체에서 질환 또는 질병의 발생을 억제하는 것을 의미한다. As used herein, the term “prevention” refers to suppressing the occurrence of a disease or disease in a subject who has not been diagnosed as having the disease or disease but is likely to develop the disease or disease.

본 명세서에서 용어“치료”는 (a) 질환, 질병 또는 증상의 발전의 억제; (b) 질환, 질병 또는 증상의 경감; 또는 (c) 질환, 질병 또는 증상을 제거하는 것을 의미한다. 본 발명의 조성물을 대상체에 투여하면 중화항체의 존재 여부와 무관하게 vWF를 특이적으로 인식 및 분해하여 과도한 혈전의 생성을 차단함으로써 혈전성 질환의 진행을 억제하거나, 이를 제거하거나 또는 경감시키는 역할을 한다. 따라서, 본 발명의 조성물은 그 자체로 이들 질환 치료의 조성물이 될 수도 있고, 혹은 다른 약리성분과 함께 투여되어 상기 질환에 대한 치료 보조제로 적용될 수도 있다. 이에, 본 명세서에서 용어“치료”또는“치료제”는“치료 보조”또는“치료 보조제”의 의미를 포함한다. As used herein, the term “treatment” refers to (a) inhibiting the development of a disease, condition or symptom; (b) alleviation of a disease, condition or symptom; or (c) means eliminating a disease, condition or symptom. When the composition of the present invention is administered to a subject, it specifically recognizes and decomposes VWF, regardless of the presence of neutralizing antibodies, and blocks the formation of excessive blood clots, thereby suppressing the progression of thrombotic disease, eliminating or alleviating it. do. Accordingly, the composition of the present invention may itself be a composition for treating these diseases, or may be administered together with other pharmacological ingredients and applied as a treatment adjuvant for these diseases. Accordingly, in this specification, the term “treatment” or “therapeutic agent” includes the meaning of “therapeutic aid” or “therapeutic aid.”

본 명세서에서 용어“투여”또는“투여하다”는 본 발명의 조성물의 치료적 유효량을 대상체에 직접적으로 투여함으로써 대상체의 체내에서 동일한 양이 형성되도록 하는 것을 말한다.As used herein, the term “administration” or “administer” refers to directly administering a therapeutically effective amount of the composition of the present invention to a subject so that the same amount is formed in the subject's body.

본 발명에서 용어“치료적 유효량”은 본 발명의 약제학적 조성물을 투여하고자 하는 개체에게 조성물 내의 약리성분이 치료적 또는 예방적 효과를 제공하기에 충분한 정도로 함유된 조성물의 함량을 의미하며, 이에“예방적 유효량”을 포함하는 의미이다. In the present invention, the term “therapeutically effective amount” refers to the content of the composition in which the pharmacological ingredients in the composition are contained in a sufficient amount to provide a therapeutic or preventive effect to the individual to whom the pharmaceutical composition of the present invention is to be administered. It is meant to include a “prophylactic effective amount.”

본 명세서에서 용어“대상체”는 제한없이 인간, 마우스, 래트, 기니아 피그, 개, 고양이, 말, 소, 돼지, 원숭이, 침팬지, 비비 또는 붉은털 원숭이를 포함한다. 구체적으로는, 본 발명의 대상체는 인간이다. As used herein, the term “subject” includes, without limitation, humans, mice, rats, guinea pigs, dogs, cats, horses, cows, pigs, monkeys, chimpanzees, baboons, or rhesus monkeys. Specifically, the subject of the present invention is a human.

본 발명의 구체적인 구현예에 따르면, 상기 혈전성 질환은 혈전성 미세 혈관병증(thrombotic microangiopathy, TMA)이다. 보다 구체적으로는, 상기 혈전성 미세 혈관병증은 혈전성 혈소판 감소성 자반증(thrombocytopenic purpura, TTP), 용혈성 요독성 증후군(Hemolytic uremic syndrome, HUS), HELLP(Hemolysis, Elevated Liver enzymes, Low Platelet count), 자간전증(Preeclampsia) 및 겸상적혈구질환(sickle cell disease)으로 구성된 군으로부터 선택되며, 보다 더 구체적으로는 혈전성 혈소판 감소성 자반증 또는 겸상적혈구질환이며, 가장 구체적으로는 혈전성 혈소판 감소성 자반증이다.According to a specific embodiment of the present invention, the thrombotic disease is thrombotic microangiopathy (TMA). More specifically, the thrombotic microangiopathy includes thrombocytopenic purpura (TTP), hemolytic uremic syndrome (HUS), HELLP (Hemolysis, Elevated Liver enzymes, Low Platelet count), It is selected from the group consisting of preeclampsia and sickle cell disease, more specifically thrombotic thrombocytopenic purpura or sickle cell disease, and most specifically thrombotic thrombocytopenic purpura.

본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:

(a) 본 발명은 혈장 단백질, 구체적으로는 ADAMTS-13 단백질에 대한 약제학적 제형 조성물 및 이를 포함하는 혈전성 질환의 예방 또는 치료용 조성물을 제공한다.(a) The present invention provides a pharmaceutical formulation composition for plasma proteins, specifically ADAMTS-13 protein, and a composition for preventing or treating thrombotic diseases containing the same.

(b) 본 발명의 조성물은 ADAMTS-13의 주요 도메인에 높은 결합력을 가지는 것으로 알려진 대표적 자가항체를 효율적으로 회피할 뿐 아니라 효율적인 제형 성분의 조합으로 인해 콜로이드 안정성, 냉장 안정성, 순도 및 응집 차단율을 장기간 동안 높은 수준으로 유지할 수 있다. (b) The composition of the present invention not only efficiently avoids representative autoantibodies known to have high binding affinity to the main domain of ADAMTS-13, but also maintains colloidal stability, refrigeration stability, purity, and aggregation blocking rate for a long period of time due to the combination of efficient formulation components. It can be maintained at a high level for a long time.

(c) 본 발명의 조성물은 또한 상용화된 효소대체치료제 대비 현저히 낮은 치료학적 유효량(therapeutically effective amount)을 가져 장기 투여에 적합한 안전성과 환자 순응도를 가지는 효율적인 치료제로 이용될 수 있다. (c) The composition of the present invention also has a significantly lower therapeutically effective amount compared to commercially available enzyme replacement treatments, so it can be used as an efficient treatment with safety and patient compliance suitable for long-term administration.

도 1은 5가지 아미노산 안정화제의 첨가에 따른 제형의 콜로이드 안정성을 평가하기 위해 B22 값을 측정한 결과를 나타내는 그림이다.
도 2는 7가지 안정화제(아미노산 6종 및 수크로스)를 첨가 후 상온에서의 단량체 회복 정도를 평가하기 위해 크기배제 액체 크로마토그래피(SE-HPLC)를 수행한 결과를 보여주는 그림이다.
도 3은 20 mM의 아르기닌 첨가에 따른 대조군 대비 냉장 안정성을 SE-HPLC로 평가한 결과를 나타내는 그림이다.
도 4는 약리 성분인 단백질(ADAMTS-13)의 농도 및 아르기닌 농도에 따른 순도 및 안정성을 SE-HPLC로 평가한 결과를 나타낸 그림이다.
도 5는 NaCl 농도 변화에 따른 케익 성상(도 5a) 및 SE-HPLC를 통해 평가한 순도 차이(도 5b)를 각각 보여주는 그림이다.
도 6은 20 mM의 아르기닌이 존재하는 경우 액상 제형에서 NaCl 농도에 따른SE-HPLC 결과를 나타내는 그림이다.
도 7은 120 mM의 NaCl 존재 하에서 수크로스의 농도 및 트레할로스의 첨가 여부에 따른 케익 성상(도 7a)과 SE-HPLC 결과(도 7b)를 각각 보여주는 그림이다.
도 8은 수크로스와 증량제(bulking agents)인 만니톨 또는 글리신의 배합비에 따른 케익 성상(도 8a) 및 SE-HPLC 결과(도 8b)를 각각 보여주는 그림이다.
도 9는 120 mM의 NaCl 존재 하에 글리신 농도에 따른 케익 성상을 비교한 그림이다.
도 10은 120 mM의 NaCl 존재 하에 아르기닌 농도에 따른 케익 성상을 비교한 그림이다.
도 11은 아르기닌이 첨가되지 않은 경우 NaCl 대 수크로스 배합비에 따른 케익 성상(도 11a) 및 SE-HPLC 결과(도 11b)를 각각 보여주는 그림이다.
도 12는 120mM의 아르기닌 존재 하에 NaCl 대 수크로스 배합비에 따른 케익 성상(도 12a) 및 SE-HPLC 결과(도 12b)를 각각 보여주는 그림이다.
도 13은 NaCl 대 수크로스 배합비에 따른 40℃ 1개월차의 순도 변화를 측정한 결과를 나타낸다.
도 14는 폴리소르베이트 80 농도에 따른 교반-유도 응집의 방지효과를 성상 관찰(도 14a), 탁도(Turbidity) 측정(도 14b) 및 SE-HPLC(도 14c)를 통해 각각 보여주는 그림이다.
도 15는 폴리소르베이트 80 농도에 따른 액상 안정성을 SE-HPLC로 평가한 결과이다.
도 16은 폴리소르베이트 80 농도에 따른 동결건조 후의 제형 품질을 SE-HPLC(도 16a) 및 고차 응집체(Higher-order aggregates) 생성 여부(도 16b)를 통해 평가한 결과이다.
도 17은 pH에 따른 열 풀림(thermal unfolding, Tm) 측정 결과(도 17a) 및 열 응집(thermal aggregation, Tagg) 평가 결과(도 17b)를 각각 보여주는 그림이다.
도 18은 CaCl2 농도에 따른 동결 건조 케익 성상(도 18a) 및 SE-HPLC 분석 결과(도 18b)를 각각 보여주는 그림이다.
도 19는 NaCl 및 수크로스 농도에 따른 성상 평가 결과를 도식화한 그림(도 19a) 및 각 농도별 케익 성상(도 19b)를 각각 보여주는 그림이다.
도 20은 NaCl 및 수크로스 농도에 따른 케익 성상을 보여주는 그림이다.
도 21은 아르기닌 농도에 따른 콜로이드 안정성 평가 결과를 보여주는 그래프이다.
도 22는 아르기닌 농도에 따른 케익 성상(도 22a) 및 순도(도 22b)를 각각 보여주는 그림이다.
도 23은 본 발명에서 최종적으로 선정된 액상 제형 조성물의 물성을 보여주는 그림으로, 시간의 경과에 따른 순도 변화(도 23a), 역가 변화(도 23b), 단백질 농도 변화(도 23c) 및 탁도 변화(도 23d)를 각각 나타낸다.
도 24는 NaCl 및 수크로스 농도에 따른 장기 보관 안정성을 보여주는 그림으로, 보관 개시 시점과 6개월 경과 후의 순도(도 24a) 및 역가(도 24b) 변화를 각각 보여준다.
도 25는 중화항체와 결합하는 ADAMTS13의 각 도메인의 결합부위를 확인한 결과를 보여주는 그림이다. 도 25a는 ADAMTS13의 발현율 혹은 중화 항체의 결합 부위 확인을 위해 제작한, 다양한 도메인이 조합된 6종의 ADAMTS13 절편(혹은 야생형 전장 ADAMTS13)의 모식도를 나타낸다. 도 25b는 각 ADAMTS13 도메인에서 발현하는 단백질을 이용하여 단백질 A-세파로스와 각 중화항체를 섞어 면역침강한 뒤 항-V5 항체로 웨스턴 블롯팅을 수행한 결과를 보여준다. Input은 도메인별 단백질의 발현 정도를 보여준다. 도 25c는 ADAMTS13 중화항체 결합 부위의 모식도로 Ab 4-16 항체는 S 도메인, Ab 67 항체는 D 도메인, Ab 66 항체는 T2-T8 도메인에 각각 특이적으로 결합함을 도식화한 그림이다.
도 26은 항-ADAMTS13 항체를 회피하거나 야생형 ADAMTS13보다 우수한 활성을 가지는 변이체의 선별 결과를 보여주는 그림이다. 야생형 클론과 ADAMTS13 변이체에서 Ab 4-16 항체(도 26a) 혹은 Ab 67 항체(도 26b)에 대한 회피율과 ADAMTS13 활성을 측정하였다. 상대활성은 야생형 클론 및 변이체의 비역가를 확인하여 다음수식에 대입함으로써 산출하였다: 상대활성 (%) = 변이체 비역가 / 야생형 ADAMTS13 비역가 X 100
도 27a-27b는 12종의 전장 ADAMTS13 변이체의 단일 중화항체 회피율을 확인한 결과이다. 12종의 전장 ADAMTS13 변이체에서 중화항체 7종(Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab67)에 대한 항체 회피율을 측정하였다. 중화항체 회피율은 WT ADAMTS13 수치와 비교하여 상대적 결합 수준을 확인한 후, 이를 이용하여 상대 회피율을 다음 수식에 대입하여 산출하였다: 회피율(%) = (1- 변이체 결합능/WT ADAMTS13 결합능) x 100
도 28a-28b는 Fc 부착 MDTCS 절편 변이체를 발현하는 배양액 조건에서의 단일 중화항체 회피력을 확인한 결과이다. 선정된 12종 변이체를 MDTCS 절편화하여 Fc를 부착한 변이체와 선별된 변이 아미노산 잔기를 조합하여 2개의 아미노산 변이를 갖는 DM1, DM2 변이 2종을 포함한 총 14종의 변이체가 발현된 배양액을 이용하여 단일 중화항체 8종(Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab67)의 중화항체 회피율과 ADAMTS13 상대 활성을 측정하였다. 회피율(%)=(1- 변이체 결합능/결합능) x 100; 상대활성(%)=변이체 비역가/WT ADAMTS13 비역가 x 100
도 29는 Fc 부착 MDTCS 절편 변이체를 발현하는 배양액 조건에서의 혼합 중화항체 회피력을 확인한 결과이다. 대조군인 MDTCS-Fc와 12종의 후보 변이체를 발현하는 배양액 4nM에 동일 비율로 혼합된 9종의 중화항체(Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab66, Ab67)를 혼합하여 반응시킨 후, 각 후보 변이체의 잔존 활성을 다음 수식에 대입하여 산출하였다: 잔존활성(%) = A ÷ B x 100 (A: 혼합 중화항체 조건에서의 활성, B: 중화항체 처리하지 않은 조건에서의 활성)
도 30은 Fc 부착 MDTCS 절편 변이체 배양액과 정제액 조건에서의 단일 중화항체 회피력을 확인한 결과이다. 12종의 변이체(1C03, 2B01, 2B02, 3B05, 4E11, 4H07, 5G08, 7A02, 8D01, 8D05, DM1, DM2)가 발현된 배양액 혹은 Phytip system으로 정제한 정제액을 이용하여 단일 중화항체 8종(Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab67)에 대한 중화항체 회피율과 상대 활성을 측정하였다(도 30a 및 30b). 해당 정제액의 농도는 Fc ELISA를 통해 확인하였다. 회피율(%)=(1- 변이체 결합능/MDTCS-Fc 결합능) x 100, 상대활성 (%) = 변이체 비역가/ MDTCS-Fc 비역가 x 100. 파란색 바(bar)는 정제된 변이 단백질을, 회색 바는 발현된 변이 단백질의 중앙값을 각각 나타낸다.
도 31은 Fc 부착 MDTCS 절편 변이체의 배양액과 정제액 조건에서의 혼합 중화항체 회피력을 확인한 결과이다. 대조군인 MDTCS-Fc와 12종의 후보 변이체를 발현하는 배양액 혹은 정제액 4 nM에 동일 비율로 혼합된 8종의 중화항체(Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab67)를 혼합하여 반응 시킨 후, 각 후보 변이체의 잔존활성을 측정하였다. 잔존 활성은 아래 수식에 대입하여 산출하였다. 잔존활성 (%) = A ÷ B x 100 (A: 혼합 중화항체 조건에서의 활성, B: 중화항체 처리하지 않은 조건에서의 활성)
도 32는 Fc 부착 MDTCS 절편 변이체의 약동학 결과를 보여주는 그래프이다. MDTCS 혹은 Fc(IgG1-YTE)가 부착 되어있는 MDTCS 및 4개 최종 후보 변이체(1C03, 5C09, 7A02, DM2) 절편 단백질을 마우스에 꼬리 정맥에 투여한 후 시간 별로 혈장을 확보하였다. 각 물질의 비역가를 기준으로 160 IU/kg가 되도록 투여하였고 활성 어세이를 통해 각 시간별로 확보한 혈장 내 잔존 물질의 활성을 측정하였다.
도 33은 IgG1-YTE 부착 MDTCS 절편 변이체를 발현하는 배양액 조건에서의 단일 중화항체에 대한 회피력을 확인한 결과이다. 선정된 5종 변이체를 MDTCS 절편화하여 IgG1-YTE를 부착한 변이체가 발현된 배양액을 이용하여 단일 중화항체 8종 (Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab67)의 중화항체 회피율과 상대 활성을 측정하였다(도 33a 및 33b). 회피율(%)=(1-변이체 결합능/MDTCS- IgG1-YTE 결합능) x 100, 상대활성(%)=변이체 비역가/MDTCS-IgG1-YTE 비역가 x 100.
도 34는 IgG1-YTE 부착 MDTCS 절편 변이체를 발현하는 배양액 조건에서의 혼합 중화항체에 대한 회피력을 확인한 결과이다. 대조군인 MDTCS-IgG1-YTE와 5종의 후보 변이체를 발현하는 배양액 4nM에 동일 비율로 혼합된 9종의 중화항체 (Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab66, Ab67)를 혼합하여 반응 시킨 후, 각 후보 변이체의 잔존활성을 다음 수식으로 산출하였다: 잔존활성(%)= A ÷ B x 100 (A: 혼합 중화항체 조건에서의 활성, B: 중화항체 처리하지 않은 조건에서의 활성).
도 35는 IgG1-YTE 부착 MDTCS 절편 변이체의 정제액 조건에서의 혼합 중화항체에 대한 회피력을 확인한 결과를 나타낸다. 대조군인 MDTCS-IgG1-YTE와 5종의 후보 변이체를 정제액 4nM에 동일 비율로 혼합된 9종의 중화항체 (Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab66, Ab67)를 혼합하여 반응 시킨 후, 각 후보 변이체의 잔존활성을 다음 수식으로 산출하였다: 잔존활성(%) = A ÷ B x 100 (A: 혼합 중화항체 조건에서의 활성, B: 중화항체 처리하지 않은 조건에서의 활성).
도 36은 aTTP-mimic 마우스 모델을 이용한 중화항체 회피율 시험절차에 대한 모식도(도 36a) 및 변이체 후보물질들의 용량 별 ADAMTS13 잔존 활성(도 36b)을 각각 보여주는 그림이다.
도 37은 aTTP-mimic 마우스 모델을 이용하여 가장 우수한 중화항체 회피율을 보인 DM2-IgG1-YTE의 농도별 ADAMTS13 잔존활성 유지력과 임상학적 증상의 시험절차에 대한 모식도(도 37a), 혈소판(PLT)과 LDH 수치의 개선 및 ADAMTS13 활성(도 37b) 및 임상 증상 관찰 결과(도 37c)를 각각 보여주는 그림이다.
도 38은 cTTP 마우스 모델에 DM2-IgG1-YTE를 투여하여 혈액학적 그리고 임상학적 증상의 개선 여부와 인간 ADAMTS13 활성 회복 정도의 시험절차에 대한 모식도(도 38a) 및 혈소판과 LDH 수치의 개선 및 ADAMTS13 활성 회복을 관찰한 결과(도 38b)를 각각 보여주는 그림이다.
도 39는 GC1126A 투여에 따른 치료 효과 및 유지 정도를 측정하기 위한 시험 과정의 모식도(도 39a) 및 이로부터 측정된 PLT(도 39b)와 LDH(도 39c) 값을 각각 보여주는 그림이다.
도 40은 GC1126A의 치료적 유효용량 범위를 측정하기 위한 시험 과정의 모식도(도 40a) 및 GC1126A 투여 후 6시간 째 측정한 PLT, LDH 값(도 40b), 그리고 투여 후 24시간 째 측정된 PLT, LDH, ADAMTS13 잔존활성 값(도 40c)을 각각 보여주는 그림이다.
도 41은 ADAMTS13 넉-아웃 마우스(KO mouse)(도 41a) 및 정상 원숭이(도 41b)에 다양한 용량의 GC1126A 투여 후 각 시점에 ADAMTS13 항원과 ADAMTS13 잔존 활성을 분석한 결과를 보여주는 그림이다.
도 42a-42c는 인간 PK 모델링을 사용하여 ADAMTS13 넉-아웃 마우스의 치료적 유효 용량(0.15 mg/kg)에서 PK 노출(AUC, Cmax)과 ADAMTS13 잔존 활성 1 IU/mL을 만족하는 Ctrough를 통해 70kg 인간에서의 유효 용량을 확인한 결과를 보여주는 그림이다.
도 43은 aTTP mimic 마우스 모델에서 경쟁물질(Cablivi®)과 GC1126A의 치료 효과를 비교하기 위한 시험 과정의 모식도(도 43a) 및 6시간, 24시간 및 48시간(도 43b) 째에 측정된 PLT 수치 회복 정도를 각각 보여주는 그림이다.
도 44는 aTTP mimic 마우스 모델에서 인간 재조합 야생형 ADAMTS-13(rh WT ADAMTS13)과 GC1126A의 치료 효과를 비교하기 위한 시험 과정의 모식도(도 44a) 및 6시간 (도 44b) 째에 측정된 PLT 수치 회복 정도를 각각 보여주는 그림이다.
도 45는 aTTP mimic 마우스 모델에서 시간에 따른 GC1126A, rh WT ADAMTS13 및 Cablivi®의 PLT 감소 예방 능력을 비교하기 위한 시험 과정의 모식도(도 45a), PLT 수치(도 45b) 및 잔존 활성(도 45c); 그리고 PLT 수치의 회복 능력을 비교하기 위한 시험 과정의 모식도(도 45d), PLT 수치(도 45e) 및 잔존활성(도 45f)을 각각 보여주는 그림이다.
도 46은 rh WT ADAMTS13, MDTCS-Fc 및 GC1126A 각각의 6명의 aTTP 환자 혈장 내 자가항체 회피 후 ADAMTS13 잔존 활성을 보여주는 그림이다.
Figure 1 is a diagram showing the results of measuring the B 22 value to evaluate the colloidal stability of the formulation according to the addition of five amino acid stabilizers.
Figure 2 is a picture showing the results of size exclusion liquid chromatography (SE-HPLC) to evaluate the degree of monomer recovery at room temperature after adding 7 types of stabilizers (6 types of amino acids and sucrose).
Figure 3 is a diagram showing the results of evaluating refrigeration stability by SE-HPLC compared to the control group according to the addition of 20 mM arginine.
Figure 4 is a diagram showing the results of evaluating purity and stability according to the concentration of the pharmacological ingredient protein (ADAMTS-13) and arginine concentration by SE-HPLC.
Figure 5 is a diagram showing the cake properties according to the change in NaCl concentration (Figure 5a) and the difference in purity evaluated through SE-HPLC (Figure 5b).
Figure 6 is a diagram showing SE-HPLC results according to NaCl concentration in the liquid formulation in the presence of 20 mM arginine.
Figure 7 is a picture showing the cake properties (Figure 7a) and SE-HPLC results (Figure 7b) according to the concentration of sucrose and the addition of trehalose in the presence of 120 mM NaCl.
Figure 8 is a picture showing the cake properties (Figure 8a) and SE-HPLC results (Figure 8b) according to the mixing ratio of sucrose and mannitol or glycine, which are bulking agents.
Figure 9 is a diagram comparing cake properties according to glycine concentration in the presence of 120 mM NaCl.
Figure 10 is a diagram comparing cake properties according to arginine concentration in the presence of 120 mM NaCl.
Figure 11 is a picture showing the cake properties (Figure 11a) and SE-HPLC results (Figure 11b) according to the NaCl to sucrose mixing ratio when arginine was not added.
Figure 12 is a picture showing the cake properties (Figure 12a) and SE-HPLC results (Figure 12b) according to the NaCl to sucrose mixing ratio in the presence of 120mM arginine.
Figure 13 shows the results of measuring the change in purity after 1 month at 40°C according to the NaCl to sucrose mixing ratio.
Figure 14 is a diagram showing the effect of preventing stirring-induced aggregation depending on the concentration of polysorbate 80 through property observation (Figure 14a), turbidity measurement (Figure 14b), and SE-HPLC (Figure 14c).
Figure 15 shows the results of evaluating liquid stability according to polysorbate 80 concentration by SE-HPLC.
Figure 16 shows the results of evaluating the quality of the formulation after freeze-drying according to polysorbate 80 concentration through SE-HPLC (Figure 16a) and whether higher-order aggregates were formed (Figure 16b).
Figure 17 is a diagram showing the thermal unfolding (T m ) measurement results (Figure 17a) and thermal aggregation (T agg ) evaluation results (Figure 17b) according to pH, respectively.
Figure 18 is a diagram showing the freeze-dried cake properties (Figure 18a) and SE-HPLC analysis results (Figure 18b) according to CaCl 2 concentration.
Figure 19 is a diagram illustrating the results of property evaluation according to NaCl and sucrose concentrations (Figure 19a) and a figure showing the cake properties at each concentration (Figure 19b), respectively.
Figure 20 is a picture showing cake properties according to NaCl and sucrose concentrations.
Figure 21 is a graph showing the results of colloidal stability evaluation according to arginine concentration.
Figure 22 is a picture showing cake properties (Figure 22a) and purity (Figure 22b) according to arginine concentration.
Figure 23 is a picture showing the physical properties of the liquid formulation composition finally selected in the present invention, showing the change in purity over time (Figure 23a), change in titer (Figure 23b), change in protein concentration (Figure 23c), and change in turbidity (Figure 23b). Figure 23d) is shown, respectively.
Figure 24 is a diagram showing long-term storage stability according to NaCl and sucrose concentrations, showing changes in purity (Figure 24a) and titer (Figure 24b) at the start of storage and after 6 months, respectively.
Figure 25 is a diagram showing the results of confirming the binding site of each domain of ADAMTS13 that binds to a neutralizing antibody. Figure 25a shows a schematic diagram of six types of ADAMTS13 fragments (or full-length wild-type ADAMTS13) combining various domains, prepared to confirm the expression rate of ADAMTS13 or the binding site of a neutralizing antibody. Figure 25b shows the results of immunoprecipitation using proteins expressed in each ADAMTS13 domain by mixing protein A-Sepharose and each neutralizing antibody, followed by Western blotting with anti-V5 antibody. Input shows the expression level of protein for each domain. Figure 25c is a schematic diagram of the ADAMTS13 neutralizing antibody binding site, showing that the Ab 4-16 antibody specifically binds to the S domain, the Ab 67 antibody to the D domain, and the Ab 66 antibody to the T2-T8 domain.
Figure 26 is a diagram showing the results of selection of variants that avoid anti-ADAMTS13 antibodies or have better activity than wild-type ADAMTS13. The evasion rate and ADAMTS13 activity against Ab 4-16 antibody (FIG. 26a) or Ab 67 antibody (FIG. 26b) were measured in wild-type clones and ADAMTS13 mutants. Relative activity was calculated by checking the specific titer of the wild-type clone and mutant and substituting it into the following formula: Relative activity (%) = specific titer of variant / specific titer of wild-type ADAMTS13
Figures 27a-27b show the results of confirming the single neutralizing antibody evasion rate of 12 full-length ADAMTS13 variants. The antibody evasion rate against 7 types of neutralizing antibodies (Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab67) was measured in 12 full-length ADAMTS13 variants. The neutralizing antibody evasion rate was calculated by checking the relative binding level by comparing it with the WT ADAMTS13 value and then using this to substitute the relative evasion rate into the following formula: evasion rate (%) = (1- variant binding capacity/WT ADAMTS13 binding capacity) x 100
Figures 28a-28b show the results of confirming the evasion ability of a single neutralizing antibody under culture conditions expressing Fc-attached MDTCS fragment variants. MDTCS fragmentation of the 12 selected variants was performed, and the Fc-attached variants were combined with the selected variant amino acid residues to produce a culture medium in which a total of 14 variants, including DM1 and DM2 variants with two amino acid mutations, were expressed. The neutralizing antibody evasion rate and ADAMTS13 relative activity of eight single neutralizing antibodies (Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, and Ab67) were measured. Evasion rate (%) = (1- variant binding capacity/binding capacity) x 100; Relative activity (%)=variant specific titer/WT ADAMTS13 specific titer x 100
Figure 29 shows the results of confirming the evasion ability of mixed neutralizing antibodies under culture conditions expressing Fc-attached MDTCS fragment variants. 9 types of neutralizing antibodies (Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab66, Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab66, After reacting by mixing Ab67), the residual activity of each candidate variant was calculated by substituting the following formula: Residual activity (%) = A ÷ B x 100 (A: Activity under mixed neutralizing antibody conditions, B: Neutralizing antibody activity under untreated conditions)
Figure 30 shows the results of confirming the evasion ability of single neutralizing antibodies in Fc-attached MDTCS fragment mutant culture medium and purified liquid conditions. Eight types of single neutralizing antibodies ( Neutralizing antibody evasion rate and relative activity for (Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab67) were measured (Figures 30a and 30b). The concentration of the purified solution was confirmed through Fc ELISA. Evasion rate (%) = (1- variant binding capacity/MDTCS-Fc binding capacity) x 100, relative activity (%) = variant specific titer/MDTCS-Fc specific titer x 100. Blue bars represent purified mutant proteins, gray bars represent purified mutant proteins The median value of expressed mutant proteins is shown, respectively.
Figure 31 shows the results of confirming the ability of the Fc-attached MDTCS fragment variant to evade mixed neutralizing antibodies in culture and purification conditions. Eight types of neutralizing antibodies (Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, After reacting by mixing Ab65, Ab67), the residual activity of each candidate variant was measured. Residual activity was calculated by substituting the formula below. Residual activity (%) = A ÷ B x 100 (A: Activity under mixed neutralizing antibody conditions, B: Activity under conditions without neutralizing antibody treatment)
Figure 32 is a graph showing the pharmacokinetic results of Fc-attached MDTCS fragment variants. MDTCS or Fc (IgG1-YTE)-attached MDTCS and four final candidate variants (1C03, 5C09, 7A02, DM2) fragment proteins were administered to mice through the tail vein, and plasma was obtained over time. Based on the specific titer of each substance, it was administered to reach 160 IU/kg, and the activity of the remaining substance in the plasma obtained at each time was measured through an activity assay.
Figure 33 shows the results of confirming the evasion ability against a single neutralizing antibody under culture conditions expressing MDTCS fragment variants attached to IgG1-YTE. The five selected variants were subjected to MDTCS fragmentation, and 8 types of single neutralizing antibodies (Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, The neutralizing antibody evasion rate and relative activity of Ab67) were measured (Figures 33a and 33b). Evasion rate (%) = (1-variant binding capacity/MDTCS-IgG1-YTE binding capacity) x 100, relative activity (%) = variant specific titer/MDTCS-IgG1-YTE specific titer x 100.
Figure 34 shows the results of confirming the evasion ability against mixed neutralizing antibodies under culture conditions expressing MDTCS fragment variants attached to IgG1-YTE. 9 types of neutralizing antibodies (Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, After reacting by mixing Ab66, Ab67), the residual activity of each candidate variant was calculated using the following formula: Residual activity (%) = A ÷ B x 100 (A: Activity under mixed neutralizing antibody conditions, B: Neutralizing antibody activity under untreated conditions).
Figure 35 shows the results of confirming the evasion ability of the MDTCS fragment variant attached to IgG1-YTE to mixed neutralizing antibodies under purified solution conditions. 9 types of neutralizing antibodies (Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab66) mixed in equal proportions of control MDTCS-IgG1-YTE and 5 candidate variants in 4nM purified solution , Ab67), the residual activity of each candidate variant was calculated using the following formula: Residual activity (%) = A ÷ B x 100 (A: Activity under mixed neutralizing antibody conditions, B: Neutralizing antibody treatment activity under no conditions).
Figure 36 is a schematic diagram of the neutralizing antibody evasion rate test procedure using the aTTP-mimic mouse model (Figure 36a) and a diagram showing the ADAMTS13 residual activity by dose of variant candidate substances (Figure 36b).
Figure 37 is a schematic diagram of the test procedure for ADAMTS13 residual activity maintenance and clinical symptoms by concentration of DM2-IgG1-YTE, which showed the best neutralizing antibody evasion rate using the aTTP-mimic mouse model (Figure 37a), platelets (PLT) and This figure shows the improvement in LDH levels, ADAMTS13 activity (FIG. 37b), and clinical symptom observation results (FIG. 37c), respectively.
Figure 38 is a schematic diagram of the test procedure for improvement of hematological and clinical symptoms and degree of recovery of human ADAMTS13 activity by administering DM2-IgG1-YTE to a cTTP mouse model (Figure 38a), and improvement of platelet and LDH levels and ADAMTS13 activity. This figure shows the results of observing recovery (Figure 38b).
Figure 39 is a diagram showing a schematic diagram of the test process for measuring the treatment effect and degree of maintenance following GC1126A administration (Figure 39a) and the PLT (Figure 39b) and LDH (Figure 39c) values measured therefrom.
Figure 40 is a schematic diagram of the test process for measuring the therapeutically effective dose range of GC1126A (Figure 40a), PLT and LDH values measured 6 hours after administration of GC1126A (Figure 40b), and PLT measured 24 hours after administration, This figure shows the residual activity values of LDH and ADAMTS13 (Figure 40c), respectively.
Figure 41 is a diagram showing the results of analysis of ADAMTS13 antigen and ADAMTS13 residual activity at each time point after administration of various doses of GC1126A to ADAMTS13 knock-out mouse (KO mouse) (Figure 41a) and normal monkey (Figure 41b).
Figures 42A-42C show PK exposure (AUC, C max ) at a therapeutically effective dose (0.15 mg/kg) in ADAMTS13 knock-out mice using human PK modeling and C trough satisfying ADAMTS13 residual activity of 1 IU/mL. This picture shows the results of confirming the effective dose in a 70 kg human.
Figure 43 is a schematic diagram of the test process for comparing the therapeutic effect of GC1126A with a competitor (Cablivi ® ) in the aTTP mimic mouse model (Figure 43a) and PLT values measured at 6 hours, 24 hours, and 48 hours (Figure 43b) This picture shows each level of recovery.
Figure 44 is a schematic diagram of the test process for comparing the therapeutic effects of human recombinant wild type ADAMTS-13 (rh WT ADAMTS13) and GC1126A in the aTTP mimic mouse model (Figure 44a) and recovery of PLT levels measured at 6 hours (Figure 44b) This picture shows each degree.
Figure 45 is a schematic diagram of the test process to compare the ability of GC1126A, rh WT ADAMTS13, and Cablivi ® to prevent PLT decline over time in the aTTP mimic mouse model (Figure 45a), PLT level (Figure 45b), and residual activity (Figure 45c) ; This is a schematic diagram of the test process for comparing the recovery ability of PLT levels (Figure 45d), PLT levels (Figure 45e), and residual activity (Figure 45f), respectively.
Figure 46 is a picture showing the residual activity of ADAMTS13 after autoantibody evasion in the plasma of six aTTP patients, each of rh WT ADAMTS13, MDTCS-Fc, and GC1126A.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

실시예Example

실시예 1: ADAMTS13 단백질의 제형 성분의 선별 Example 1: Selection of formulation components of ADAMTS13 protein

하기 실시예 3에서 후술하는 ADAMTS13 단백질에 대한 액상 제형 조성물의 각 성분과 함량을 아래와 같은 과정을 통해 결정하였다.Each component and content of the liquid formulation composition for ADAMTS13 protein, described later in Example 3, were determined through the following process.

동결건조 공정 Freeze drying process

제형화가 완료된 각 샘플 용액을 글래스 바이알(3 ml)에 1.0ml씩 분주하고, 고무마개로 반타전 후 동결 건조기(Freeze dryer, Lyostar 3, SP scientific) 선반 위에 로딩하였다. 이후, 하기 표 1의 조건으로 동결 건조를 진행하고, 제조된 동결 건조 제제는 동결 건조 완료 후 알루미늄 캡(Aluminum cap)으로 캡핑하였다.1.0 ml of each sample solution whose formulation was completed was dispensed into a glass vial (3 ml), half-closed with a rubber stopper, and then loaded onto the shelf of a freeze dryer (Lyostar 3, SP scientific). Thereafter, freeze-drying was performed under the conditions shown in Table 1 below, and the prepared freeze-dried preparation was capped with an aluminum cap after freeze-drying was completed.

단계step 구분division Rate/holdRate/hold 선반온도shelf temperature 시간(min)Time (min) 진공도(mTorr)Vacuum degree (mTorr) 1One 로딩loading HoldHold 5℃5℃ 2020 N/AN/A 22 동결freezing RateRate -55℃-55℃ 200200 N/AN/A 33 동결freezing HoldHold -55℃-55℃ 300300 N/AN/A 44 1차 가온1st warming RateRate -25℃-25℃ 100100 6060 55 1차 건조1st drying HoldHold -25℃-25℃ 20002000 6060 77 2차 가온2nd warming RateRate 25℃25℃ 167167 5050 88 2차 건조Secondary drying HoldHold 25℃25℃ 600600 5050

제조된 동결 건조 제제의 안정성은 1.0 ml 증류수로 재구축(reconstitution) 한 후 분석을 수행하였다.The stability of the prepared freeze-dried preparation was analyzed after reconstitution with 1.0 ml distilled water.

크기 배제 액체 크로마토그래피(SE-HPLC)Size exclusion liquid chromatography (SE-HPLC)

크기 배제 크로마토그래피 수행을 위해 검체를 이동상(1 x PBS, Lonza)으로 1.0 mg/ml가 되도록 희석한 후(1.0 mg/mml 이하 시 희석없이 진행) 멸균 여과하고, 여과된 검체 200 μL를 바이알 인서트(vial insert)에 주입 후 스크류탑 바이알(screw top vial)에 끼워서 준비하였다. 이후 이동상을 펌프에 연결한 뒤, Waters e2695와 Waters 2489 기기(일본 Waters사)에 0.5 mL/min의 유속으로 이동상을 흘려주며 분석 컬럼(TSKgel G3000SWXL, Tosoh)을 장착하였다. 0.5mL/min 속도로 이동상을 30분 이상 흘려주어 검출 신호(detector signal)가 안정화 될 때까지 평형에 도달시키고, 오토샘플러의 온도가 4℃로 떨어지면 검체를 샘플러에 꽂았다. 검체 30μL를 주입한 뒤 이동상으로 35분 간 흘려주어 280 nm에서 검출 피크(detection peak)를 확인하였다. 이후 PC의 Empower Pro software로 분석을 수행하였다.To perform size exclusion chromatography, the sample was diluted to 1.0 mg/ml with a mobile phase (1 It was prepared by inserting it into a screw top vial (vial insert). After connecting the mobile phase to the pump, the mobile phase was flowed through Waters e2695 and Waters 2489 instruments (Waters, Japan) at a flow rate of 0.5 mL/min, and an analytical column (TSKgel G3000SWXL, Tosoh) was installed. The mobile phase was flowed at a rate of 0.5 mL/min for more than 30 minutes to reach equilibrium until the detector signal was stabilized, and when the temperature of the autosampler fell to 4°C, the sample was inserted into the sampler. After injecting 30 μL of the sample, the mobile phase was run for 35 minutes to confirm the detection peak at 280 nm. Afterwards, analysis was performed using Empower Pro software on a PC.

콜로이드 안정성 (B22)Colloidal stability (B22)

단백질-단백질 상호작용 정도가 응집과 용해도 등에 영향을 미치기 때문에 콜로이드 안정성은 단백질 제형의 개발에 있어 반드시 고려되어야 하는 중요한 항목이다. 대표적인 콜로이드 안정성 지표인 B22(second virial coefficient)를 활용하였으며, 일반적으로 B22값이 큰 양의 값을 띌 경우, 단백질 간 반발력(repulsion force)이 강하여 응집이 발생한 확률이 줄어들게 된다. Because the degree of protein-protein interaction affects aggregation and solubility, colloidal stability is an important item that must be considered in the development of protein formulations. B 22 (second virial coefficient), a representative colloidal stability index, was used. In general, when the B 22 value is large and positive, the repulsion force between proteins is strong, reducing the probability of aggregation occurring.

안정제 5종에 대한 콜로이드 안정성을 평가하기 위해 공통조성으로서 1.2 mg/ml ADAMTS 단백질, 20 mM 히스티딘, 4.0 mM CaCl2, 120mM NaCl, 1.0% 수크로스를 포함하는 pH 7.4의 조성물에 아미노산으로서 글라이신, 라이신, 프롤린, 알라닌 또는 아르기닌을 각 100mM 포함시켰다.To evaluate the colloidal stability of five types of stabilizers, glycine and lysine were used as amino acids in a composition at pH 7.4 containing 1.2 mg/ml ADAMTS protein, 20 mM histidine, 4.0 mM CaCl 2 , 120mM NaCl, and 1.0% sucrose as a common composition. , proline, alanine, or arginine were included at 100mM each.

제형화가 완료된 각 조성물의 액상 샘플을 UNCLE 기기를 활용하여 콜로이드 안정성(B22)을 분석하였다. Liquid samples of each composition after completion of formulation were analyzed for colloidal stability (B 22 ) using the UNCLE instrument.

B22 값이 양의 값으로 커질수록 단백질끼리 서로 뭉치지 않고 잘 분산되어 있음을 의미하므로, 도 1에서 보는 바와 같이 콜로이드 안정성은 아르기닌 > 글라이신 > 프롤린 > 알라닌 > 라이신 > 대조군 순으로 확인되었다. As the B 22 value increases to a positive value, it means that the proteins do not clump together and are well dispersed. As shown in Figure 1, colloidal stability was confirmed in the order of arginine > glycine > proline > alanine > lysine > control group.

탁도(Turbidity) 분석Turbidity analysis

탁도는 Lunatic(Unchained Labs)으로 분석하였으며, 샘플 2.0 μL를 Lunatic 플레이트(Unchained Labs)에 주입하고 350nm에서의 탁도를 측정하였으며, 플라시보 완충액의 탁도는 샘플의 탁도 값에서 빼서 최종값을 계산하였다.Turbidity was analyzed with Lunatic (Unchained Labs). 2.0 μL of sample was injected into a Lunatic plate (Unchained Labs) and turbidity was measured at 350 nm. The turbidity of the placebo buffer was subtracted from the turbidity value of the sample to calculate the final value.

열 풀림 및 열 응집체 형성 (Thermal unfolding and thermal aggregation) 분석Thermal unfolding and thermal aggregation analysis

온도가 높아짐에 따라 단백질이 풀릴 때(unfolding) 표면에 노출된 트립토판에 의한 방출(emission) 파장을 검출함으로써 단백질이 풀린 정도를 측정할 수 있다. 이와 같은 고유 형광 강도에 기반한 시차 주사 형광측정법(differential scanning fluorimetry) 분석을 위해 UNCLE(Unchained Labs) 장비를 사용하였다. 상기 장비를 이용하여 단백질의 열 안정성을 분석하기 위해 Tm(Thermal unfolding) 및 Tagg(Thermal aggregation)를 다음과 같이 측정하였다: As the temperature increases, the degree to which a protein is unfolded can be measured by detecting the emission wavelength caused by tryptophan exposed on the surface when the protein unfolds. UNCLE (Unchained Labs) equipment was used to analyze differential scanning fluorimetry based on this intrinsic fluorescence intensity. To analyze the thermal stability of proteins using the above equipment, Tm (thermal unfolding) and Tagg (thermal aggregation) were measured as follows:

검체 8.8 μL를 Uni 샘플 로더(Unchained Labs)에 2회 반복 주입 후 온도를 25℃부터 1℃/min 속도로 95℃까지 증가시켰다. 온도를 증가시키면서 266nm의 여기 파장(Excitation wavelength)에 의해 방출되는 파장(250-720nm)의 강도를 측정하였다. 형광 데이터 분석(Fluorescence data analysis)은 UNCLE Analysis 소프트웨어(Unchained Labs)를 사용하였다. After repeatedly injecting 8.8 μL of the sample into the Uni sample loader (Unchained Labs) twice, the temperature was increased from 25°C to 95°C at a rate of 1°C/min. As the temperature was increased, the intensity of the wavelength (250-720nm) emitted by the excitation wavelength of 266nm was measured. Fluorescence data analysis used UNCLE Analysis software (Unchained Labs).

상기 분석을 통해 형광 방출 피크의 최대값 시점의 온도를 Tm으로 정의하고, 단백질의 266 nm (SLS266)에서의 정적 광산란(static light scattering)을 측정하여 단백질 응집이 시작되는 시점의 온도(protein aggregation onset temperature)를 Tagg으로 정의하였다.Through the above analysis, the temperature at the maximum of the fluorescence emission peak was defined as Tm, and the temperature at the start of protein aggregation was determined by measuring static light scattering at 266 nm (SLS266) of the protein. temperature) was defined as Tagg.

안정제 7종에 대한 SE-HPLC평가 SE-HPLC evaluation of 7 types of stabilizers

공통 조성으로서 0.9 mg/ml ADAMTS 단백질, 20 mM 히스티딘, 2.0 mM CaCl2 및 120 mM NaCl를 포함하는 pH 7.4의 조성물에 아미노산 안정화제로서 아르기닌, 세린, 발린, 트레오닌, 프롤린 또는 글라이신을 각 100mM 포함시키거나 또는 당 안정화제로서 수크로스를 1.0 w/v%를 포함시켰다.Arginine, serine, valine, threonine, proline or glycine are each added as amino acid stabilizers in a composition at pH 7.4 containing 0.9 mg/ml ADAMTS protein, 20mM histidine, 2.0mM CaCl 2 and 120mM NaCl as a common composition. Alternatively, 1.0 w/v% of sucrose was included as a sugar stabilizer.

제형화가 완료된 각 조성물의 액상 샘플을 상온에서 7시간 보관 후 SE-HPLC 분석을 수행하였다. 그 결과, 도 2에서 보는 바와 같이 비교실험을 진행한 7종의 안정화제에 의한 액상 안정성은 역시 아르기닌이 가장 우수하였으며, 안정성 및 순도는 아르기닌 > 수크로스 > 프롤린 > 글라이신 > 발린, 트레오닌 > 대조군 > 세린의 순서로 높았다.Liquid samples of each composition whose formulation was completed were stored at room temperature for 7 hours and then subjected to SE-HPLC analysis. As a result, as shown in Figure 2, arginine had the best liquid stability among the seven stabilizers in the comparative experiment, and the stability and purity were arginine > sucrose > proline > glycine > valine, threonine > control > It was ranked highest in the order of Serine.

아르기닌 첨가에 따른 액상 안정성 평가Liquid stability evaluation according to arginine addition

0.049 mg/mL ADAMTS 단백질, 15 mM 인산나트륨, 50mM NaCl을 포함하는 pH 7.4의 조성물에 20mM 아르기닌의 첨가 여부에 따른 액상 안정성을 평가하기 위해 제형화가 완료된 액상 샘플을 상온에서 3시간 및 19시간 보관 후 각 분석 시점마다 SE-HPLC 분석을 수행하였다. 그 결과, 도 3에서 보는 바와 같이 아르기닌 20mM 첨가 시 대조군 대비 5℃에서의 냉장 안정성이 현저히 개선됨을 확인하였다.To evaluate the liquid stability according to the addition of 20mM arginine to a pH 7.4 composition containing 0.049 mg/mL ADAMTS protein, 15mM sodium phosphate, and 50mM NaCl, the formulated liquid sample was stored at room temperature for 3 hours and 19 hours. SE-HPLC analysis was performed at each analysis time point. As a result, as shown in Figure 3, it was confirmed that when 20mM of arginine was added, the refrigeration stability at 5°C was significantly improved compared to the control group.

목적 단백질 농도 및 아르기닌 농도에 따른 액상 안정성 평가Liquid stability evaluation according to objective protein concentration and arginine concentration

SE-HPLC 분석SE-HPLC analysis

공통 조성으로서 20 mM 히스티딘, 4.0 mM CaCl2 및 160 mM NaCl를 포함하는 pH 7.4의 조성물에 ADAMTS 단백질을 각각 0.2, 0.6 및 1.0 mg/ml로 포함시키고, 아르기닌을 20, 80 및 140 mM 농도로 포함시킨 액상 샘플의 안정성을 평가하였다.ADAMTS protein was included at 0.2, 0.6 and 1.0 mg/ml, respectively, and arginine at concentrations of 20, 80 and 140 mM in a composition at pH 7.4 containing 20 mM histidine, 4.0 mM CaCl 2 and 160 mM NaCl as a common composition. The stability of the prepared liquid samples was evaluated.

제형화가 완료된 시료를 상온에서 18시간 보관 후 SE-HPLC 분석을 수행한 결과, 도 4a에서 보는 바와 같이 목적 단백질의 농도가 감소될수록, 아르기닌 농도가 증가될수록 순도가 개선됨을 확인하였다.As a result of performing SE-HPLC analysis on the formulated sample after storing it at room temperature for 18 hours, it was confirmed that the purity improved as the concentration of the target protein decreased and the arginine concentration increased, as shown in Figure 4a.

DOE 설계DOE design

한편, 아르기닌과 목적 단백질의 최적 농도를 보다 면밀하게 탐색하기 위해 DOE (Design Of Experiments)를 수행하였다. 아르기닌 농도 및 ADAMTS 단백질 농도라는 2개의 작동 파라미터를 요인(X 값)으로 설정하고 순도(SE-HPLC)를 반응(Y 값)으로 설정한 후 JMP® 10.0 통계 프로그램을 사용하여 DOE 설계를 실시하였다. 구체적으로, RSM(Response Surface Model)을 이용하였으며, CCD(Central Composite Design) 타입으로 축점을 설정하였다. 최종적으로“2수준의 full factorial design 4 Runs + 중심점 1 Run + 2개의 인자에 대한 축점 4 Runs”을 포함한 총 9 Run의 조건을 설계하였다. Meanwhile, DOE (Design Of Experiments) was performed to more closely explore the optimal concentration of arginine and the target protein. The two operating parameters, arginine concentration and ADAMTS protein concentration, were set as factors (X values) and purity (SE-HPLC) was set as response (Y value), and then a DOE design was performed using the JMP® 10.0 statistical program. Specifically, RSM (Response Surface Model) was used, and the axis point was set to CCD (Central Composite Design) type. Finally, a total of 9 Run conditions were designed, including “2-level full factorial design 4 Runs + central point 1 Run + axis point 4 Runs for 2 factors”.

시료 원액(1.1 mg/mL)을 DOE 조건에 맞게 아르기닌을 첨가하고 희석한 뒤 상온(약 15~25℃)에서 18시간 방치한 후, SE-HPLC 분석을 수행하였다. The sample stock solution (1.1 mg/mL) was diluted with arginine according to DOE conditions and left at room temperature (approximately 15-25°C) for 18 hours before SE-HPLC analysis.

DOE 통계분석은 단계적 회귀분석(Stepwise regression)을 활용한 다중회귀분석을 통해 수행하였으며, 모델의 확립은 반응표면 모델링(Response surface modeling) 방식을 따랐다. 분석은 JMP의 Fit model 방법을 이용하였으며, 모델에 사용되는 효과(effect)로는 2개의 주효과, 2차 교호작용, 각 주효과의 제곱항을 포함시켰다. 유의하지 않은 요인을 제거하고 유의한 항을 선정하기 위한 정지 규칙(Stopping Rule)은 P-값 역치를 사용하였다(P 값≤0.25, direction: Mixed). DOE statistical analysis was performed through multiple regression analysis using stepwise regression, and the establishment of the model followed response surface modeling. The analysis used JMP's Fit model method, and the effects used in the model included two main effects, a two-way interaction, and the square term of each main effect. The P-value threshold was used as a stopping rule to remove non-significant factors and select significant terms (P value ≤ 0.25, direction: Mixed).

분석 결과, 모델식의 R square는 0.96이며 R square 수정은 0.94이다. 모델식의 ANOVA(analysis of variance)의 P-값은 유의수준 0.05보다 작은 0.0006 로 본 모델의 유의성을 확인할 수 있었다.As a result of the analysis, the R square of the model equation is 0.96 and the R square correction is 0.94. The P-value of the model's ANOVA (analysis of variance) was 0.0006, which is less than the significance level of 0.05, confirming the significance of this model.

유의 수준 α=0.05 보다 낮은 P-값을 가져서 유의하다고 판단되는 요인은 주효과인 단백질 농도와 주효과인 아르기닌 농도이다. 아르기닌*아르기닌 곡률에 대한 P-값은 0.0765로써 유의 수준 α=0.05에 근접한 수치를 보였다(도 4b). The factors that are considered significant because they have a P-value lower than the significance level α=0.05 are the main effect, protein concentration, and the main effect, arginine concentration. The P-value for arginine*arginine curvature was 0.0765, which was close to the significance level of α=0.05 (Figure 4b).

예측 프로파일러(Prediction profiler) 분석 결과 아르기닌 120 mM 부근에서 단량체 % 값이 가장 높아 100 내지 140 mM가 아르기닌의 최적 농도임을 알 수 있었다(도 4c).As a result of prediction profiler analysis, the monomer % value was highest around 120 mM arginine, indicating that 100 to 140 mM was the optimal concentration of arginine (FIG. 4c).

NaCl 농도에 따른 동결건조 조성물의 품질 평가Quality evaluation of freeze-dried composition according to NaCl concentration

공통 조성으로 1.2 mg/ml ADAMTS 단백질, 20 mM 히스티딘, 4.0 mM CaCl2 및 0.05% PS80를 포함하는 pH 7.4의 조성물에 NaCl을 50, 100, 120, 150, 200 및 300 mM 농도로 첨가하였다. 제형화가 완료된 샘플을 동결 건조하여 케익 성상을 관찰하고 SE-HPLC 분석을 수행한 결과, NaCl 농도가 증가될수록 보다 견고하고 우수한 케익 성상을 보인 반면(도 5a), SE-HPLC 결과 NaCl 농도에 따른 주요할 만한 순도 차이는 관찰되지 않았다(도 5b).NaCl was added to a composition at pH 7.4 containing 1.2 mg/ml ADAMTS protein, 20 mM histidine, 4.0 mM CaCl 2 and 0.05% PS80 at concentrations of 50, 100, 120, 150, 200 and 300 mM. As a result of freeze-drying the formulated sample to observe the cake properties and performing SE-HPLC analysis, as the NaCl concentration increased, more solid and excellent cake properties were shown (Figure 5a), while SE-HPLC results showed that the main No appreciable difference in purity was observed (Figure 5b).

NaCl 농도에 따른 액상 안정성 평가Liquid stability evaluation according to NaCl concentration

공통 조성으로 1.2 mg/ml ADAMTS 단백질, 20 mM 히스티딘, 4.0 mM CaCl2 및 20mM 아르기닌을 포함하는 pH 7.4의 조성물에 NaCl을 0, 40, 80, 120 및 160 mM 농도로 첨가하였다. 제형화가 완료된 액상 샘플을 상온에서 보관하며, 4, 8, 12시간이 되는 시점마다 SE-HPLC 분석을 수행한 결과, 도 6에서 보는 바와 같이 NaCl의 농도가 높을수록 액상 안정성이 개선됨을 확인하였다.NaCl was added to a composition at pH 7.4 containing 1.2 mg/ml ADAMTS protein, 20mM histidine, 4.0mM CaCl 2 and 20mM arginine at concentrations of 0, 40, 80, 120 and 160mM. The formulated liquid sample was stored at room temperature, and SE-HPLC analysis was performed at 4, 8, and 12 hours. As shown in Figure 6, it was confirmed that the higher the concentration of NaCl, the better the liquid stability.

당 농도에 따른 동결건조 조성물의 품질 평가 (NaCl 120mM)Quality evaluation of freeze-dried composition according to sugar concentration (NaCl 120mM)

공통 조성으로 1.2 mg/ml ADAMTS 단백질, 120 mM NaCl, 20mM 히스티딘, 4.0 mM CaCl2 및 0.05% PS80을 포함하는 pH 7.4의 조성물에 0.0, 0.5, 1.0 및 2.0 %(w/v) 농도의 수크로스 또는 1.0 %(w/v) 농도의 트레할로스를 첨가하였다. 제형화가 완료된 샘플을 동결건조하여 케익 성상을 관찰하고 SE-HPLC 분석을 수행한 결과, NaCl 120mM에서는 수크로스 1.0% 첨가 시엔 붕괴(collapse)가 발생하지 않았지만 2.0% 첨가 시 붕괴가 발생하여 붕괴가 개시되는 수크로스 농도는 1.0 - 2.0% 사이로 예측되었다(도 7a). 트레할로스 1.0% 첨가 제형은 수크로스 1.0% 첨가 제형과 유사한 성상을 보였다(도 7a). 한편, SE-HPLC 결과 첨가되는 당 농도에 따른 유의한 순도 차이는 관찰되지 않아 붕괴가 발생하여도 순도는 유지됨을 알 수 있었다.Sucrose at concentrations of 0.0, 0.5, 1.0 and 2.0% (w/v) in a composition at pH 7.4 containing 1.2 mg/ml ADAMTS protein, 120 mM NaCl, 20mM histidine, 4.0 mM CaCl 2 and 0.05% PS80 in common composition. Alternatively, trehalose at a concentration of 1.0% (w/v) was added. As a result of freeze-drying the formulated sample, observing the cake properties, and performing SE-HPLC analysis, it was found that in NaCl 120mM, no collapse occurred when 1.0% sucrose was added, but collapse occurred when 2.0% was added, and collapse began. The resulting sucrose concentration was predicted to be between 1.0 and 2.0% (Figure 7a). The formulation with 1.0% trehalose showed similar properties to the formulation with 1.0% sucrose (Figure 7a). Meanwhile, SE-HPLC results No significant difference in purity was observed depending on the added sugar concentration, indicating that purity was maintained even when collapse occurred.

수크로스와 증량제(bulking agent)의 함량비에 따른 동결건조 조성물의 품질 평가(NaCl 120mM)Quality evaluation of freeze-dried composition according to the content ratio of sucrose and bulking agent (NaCl 120mM)

공통 조성으로 1.2 mg/ml ADAMTS 단백질, 120 mM NaCl, 20mM 히스티딘, 4.0 mM CaCl2 및 0.05% PS80을 포함하는 pH 7.4의 조성물에 수크로스와 증량제(만니톨, 글라이신)를 각각 1.0 / 3.0(w/v) (함량비 1:3)과 2.0 / 2.0 %(w/v)(함량비 1:1)로 첨가하였다. 제형화가 완료된 샘플을 동결건조하여 케익 성상을 관찰하고 및 SE-HPLC 분석을 수행한 결과, NaCl을 120mM로 고정하고 수크로스 대 증량제의 함량비를 1:3 및 2:2로 첨가한 경우 모두 붕괴가 발생하였으며(도 8a), SE-HPLC 결과 시료 간 유의한 차이가 관찰되지 않았다(도 8b).Sucrose and extenders (mannitol, glycine) were added at 1.0 / 3.0 (w/ v) (content ratio 1:3) and 2.0 / 2.0 % (w/v) (content ratio 1:1) were added. The formulated sample was lyophilized to observe the cake properties and SE-HPLC analysis was performed. As a result, all samples collapsed when NaCl was fixed at 120mM and the sucrose to extender content ratio was added at 1:3 and 2:2. occurred (Figure 8a), and no significant difference was observed between samples as a result of SE-HPLC (Figure 8b).

글라이신 농도에 따른 동결건조 품질 평가 (NaCl 120mM) Freeze-drying quality evaluation according to glycine concentration (NaCl 120mM)

공통 조성으로 1.2 mg/ml ADAMTS 단백질, 120mM NaCl, 수크로스 1.0%, 20 mM 히스티딘, 4.0 mM CaCl2 및 0.05% PS80을 포함하는 pH 7.4의 조성물에 글라이신을 0, 20, 40, 60, 80 및 100 mM 농도로 첨가하였다. 제형화가 완료된 샘플을 동결건조하여 케익 성상을 관찰하고 및 SE-HPLC 분석을 수행한 결과, NaCl 120mM과 수크로스 1.0%가 고정적으로 첨가되고 글라이신의 농도를 증가시킬 경우 케익 성상에 부정적인 영향을 미치며, 글라이신을 60mM 이상 첨가 시 완전히 붕괴됨을 알 수 있었다(도 9).Glycine was added at 0, 20, 40 , 60 , 80 and It was added at a concentration of 100 mM. As a result of observing the cake properties by freeze-drying the formulated sample and performing SE-HPLC analysis, it was found that when NaCl 120mM and sucrose 1.0% were added fixedly and the concentration of glycine was increased, it had a negative effect on the cake properties; It was found that when 60mM or more of glycine was added, it completely collapsed (Figure 9).

아르기닌 농도에 따른 동결건조 품질 평가 (NaCl 120mM)Freeze-dried quality evaluation according to arginine concentration (NaCl 120mM)

공통 조성으로 1.2 mg/ml ADAMTS 단백질, 120mM NaCl, 수크로스 1.0%, 20 mM 히스티딘, 4.0 mM CaCl2 및 0.05% PS80을 포함하는 pH7.4의 조성물에 아르기닌을 0, 20, 60 및 100 mM의 농도로 첨가하였다. 제형화가 완료된 샘플을 동결건조하여 케익 성상을 관찰하고 SE-HPLC 분석을 수행한 결과, NaCl 120mM 및 수크로스 1.0%가 고정적으로 첨가되고 아르기닌 농도를 증가시킬 경우 케익 성상에 부정적인 영향을 미치며, 아르기닌을 60mM 이상 첨가 시 완전히 붕괴되었다(도 10).Arginine was added at 0, 20, 60 and 100 mM in a composition at pH 7.4 containing 1.2 mg/ml ADAMTS protein, 120mM NaCl , 1.0% sucrose, 20mM histidine, 4.0mM CaCl 2 and 0.05% PS80 in common composition. It was added in concentration. As a result of freeze-drying the formulated sample to observe the cake properties and performing SE-HPLC analysis, it was found that when NaCl 120mM and sucrose 1.0% were added fixedly and the arginine concentration was increased, it had a negative effect on the cake properties, and arginine When more than 60mM was added, it completely collapsed (Figure 10).

NaCl과 수크로스의 함량비에 따른 동결건조 품질 평가 (w/o 아르기닌)Freeze-dried quality evaluation according to the content ratio of NaCl and sucrose (w/o arginine)

공통 조성으로 1.2 mg/ml ADAMTS 단백질, 20 mM 히스티딘, 4.0 mM CaCl2 및 0.05% PS80을 포함하는 pH 7.4의 조성물에 NaCl을 120, 160 및 200 mM의 농도로, 수크로스를 1.0, 1.5 및 2.0 %(w/v)의 농도로 첨가하였다. 제형화가 완료된 샘플을 동결건조하여 케익 성상을 관찰하고 SE-HPLC 분석을 수행한 결과, NaCl 농도가 증가될수록, 수크로스 농도가 감소될수록 양호한 케익 성상을 보였는데, 구체적으로 i) NaCl 120mM 첨가한 경우 수크로스 1.0 - 1.5% 범위 내에 붕괴 개시 시점이 존재하며, ⅱ) NaCl 160mM 첨가한 경우 수크로스 1.5 - 2.0% 구간에서, ⅲ) NaCl 200mM 첨가한 경우 수크로스 2.0% 초과 구간에서 붕괴가 개시되는 것으로 확인되었다(도 11a).NaCl at concentrations of 120, 160 and 200 mM and sucrose at 1.0, 1.5 and 2.0 in a composition at pH 7.4 containing in common composition 1.2 mg/ml ADAMTS protein, 20 mM histidine, 4.0 mM CaCl 2 and 0.05% PS80. It was added at a concentration of % (w/v). As a result of freeze-drying the formulated sample to observe the cake properties and performing SE-HPLC analysis, the cake properties were shown to be better as the NaCl concentration increased and the sucrose concentration decreased. Specifically, i) when 120mM of NaCl was added. The point of collapse exists within the range of 1.0 - 1.5% of sucrose, ii) in the range of 1.5 - 2.0% of sucrose when 160mM of NaCl is added, and iii) in the range of over 2.0% of sucrose when 200mM of NaCl is added. It was confirmed (Figure 11a).

한편 SE-HPLC 결과 아르기닌이 첨가되지 않은 경우에는 NaCl과 수크로스 함량비에 따른 유의한 변화는 관찰되지 않았다(도 11b).Meanwhile, as a result of SE-HPLC, when arginine was not added, no significant change was observed depending on the NaCl and sucrose content ratio (FIG. 11b).

NaCl과 수크로스의 함량비에 따른 동결건조 품질 평가 (아르기닌 120mM)Freeze-dried quality evaluation according to the content ratio of NaCl and sucrose (arginine 120mM)

공통 조성으로 0.5 mg/ml ADAMTS 단백질, 20 mM 히스티딘, 4.0 mM CaCl2, 0.05% PS80 및 120mM 아르기닌을 포함하는 pH 7.4의 조성물에 NaCl을 160, 200, 240 및 280 mM의 농도로, 수크로스를 0.0, 0.5 및 1.0 %(w/v)의 농도로 첨가하였다. 제형화가 완료된 샘플을 동결 건조하여 케익 성상을 관찰하고 SE-HPLC 분석을 수행한 결과, 아르기닌 120mM로 고정 첨가한 경우, NaCl 농도는 증가될수록, 수크로스 농도는 감소될수록 견고한 케익 성상이 나타났으며, 구체적으로 i) NaCl 160mM 첨가한 경우 수크로스 0.0 - 0.5% 이상 첨가 구간에서, ⅱ) NaCl 200mM 첨가한 경우 수크로스 1.0% 초과 첨가 구간에서, ⅲ) NaCl 240mM 첨가한 경우 수크로스 1.0% 초과 첨가 구간에서, ⅳ) NaCl 280mM 첨가한 경우 수크로스 1.0% 초과 첨가 구간에서 각각 붕괴 개시 시점이 존재함을 알 수 있었다(도 12a).NaCl was added at concentrations of 160, 200, 240 and 280 mM and sucrose in a composition at pH 7.4 containing 0.5 mg/ml ADAMTS protein, 20 mM histidine, 4.0 mM CaCl 2 , 0.05% PS80 and 120 mM arginine as a common composition. It was added at concentrations of 0.0, 0.5, and 1.0 % (w/v). As a result of freeze-drying the formulated sample to observe the cake properties and performing SE-HPLC analysis, when arginine was fixedly added at 120mM, solid cake properties appeared as the NaCl concentration increased and the sucrose concentration decreased. Specifically, i) in the section where more than 0.0 - 0.5% of sucrose was added when 160mM of NaCl was added, ii) in the section where more than 1.0% of sucrose was added when 200mM of NaCl was added, iii) in the section where more than 1.0% of sucrose was added when 240mM of NaCl was added. In, iv) when 280mM of NaCl was added, it was found that there was a collapse initiation point in each section where more than 1.0% of sucrose was added (FIG. 12a).

한편, SE-HPLC 결과 아르기닌 120mM가 포함된 경우 NaCl 및 수크로스 농도에 따른 주목할 만한 순도 변화는 확인되지 않았으나, NaCl 160mM 및 수크로스 미첨가 제형에서 순도 97.4%으로 다른 시료 대비 상대적으로 낮은 결과를 보였다(도 12b).Meanwhile, SE-HPLC results showed no notable change in purity depending on NaCl and sucrose concentration when arginine 120mM was included, but the purity was 97.4% in the formulation without NaCl 160mM and sucrose, which was relatively low compared to other samples. (Figure 12b).

NaCl 대 수크로스 배합비에 따른 동결건조 안정성 평가 (아르기닌 120mM)Evaluation of freeze-drying stability according to NaCl to sucrose mixing ratio (arginine 120mM)

공통 조성으로 0.5 mg/ml ADAMTS 단백질, 20 mM 히스티딘, 4.0 mM CaCl2, 0.05% PS80 및 120mM 아르기닌을 포함하는 pH 7.4의 조성물에 NaCl을 200, 240 및 280 mM의 농도로, 수크로스를 0.0, 0.5 및 1.0 %(w/v)의 농도로 첨가하였다. 제형화가 완료된 샘플을 동결 건조하여 가속 안정성(40℃)를 평가한 결과, 120mM 아르기닌 존재 하에서 NaCl 대 수크로스 배합비에 따라 40℃ 1개월차 순도는 초기 대비 유의한 변화가 나타나지 않았다(도 13).A composition at pH 7.4 containing 0.5 mg/ml ADAMTS protein, 20 mM histidine, 4.0 mM CaCl 2 , 0.05% PS80 and 120 mM arginine as a common composition was added with NaCl at concentrations of 200, 240 and 280 mM, sucrose at 0.0, It was added at concentrations of 0.5 and 1.0% (w/v). As a result of evaluating the accelerated stability (40°C) by freeze-drying the formulated sample, there was no significant change in purity at 40°C for 1 month compared to the initial period depending on the NaCl to sucrose mixing ratio in the presence of 120mM arginine (Figure 13).

폴리소르베이트 80 농도에 따른 교반(agitation)-유도 응집 방지 Prevention of agitation-induced aggregation depending on polysorbate 80 concentration

공통 조성으로 1.2 mg/ml ADAMTS 단백질, 20mM 히스티딘, 4.0mM CaCl2, 120mM NaCl 및 1.0% 수크로스를 포함하는 pH 7.4의 조성물에 폴리소르베이트 80을 0.0, 0.001, 0.005, 0.01, 0.05 및 0.1 %(v/v)의 농도로 각각 첨가하였다. 제형화가 완료된 액상 샘플을 볼택싱하여 인위적인 전단 응력를 발생시킨 후 분석(성상, 탁도, SE-HPLC)을 수행하였으며, 교반 개시 후 30초 및 2분에 샘플링하여 분석하였다. 교반 2분 경과 후 성상 분석 결과 폴리소르베이트 80을 0.005% 이상 첨가 시 시료가 맑고 투명해짐을 확인하였다(도 14a).Polysorbate 80 was added at 0.0, 0.001, 0.005, 0.01, 0.05 and 0.1% in a composition at pH 7.4 containing 1.2 mg/ml ADAMTS protein, 20mM histidine, 4.0mM CaCl 2 , 120mM NaCl and 1.0% sucrose in common composition. Each was added at a concentration of (v/v). Analysis (property, turbidity, SE-HPLC) was performed after vortexing the formulated liquid sample to generate artificial shear stress, and sampling was performed at 30 seconds and 2 minutes after the start of stirring. As a result of property analysis after 2 minutes of stirring, it was confirmed that the sample became clear and transparent when more than 0.005% of polysorbate 80 was added (FIG. 14a).

한편, 폴리소르베이트 80을 0.005% 이상 첨가 시 초기 대비 탁도 변화가 없음을 확인함으로써 교반-유도 응집이 발생하지 않았음을 알 수 있었다(도 14b). 아울러 SE-HPLC 결과 폴리소르베이트 80을 0.05% 이상 첨가 시 초기 대비 5% 이내 수준의 순도 감소가 발생함을 확인하였다(도 14c).Meanwhile, when 0.005% or more of polysorbate 80 was added, it was confirmed that there was no change in turbidity compared to the initial stage, indicating that stirring-induced aggregation did not occur (FIG. 14b). In addition, SE-HPLC results It was confirmed that when more than 0.05% of polysorbate 80 was added, the purity decreased by less than 5% compared to the initial level (FIG. 14c).

폴리소르베이트 80 농도에 따른 액상 안정성 평가 Liquid stability evaluation according to polysorbate 80 concentration

공통 조성으로 0.5mg/ml ADAMTS 단백질, 20mM 히스티딘, 4.0mM CaCl2, 120 mM NaCl 및 1.0% 수크로스를 포함하는 pH 7.4의 조성물에 폴리소르베이트 80을 0.0, 0.005, 0.01, 0.05 및 0.09 %(v/v) 농도로 첨가하였다. 제형화가 완료된 액상 샘플을 상온에서 6시간 보관 후 SE-HPLC 분석을 수행한 결과, 폴리소르베이트 80 농도가 증가될수록 액상 안정성(순도)은 소폭 감소됨을 확인하였다(도 15).Polysorbate 80 was added at 0.0 , 0.005, 0.01, 0.05 and 0.09% ( It was added at a concentration of v/v). As a result of performing SE-HPLC analysis on the formulated liquid sample after storing it at room temperature for 6 hours, it was confirmed that as the concentration of polysorbate 80 increased, the liquid stability (purity) decreased slightly (FIG. 15).

폴리소르베이트 80 농도에 따른 동결건조 품질 평가 Freeze-drying quality evaluation according to polysorbate 80 concentration

공통 조성으로 0.5mg/ml ADAMTS 단백질, 20mM 히스티딘, 4.0mM CaCl2, 120mM NaCl 및 1.0% 수크로스를 포함하는 pH 7.4의 조성물에 폴리소르베이트 80을 0.0, 0.005, 0.01, 0.05 및 0.09 %(v/v) 농도로 첨가하였다. 제형화가 완료된 액상 샘플을 동결건조 후 SE-HPLC 분석을 수행한 결과, 폴리소르베이트 80 농도가 증가 될수록 동결건조 공정에 의한 순도 손실 방지 효과가 커지고, 0.01% 이상 첨가 시 94% 이상의 단량체 회복을 확인하였다(도 16a). 아울러, 폴리소르베이트 80 농도가 증가할수록 고차 응집체(Higher-order aggregates) 생성이 효율적으로 차단되었다(도 16b).Polysorbate 80 was added at 0.0 , 0.005, 0.01, 0.05 and 0.09% (v. It was added at a concentration of /v). As a result of performing SE-HPLC analysis after freeze-drying the formulated liquid sample, as the concentration of polysorbate 80 increases, the effect of preventing purity loss due to the freeze-drying process increases, and when more than 0.01% is added, monomer recovery of more than 94% is confirmed. (Figure 16a). In addition, as the polysorbate 80 concentration increased, the formation of higher-order aggregates was efficiently blocked (FIG. 16b).

pH에 따른 열 풀림(Thermal unfolding) 및 열-응집 평가 Thermal unfolding and thermo-coagulation evaluation according to pH

공통 조성으로 20mM 히스티딘, 4mM CaCl2 및 0.05% PS80을 포함하며 pH만 6.0, 6.5, 7.0, 7.2 및 7.4으로 상이한 희석여과(Diafiltration) 완충액을 미리 제조한 후, ADAMTS 단백질이 포함된 용액과 버퍼교환 과정을 거쳐 샘플을 제조하였다. Amicon® Ultra-15 Centrifugal Filter Units 30K를 사용하였으며, 원심분리는 냉장조건에서 3000rpm으로 수행하였다.After preparing different dilution filtration buffers in advance with a common composition of 20mM histidine, 4mM CaCl 2 and 0.05% PS80 and pH of 6.0, 6.5, 7.0, 7.2 and 7.4, the buffer was exchanged with a solution containing ADAMTS protein. Samples were prepared through the process. Amicon® Ultra-15 Centrifugal Filter Units 30K were used, and centrifugation was performed at 3000 rpm under refrigerated conditions.

버퍼교환이 완료된 샘플의 공통조성은 10mg/ml ADAMTS 단백질, 20mM 히스티딘, 4mM CaCl2 및 0.05% PS80이며 pH는 각각 6.0, 6.5, 7.0, 7.2 및 7.4이다.The common composition of the sample for which buffer exchange was completed was 10 mg/ml ADAMTS protein, 20mM histidine, 4mM CaCl 2 and 0.05% PS80, and the pH was 6.0, 6.5, 7.0, 7.2 and 7.4, respectively.

제형화가 완료된 액상 샘플을 UNCLE 기기를 활용하여 Tm및 Tagg분석 수행한 결과, 단백질의 구조적 열안정성과 비례하는 Tm(thermal unfolding) 값은 pH가 높을수록 증가되며, pH 6.0에서는 타 실험군 대비 낮은 Tm값을 보임을 확인하였다(도 17a). 불안정한 응집 발생 정도를 반영하는 열 응집(thermal aggregation, Tagg)의 경우, pH가 높을수록 Tagg 값이 증가됨을 확인하였으며, pH 6.0 및 pH 6.5에서는 타 실험군 대비 낮은 Tagg 값을 보였다(도 17b).As a result of performing T m and T agg analysis on the formulated liquid sample using UNCLE equipment, the Tm (thermal unfolding) value, which is proportional to the structural thermal stability of the protein, increases as the pH increases, and at pH 6.0, it is lower than other experimental groups. It was confirmed that the Tm value was visible (FIG. 17a). In the case of thermal aggregation (T agg ), which reflects the degree of unstable aggregation, it was confirmed that the higher the pH, the higher the T agg value, and at pH 6.0 and pH 6.5, the T agg value was lower than that of other experimental groups (Figure 17b) ).

CaCl2 농도에 따른 동결건조 품질 평가 Freeze-drying quality evaluation according to CaCl 2 concentration

공통 조성으로 1.2 mg/ml ADAMTS 단백질, 20 mM 히스티딘, 120mM NaCl, 1.0% 수크로스 및 0.05% PS80을 포함하는 pH 7.4의 조성물에 2.0, 4.0 및 8.0 mM 농도의 CaCl2를 첨가하였다. 제형화가 완료된 샘플을 동결건조 하여 SE-HPLC 분석 수행한 결과, CaCl2 농도에 관계없이 부분적으로 붕괴된 성상을 보였으며(도 18a), SE-HPLC 분석 결과 CaCl2 농도가 증가될수록 순도가 개선됨을 확인하였다(도 18b). CaCl 2 at concentrations of 2.0, 4.0 and 8.0 mM was added to a composition at pH 7.4 containing 1.2 mg/ml ADAMTS protein, 20 mM histidine, 120mM NaCl, 1.0% sucrose and 0.05% PS80 as a common composition. As a result of freeze-drying the formulated sample and performing SE-HPLC analysis, it showed partially collapsed properties regardless of CaCl 2 concentration (FIG. 18a), and SE-HPLC analysis showed that purity improved as CaCl 2 concentration increased. Confirmed (FIG. 18b).

실시예 2: ADAMTS13 단백질의 제형 성분의 추가 최적화 Example 2: Further optimization of formulation components of ADAMTS13 protein

NaCl 대 수크로스 배합비에 따른 동결건조 품질 평가Evaluation of freeze-dried quality according to NaCl to sucrose mixing ratio

공통조성으로 0.36 mg/ml의 ADAMTS 단백질, 히스티딘 20 mM, CaCl2 4mM, L-Arg 120mM 및 0.05%의 PS80을 포함하는 pH 7.4의 조성물에 NaCl을 100, 150, 200, 250, 300, 350 및 400 mM의 농도로, 수크로스를 0, 0.5, 1 및 1.5 %(w/v)의 농도로 첨가하였다. 제형화가 완료된 샘플을 동결건조하여 케익 성상을 관찰하고 공정 전, 후의 순도를 SE-HPLC로 분석하였다. 그 결과, 하기 표 2에서 보는 바와 같이 NaCl과 수크로스 함량비에 따른 유의한 순도 변화는 관찰되지 않아 실험한 모든 범위에서 우수한 순도를 유지함을 알 수 있었다.NaCl was added at 100 , 150, 200, 250, 300, 350, and To a concentration of 400mM, sucrose was added at concentrations of 0, 0.5, 1 and 1.5% (w/v). The formulation-completed sample was freeze-dried to observe the cake properties, and the purity before and after the process was analyzed by SE-HPLC. As a result, as shown in Table 2 below, no significant change in purity was observed depending on the NaCl and sucrose content ratio, indicating that excellent purity was maintained in all tested ranges.

동결건조 이후 순도 회복(%)Purity recovery after freeze-drying (%) 구분division NaCl (mM)NaCl (mM) 100100 150150 200200 250250 300300 350350 400400 수크로스sucrose
(%)(%)
00 100.6100.6 100.8100.8 100.3100.3 100.1100.1 99.499.4 99.899.8 100.0100.0
0.50.5 100.7100.7 100.9100.9 100.3100.3 100.2100.2 99.999.9 99.999.9 99.999.9 1One 100.7100.7 100.9100.9 100.4100.4 100.2100.2 100.2100.2 99.999.9 99.999.9 1.51.5 100.1100.1 101.0101.0 100.1100.1 100.2100.2 100.2100.2 100.0100.0 100.0100.0

단, 도 19a 및 도 19b에서 보는 바와 같이, NaCl 농도가 증가할수록, 수크로스가 농도가 감소할수록 양호한 케이크 성상을 보임을 확인할 수 있었다. However, as shown in Figures 19a and 19b, it was confirmed that as the NaCl concentration increased and the sucrose concentration decreased, good cake properties were observed.

수크로스 고농도 처리에 따른 동결건조 품질 평가 Freeze-dried quality evaluation according to high-concentration sucrose treatment

공통조성으로 0.36 mg/ml의 ADAMTS 단백질, 히스티딘 20 mM, CaCl2 4mM, L-Arg 120mM 및 0.05%의 PS80을 포함하는 pH 7.4의 조성물에 NaCl을 200, 250 및 300mM 농도로, 수크로스를 1.5 및 2.5 %의 농도로 첨가하였다. 제형화가 완료된 샘플을 동결건조하여 케익 성상을 관찰한 결과, 도 20에서 보는 바와 같이 NaCl 농도가 증가할수록, 수크로스가 농도가 감소할수록 양호한 케이크 성상을 나타냄을 확인할 수 있었다. In a composition at pH 7.4 containing 0.36 mg/ml ADAMTS protein, 20 mM histidine, 4mM CaCl 2 , 120mM L-Arg, and 0.05% PS80, NaCl was added at concentrations of 200, 250, and 300mM, and sucrose at 1.5%. and was added at a concentration of 2.5%. As a result of observing the cake properties by freeze-drying the formulated sample, it was confirmed that as the NaCl concentration increased and the sucrose concentration decreased, good cake properties were observed, as shown in FIG. 20.

아르기닌 농도에 따른 콜로이드 안정성 평가 (B22,kD) Colloidal stability evaluation according to arginine concentration (B 22 ,kD)

공통조성으로 0.36 mg/ml의 ADAMTS 단백질, 히스티딘 20 mM, CaCl2 4mM, NaCl 280mM, 수크로스 1% 및 0.05%의 PS80을 포함하는 pH 7.4의 조성물에 아르기닌을 40, 80, 120, 160 및 200 mM의 농도로 첨가하였다. 제형화가 완료된 액상 샘플을 UNCLE 기기를 활용하여 콜로이드 안정성(B22, kD)을 분석하였다. B22와 kD 값이 양의 값으로 커질수록 단백질 간 응집 없이 양호하게 분산되어 있음을 의미하는데, 도 21에서 보는 바와 같이 아르기닌 120 mM에 가까울수록 우수한 콜로이드 안정성을 나타냄을 확인하였다. Arginine was added at 40, 80, 120, 160 and 200 in a composition at pH 7.4 containing 0.36 mg/ml ADAMTS protein, 20 mM histidine, 4 mM CaCl 2 , 280 mM NaCl, 1% sucrose and 0.05% PS80. It was added at a concentration of mM. The colloidal stability (B 22 , kD) of the formulated liquid sample was analyzed using the UNCLE instrument. As the B 22 and kD values become more positive, it means that the proteins are well dispersed without aggregation. As shown in Figure 21, it was confirmed that the closer the arginine content is to 120 mM, the better the colloidal stability.

아르기닌 농도에 따른 동결건조 품질 평가 Freeze-dried quality evaluation according to arginine concentration

공통조성으로 0.36 mg/ml의 ADAMTS 단백질, 히스티딘 20 mM, CaCl2 4mM, NaCl 280mM, 수크로스 1% 및 0.05%의 PS80을 포함하는 pH 7.4의 조성물에 아르기닌을 40, 80, 120, 160 및 200 mM의 농도로 첨가하였다. 제형화가 완료된 샘플을 동결건조하여 케익 성상을 관찰하고 SE-HPLC로 순도를 분석하였다. 그 결과, 아르기닌 농도가 80 mM 및 120 mM의 경우 케?? 성상이 우수함을 확인할 수 있었으나(도 22a), 아르기닌 농도에 따른 주요할 만한 순도 차이는 관찰되지 않았다(도 22b). Arginine was added at 40, 80, 120, 160 and 200 in a composition at pH 7.4 containing 0.36 mg/ml ADAMTS protein, 20 mM histidine, 4 mM CaCl 2 , 280 mM NaCl, 1% sucrose and 0.05% PS80. It was added at a concentration of mM. The formulated sample was freeze-dried, the cake properties were observed, and the purity was analyzed by SE-HPLC. As a result, for arginine concentrations of 80mM and 120mM, It was confirmed that the properties were excellent (Figure 22a), but no significant difference in purity was observed depending on arginine concentration (Figure 22b).

GC1126A 최종 액상 제형에 대한 보관 시간 및 온도 안정성Storage time and temperature stability for GC1126A final liquid formulation

0.36 mg/ml의 ADAMTS 단백질, 히스티딘 20 mM, CaCl2 4mM, L-Arg 120 mM, NaCl 280 mM, Sucrose 1 % 및 0.05%의 PS80를 포함하는 pH 7.4의 제형화 완료된 액상 샘플을 상온(25℃)과 냉장(4℃) 조건에서 각각 보관 후 순도(SE-HPLC), 역가(ADAMTS13 활성), 단백질 농도(UV) 및 탁도 분석을 수행함으로써 경시 변화를 확인하였다. 그 결과, 순도의 경우 상온 보관 3일부터 초기 대비 약 4% 순도 감소를 보였으며, 보관 7일에는 초기 대비 약 15% 순도 감소를 보였고, 냉장 보관 7일까지 경시 변화 관찰되지 않았다(도 23a). A fully formulated liquid sample at pH 7.4 containing 0.36 mg/ml ADAMTS protein, 20 mM histidine, 4mM CaCl 2 , 120 mM L-Arg, 280 mM NaCl, 1% Sucrose, and 0.05% PS80 was stored at room temperature (25°C). Changes over time were confirmed by analyzing purity (SE-HPLC), titer (ADAMTS13 activity), protein concentration (UV), and turbidity after storage under ) and refrigerated (4°C) conditions, respectively. As a result, purity showed a decrease of about 4% compared to the initial level from the 3rd day of storage at room temperature, a decrease of about 15% compared to the initial level on the 7th day of storage, and no change over time was observed until the 7th day of refrigerated storage (FIG. 23a) .

역가 변화를 관찰한 결과 상온 보관 7일에서 초기 대비 약 50%의 역가 감소를 보였으며, 역가 분석 편차를 고려했을 때, 냉장 보관 7일까지 뚜렷한 경시 변화가 관찰되지 않았다(도 23b).As a result of observing the change in titer, the titer decreased by about 50% compared to the initial level at 7 days of room temperature storage, and considering the deviation of the titer analysis, no clear change over time was observed until the 7th day of refrigerated storage (FIG. 23b).

단백질 농도의 경우, 상온 보관 3일부터 초기 대비 단백질 농도가 증가하였는데, 이는 입자의 응집으로 인해 시료의 불투명도가 증가함으로서 UV 흡광도가 증가한 결과로 판단된다. 냉장 보관 7일까지 경시 변화가 관찰되지 않았다(도 23c).In the case of protein concentration, the protein concentration increased from the initial 3 days of storage at room temperature, which is believed to be the result of increased UV absorbance as the opacity of the sample increased due to particle aggregation. No changes were observed over time until 7 days of refrigerated storage (Figure 23c).

한편, 최종 액상 제형의 탁도는 상온 보관 3일부터 증가하는 양상을 보였으나 냉장 보관 7일까지 경시 변화가 관찰되지 않았다(도 23d). Meanwhile, the turbidity of the final liquid formulation showed an increase from 3 days of storage at room temperature, but no change over time was observed until 7 days of refrigerated storage (Figure 23d).

NaCl 및 수크로스 농도의 최적화 Optimization of NaCl and sucrose concentrations

공통조성으로 0.5 mg/ml의 ADAMTS 단백질, 히스티딘 20 mM, CaCl2 4mM, L-Arg 120mM 및 0.05%의 PS80을 포함하는 pH 7.4의 조성물에 NaCl을 200, 240 및 280 mM의 농도로, 수크로스를 0, 0.5 및 1 %의 농도로 첨가하였다.A composition at pH 7.4 containing 0.5 mg/ml ADAMTS protein, 20 mM histidine, 4mM CaCl 2 , 120mM L-Arg, and 0.05% PS80 was mixed with NaCl at concentrations of 200, 240, and 280 mM, and sucrose. was added at concentrations of 0, 0.5 and 1%.

NaCl 및 수크로스의 최적 농도 탐색을 위해 DOE (Design Of Experiments)를 수행하였다. NaCl 및 수크로스 농도라는 2개의 작동 파라미터를 요인(X 값)으로 설정하고 순도(SE-HPLC)와 역가(ADAMTS13 활성)를 반응(Y 값)으로 설정한 후 JMP® 10.0 통계 프로그램을 사용하여 DOE 설계를 실시하였다. 실험설계를 위해 완전요인배치법(full factorial design)을 이용하였으며, 중심점 2개를 포함하였다. 최종적으로“2 수준의 full factorial design 4 Runs + 중심점 2 Runs”를 포함하여 총 6개의 조건을 설계하였다. Design Of Experiments (DOE) was performed to explore the optimal concentrations of NaCl and sucrose. After setting the two operating parameters NaCl and sucrose concentration as factors (X values) and purity (SE-HPLC) and titer (ADAMTS13 activity) as responses (Y values), the DOE was calculated using the JMP ® 10.0 statistical program. The design was carried out. For the experimental design, a full factorial design was used and two central points were included. Ultimately, a total of 6 conditions were designed, including “2-level full factorial design 4 Runs + center point 2 Runs”.

Run Run XX NaCl (mM)NaCl (mM) 수크로스sucrose 1One 280280 00 2 (중심점)2 (center point) 240240 0.50.5 33 280280 1One 44 200200 00 55 200200 1One 6 (중심점)6 (center point) 240240 0.50.5

사전에 설계된 조건에 맞게 제형 완충액을 제조하고 원액과 혼합하여 최종원액을 제조하였다. 제조된 제형은 3 ml 바이알에 1 ml씩 분주하여 동결건조하였으며, 동결건조 완료된 검체는 냉장보관(5℃)하고 6개월 뒤 품질 분석을 실시하였다. A formulation buffer was prepared according to pre-designed conditions and mixed with the stock solution to prepare the final stock solution. The prepared formulation was freeze-dried by dispensing 1 ml into 3 ml vials, and the freeze-dried sample was stored in the refrigerator (5°C) and quality analysis was performed 6 months later.

DOE 통계 분석은 단계적 회귀분석(Stepwise regression)을 활용한 다중회귀분석을 진행하였다. 분석(Analyze)은 JMP의 'Fit model' 방법을 이용하였으며, 모델에 사용되는 효과(effect)로는 2개의 주효과, 2차 교호작용, 각 주효과의 제곱항을 포함시켰다. 유의하지 않은 요인을 제거하고 유의한 항을 선정하기 위한 정지규칙(stopping rule)은 p-값 역치를 사용하였다(P 값≤0.25, direction: Mixed).DOE statistical analysis was conducted using multiple regression analysis using stepwise regression. Analyze was done using JMP's 'Fit model' method, and the effects used in the model included two main effects, a two-way interaction, and the square term of each main effect. The p-value threshold was used as a stopping rule to remove non-significant factors and select significant terms (P value ≤ 0.25, direction: Mixed).

분석 결과, 모든 실험 조건에서 6개월 간 양호한 순도를 보여 NaCl과 수크로스 농도에 따른 순도 차이는 확인되지 않았다(도 24a). 아울러, 각 실험군의 초기 역가 대비 6개월 경과 뒤의 역가는 분석 편차 이내로서 유의한 차이를 보이지 않았다(도 24b).As a result of the analysis, good purity was shown for 6 months under all experimental conditions, and no difference in purity depending on NaCl and sucrose concentrations was confirmed (FIG. 24a). In addition, compared to the initial titer of each experimental group, the titer after 6 months was within the analysis deviation and did not show a significant difference (FIG. 24b).

실시예 3: ADAMTS13 단백질 변이체의 제작 Example 3: Construction of ADAMTS13 protein variants

본 발명자들은 무작위 돌연변이법을 이용하여 aTTP 환자가 가지고 있는 ADAMTS13 중화항체를 효율적으로 회피할 수 있는 인간 ADAMTS13 변이체 제작하고자 하였다. MDTCS 부분 혹은 S 도메인에 돌연변이를 갖는 변이체가 ADAMTS13의 중화항체를 회피할 수 있는지 여부를 확인하기 위해서 인간 ADAMTS13에 대한 서로 다른 에피토프를 인식하는 항체에 대해 Bio-Rad사 HuCAL 시스템을 이용하여 Fab을 제작하였으며, 인간 ADAMTS13에 대한 결합력이 우수한 16종을 선별하였다. 각 항체의 결합 영역은 도 25c에 나타낸 바와 같이 Ab 4-16은 S 도메인, Ab 67은 MDTCS 부분, Ab 66은 C-말단부(TSP-2 부터 TSP-8 도메인)에 특이적으로 결합한다. The present inventors attempted to create a human ADAMTS13 variant that can efficiently evade ADAMTS13 neutralizing antibodies possessed by aTTP patients using a random mutation method. To determine whether variants with mutations in the MDTCS region or S domain can evade neutralizing antibodies of ADAMTS13, Fabs were produced using Bio-Rad's HuCAL system for antibodies that recognize different epitopes for human ADAMTS13. 16 species with excellent binding ability to human ADAMTS13 were selected. The binding region of each antibody is shown in the figure. As shown in Figure 25c, Ab 4-16 specifically binds to the S domain, Ab 67 to the MDTCS portion, and Ab 66 to the C-terminal portion (TSP-2 to TSP-8 domains).

변이체의 평가는 야생형 ADAMTS13 컨스트럭트와 무작위 돌연변이 생성을 통해 제작된 변이체 중 야생형 ADAMTS13과 동일한 아미노산 서열을 갖는 비-돌연변이 혹은 침묵 돌연변이 변이체(이하 야생형 클론)에 대한 상대적 결과 분석을 통해 진행되었다. 총 59개의 야생형 클론에 대해 활성 및 Ab 4-16, Ab 67의 결합력을 분석하였고, 각 야생형 클론의 분석 결과를 야생형 ADAMTS13 컨스트럭트의 결과값을 기준으로 상대화하여 도 26에 나타내었다. 도 26에서 보는 바와 같이, 보전적 아미노산 치환을 포함하는 야생형 ADAMTS13(59 종), 돌연변이된 ADAMTS13(304 종) 및 선정된 ADAMTS13(26 종)에 대한 Ab 4-16 및 Ab 67 항체에 대한 회피율 및 상대활성을 나타내었다. 야생형 클론은 변이가 없음에도 불구하고 야생형 ADAMTS13 컨스트럭트 결과 값과 상대적인 결과 차이를 보였고, 돌연변이된 ADAMTS13(304 종) 중에서 하기의 표 4에 나타낸 바와 같이 특정 수치의 회피율 또는 상대활성 이상의 값을 갖는 26 종의 돌연변이 ADAMTS13이 선별되었다. The evaluation of variants was conducted through comparative results analysis of the wild-type ADAMTS13 construct and non-mutant or silent mutant variants (hereinafter referred to as wild-type clones) having the same amino acid sequence as wild-type ADAMTS13 among variants produced through random mutagenesis. A total of 59 wild-type clones were analyzed for the activity and binding capacity of Ab 4-16 and Ab 67, and the analysis results of each wild-type clone were relativized based on the results of the wild-type ADAMTS13 construct and are shown in Figure 26. As shown in Figure 26, the escape rates for Ab 4-16 and Ab 67 antibodies against wild-type ADAMTS13 (59 species), mutated ADAMTS13 (304 species) and selected ADAMTS13 (26 species) containing conservative amino acid substitutions, and Relative activity was shown. Although the wild-type clone had no mutation, it showed a difference in results relative to the wild-type ADAMTS13 construct result, and among the mutated ADAMTS13 (304 species), as shown in Table 4 below, it had a value above a certain level of evasion rate or relative activity. Twenty-six mutant ADAMTS13 strains were selected.

구체적으로, 돌연변이된 ADAMTS13의 Ab 4-16 회피율은 -29.5% 내지 33.4%의 범위를 나타내었고, Ab 67 회피율은 -24.4% 내지 30.5%의 범위를 나타내었으며, 상대활성의 경우 62.7% 내지 128.9%의 범위를 나타내었다(표 4). Three-sigma rule을 이용한 정규분포를 적용한 결과, Ab 4-16 회피율의 경우 -34.1% 내지 38.5%, Ab 67 회피율의 경우-38.5% 내지 42.3% 그리고 상대 활성의 경우 47.0% 내지 145.2%의 범위로 WT 클론은 거의 모든 결과가 이 분포도 내에 존재할 것이라 예상하였다. 따라서 변이체 선별에 있어 three-sigma의 최대값을 기준으로 Ab 4-16 회피율이 38.5% 초과, Ab 67 회피율이 42.3% 초과 또는 상대활성이 47.0% 이상을 선정 기준으로 적용하였다. Specifically, the Ab 4-16 evasion rate of mutated ADAMTS13 ranged from -29.5% to 33.4%, the Ab 67 evasion rate ranged from -24.4% to 30.5%, and the relative activity ranged from 62.7% to 128.9%. The range is shown (Table 4). As a result of applying the normal distribution using the three-sigma rule, the Ab 4-16 evasion rate ranged from -34.1% to 38.5%, the Ab 67 evasion rate ranged from -38.5% to 42.3%, and the relative activity ranged from 47.0% to 145.2%. For WT clones, almost all results were expected to fall within this distribution. Therefore, in the selection of variants, based on the maximum value of three-sigma, Ab 4-16 evasion rate of more than 38.5%, Ab 67 evasion rate of more than 42.3%, or relative activity of more than 47.0% were applied as selection criteria.

중화항체 Ab4-16 혹은 Ab67의 회피율 및 상대활성 범위Evasion rate and relative activity range of neutralizing antibody Ab4-16 or Ab67 카테고리category Ab 4-16 회피율Ab 4-16 Evasion Rate Ab 67 회피율Ab 67 Evasion Rate 상대적 활성relative activity 최소값 minimum value -29.5%-29.5% -24.4%-24.4% 62.7%62.7% 최대값maximum value 33.4%33.4% 30.5%30.5% 128.9%128.9% 평균average 2.2%2.2% 1.9%1.9% 96.1%96.1% 표준편차Standard Deviation 12.1%12.1% 13.5%13.5% 16.4%16.4% 평균 - 3표준편차Mean - 3 standard deviations -34.1%-34.1% -38.5%-38.5% 47.0%47.0% 평균 + 3표준편차Mean + 3 standard deviations 38.5%38.5% 42.3%42.3% 145.2%145.2%

ADAMTS13 중화항체를 회피 및 야생형 ADAMTS13 수준 이상의 활성을 갖는 변이체의 선별 Selection of variants that avoid ADAMTS13 neutralizing antibodies and have activity higher than that of wild-type ADAMTS13

WT 클론과 아미노산 변이를 갖는 변이체를 세포에 형질주입한 후, 배양액에 존재하는 단백질의 양을 측정하여 발현 농도가 50 ng/mL 이상인 304개의 변이체에 대해 중화항체 결합력과 활성 어세이를 수행하였다. 아미노산 변이를 갖는 변이체는 WT 클론 대비 중화항체 결합력 혹은 상대활성에 있어 다양한 분포를 갖고 있음을 알 수 있었으며, 이 중 선정 기준을 만족하는 26종의 변이체를 최종 선별하였다. 26종의 변이체 중 18종이 S 도메인에 대한 변이를 지닌 것을 확인하였으며, 특히 S 도메인에 대한 변이를 지닌 변이체 중 13종(1C03, 1G07, 2B01, 2B02, 3B05, 3G04, 5C09, 5G08, 6B12, 7A02, 8C04, 8D01, 8F01)은 Ab 4-16에 대한 회피율이 높았으며 5종(7E01, 7G08, 8C02, 8D01, 8D05)은 높은 상대 활성을 지니는 특성을 보였다(표 5). 6종의 변이체는 D 도메인에 대한 변이를 지니며 이 중 5종(46, 3A06, 4C07, 4E11, 4H07)은 Ab 67에 대한 회피율이 높은 특성을 보였다. 이 밖에 M 도메인에 대한 변이를 지닌 변이체는 6종, C 도메인은 2종, T 도메인은 2종이 확인되었다. 선별한 26종의 변이체에 대하여 3회 반복 실험을 통해 결과의 반복 재현성을 확인하였으며 WT 클론 대비 우수성을 반복 시험에서도 연속적으로 유지하는 변이체 12종을 인 비트로 효력 시험의 대상으로 선정하였다. 12종 변이체 중 1C03, 2B01, 2B02, 3B05, 5C09, 5G08, 7A02 및 8D01은 Ab4-16 항체 회피율이 우수하여 선정하였으며, 4C07, 4E11 그리고 4H07은 Ab67 회피율이 우수하여 선정하였다. 마지막으로 8D05는 우수한 상대 활성에 기반하여 선정되었다. After the WT clone and variants with amino acid mutations were transfected into cells, the amount of protein present in the culture medium was measured, and neutralizing antibody binding and activity assays were performed on 304 variants with an expression concentration of 50 ng/mL or more. It was found that variants with amino acid mutations had a diverse distribution in neutralizing antibody binding ability or relative activity compared to the WT clone, and among these, 26 variants that satisfied the selection criteria were finally selected. It was confirmed that 18 of the 26 variants had mutations in the S domain, and in particular, 13 of the variants had mutations in the S domain (1C03, 1G07, 2B01, 2B02, 3B05, 3G04, 5C09, 5G08, 6B12, 7A02). , 8C04, 8D01, 8F01) had a high evasion rate against Ab 4-16, and five species (7E01, 7G08, 8C02, 8D01, 8D05) showed characteristics of high relative activity (Table 5). Six variants have mutations in the D domain, and five of them (46, 3A06, 4C07, 4E11, 4H07) have a high evasion rate against Ab 67. In addition, six types of variants with mutations in the M domain, two types in the C domain, and two types in the T domain were identified. The reproducibility of the results was confirmed through three repeated experiments for the 26 selected variants, and 12 variants that continuously maintained superiority over the WT clone even in repeated tests were selected as the subject of in vitro efficacy testing. Among the 12 variants, 1C03, 2B01, 2B02, 3B05, 5C09, 5G08, 7A02, and 8D01 were selected because of their excellent Ab4-16 antibody evasion rate, and 4C07, 4E11, and 4H07 were selected because of their excellent Ab67 evasion rate. Finally, 8D05 was selected based on its excellent relative activity.

선정한 12종 변이체에서 추가 중화항체에 대한 회피력을 확인하기 위해서 스크리닝에 이용한 Ab4-16과 Ab67 항체 이외에 Ab4-20, Ab60, Ab61, Ab64 그리고 Ab65 중화항체에 대해서도 회피가 가능한지를 확인하고자 하였다. 12종의 변이체 중에 S 도메인에 아미노산 변이가 존재하는 9종 중 8D05를 제외한 8종의 변이체 1C03, 2B01, 2B02, 3B05, 5C09, 5G08, 7A02, 8D01의 경우 aTTP 환자가 지닌 ADAMTS13 자가항체 서열을 바탕으로 제작된 Ab4-16, Ab4-20에 대한 우수한 회피율을 보였으며, Ab60과 Ab61에 대한 회피력도 우수함을 보여주었다. 반면에 D 도메인에 아미노산 변이가 있는 변이체 4C07, 4E11, 4H07의 경우 Ab67에 대한 회피율이 우수하였다(도 27, 표 6). In order to confirm the evasion ability of the 12 selected variants against additional neutralizing antibodies, we wanted to check whether evasion was possible against Ab4-20, Ab60, Ab61, Ab64, and Ab65 neutralizing antibodies in addition to the Ab4-16 and Ab67 antibodies used in screening. Among the 12 variants, 8 variants 1C03, 2B01, 2B02, 3B05, 5C09, 5G08, 7A02, and 8D01, excluding 8D05, out of 9 with amino acid mutations in the S domain, were based on the ADAMTS13 autoantibody sequence from aTTP patient. It showed excellent evasion rate against Ab4-16 and Ab4-20 produced by , and also showed excellent evasion ability against Ab60 and Ab61. On the other hand, variants 4C07, 4E11, and 4H07 with amino acid mutations in the D domain had excellent evasion rates against Ab67 (Figure 27, Table 6).

Ab4-16 및 Ab67 중화항체 회피력 혹은 상대활성이 우수한 26종 변이체 선정Selection of 26 variants with excellent Ab4-16 and Ab67 neutralizing antibody evasion or relative activity 변이체 IDVariant ID 돌연변이
적용 도메인
mutation
Applicable domain
변이 아미노산 잔기variant amino acid residues Ab4-16 항체의 회피율 Evasion rate of Ab4-16 antibody Ab67 항체의 회피율 Evasion rate of Ab67 antibody 상대적 활성relative activity
4646 M,DM,D L85F
P317H
L85F
P317H
46.30%46.30% 53.90%53.90% 66.80%66.80%
1C031C03 SS S612YS612Y 48.00%48.00% 10.40%10.40% 104.60%104.60% 1G071G07 M,C,SM,C,S V282A
A465D
D672V
V282A
A465D
D672V
41.40%41.40% 57.90%57.90% 63.80%63.80%
2B012B01 SS D635VD635V 87.40%87.40% 5.40%5.40% 62.20%62.20% 2B022B02 C,SC, S R452I
S612Y
R452I
S612Y
69.80%69.80% 15.30%15.30% 88.80%88.80%
3A063A06 M,D,TM,D,T R278I
A334T
D427N
R278I
A334T
D427N
42.60%42.60% 58.50%58.50% 62.90%62.90%
3B053B05 SS P618SP618S 66.00%66.00% 48.40%48.40% 71.20%71.20% 3E013E01 MM T135IT135I 52.30%52.30% 36.00%36.00% 60.00%60.00% 3G043G04 M,SM, S V126M
A567S
E651D
V126M
A567S
E651D
42.00%42.00% 29.40%29.40% 103.50%103.50%
3H123H12 TT N413DN413D -69.00%-69.00% -104.60%-104.60% 162.40%162.40% 4C074C07 DD A334VA334V -6.60%-6.60% 72.30%72.30% 153.10%153.10% 4E114E11 DD A314TA314T 10.30%10.30% 96.40%96.40% 71.90%71.90% 4H034H03 M, DM,D F93V
K364R
E376D
F93V
K364R
E376D
40.30%40.30% 37.60%37.60% 65.70%65.70%
4H074H07 DD N308KN308K 30.20%30.20% 64.60%64.60% 106.40%106.40% 5C095C09 SS S612FS612F 60.90%60.90% -10.50%-10.50% 88.50%88.50% 5G085G08 SS Q656HQ656H 41.40%41.40% 26.00%26.00% 91.90%91.90% 6B126B12 SS G607RG607R 43.90%43.90% -101.60%-101.60% 93.80%93.80% 7A027A02 SS S612F
G624D
S612F
G624D
57.00%57.00% -80.50%-80.50% 128.50%128.50%
7E017E01 SS R589QR589Q -36.60%-36.60% -89.70%-89.70% 149.90%149.90% 7G087G08 SS Q650H
Q656R
Q650H
Q656R
-25.20%-25.20% -47.60%-47.60% 160.70%160.70%
8C028C02 SS I643FI643F -19.20%-19.20% -50.90%-50.90% 168.10%168.10% 8C048C04 SS I585N
Y658H
I585N
Y658H
51.30%51.30% 34.80%34.80% 69.00%69.00%
8C128C12 SS V630L
D654G
E664N
V630L
D654G
E664N
-12.00%-12.00% 73.20%73.20% 48.10%48.10%
8D018D01 SS R589Q
K608M
M609L
G624C
I655V
R589Q
K608M
M609L
G624C
I655V
85.10%85.10% -78.30%-78.30% 193.60%193.60%
8D058D05 SS P578LP578L -1.20%-1.20% -5.70%-5.70% 172.30%172.30% 8F018F01 SS I585MI585M 45.20%45.20% 34.40%34.40% 99.40%99.40%

선별된 12종의 변이체에서 단일 중화항체의 회피력 및 상대 활성 확인 Confirmation of evasion and relative activity of single neutralizing antibodies in 12 selected variants 변이체 IDVariant ID 변이 위치mutation location 중화항체 회피율 (%)Neutralizing antibody evasion rate (%) 상대적활성relative activity Ab4-16Ab4-16 Ab4-20Ab4-20 Ab60Ab60 Ab61Ab61 Ab64Ab64 Ab65Ab65 Ab67Ab67 1C031C03 S612YS612Y 57.5%57.5% 59.4%59.4% 97.2%97.2% 94.7%94.7% 5.2%5.2% -11.0%-11.0% 15.1%15.1% 103.7%103.7% 2B012B01 D635VD635V 82.9%82.9% 88.6%88.6% 92.4%92.4% 97.4%97.4% 96.3%96.3% 8.1%8.1% 7.9%7.9% 66.8%66.8% 2B022B02 R452I
S612Y
R452I
S612Y
65.4%65.4% 61.1%61.1% 97.3%97.3% 95.5%95.5% 0.9%0.9% -15.0%-15.0% 15.1%15.1% 112.6%112.6%
3B053B05 P618SP618S 51.3%51.3% -6.5%-6.5% 24.9%24.9% 39.4%39.4% 19.4%19.4% -63.8%-63.8% 37.4%37.4% 77.3%77.3% 4C074C07 A334VA334V 4.2%4.2% -5.0%-5.0% -3.3%-3.3% -6.9%-6.9% -2.2%-2.2% -4.7%-4.7% 78.5%78.5% 152.2%152.2% 4E114E11 A314TA314T 16.6%16.6% -1.3%-1.3% 2.7%2.7% 3.2%3.2% 5.4%5.4% -0.8%-0.8% 98.9%98.9% 78.3%78.3% 4H074H07 N308KN308K 27.9%27.9% 1.5%1.5% 11.0%11.0% 16.4%16.4% 17.0%17.0% 12.8%12.8% 61.3%61.3% 94.7%94.7% 5C095C09 S612FS612F 64.6%64.6% 54.7%54.7% 97.3%97.3% 95.2%95.2% 7.8%7.8% -1.6%-1.6% 11.8%11.8% 104.8%104.8% 5G085G08 Q656HQ656H 47.0%47.0% 7.2%7.2% 32.1%32.1% 46.2%46.2% 27.4%27.4% -51.4%-51.4% 30.3%30.3% 95.9%95.9% 7A027A02 S612F
G624D
S612F
G624D
57.1%57.1% 55.4%55.4% 97.6%97.6% 95.5%95.5% 1.9%1.9% -26.2%-26.2% -12.9%-12.9% 125.3%125.3%
8D018D01 R589Q
K608M
M609L
G624C
I655V
R589Q
K608M
M609L
G624C
I655V
90.1%90.1% 98.5%98.5% 95.2%95.2% 94.1%94.1% 20.0%20.0% -95.9%-95.9% 7.3%7.3% 127.0%127.0%
8D058D05 P578LP578L -9.3%-9.3% -43.1%-43.1% 3.2%3.2% 15.9%15.9% -0.9%-0.9% -116.4%-116.4% 11.5%11.5% 154.7%154.7%

한편, 구조-기능적 연구에서 ADAMTS13의 총 14개의 도메인 중에 C-말단의 TSP-2부터 CUB2 도메인이 제거된 MDTCS 도메인이 ADAMTS13와 유사한 메탈로프로테아제 기능을 가지고 있어 VWF 절단 가능함이 보고 되었다(Shelat et al., 2005). 이는 전장 ADAMTS13이 아닌 MDTCS 절편만으로도 TTP 질환 치료제로써 기능을 할 가능성을 시사하며 말단이 제거(truncated)된 형태로서 C-말단 부분에 결합하는 환자 혈장에 존재하는 중화항체를 회피할 수 있다는 것을 의미한다. Meanwhile, in a structural-functional study, it was reported that among the 14 domains of ADAMTS13, the MDTCS domain with the C-terminal TSP-2 to CUB2 domains removed has a metalloprotease function similar to ADAMTS13 and is capable of cleaving VWF (Shelat et al. ., 2005). This suggests that the MDTCS fragment alone, rather than the full-length ADAMTS13, may function as a treatment for TTP disease, and that it can avoid neutralizing antibodies present in patient plasma that bind to the C-terminal portion in a truncated form. .

이에, 선정된 12종의 변이체를 MDTCS로 절편화하고, 이중 선별된 변이 아미노산 잔기를 조합하여 2개의 아미노산 변이를 가지는 DM1, DM2 변이체를 추가로 제작하였다. 앞서 언급한 방법으로 세포에서 발현한 배양액과 정제액을 이용하여 단일 혹은 혼합 중화항체 회피율과 상대 활성을 측정하여 최종 후보물질을 선별하고자 하였다. Accordingly, the 12 selected variants were fragmented with MDTCS, and DM1 and DM2 variants with two amino acid mutations were additionally created by combining the selected mutant amino acid residues. We attempted to select final candidates by measuring the evasion rate and relative activity of single or mixed neutralizing antibodies using culture and purification solutions expressed in cells using the previously mentioned method.

배양액을 이용한 단일 중화항체 8종의 결합 회피율과 상대 활성을 측정한 결과, 2B01, 3B05, 4H07, 5G08, 8D05 및 DM1의 경우 모든 중화항체를 유사한 수준으로 회피하였다(도 28, 표 7). 1C03, 2B02, 5C09, 7A02, 8D01 및 DM2의 경우 3-01과 Ab60에 대한 우수한 결합 회피율을 보였다. 6종의 후보는 모두 S 도메인에 아미노산 변이를 가지고 있으며, 8D01를 제외하고는 공통적으로 612번째 아미노산에 변이를 가지고 있다. 4E11과 DM2의 경우 Ab67에 대한 결합 회피율이 우수하였으며, 모두 D 도메인인 314번째 아미노산에 변이를 가지고 있다. 상대 활성의 경우 DM1이 57.9%로 가장 낮았으며 1C03이 133.1%로 가장 높았다. 위의 2종을 제외한 모든 후보는 78.2 - 125.1%의 상대활성을 보여 MDTCS-Fc 대조군과 유사한 활성을 보였다(표 7). 9종 중화항체(Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab66, Ab67)를 동일 비율로 혼합한 조건에서 대조군인 MDTCS-Fc 대비 4C07과 5C09를 제외한 12종의 후보 변이체의 회피력을 확인하기 위해 혼합 중화항체 7.5 nM과 각 변이체 발현 배양액 4nM를 혼합한 후, 상온에서 1시간 동안 반응시켜 잔존활성을 측정하였다. MDTCS-Fc의 경우 3.5%의 잔존활성을 유지함을 보였고, 3B05, 4E11, 4H07, 5G08 그리고 8D05는 1.24 - 2.42%의 잔존활성을 가지는 것으로 확인되어 MDTCS-Fc 대비 잔존활성이 낮음을 보여주었다(도 29). 반면에 1C03, 2B01, 2B02, 7A02, 8D01, DM1 및 DM2의 경우 7.69 - 18.81%로 잔존활성이 유지되어 MDTCS-Fc 대비 혼합 중화항체에 의한 회피력이 우수함을 확인할 수 있었다(도 29). As a result of measuring the binding evasion rate and relative activity of eight types of single neutralizing antibodies using culture medium, 2B01, 3B05, 4H07, 5G08, 8D05, and DM1 evaded all neutralizing antibodies at a similar level (Figure 28, Table 7). 1C03, 2B02, 5C09, 7A02, 8D01, and DM2 showed excellent binding avoidance rates for 3-01 and Ab60. All six candidates have amino acid mutations in the S domain, and except for 8D01, they have a mutation at the 612th amino acid in common. In the case of 4E11 and DM2, the binding evasion rate against Ab67 was excellent, and both had mutations at amino acid 314 of the D domain. In terms of relative activity, DM1 had the lowest at 57.9% and 1C03 had the highest at 133.1%. All candidates except the above two showed relative activities of 78.2 - 125.1%, similar to the MDTCS-Fc control group (Table 7). Under conditions where 9 types of neutralizing antibodies (Ab3-01, Ab4-16, Ab4-20, Ab60, Ab61, Ab64, Ab65, Ab66, Ab67) were mixed in equal proportions, 12 types excluding 4C07 and 5C09 compared to MDTCS-Fc, the control group. To confirm the evasion ability of the candidate variants, 7.5 nM of mixed neutralizing antibodies and 4 nM of each variant expression culture medium were mixed and reacted at room temperature for 1 hour to measure the residual activity. In the case of MDTCS-Fc, it was shown to maintain a residual activity of 3.5%, and 3B05, 4E11, 4H07, 5G08 and 8D05 were confirmed to have a residual activity of 1.24 - 2.42%, showing lower residual activity compared to MDTCS-Fc (Figure 29). On the other hand, in the case of 1C03, 2B01, 2B02, 7A02, 8D01, DM1 and DM2, the residual activity was maintained at 7.69 - 18.81%, confirming that the evasion by mixed neutralizing antibodies was superior to MDTCS-Fc (Figure 29).

정제액을 이용한 후보물질 변이체의 중화항체 회피력을 확인하기 위하여 Phytip system(protein A resin)을 이용하여 각 배양액에서 단백질 정제를 진행하고, 수득된 정제액을 이용하여 단일 중화항체의 회피율을 확인한 결과, 대부분의 변이체가 배양액 상태에서 평가한 결과와 경향성이 유사하였다(도 30). In order to confirm the neutralizing antibody evasion ability of the candidate variant using purification solution, protein purification was performed from each culture medium using the Phytip system (protein A resin), and the evasion rate of a single neutralizing antibody was confirmed using the obtained purification solution. Most variants had similar trends to the results evaluated in culture (Figure 30).

2B01 5G08, 8D05 그리고 DM1 변이체는 8종 모든 중화항체에 대해 24.6% 이상 중화항체를 회피함을 확인하였고, 1C03, 2B02, 7A02, 8D01 그리고 DM2의 경우는 배양액 결과와 유사하게 3-01과 Ab60에 대한 우수한 결합 회피율을 보였다. 4E11과 DM2의 경우는 배양액 결과와 동일하게 Ab67에 대한 결합 회피율이 우수함을 확인하였다. 각 변이체의 상대 활성은 도 30 및 표 8에 나타내었다. 혼합 중화항체 조건에서의 잔존활성 측정 결과, MDTCS-Fc는 3.76% 유지되는 것을 확인하였으며, 3B05, 4E11, 4H07 그리고 8D05 변이체는 2.05 - 3.50%으로 MDTCS-Fc 대비 활성이 더 많이 억제된 것을 확인하였다. 반면에 1C03, 2B01, 2B02, 5G08, 7A02, 8D01, DM1 그리고 DM2의 경우 6.34-12.8%의 잔존활성이 유지되었으며, 이는 MDTCS-Fc 대비 혼합 중화항체 회피력이 우수함을 보였다(도 31).It was confirmed that 2B01 5G08, 8D05 and DM1 variants evaded neutralizing antibodies by more than 24.6% for all eight types of neutralizing antibodies, and in the case of 1C03, 2B02, 7A02, 8D01 and DM2, similar to the culture results, 3-01 and Ab60 showed excellent binding avoidance rate. In the case of 4E11 and DM2, it was confirmed that the binding evasion rate for Ab67 was excellent, consistent with the results of the culture medium. The relative activity of each variant is shown in Figure 30 and Table 8. As a result of measuring the residual activity under mixed neutralizing antibody conditions, it was confirmed that 3.76% of MDTCS-Fc was maintained, and the activity of 3B05, 4E11, 4H07 and 8D05 variants was 2.05 - 3.50%, which was confirmed to be more inhibited compared to MDTCS-Fc. . On the other hand, in the case of 1C03, 2B01, 2B02, 5G08, 7A02, 8D01, DM1 and DM2, residual activity of 6.34-12.8% was maintained, which showed superior mixed neutralizing antibody evasion compared to MDTCS-Fc (Figure 31).

이상의 결과를 바탕으로 상대활성 또는 혼합 중화항체 회피율을 종합적으로 고려하여 1C03, 2B02, 7A02, DM2와 612번 아미노산 변이를 지니고 있어 혼합 중화항체 회피력이 우수할 것으로 판단되는 5C09를 추가 연구를 위한 5종의 후보로 선정하였다. Based on the above results, considering the relative activity or mixed neutralizing antibody evasion rate comprehensively, 1C03, 2B02, 7A02, DM2, and 5C09, which is believed to have excellent ability to evade mixed neutralizing antibodies due to its amino acid mutation at 612, were selected as five types for further research. was selected as a candidate.

14종 변이체를 포함한 MDTCS 절편의 단일 중화항체 회피력 및 상대활성 확인(배양액 조건)Confirmation of single neutralizing antibody evasion and relative activity of MDTCS fragments containing 14 variants (culture medium conditions) 변이체IDMutant ID 변이transition
위치location
중화항체 회피율 (%)Neutralizing antibody evasion rate (%) 상대적relative
활성activation
3-013-01 4-164-16 4-204-20 Ab60Ab60 Ab61Ab61 Ab64Ab64 Ab65Ab65 Ab67Ab67 1C031C03 S612YS612Y 100.0%100.0% 2.0%2.0% -11.0%-11.0% 91.3%91.3% 3.9%3.9% -5.9%-5.9% -16.9%-16.9% 1.1%1.1% 133.1%133.1% 2B012B01 D635VD635V 25.1%25.1% 28.2%28.2% 38.1%38.1% 38.4%38.4% 36.2%36.2% 26.8%26.8% 11.0%11.0% 24.9%24.9% 78.2%78.2% 2B022B02 R452I
S612Y
R452I
S612Y
99.0%99.0% 1.2%1.2% 4.2%4.2% 93.5%93.5% 2.9%2.9% -2.1%-2.1% -12.9%-12.9% 3.1%3.1% 116.5%116.5%
3B053B05 P618SP618S 35.3%35.3% 18.9%18.9% 25.5%25.5% 23.6%23.6% 19.1%19.1% 21.3%21.3% 17.9%17.9% 17.8%17.8% 92.7%92.7% 4C074C07 A334VA334V -5.9%-5.9% -11.2%-11.2% -9.6%-9.6% -11.3%-11.3% -3.3%-3.3% -12.4%-12.4% -14.6%-14.6% 14.5%14.5% 118.2%118.2% 4E114E11 A314TA314T 15.3%15.3% 7.3%7.3% 11.9%11.9% 8.1%8.1% 9.0%9.0% 9.7%9.7% 8.8%8.8% 83.5%83.5% 89.7%89.7% 4H074H07 N308KN308K 36.1%36.1% 20.4%20.4% 25.8%25.8% 19.5%19.5% 22.5%22.5% 25.1%25.1% 21.0%21.0% 53.8%53.8% 93.6%93.6% 5C095C09 S612FS612F 100.0%100.0% 15.7%15.7% 18.7%18.7% 100.0%100.0% 12.4%12.4% 13.0%13.0% 0.5%0.5% 8.5%8.5% 108.2%108.2% 5G085G08 Q656HQ656H 48.7%48.7% 38.3%38.3% 41.2%41.2% 44.2%44.2% 41.9%41.9% 37.2%37.2% 27.8%27.8% 47.6%47.6% 85.4%85.4% 7A027A02 S612F
G624D
S612F
G624D
100.0%100.0% 7.5%7.5% 17.4%17.4% 97.5%97.5% 11.2%11.2% 7.2%7.2% -7.2%-7.2% 12.3%12.3% 125.1%125.1%
8D018D01 R589Q
K608M
M609L
G624C
I655V
R589Q
K608M
M609L
G624C
I655V
100.0%100.0% 38.9%38.9% 49.1%49.1% 71.2%71.2% 31.6%31.6% 36.3%36.3% 18.1%18.1% 41.8%41.8% 78.4%78.4%
8D058D05 P578LP578L 39.6%39.6% 29.9%29.9% 38.3%38.3% 32.6%32.6% 32.4%32.4% 32.5%32.5% 21.5%21.5% 43.7%43.7% 82.1%82.1% DM1DM1 A314T
D635V
A314T
D635V
52.3%52.3% 48.2%48.2% 56.9%56.9% 60.6%60.6% 54.7%54.7% 51.6%51.6% 38.1%38.1% 86.8%86.8% 57.9%57.9%
DM2DM2 A314TS612FA314TS612F 100.0%100.0% 12.0%12.0% 22.0%22.0% 95.1%95.1% 21.6%21.6% 13.0%13.0% 7.3%7.3% 84.8%84.8% 97.7%97.7%

14종 변이체를 포함한 MDTCS 절편의 단일 중화항체 회피력 및 상대활성 확인(정제액 조건)Confirmation of single neutralizing antibody evasion and relative activity of MDTCS fragments containing 14 variants (purified solution conditions) 변이체 IDVariant ID 변이
위치
transition
location
중화항체 회피율 (%)Neutralizing antibody evasion rate (%) 상대적
활성
relative
activation
3-013-01 4-164-16 4-204-20 Ab60Ab60 Ab61Ab61 Ab64Ab64 Ab65Ab65 Ab67Ab67 1C031C03 S612YS612Y 100.0%100.0% 15.6%15.6% 21.1%21.1% 100.0%100.0% 16.3%16.3% 7.3%7.3% -7.1%-7.1% 10.9%10.9% 81.4%81.4% 2B012B01 D635VD635V 46.0%46.0% 37.8%37.8% 49.6%49.6% 65.5%65.5% 43.7%43.7% 49.7%49.7% 28.5%28.5% 28.2%28.2% 56.3%56.3% 2B022B02 R452IR452I 100.0%100.0% 8.4%8.4% 15.0%15.0% 100.0%100.0% 10.3%10.3% 4.4%4.4% -9.0%-9.0% 0.2%0.2% 91.1%91.1% S612YS612Y 3B053B05 P618SP618S 25.5%25.5% 11.9%11.9% 13.3%13.3% 14.9%14.9% 10.5%10.5% 13.8%13.8% 7.9%7.9% 10.2%10.2% 83.7%83.7% 4E114E11 A314TA314T 19.6%19.6% 6.2%6.2% 11.5%11.5% 15.7%15.7% 1.8%1.8% 8.8%8.8% 12.6%12.6% 84.4%84.4% 77.5%77.5% 4H074H07 N308KN308K 32.6%32.6% 12.80%12.80% 16.8%16.8% 29.0%29.0% 9.4%9.4% 16.9%16.9% 17.0%17.0% 47.1%47.1% 77.5%77.5% 5G085G08 Q656HQ656H 89.6%89.6% 64.5%64.5% 70.2%70.2% 81.9%81.9% 57.90%57.90% 68.9%68.9% 59.0%59.0% 37.7%37.7% 18.3%18.3% 7A027A02 S612F
G624D
S612F
G624D
100.0%100.0% 10.4%10.4% 12.8%12.8% 100.0%100.0% 8.5%8.5% 3.4%3.4% -7.3%-7.3% 14.4%14.4% 97.8%97.8%
8D018D01 R589Q
K608M
M609L
G64C
I655V
R589Q
K608M
M609L
G64C
I655V
100.0%100.0% 29.5%29.5% 48.2%48.2% 91.7%91.7% 20.5%20.5% 17.1%17.1% 14.2%14.2% 31.5%31.5% 65.1%65.1%
8D058D05 P578LP578L 51.0%51.0% 27.4%27.4% 35.1%35.1% 49.5%49.5% 27.2%27.2% 33.8%33.8% 29.9%29.9% 46.0%46.0% 56.3%56.3% DM1DM1 A314T
D635V
A314T
D635V
50.2%50.2% 34.0%34.0% 54.0%54.0% 66.50%66.50% 45.3%45.3% 52.9%52.9% 24.6%24.6% 85.1%85.1% 50.3%50.3%
DM2DM2 A314T
S612F
A314T
S612F
100.0%100.0% 16.2%16.2% 24.2%24.2% 100.0%100.0% 24.0%24.0% 11.5%11.5% 11.0%11.0% 86.5%86.5% 73.1%73.1%

최종 선정된 5종 MDTCS 변이체 절편에 IgG1-YTE를 접합한 DNA를 제작하여 세포에서 발현한 배양액에서 단일 중화항체 8종의 결합 회피력과 상대활성을 측정하였다. 그 결과, 1C03, 2B02, 5C09 및 7A02는 Ab3-01, Ab60에 대한 우수한 결합 회피율을 보였으며, DM2의 경우, Ab3-01, Ab60 및 Ab67에 대한 결합 회피율이 우수함을 확인하였다(도 33). 상대활성의 경우, 98.6-127.7%로 MDTCS-IgG1-YTE와 유사한 활성을 보였다(도 33). 9종 중화항체를 동일 비율로 혼합한 조건에서 대조군인 MDTCS-IgG1-YTE 대비 5종 변이체 물질에서 회피력을 확인하기 위해 혼합 중화항체 (9종)와 각 변이체 발현 배양액을 혼합한 후, 상온에서 1 시간 동안 반응하여 잔존활성을 측정하였다. MDTCS-IgG1-YTE의 경우 5.5%의 잔존활성을 유지함을 보였고, 5종 물질의 경우는 8.18 - 13.42%로 잔존활성이 유지되어 대조군 대비 중화항체에 의한 회피력이 우수함을 확인하였다(도 34). DNA was prepared by conjugating IgG1-YTE to the five finally selected MDTCS variant fragments, and the binding evasion and relative activity of eight types of single neutralizing antibodies were measured in culture medium expressed in cells. As a result, 1C03, 2B02, 5C09, and 7A02 showed excellent binding evasion rates for Ab3-01 and Ab60, and in the case of DM2, it was confirmed that the binding evasion rates were excellent for Ab3-01, Ab60, and Ab67 (FIG. 33). In the case of relative activity, it showed similar activity to MDTCS-IgG1-YTE at 98.6-127.7% (Figure 33). In order to check the evasion ability of 5 types of mutant substances compared to the control group MDTCS-IgG1-YTE under the condition of mixing 9 types of neutralizing antibodies in equal proportions, mixed neutralizing antibodies (9 types) and each variant expression culture were mixed, and then 1 ml at room temperature. Residual activity was measured by reacting over time. In the case of MDTCS-IgG1-YTE, the residual activity was maintained at 5.5%, and in the case of the five substances, the residual activity was maintained at 8.18 - 13.42%, confirming that the evasion by neutralizing antibodies was superior to the control group (Figure 34).

위의 5종 MDTCS 변이체 절편에 IgG1-YTE를 접합한 발현 배양액에서 Phytip system(protein A resin)을 이용하여 단백질을 정제하여 정제액에서 혼합 중화항체의 잔존활성과 비역가를 측정하였다. 해당 정제액의 농도는 Fc ELISA를 통해 확인하였고, 은 염색을 통해 목적 단백질이 용출된 것을 확인하였다. 혼합 중화항체 조건에서의 잔존활성 측정 결과, MDTCS-IgG1-YTE는 0.4% 유지되는 것을 확인하였으며, 1C03, 2B02, 5C09, 7A02 그리고 DM2는 각각 5.7%, 1.7%, 8.8%, 2.6%, 7.9%의 잔존활성이 유지되는 것으로 나타나 MDTCS-IgG1-YTE 대비 혼합항체 회피력이 우수함을 확인하였다. 비역가 측정결과, 7A02(10,288 IU/mg)를 제외한 4종 변이체는 대조군(18,030 IU/mg)과 유사한 19,091-22,379 IU/mg의 비역가를 보임을 확인하였다(도 35). 결과적으로 5종 변이체 절편의 IgG1-YTE 접합 물질은 대조군 대비 혼합 중화항체에서의 회피력이 우수하며, 7A02를 제외한 4종 변이체에서는 대조군과 유사한 수준의 비역가를 가지고 있음을 확인하였다. Proteins were purified from the expression culture medium in which IgG1-YTE was conjugated to the above five MDTCS variant fragments using the Phytip system (protein A resin), and the residual activity and specific titer of mixed neutralizing antibodies were measured in the purification liquid. The concentration of the purified solution was confirmed through Fc ELISA, and it was confirmed that the target protein was eluted through silver staining. As a result of measuring the residual activity under mixed neutralizing antibody conditions, it was confirmed that MDTCS-IgG1-YTE was maintained at 0.4%, and 1C03, 2B02, 5C09, 7A02, and DM2 were 5.7%, 1.7%, 8.8%, 2.6%, and 7.9%, respectively. It was confirmed that the residual activity was maintained and that the mixed antibody evasion ability was superior to MDTCS-IgG1-YTE. As a result of specific titer measurement, it was confirmed that the four variants, excluding 7A02 (10,288 IU/mg), showed specific titers of 19,091-22,379 IU/mg, similar to the control group (18,030 IU/mg) (FIG. 35). As a result, it was confirmed that the IgG1-YTE conjugate material of the 5 variant fragments had excellent evasion ability against mixed neutralizing antibodies compared to the control group, and that the 4 variants excluding 7A02 had a specific titer similar to that of the control group.

Fc 부착에 의한 MDTCS 절편 변이체의 반감기 증가 여부 평가Evaluating whether the half-life of MDTCS fragment variants is increased by Fc attachment

MDTCS에 부착된 Fc(IgG1-YTE)가 실제로 반감기 증가를 가져올지를 확인하고자 마우스에서 약동학 분석을 수행하였다. 이를 위해 MDTCS 혹은 IgG1-YTE가 부착 되어있는 MDTCS 및 4종 최종 후보(1C03, 5C09, 7A02, DM2) 변이체 절편 단백질을 마우스에 꼬리 정맥 투여한 후 시간 별로 혈장을 확보하였다. 각 물질의 비역가를 기준으로 160 IU/kg가 되도록 투여하였고 활성 어세이를 통하여 각 시간별로 확보한 혈장 내에 잔존하는 물질의 활성을 측정하였다. 확보한 결과는 단순병합법 (naive pooled method)으로 정리하였고, 이를 이용하여 비구획 분석법 (noncompartmental analysis)으로 약동학 분석을 수행하였다. MDTCS의 반감기는 2.898시간, MDTCS-IgG1-YTE는 11.51 시간, 그리고 각 변이체의 경우 5.184 - 9.902 시간으로 측정되었다. 대조군인 MDTCS 대비 IgG1-YTE 접합에 의해 1.79 - 3.97배로 반감기가 연장되었다. 뿐만 아니라, 물질의 생체 평균 체류 시간을 나타내는 MRT(Mean Residence Time) 수치도 IgG1-YTE 접합에 의해 7.189 - 11.67시간으로 3.743시간 대비 증가된 체류 시간을 나타내었다(표 9, 도 32). 결과적으로 IgG1-YTE 융합체가 혈중 반감기 및 생체 내 평균 지속시간을 통한 활성을 유지하는데 효과적임을 확인하였다. Pharmacokinetic analysis was performed in mice to confirm whether Fc (IgG1-YTE) attached to MDTCS would actually increase the half-life. For this purpose, MDTCS or MDTCS with IgG1-YTE attached and the four final candidate (1C03, 5C09, 7A02, DM2) mutant fragment proteins were administered to mice through the tail vein, and plasma was obtained over time. Based on the specific titer of each substance, it was administered to reach 160 IU/kg, and the activity of substances remaining in the plasma obtained at each time was measured through an activity assay. The obtained results were summarized using the naive pooled method, and pharmacokinetic analysis was performed using noncompartmental analysis. The half-life of MDTCS was measured at 2.898 hours, MDTCS-IgG1-YTE at 11.51 hours, and for each variant between 5.184 and 9.902 hours. The half-life was extended by 1.79 to 3.97 times by IgG1-YTE conjugation compared to the control MDTCS. In addition, the MRT (Mean Residence Time) value, which represents the average residence time of the material in the body, also showed an increased residence time of 7.189 - 11.67 hours compared to 3.743 hours due to IgG1-YTE conjugation (Table 9, Figure 32). As a result, it was confirmed that the IgG1-YTE fusion was effective in maintaining activity through blood half-life and average duration in vivo.

약동학 결과 Pharmacokinetic results 후보물질candidate substance PK 분석 파라미터PK analysis parameters t1/2,terminal (hr)t 1/2 ,terminal (hr) AUCInf (IU*hr/mL)AUC Inf (IU*hr/mL) MRT (hr)MRT (hrs) MDTCSMDTCS 2.8982.898 5.4675.467 3.7433.743 MDTCS-IgG1-YTEMDTCS-IgG1-YTE 11.5111.51 16.8916.89 11.6711.67 1C03-IgG1-YTE1C03-IgG1-YTE 6.0876.087 12.3312.33 8.6958.695 5C09-IgG1-YTE5C09-IgG1-YTE 5.1845.184 12.0612.06 7.9827.982 7A02-IgG1-YTE7A02-IgG1-YTE 9.9029.902 14.4914.49 10.3510.35 DM2-IgG1-YTEDM2-IgG1-YTE 5.9865.986 11.3911.39 7.1897.189

이상 살펴본 바와 같이, 본 발명자들은 MDTCS 부분 혹은 S 도메인과 결합하는 ADAMTS13 중화항체를 회피하거나 혹은 야생형 ADAMTS13 이상의 활성을 보이는 26종의 신규 변이체를 발굴하였다. 이 중 중화항체 9종에 대하여 가장 회피력이 우수하거나 비교 활성이 현저히 우수한 12종을 선정하여 C-말단과 결합하는 중화항체를 효율적으로 회피하면서 vWF 절단에 필수적인 MDTCS 절편을 제작함으로써 aTTP 환자의 D, C 혹은 S 도메인과 결합하는 자가항체 회피율이 크게 향상된 변이체를 동정하였다. 본 발명의 변이체는 IgG1-YTE 접합을 통하여 혈중 반감기를 증가시킴으로써 안정성 및 생리 활성의 지속성이 개선된, 효과적인 약리성분으로 유용하게 이용될 수 있다. As discussed above, the present inventors discovered 26 new variants that evade ADAMTS13 neutralizing antibodies that bind to the MDTCS portion or S domain or exhibit activity higher than that of wild-type ADAMTS13. Among these, 12 types with the best evasion or significantly superior comparative activity against 9 types of neutralizing antibodies were selected to produce MDTCS fragments essential for vWF cleavage while efficiently evading neutralizing antibodies that bind to the C-terminus, thereby producing D, A variant with a significantly improved evasion rate of autoantibodies binding to the C or S domain was identified. The variant of the present invention can be usefully used as an effective pharmacological ingredient with improved stability and persistence of physiological activity by increasing the blood half-life through IgG1-YTE conjugation.

aTTP mimic 질환 마우스 모델에서 변이체 PoC 확인 결과Results of variant PoC confirmation in aTTP mimic disease mouse model

확립된 aTTP-mimic 마우스 모델에서 최종 후보물질 선별을 위해 대조물질 (MDTCS-IgG1-YTE) 혹은 선정된 5종 변이체 후보물질(1C03-IgG1-YTE, 2B02-IgG1-YTE, 5C09-IgG1-YTE, 7A02-IgG1-YTE, DM2-IgG1-YTE) 투여 후, 중화항체 회피율을 평가하였다(도 36a). 5종 변이체 중 DM2-IgG1-YTE가 5,000 혹은 7,000 IU/kg의 모든 투여 용량에서 가장 높은 인간 ADAMTS13 잔존 활성을 보였다(도 36b). 가장 우수한 중화항체 회피율을 보인 DM2-IgG1-YTE 물질을 최종 선정하여 농도별로 투여하여 인간 ADAMTS13 잔존활성 유지력과 임상학적 증상의 완화 정도를 확인한 결과(도 37a), DM2 용량이 증가할 수록 임상 증상의 완화 정도가 증가하는 것을 확인할 수 있었으며, 7000 IU/kg 투여 그룹에서 MDTCS-IgG1-YTE 대비 DM2-IgG1-YTE 투여에 의해 혈소판과 LDH의 수치의 개선이 상대적으로 높음을 관찰할 수 있었다(도 37b). 혈소판 및 LDH 수치의 개선과 일치하게 인간 ADAMTS13 활성 검사 결과, 대조물질 또는 후보물질 투여 용량과 비례하는 잔존 활성 증가를 관찰할 수 있었다(도 37b). 임상 증상 관찰 결과, aTTP-mimic 마우스 모델에서 나타나는 폐사나 혈뇨가 대조물질 또는 후보물질의 투여에 의해 완화되는 경향을 확인할 수 있었다. 특히 DM2-IgG1-YTE 처리군의 경우 모든 투여 용량에서 사망 개체 없었으며, 7000 IU/kg 이상 투여 시 혈뇨 증상을 보인 개체를 관찰할 수 없었다 (도 37c). 7000 IU/kg 투여 시 평균 잔존 활성은 DM2-IgG1-YTE 0.32 IU/mL로 MDTCS-IgG1-YTE 0.03 IU/mL 대비 9.6 배 더 높았으며, 앞선 임상 증상 관찰 결과의 차이는 이러한 잔존 활성 차이에서 기인한 것으로 판단되었다. 일반 혈액검사, 임상화학검사 및 임상증상의 관찰 결과, MDTCS-IgG1-YTE와 DM2-IgG1-YTE의 투여는 aTTP-mimic 마우스 모델에서 나타나는 aTTP 임상 증상을 개선시키는 경향을 보였고, 이를 통해 인 비보 PoC를 확인할 수 있었다. 특히 7000 IU/kg 투여 시, DM2-IgG1-YTE가 MDTCS-IgG1-YTE 대비 그 개선 효과가 우수함을 확인하였다. To select the final candidate in the established aTTP-mimic mouse model, a control substance (MDTCS-IgG1-YTE) or five selected variant candidates (1C03-IgG1-YTE, 2B02-IgG1-YTE, 5C09-IgG1-YTE, After administration (7A02-IgG1-YTE, DM2-IgG1-YTE), the neutralizing antibody evasion rate was evaluated (Figure 36a). Among the five variants, DM2-IgG1-YTE showed the highest human ADAMTS13 residual activity at all doses of 5,000 or 7,000 IU/kg (Figure 36b). The DM2-IgG1-YTE material that showed the best neutralizing antibody evasion rate was finally selected and administered at different concentrations to confirm the ability to maintain human ADAMTS13 residual activity and the degree of relief of clinical symptoms (Figure 37a). As the DM2 dose increased, clinical symptoms decreased. It was confirmed that the degree of relief increased, and in the 7000 IU/kg administration group, a relatively high improvement in platelet and LDH levels was observed by administration of DM2-IgG1-YTE compared to MDTCS-IgG1-YTE (Figure 37b) ). Consistent with the improvement in platelet and LDH levels, the results of the human ADAMTS13 activity test showed an increase in residual activity proportional to the administered dose of the control or candidate substance (FIG. 37b). As a result of observing clinical symptoms, it was confirmed that death and hematuria in the aTTP-mimic mouse model tended to be alleviated by administration of the control or candidate substances. In particular, in the DM2-IgG1-YTE treatment group, there were no deaths at all doses, and no subjects showing hematuria were observed when administered at more than 7000 IU/kg (FIG. 37c). When 7000 IU/kg was administered, the average residual activity was 0.32 IU/mL for DM2-IgG1-YTE, which was 9.6 times higher than 0.03 IU/mL for MDTCS-IgG1-YTE, and the difference in the results observed in the preceding clinical symptoms was due to this difference in residual activity. It was judged that it was done. As a result of general blood tests, clinical chemistry tests, and observation of clinical symptoms, administration of MDTCS-IgG1-YTE and DM2-IgG1-YTE showed a tendency to improve aTTP clinical symptoms in the aTTP-mimic mouse model, which led to in vivo PoC was able to confirm. In particular, when administered at 7000 IU/kg, it was confirmed that DM2-IgG1-YTE had a superior improvement effect compared to MDTCS-IgG1-YTE.

cTTP 질환 마우스 모델에서 변이체 PoC 확인 결과Results of variant PoC confirmation in cTTP disease mouse model

aTTP mimic 마우스 모델에서 5종 변이체 후보 중 가장 우수한 효력을 보였던 DM2-IgG1-YTE를 이용하여 cTTP 마우스 모델에서 TTP 질환에서 보이는 혈액학적 그리고 임상학적 증상의 개선 여부와 인간 ADAMTS13 활성 회복 정도를 확인하였다 (도 38a). DM2-IgG1-YTE의 투여 용량 증가에 따라 혈소판과 LDH 수치의 개선이 농도 의존적으로 일어남을 확인할 수 있었으며, DM2-IgG1-YTE 180, 360 IU/kg 투여군에서 대조군 대비 유의한 혈소판 증가가 관찰되었고, 특히 360 IU/kg 투여군의 경우 정상 수준만큼으로 회복됨을 볼 수 있었다(도 38b). LDH 수치의 경우, 180 IU/kg 투여군에서 대조군과 유사한 수준으로 LDH가 회복됨을 확인하였다(도 38b). ADAMTS13 활성의 경우, DM2-IgG1-YTE 60 IU/kg 투여군부터 평균 0.1 IU/mL이상의 활성을 보였으며 360 IU/kg 투여 용량에서는 평균 1.08 IU/mL의 활성이 측정되었다 (도 38b). 따라서 DM2-IgG1-YTE 변이체가 cTTP 질환 마우스에서 효과적인 임상증상의 개선과 ADAMTS13의 활성을 회복시킴을 알 수 있었다. Using DM2-IgG1-YTE, which showed the best efficacy among the five variant candidates in the aTTP mimic mouse model, the improvement of hematological and clinical symptoms seen in TTP disease and the degree of recovery of human ADAMTS13 activity were confirmed in the cTTP mouse model ( Figure 38a). It was confirmed that improvement in platelet and LDH levels occurred in a concentration-dependent manner as the administered dose of DM2-IgG1-YTE increased, and a significant increase in platelets was observed in the DM2-IgG1-YTE 180 and 360 IU/kg administration groups compared to the control group. In particular, in the 360 IU/kg administered group, recovery to normal levels was seen (Figure 38b). In the case of LDH levels, it was confirmed that LDH was recovered to a level similar to that of the control group in the 180 IU/kg administered group (FIG. 38b). In the case of ADAMTS13 activity, an average of 0.1 IU/mL or more was observed in the DM2-IgG1-YTE 60 IU/kg administered group, and an average of 1.08 IU/mL was measured at the 360 IU/kg administered dose (FIG. 38b). Therefore, it was found that the DM2-IgG1-YTE variant effectively improved clinical symptoms and restored the activity of ADAMTS13 in mice with cTTP disease.

실시예 4: ADAMTS13 단백질 변이체의 최적 용량의 탐색 Example 4: Search for optimal doses of ADAMTS13 protein variants

실험방법 Experiment method

aTTP mimic 마우스 모델에서 GC1126A의 치료적 효력 및 유지력 확인Confirmation of therapeutic efficacy and maintenance of GC1126A in aTTP mimic mouse model

aTTP mimic 마우스 모델은 ADAMTS13 넉-아웃 마우스(ADAMTS13 KO 마우스)에 hADAMTS13 중화항체 9종(h3-01, h4-16, h4-20, mAb60, mAb61, mAb64, mAb65, mAb66, mAb67) 혼합물 0.23 mg/kg를 미정맥으로 투여하고, 15분 후 rh-vWF를 2,000 IU/kg 투여하여 혈전증을 유도함으로써 제작하였다. 본 발명의 재조합 ADAMTS13 변이체(GC1126A)의 치료적 효력 및 효력의 유지 정도를 확인하기 위해 rh-vWF 처리 15분 후, GC1126A 0.08 mg/kg 혹은 제형 완충액(비이클)을 미정맥에 투여하였다. 6시간 혹은 24시간째 700 μL의 혈액을 심장 채혈하였다. 채혈한 혈액 중 300 mL는 전혈로 이용하기 위해 EDTA-2K 튜브(BD Medical, REF365974)에 담아 roller mixing 후 4℃에 보관하였고, 400 μL는 SST(serum separate 튜브) 튜브(BD Medical, REF365967)에 담아 상온에서 30분간 정치 후, 원심분리(3,000 g, 15 min, 4℃)하여 혈청을 분리하였다. 전혈은 혈구분석기(ADVIA 2120i, Siemens)를 이용해 혈소판(Platelet, PLT)등의 일반 혈액검사를 진행하였고, 혈청은 혈액 생화학적 분석기(Hitachi, 7180)를 이용해 젖산 탈수소효소(Lactate Dehydrogenase, LDH)를 측정하였다. 그래프는 평균 및 표준편차를 나타내며 각 군 당 6마리의 마우스를 사용하였다. 비이클 군에서 중화 항체 투여 6시간 혹은 24 시간 후 각각 6마리 중 1마리, WT 군에서 6마리 중 1마리의 사망개체가 발생하였다. GC1126A 투여군과 비이클 군의 경우 중화항체 투여 24시간 후 확보한 샘플에서 각 1개씩 응고가 발생하여, 4-6 개의 데이터로 구성된 각 시험군에 대하여 분석을 수행하였다. WT군 및 비이클 군 6시간 및 24시간째 결과는 2 - 3회 독립적으로 수행한 결과의 개체 수를 합하여 그래프에 반영하였다. The aTTP mimic mouse model is a mixture of 9 types of hADAMTS13 neutralizing antibodies (h3-01, h4-16, h4-20, mAb60, mAb61, mAb64, mAb65, mAb66, mAb67) in ADAMTS13 knock-out mice (ADAMTS13 KO mice) at 0.23 mg/min. kg was administered into the caudal vein, and 15 minutes later, 2,000 IU/kg of rh-vWF was administered to induce thrombosis. To confirm the therapeutic efficacy and degree of maintenance of the recombinant ADAMTS13 variant (GC1126A) of the present invention, 15 minutes after rh-vWF treatment, 0.08 mg/kg of GC1126A or formulation buffer (vehicle) was administered into the caudal vein. 700 μL of blood was collected from the heart at 6 or 24 hours. Of the collected blood, 300 mL was stored at 4°C after roller mixing in an EDTA-2K tube (BD Medical, REF365974) to be used as whole blood, and 400 μL was stored in an SST (serum separate tube) tube (BD Medical, REF365967). After standing at room temperature for 30 minutes, serum was separated by centrifugation (3,000 g, 15 min, 4°C). Whole blood was subjected to general blood tests such as platelets (PLT) using a blood cell analyzer (ADVIA 2120i, Siemens), and serum was tested for lactate dehydrogenase (LDH) using a blood biochemical analyzer (Hitachi, 7180). Measured. The graph represents the mean and standard deviation, and 6 mice were used in each group. In the vehicle group, 1 out of 6 animals died 6 or 24 hours after neutralizing antibody administration, and in the WT group, 1 animal out of 6 died. In the case of the GC1126A administration group and the vehicle group, one coagulation occurred in each sample obtained 24 hours after neutralizing antibody administration, and analysis was performed for each test group consisting of 4-6 pieces of data. The results at 6 hours and 24 hours for the WT group and vehicle group were reflected in the graph by summing the number of results performed independently 2 to 3 times.

aTTP mimic 마우스 모델에서 GC1126A의 치료적 유효용량 범위 확인Confirmation of the therapeutically effective dose range of GC1126A in aTTP mimic mouse model

GC1126A의 치료적 투여에 따른 유효용량 범위를 확인하기 위해 상기 구축된 aTTP mimic 마우스 모델을 이용하였다. 2,000 IU/kg rh-vWF 투여 15 분 후 다양한 용량의 GC1126A 또는 제형 완충액(비이클)을 미정맥에 투여하였다. 분석을 위해 0.23 mg/kg hADMATS13 중화항체 투여 종료시점을 기준으로 6시간 또는 24시간 후에 마취한 마우스 심장으로부터 600μL 이상의 혈액을 채취하여 200μL는 EDTA-2K 튜브에 담고, 400μL는 리튬 헤어핀 튜브(BD Medial, REF365985) 또는 SST 튜브에 소분하였다. 리튬 헤어핀 튜브 또는 SST 튜브에 담은 샘플은 각각 혈장 또는 혈청 분리를 위해 원심분리(2,000g, 20 min, 4℃)하고 상층액만 분리하여 1.5 mL 튜브에 옮겼으며 이는 LDH 항목 분석에 사용했다. EDTA-2K 튜브에 담은 샘플은 CBC 검사를 통해 혈소판 수치를 측정하는데 사용하였다. LDH 분석은 혈장 또는 혈청을 1/10로 희석하여 진행했으며 혈장과 혈청 샘플 사이에 분석 수치 차이가 없음을 확인하였다(데이터 미기재). GC1126A 투여 후 ADAMTS13 잔존활성은 채취한 혈장을 Technozym ADAMTS-13 activity ELISA 킷(Technoclone, cat no. 5450701)을 이용하여 분석하였으며 WT 마우스에서 측정된 값을 100%로 환산하여 상대 잔존활성(%)을 계산하였다. To confirm the effective dose range according to therapeutic administration of GC1126A, the aTTP mimic mouse model constructed above was used. 15 minutes after administration of 2,000 IU/kg rh-vWF, various doses of GC1126A or formulation buffer (vehicle) were administered into the caudal vein. For analysis, more than 600 μL of blood was collected from the anesthetized mouse heart 6 or 24 hours after the end of administration of 0.23 mg/kg hADMATS13 neutralizing antibody, 200 μL was placed in an EDTA-2K tube, and 400 μL was placed in a lithium hairpin tube (BD Medial , REF365985) or aliquoted into SST tubes. Samples contained in lithium hairpin tubes or SST tubes were centrifuged (2,000 g, 20 min, 4°C) to separate plasma or serum, respectively, and only the supernatant was separated and transferred to a 1.5 mL tube, which was used for LDH analysis. Samples contained in EDTA-2K tubes were used to measure platelet counts through CBC testing. LDH analysis was performed by diluting plasma or serum by 1/10, and it was confirmed that there was no difference in analysis values between plasma and serum samples (data not shown). After GC1126A administration, ADAMTS13 residual activity was analyzed in collected plasma using a Technozym ADAMTS-13 activity ELISA kit (Technoclone, cat no. 5450701), and the relative residual activity (%) was calculated by converting the value measured in WT mice to 100%. Calculated.

* 상대 잔존활성(%) = (각 샘플의 ADAMTS13 활성값 / WT 마우스 샘플의 ADAMTS13 활성값) X 100* Relative residual activity (%) = (ADAMTS13 activity value of each sample / ADAMTS13 activity value of WT mouse sample)

ADAMTS13 잔존활성 그래프에서 LLOQ (the lower limit of quantification, 0.31 IU/mL)는 점선으로 표시했다(도 40c). 용량-반응 곡선에서 GC1126A 투여용량과 PLT 수치 또는 ADAMTS13 잔존활성의 관계는 비선형 회귀 추세선으로 확인하였다(도 40c). 그래프는 평균 및 표준편차를 나타내며 군당 5-12 마리의 개체에 대한 분석을 수행했다. 약물 투여 후 6 시간째 채혈하여 분석을 수행한 시험은 2회의 독립적으로 수행한 결과를 종합하였다. In the ADAMTS13 residual activity graph, LLOQ (the lower limit of quantification, 0.31 IU/mL) is indicated by a dotted line (FIG. 40c). In the dose-response curve, the relationship between the GC1126A administered dose and the PLT level or ADAMTS13 residual activity was confirmed by a non-linear regression trend line (FIG. 40c). Graphs represent means and standard deviations, and analyzes were performed on 5-12 individuals per group. The test, in which blood was collected and analyzed 6 hours after drug administration, was a synthesis of the results of two independently performed tests.

ADAMTS13 넉-아웃 마우스에서 GC1126A의 약물동태 평가Pharmacokinetic evaluation of GC1126A in ADAMTS13 knock-out mice

GC1126A의 치료적 유효용량을 포함하는 0.025-0.200 mg/kg 용량범위에서 ADAMTS13 넉-아웃 마우스를 이용한 약물 동태를 평가하였다. GC1126A를 미정맥 단회 투여 후, 생체시료내 GC1126A 분석을 위해 투여 종료시점을 기준으로 0.0833, 0.5, 1, 4, 8, 24시간, 2, 3, 5, 7일(총 10 point) 후에 안와정맥총으로부터 300μL 이상의 혈액을 채취하여 시트르산 나트륨이 든 e-튜브에 샘플링하였다. e-튜브에 담은 샘플은 혈장 분리를 위해 원심분리(3,000 rpm, 15 min, 4℃)하고 상층액 혈장만 분리하여 e-튜브에 소분하였으며 이를 GC1126A PK 분석에 사용했다. 채취한 혈장은 GC1126A ADAMTS13 항원과 ADAMTS13 잔존활성 분석을 위해 각각 Human ADAMTS13 Duoset ELISA와 Technozyme ADAMTS13 activity ELISA 킷을 이용하여 분석하였다. ELISA 분석 값의 PK 프로파일 및 파라미터 산출을 위해 PhoenixTM WinNonlin 소프트웨어를 활용하여 NCA(Non-compartmental analysis)를 수행하였다. Pharmacokinetics were evaluated using ADAMTS13 knock-out mice in the 0.025-0.200 mg/kg dose range, which includes the therapeutically effective dose of GC1126A. After administering a single dose of GC1126A to the caudal vein, the orbital venous plexus was measured 0.0833, 0.5, 1, 4, 8, 24 hours, 2, 3, 5, and 7 days (total of 10 points) based on the end of administration for analysis of GC1126A in biological samples. More than 300 μL of blood was collected from the sample and sampled into an e-tube containing sodium citrate. The sample contained in the e-tube was centrifuged (3,000 rpm, 15 min, 4°C) to separate plasma, and only the supernatant plasma was separated into e-tubes and used for GC1126A PK analysis. The collected plasma was analyzed using Human ADAMTS13 Duoset ELISA and Technozyme ADAMTS13 activity ELISA kits, respectively, to analyze GC1126A ADAMTS13 antigen and ADAMTS13 residual activity. To calculate the PK profile and parameters of the ELISA analysis values, NCA (Non-compartmental analysis) was performed using Phoenix TM WinNonlin software.

정상 원숭이normal monkey 에서 GC1126A의 약물동태 평가Pharmacokinetic evaluation of GC1126A in

GC1126A의 치료적 유효 용량을 포함하는 0.038-0.30 mg/kg 용량범위에서 정상 원숭이를 이용한 약물 동태를 평가하였다. GC1126A를 정맥 단회 투여 후, 생체시료 내 GC1126A 분석을 위해 투여 종료시점을 기준으로 0.0833, 0.5, 1, 4, 8, 24시간, 2, 3, 5, 7, 10, 13일(총 12 point) 후에 대퇴 정맥으로부터 1.5 mL 이상의 혈액을 채취하여 시트르산 나트륨이 든 e-튜브에 샘플링하였다. e-튜브에 담은 샘플은 혈장 분리를 위해 원심분리(3,000 rpm, 15 min, 4℃)하고 상층액만 분리하여 e-튜브에 소분 하였으며 이는 GC1126A PK 분석에 사용했다. 채취한 혈장은 GC1126A ADAMTS13 항원과 ADAMTS13 잔존활성 분석을 위해 각각 Human ADAMTS13 Duoset ELISA와 Technozyme ADAMTS13 activity ELISA 킷을 이용하여 분석하였다. ELISA 분석값의 PK 프로파일 및 파라미터 산출을 위해 PhoenixTM WinNonlin 소프트웨어를 활용하여 NCA(Non-compartmental analysis)를 수행하였다. Pharmacokinetics were evaluated using normal monkeys in the 0.038-0.30 mg/kg dose range, which includes the therapeutically effective dose of GC1126A. After a single intravenous administration of GC1126A, 0.0833, 0.5, 1, 4, 8, 24 hours, 2, 3, 5, 7, 10, 13 days (total 12 points) from the end of administration for analysis of GC1126A in biological samples. Later, more than 1.5 mL of blood was collected from the femoral vein and sampled into an e-tube containing sodium citrate. The sample contained in the e-tube was centrifuged (3,000 rpm, 15 min, 4°C) to separate plasma, and only the supernatant was separated and distributed to the e-tube, which was used for GC1126A PK analysis. The collected plasma was analyzed using Human ADAMTS13 Duoset ELISA and Technozyme ADAMTS13 activity ELISA kits, respectively, to analyze GC1126A ADAMTS13 antigen and ADAMTS13 residual activity. To calculate the PK profile and parameters of the ELISA analysis values, NCA (Non-compartmental analysis) was performed using Phoenix TM WinNonlin software.

ADAMTS13 넉-아웃 마우스 및 정상 원숭이를 활용한 인간 PK 모델링 및 시뮬레이션Human PK modeling and simulation using ADAMTS13 knock-out mice and normal monkeys

ADAMTS13 넉-아웃 마우스의 치료적 유효 용량 PK 결과와 정상 원숭이 PK 결과를 바탕으로 사람 PK 모델링 및 예상 임상 유효 용량을 추정하였다. 원숭이 PK 시험 결과를 가장 잘 대변하는 3-compartment IV model 및 first-order elimination을 구축하였고, 확립된 원숭이 PK 모델로부터 단일종 알로메트리 스케일링 방법(single-species allometry scaling method)을 통하여 인간 PK를 모델링하여 임상 용량을 예측하였다. 임상 유효 용량 예측을 위한 타겟으로 ADAMTS13 넉-아웃 마우스의 치료적 유효용량(0.10 mg/kg)에 PK 파라미터(Cmax, AUC, Ctrough)를 표 10에 나타내었다. 하기 표 11 굵은 숫자는 ADAMTS13 넉-아웃 마우스의 치료적 유효 용량에 만족하는 각 예상 임상 유효 용량 및 간격을 의미한다. 실제 적용하고자 하는 인간에서의 최적 용량을 시뮬레이션 하였다 (표 12). 해당 시뮬레이션 목적은 target 값(Ctrough 기준 30.92 ng/mL 이상)을 만족하는 용량, 용법을 정하는 것으로, 기준을 PK parameter중 Ctrough로 하고 용법(투여 간격)을 QW (주 1회 투여 간격) 혹은 Q3D (3일에 1회 투여 간격)를 목표로 반복투여 할 때 target을 만족하기 위해 최소 투여되는 용량을 각각 확인하였다.Based on the PK results of the therapeutically effective dose in ADAMTS13 knock-out mice and the PK results of normal monkeys, human PK modeling and expected clinically effective dose were estimated. We constructed a 3-compartment IV model and first-order elimination that best represent the monkey PK test results, and modeled human PK through the single-species allometry scaling method from the established monkey PK model. The clinical dose was predicted. As a target for predicting clinically effective dose, PK parameters (Cmax, AUC, Ctrough) at the therapeutically effective dose (0.10 mg/kg) of ADAMTS13 knock-out mice are shown in Table 10. Table 11 below. Bold numbers indicate each expected clinically effective dose and interval that satisfies the therapeutically effective dose of ADAMTS13 knock-out mice. The optimal dose in humans for actual application was simulated (Table 12). The purpose of the simulation is to determine the dose and administration that satisfies the target value (Ctrough standard 30.92 ng/mL or more). The standard is Ctrough among PK parameters and the dosage (administration interval) is QW (once a week administration interval) or Q3D ( When repeating administration with the goal of dosing interval once every 3 days, the minimum administered dose was confirmed for each to satisfy the target.

용량 (mg/kg)Dosage (mg/kg) AUCinf(ng*h/mL)AUC inf (ng*h/mL) Cmax(ng/mL)C max (ng/mL) Ctrough(ng/mL)C trough (ng/mL) 0.100.10 9269.479269.47 1275.601275.60 30.9230.92

용량
(mg)
Volume
(mg)
At steady-state (28일)At steady state (28 days)
QDQD Q3DQ3D QWQW AUCτ,ss
(ng*h/mL)
AUC τ,ss
(ng*h/mL)
Cmax,ss
(ng/mL)
C max, ss
(ng/mL)
Ctrough
(ng/mL)
C trough
(ng/mL)
AUCτss(ng*h/ mL)AUC τss (ng*h/mL) Cmax,ss
(ng/mL)
C max, ss
(ng/mL)
Ctrough
(ng/mL)
C trough
(ng/mL)
AUCτ,ss
(ng*h/mL)
AUC τ,ss
(ng*h/mL)
Cmax,ss
(ng/mL)
C max, ss
(ng/mL)
Ctrough
(ng/mL)
C trough
(ng/mL)
0.70.7 2496.092496.09 227.95227.95 64.3664.36 2496.022496.02 174.42174.42 10.6910.69 2496.082496.08 165.67165.67 1.931.93 1.41.4 4992.194992.19 455.9455.9 128.72128.72 4992.024992.02 348.85348.85 21.3821.38 4992.184992.18 331.35331.35 3.863.86 2.12.1 7488.277488.27 683.85683.85 193.09193.09 7488.027488.02 523.27523.27 32.0832.08 7488.247488.24 497.02497.02 5.785.78 2.82.8 9984.359984.35 911.8911.8 257.45257.45 9984.089984.08 697.69697.69 42.7742.77 9984.379984.37 662.69662.69 7.717.71 3.53.5 12480.4112480.41 1139.71139.7 321.81321.81 12480.0512480.05 872.11872.11 53.4653.46 12480.4712480.47 828.37828.37 9.649.64 4.24.2 14976.5514976.55 1367.71367.7 386.17386.17 14976.0614976.06 1046.51046.5 64.1564.15 14976.5814976.58 994.04994.04 11.5711.57 4.94.9 17472.5417472.54 1595.61595.6 450.53450.53 17472.0717472.07 12211221 74.8474.84 17472.6717472.67 1159.71159.7 13.4913.49 5.65.6 19968.7119968.71 1823.61823.6 514.9514.9 19968.119968.1 1395.41395.4 85.5385.53 19968.7219968.72 1325.41325.4 15.4215.42 6.36.3 22464.7122464.71 2051.52051.5 579.26579.26 22464.0922464.09 1569.81569.8 96.2296.22 22464.8122464.81 1491.11491.1 17.3517.35 77 24960.8824960.88 2279.52279.5 643.62643.62 24960.1724960.17 1744.21744.2 106.92106.92 24960.8424960.84 1656.71656.7 19.2819.28 1414 49921.8649921.86 45594559 1287.21287.2 49920.1549920.15 3488.53488.5 213.83213.83 49921.7649921.76 3313.53313.5 38.5538.55 2121 74882.774882.7 6838.56838.5 1930.9September 1930 74880.2474880.24 5232.75232.7 320.75320.75 74882.4474882.44 4970.24970.2 57.8357.83

투여간격Dosing interval 예측된 인간 용량 (mg)Predicted human dose (mg) Target 1(AUCinf)Target 1(AUC inf ) Target 2(Cmax)Target 2(C max ) Target 3(Ctrough)Target 3(C trough ) QDQD ≥ 2.8
(≥0.04 mg/kg)
≥ 2.8
(≥0.04 mg/kg)
≥4.2 (≥0.06 mg/kg) ≥4.2 (≥0.06 mg/kg) 모든 시뮬레이션된 용량에서 ≥0.7 (≥0.01 mg/kg) ≥0.7 (≥0.01 mg/kg) at all simulated doses
Q3DQ3D ≥5.6 (≥0.08 mg/kg) ≥5.6 (≥0.08 mg/kg) ≥2.1 (≥0.03 mg/kg) ≥2.1 (≥0.03 mg/kg) QWQW ≥5.6 (≥0.08 mg/kg) ≥5.6 (≥0.08 mg/kg) ≥14 (≥0.2 mg/kg) ≥14 (≥0.2 mg/kg)

aTTP mimic 마우스에서 GC1126A 및 경쟁 물질(CabliviGC1126A and competitor in aTTP mimic mice (Cablivi ®® )의 치료효과 비교) Comparison of treatment effects

GC1126A와 경쟁 물질(Cablivi®)의 인 비보 치료 효과를 비교 평가하기 위해 GC1126A 치료적 효력 시험 과정에 기술한 바와 같이 aTTP mimic 마우스를 준비하였으며, 단 혈전 유도를 위해서 rh-vWF는 500 IU/kg를 미정맥 투여하였다. rh-vWF 투여 15분 후에 GC1126A 0.1 mg/kg, Cablivi® 0.1, 2 mg/kg 및 제형 완충액을 각각 미정맥 투여하였다. 6, 24, 48 시간째 안와 채혈을 통해 CBC 분석을 통해 혈소판(PLT) 수치를 측정하였다. 그래프는 평균 및 표준편차를 나타내며 각 군 당 4마리의 마우스를 사용하였으며, 모든 시험 군에서 사망 개체는 발생하지 않았다. WT군 결과는 2회 독립적으로 수행한 결과의 개체 수를 합하여 그래프에 반영하였다. To compare and evaluate the in vivo therapeutic effects of GC1126A and a competing substance (Cablivi ® ), aTTP mimic mice were prepared as described in the GC1126A therapeutic efficacy test process. However, to induce blood clots, rh-vWF was administered at 500 IU/kg. It was administered through the caudal vein. 15 minutes after rh-vWF administration, GC1126A 0.1 mg/kg, Cablivi ® 0.1, 2 mg/kg, and formulation buffer were administered through the caudal vein, respectively. Platelet (PLT) levels were measured using CBC analysis using orbital blood samples at 6, 24, and 48 hours. The graph represents the mean and standard deviation, and 4 mice were used in each group, and no deaths occurred in any test group. The WT group results were reflected in the graph by summing the number of subjects performed independently twice.

aTTP mimic 마우스 모델에서 GC1126A 및 rh WT ADAMTS13의 치료적 효력 비교Comparison of therapeutic efficacy of GC1126A and rh WT ADAMTS13 in aTTP mimic mouse model

GC1126A와 rh WT-ADAMTS13의 인 비보 치료 효력을 비교 평가하기 위해 GC1126A 치료적 효력 시험 과정에 기술한 바와 같이 aTTP mimic 마우스를 준비하였다. rh-vWF 미정맥 투여 15분 후에 GC1126A 0.08 mg/kg, rh WT-ADAMTS13 0.07 (GC1126A와 동일 몰농도), 2.15 mg/kg 및 제형 완충액을 각각 미정맥 투여하고, 6시간째 심장 채혈을 통해 혈소판 및 LDH를 측정하였다. 그래프는 평균 및 표준편차를 나타내며 각 군 당 6마리의 마우스를 사용하였다. 비이클 및 rh WT-ADAMTS13 0.07 mg/kg 투여군에서 중화 항체 투여 6시간 후 6마리 중 1마리의 사망 개체가 발생하였다. 반면, GC1126A 0.08 mg/kg 투여 군과 rh WT-ADAMTS13 2.15 mg/kg 투여 군에서는 사망 개체가 발생하지 않았으며, 최종적으로 5 - 6 마리 각 시험군에 대하여 분석이 수행되었다. WT 및 비이클군의 6시간째 결과는 2 - 3회 독립적으로 수행한 결과의 개체수를 합하여 그래프에 반영하였다. To compare and evaluate the in vivo therapeutic efficacy of GC1126A and rh WT-ADAMTS13, aTTP mimic mice were prepared as described in the GC1126A therapeutic efficacy test procedure. 15 minutes after rh-vWF administration through the caudal vein, GC1126A 0.08 mg/kg, rh WT-ADAMTS13 0.07 (same molar concentration as GC1126A), 2.15 mg/kg, and formulation buffer were each administered into the caudal vein, and platelets were collected through cardiac blood sampling at 6 hours. and LDH were measured. The graph represents the mean and standard deviation, and 6 mice were used in each group. In the vehicle and rh WT-ADAMTS13 0.07 mg/kg administration groups, 1 out of 6 animals died 6 hours after neutralizing antibody administration. On the other hand, no deaths occurred in the GC1126A 0.08 mg/kg administration group and the rh WT-ADAMTS13 2.15 mg/kg administration group, and the analysis was ultimately performed on 5 to 6 animals in each test group. The results at 6 hours for the WT and vehicle groups were reflected in the graph by summing the numbers of results performed independently 2 to 3 times.

aTTP mimic 마우스 모델에서 시간에 따른 GC1126A 및 경쟁 물질 (rh WT ADAMTS13과 CabliviTime-dependent expression of GC1126A and competitors (rh WT ADAMTS13 and Cablivi) in aTTP mimic mouse model ®® )의 PLT 감소 예방 능력 및 회복 능력 비교) Comparison of PLT reduction prevention and recovery abilities

GC1126A와 rh WT-ADAMTS13, Cablivi®의 처리 후 시간에 따른 PLT 감소 예방 능력을 비교 평가하기 위해 GC1126A 치료적 효력 시험 절차와 동일한 방법으로 aTTP mimic 마우스를 준비하였다. ADAMTS13 녹-아웃 마우스에 2,000 IU/kg rh-vWF를 미정맥 투여 15분 후 mg/kg 기준 동량의 물질 용량인 GC1126A 0.1 mg/kg, rh WT-ADAMTS13 0.1 mg/kg, Cablivi® 0.1 mg/kg과 비교 물질의 효력을 보이는 농도인 rh WT-ADAMTS13 0.5 mg/kg, Cablivi® 2 mg/kg 및 제형 완충액을 각각 미정맥 투여하고, 1, 6, 24, 48, 72시간째 안와 채혈을 통해 PLT 수치를 측정하였다. 또한 rh WT-ADAMTS13과 GC1126A 투여군에서 채취한 혈장은 Technozyme ADAMTS13 activity ELISA 킷을 이용하여 설명서에 따라 혈장 내 ADAMTS13 잔존 활성을 측정하였다. 그래프는 평균 및 표준편차를 나타내며 각 군 당 4마리의 마우스를 사용하였다. To compare and evaluate the ability of GC1126A, rh WT-ADAMTS13, and Cablivi ® to prevent PLT decline over time after treatment, aTTP mimic mice were prepared in the same manner as the GC1126A therapeutic efficacy test procedure. 15 minutes after caudal vein administration of 2,000 IU/kg rh-vWF to ADAMTS13 knock-out mice, equivalent doses of substances based on mg/kg were administered: GC1126A 0.1 mg/kg, rh WT-ADAMTS13 0.1 mg/kg, and Cablivi ® 0.1 mg/kg. rh WT-ADAMTS13 0.5 mg/kg, Cablivi ® 2 mg/kg, and formulation buffer, which are the effective concentrations of the comparative substances, were administered through the caudal vein, respectively, and PLT was obtained through orbital blood collection at 1, 6, 24, 48, and 72 hours. The values were measured. In addition, plasma collected from the rh WT-ADAMTS13 and GC1126A administration groups was used to measure the residual activity of ADAMTS13 in plasma according to the instructions using the Technozyme ADAMTS13 activity ELISA kit. The graph represents the mean and standard deviation, and 4 mice were used in each group.

GC1126A와 rh WT-ADAMTS13, Cablivi®의 처리 후 시간에 따른 PLT 회복 능력을 비교 평가하기 위해 ADAMTS13 녹아웃 마우스에 2,000 IU/kg rh-vWF 미정맥 1차 투여 7.75시간 후 혈소판이 감소된 상태(비이클 군 기준 약 150 G/L 수준)에서 중화항체를 투여하고, 15분 후 세 종류의 약물을 각각 투여하였다. rh-vWF 2,000 IU/kg 투여에 의한 감소된 PLT 수준의 유지 효과가 혈중 48시간으로 짧고 48시간 째 개체 편차의 크기가 증가하는 선행 실험 결과를 고려하여 1차 rh-vWF 투여 32시간 후, rh-vWF 500 IU/kg를 2차로 투여하였다. 약물의 농도는 위 예방능력 평가 실험과 동일하며, 9, 24, 48, 72시간째 안와 채혈을 통해 혈액을 확보하고, CBC 분석을 통해 PLT 수치를 측정하였다. rh WT-ADAMTS13과 GC1126A 투여군에서 채취한 혈장은 위 예방 능력 평가 실험과 동일한 방법으로 혈장 내 ADAMTS13 잔존 활성을 측정하였다. 그래프는 평균 및 표준편차를 나타내며 각 군 당 4마리의 마우스를 사용하였다. To compare and evaluate the PLT recovery ability over time after treatment of GC1126A, rh WT-ADAMTS13, and Cablivi ® , platelet count was reduced 7.75 hours after the first administration of 2,000 IU/kg rh-vWF into the caudal vein to ADAMTS13 knockout mice (vehicle group). Neutralizing antibodies were administered at a standard level of approximately 150 G/L), and 15 minutes later, each of the three drugs was administered. Considering the results of previous experiments showing that the effect of maintaining the reduced PLT level by administering 2,000 IU/kg of rh-vWF in the blood was as short as 48 hours and that the magnitude of individual variation increased after 48 hours, 32 hours after the first rh-vWF administration, rh -vWF 500 IU/kg was administered secondarily. The concentration of the drug was the same as the above preventive ability evaluation experiment, and blood was obtained through orbital blood collection at 9, 24, 48, and 72 hours, and PLT levels were measured through CBC analysis. The residual activity of ADAMTS13 in plasma was measured in the plasma collected from the rh WT-ADAMTS13 and GC1126A administration groups using the same method as the above preventive ability evaluation experiment. The graph represents the mean and standard deviation, and 4 mice were used in each group.

aTTP 환자 혈장에서 GC1126A 및 rh WT-ADAMTS13의 자가항체 회피력 확인Confirmation of autoantibody evasion ability of GC1126A and rh WT-ADAMTS13 in aTTP patient plasma

GC1126A, MDTCS-Fc 및 rh WT-ADAMTS13의 aTTP 환자 혈장 내 존재하는 자가 항체 회피능을 비교 평가하기 위해 한국인 aTTP 환자 혈장 6례를 확보하여 ADAMTS13의 잔존활성을 측정하였다. 환자 혈장 내 항체 활성은 BU(Bethesda unit) 측정을 통해 분석하였고(B Plaimauer et al., 2011), HIP(Heat Inactivated Plasma)로 희석하여 최종 농도 0, 0.5, 1, 2, 3 BU/mL의 혈장을 준비하였다. GC1126A, MDTCS-Fc 및 rh WT-ADAMTS13의 각 약물은 HIP으로 희석하여 3, 15, 75 nM 농도로 준비하여 환자 혈장과 각각 1:1로 혼합하여 37℃에서 1시간 동안 반응하였다(각 물질의 최종 농도는 1.5, 7.2, 37.5 nM임). 이후 샘플의 잔존활성은 Technozyme ADAMTS13 활성 ELISA 킷을 이용하여 키트 내 매뉴얼을 따라 측정하였다. ADAMTS13 상대 잔존활성은 HIP(대조군) 대비 각 샘플의 잔존 활성 결과값(IU/mL)의 비율로 계산하여 %로 나타낸 것을 의미한다. 시험은 2회 반복 시험하여 평균값을 그래프에 반영하였다.To compare and evaluate the ability of GC1126A, MDTCS-Fc, and rh WT-ADAMTS13 to evade autoantibodies present in the plasma of aTTP patients, 6 cases of plasma from Korean aTTP patients were obtained and the residual activity of ADAMTS13 was measured. Antibody activity in patient plasma was analyzed by measuring BU (Bethesda units) (B Plaimauer et al., 2011), and was diluted with HIP (Heat Inactivated Plasma) to final concentrations of 0, 0.5, 1, 2, and 3 BU/mL. Plasma was prepared. Each drug of GC1126A, MDTCS-Fc, and rh WT-ADAMTS13 was diluted with HIP and prepared at concentrations of 3, 15, and 75 nM, mixed 1:1 with patient plasma, and reacted at 37°C for 1 hour (each substance Final concentrations are 1.5, 7.2, and 37.5 nM). Afterwards, the residual activity of the sample was measured using the Technozyme ADAMTS13 activity ELISA kit according to the manual in the kit. ADAMTS13 relative residual activity is calculated as a ratio of the residual activity result (IU/mL) of each sample compared to HIP (control) and expressed as a percentage. The test was repeated twice and the average value was reflected in the graph.

* 상대 잔존 활성(%) = (각 환자 혈장과의 혼합물의 ADAMTS13 활성값 / HIP와의 혼합물의 ADAMTS13 활성값) X 100 * Relative residual activity (%) = (ADAMTS13 activity value of mixture with each patient's plasma / ADAMTS13 activity value of mixture with HIP)

통계분석Statistical analysis

인 비보 비교 평가 시험의 통계분석은 Prism 9 소프트웨어(GraphPad Software, Inc., La Jolla, CA)로 수행하였으며, 시험그룹 간 통계적 유의성 확인을 위해 독립 t-검정(도 39) 또는 일원분산분석(bonferroni post hoc test, 도 40, 41)로 분석하였다. P값은 각각 * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001로 표기하였다. Statistical analysis of the in vivo comparative evaluation test was performed with Prism 9 software (GraphPad Software, Inc., La Jolla, CA), and independent t- test (Figure 39) or one-way analysis of variance (bonferroni) was used to confirm statistical significance between test groups. It was analyzed by post hoc test, Figures 40 and 41). P values are expressed as * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001, respectively.

실험결과Experiment result

aTTP mimic 마우스 모델에서 GC1126A의 치료효과 및 유지 정도Therapeutic effect and maintenance level of GC1126A in aTTP mimic mouse model

aTTP mimic 마우스 모델을 이용하여 GC1126A의 치료적 효력을 확인하기 위해 GC1126A 투여 후 최종 6시간 혹은 24시간째 biomarker인 PLT와 LDH 수치를 측정하였다(도 39a). 6시간 혹은 24시간째 비이클 군의 PLT 수치는 각각 279.80 ± 179.80 G/L(109/L)과 95.00±53.34 G/L로 측정되었으며, WT군은 998.50 ± 133.60 G/L으로 측정되었다. WT 군에서 보이는 PLT 수치 대비 비이클 군에서 약 80% 이상의 PLT 수치 감소가 관찰되어 혈전이 유도되었음을 확인하였다(도 39b). GC1126A 투여 군의 PLT 수치는 6시간 후 610.70 ± 142.50 G/L, 24시간 후 442.20 ± 143.90 G/L로 측정되었으며 각 채혈 시점의 PLT 수치는 비이클 군 대비 각각 2.18배 및 4.65배가 높았다. 모든 채혈 시점에서 비이클 군 대비 GC1126A 투여군에서 통계적으로 유의하게 PLT 수치가 회복됨을 확인하였다(도 39b). LDH 수치 측정 결과에서 비이클 군은 6시간 혹은 24시간째 각각 12,064 ± 2,959 U/L와 11,858±3,489 U/L으로 확인되었고, WT 군은 1,145±207.5 U/L을 보였다. WT 군 대비 비이클 군에서 약 10배 이상 LDH 수치가 증가되었으며 aTTP 환자에서 보이는 병리생리학(pathophysiology)이 유도되었음을 알 수 있었다(도 39c). GC1126A 투여 군에서 LDH 수치는 6시간 후 4,282 ± 601.3 U/L, 24시간 후 371.4 ± 101.4 U/L으로 측정되었으며 각 채혈 시점의 비이클 군 수치 대비 각각 64.5%와 96.9%까지 감소하였다. 투여 후 시간이 증가할수록 GC1126A 투여 군의 LDH 수치는 WT 수준(1,145±207.5 U/L)으로 완전히 회복되었으며 모든 채혈 시점에서 비이클 군 대비 통계적 유의성을 보였다(도 39c). aTTP mimic 마우스 모델에서 보이는 PLT 수치의 감소와 LDH 수치의 증가는 GC1126A 투여에 의해 통계적으로 유의미하게 회복되며, 이러한 효력은 24시간째까지 유지됨을 확인하였다. To confirm the therapeutic effect of GC1126A using the aTTP mimic mouse model, the levels of biomarkers PLT and LDH were measured at the final 6 or 24 hours after GC1126A administration (Figure 39a). The PLT values of the vehicle group at 6 or 24 hours were measured at 279.80 ± 179.80 G/L (10 9 /L) and 95.00 ± 53.34 G/L, respectively, and the WT group was measured at 998.50 ± 133.60 G/L. A decrease of more than 80% in PLT values in the vehicle group was observed compared to the PLT values in the WT group, confirming that thrombosis was induced (FIG. 39b). The PLT level of the GC1126A administration group was measured at 610.70 ± 142.50 G/L after 6 hours and 442.20 ± 143.90 G/L after 24 hours, and the PLT levels at each blood collection time were 2.18 and 4.65 times higher than those of the vehicle group, respectively. It was confirmed that PLT values were recovered statistically significantly in the GC1126A administered group compared to the vehicle group at all blood collection points (FIG. 39b). As a result of measuring LDH levels, the vehicle group showed 12,064 ± 2,959 U/L and 11,858 ± 3,489 U/L at 6 or 24 hours, respectively, and the WT group showed 1,145 ± 207.5 U/L. It was found that LDH levels increased by more than 10 times in the vehicle group compared to the WT group, and the pathophysiology seen in aTTP patients was induced (FIG. 39c). In the GC1126A administration group, LDH levels were measured at 4,282 ± 601.3 U/L after 6 hours and 371.4 ± 101.4 U/L after 24 hours, and decreased by 64.5% and 96.9%, respectively, compared to the vehicle group levels at each blood collection time. As the time after administration increased, the LDH level of the GC1126A administration group completely recovered to the WT level (1,145 ± 207.5 U/L) and showed statistical significance compared to the vehicle group at all blood collection time points (FIG. 39c). The decrease in PLT levels and increase in LDH levels seen in the aTTP mimic mouse model were statistically significantly recovered by administration of GC1126A, and this effect was confirmed to be maintained until 24 hours.

aTTP mimic 마우스 모델에서 GC1126A의 치료적 유효용량범위 확인Confirmation of the therapeutic effective dose range of GC1126A in aTTP mimic mouse model

aTTP mimic 마우스 모델을 이용하여 GC1126A의 치료적 유효용량 범위를 확인하기 위해 다양한 용량의 GC1126A 투여 후 6 시간 또는 24 시간째 PLT 수, LDH 수치, ADAMTS13 잔존활성을 분석했다(도 40a). 약물 투여 6시간 후 분석 결과에서 PLT 수는 GC1126A 투여용량이 증가함에 따라 용량 상관적인 회복이 나타났다(도 40 b). 이러한 PLT 수의 회복은 0.110 mg/kg (680.90±149.61 cells/μL)부터 비이클 투여군(192.00±111.14 cells/μL) 대비 통계적으로 유의하게 나타났으며 동일 용량부터 WT 군(1006.5±132.08 cells/μL) 대비 약 70% 수준으로 포화되는 것을 확인하였다. LDH 수치의 경우 GC1126A 투여 용량이 증가함에 따라 용량 상관적인 회복을 확인할 수 있었고, 0.110 mg/kg(3146.50±537.79 U/L)부터 비이클 투여군(4263.89 ± 876.23 U/L) 대비 통계적으로 유의한 결과를 볼 수 있었다. 이러한 LDH 수치의 회복은 0.146 mg/kg(2683.90±852.15 U/L) 투여군부터 WT 군(1217.00±213.08 U/L) 대비 약 2 배 수준으로 포화되었다. 이러한 분석 결과를 통해 PLT 수, LDH 수치의 회복이 모두 포화되는 GC1126A의 최대 유효 용량은 0.146 mg/kg임을 확인했다. 약물 투여 24시간 후 분석 결과에서 PLT 수의 회복은 투여량이 증가함에 따라 용량 상관성을 보였다(도 40c). PLT 수의 회복은 0.100 mg/kg 투여군(558.8±276.5 cells/μL) 부터 비이클 군(88.7±41.9 cells/μL) 대비 통계적으로 유의하게 나타났고, 0.200 mg/kg 투여군(742.0±213.8 cells/μL)에서 WT군(839.8±295.6 cells/μL)과 유사한 수치를 보였다. GC1126A 투여에 따른 LDH 수치의 회복은 0.050 mg/kg 투여군(3943.0±2592.0 U/L)부터 비이클 투여군(9205.0±3619.0 U/L) 대비 통계적으로 유의하게 감소했으며 용량 상관적인 수치의 회복을 보였다. ADAMTS13 잔존활성 분석 결과, 용량 상관적인 ADAMTS13 잔존활성의 증가를 확인했다. GC1126A 투여에 따른 ADAMTS13 잔존활성의 증가는 비이클 투여군(7.7±7.9%) 대비 0.050 mg/kg 투여군(30.5±12.4%)부터 통계적으로 유의하게 나타났으나 이 수치는 LLOQ (the lower limit of quantification, 0.31 IU/mL) 미만의 값이므로 신뢰성 있는 결과로 보기 힘들었다. GC1126A 투여에 따른 ADAMTS13 잔존활성의 증가가 WT 군의 마우스의 내재적 ADAMTS13 활성 수준(100%) 이상일 때(0.200 mg/kg 투여군, 521.2±188.2%) PLT 수치의 회복이 WT 군과 유사하게 나타남을 확인했다. 종합적으로 aTTP mimic 마우스 모델에서 GC1126A의 치료적 투여에 따른 PLT 수, LDH 수치, ADAMTS13 잔존활성의 회복은 용량상관성을 보임을 확인했다. 또한 PLT 수와 LDH 수치의 회복이 비이클 투여군 대비 통계적으로 유의하게 나타난 GC1126A의 최소 유효 용량은 0.100 mg/kg임을 확인했다. GC1126A 투여 6시간 또는 24시간 후의 분석 결과를 종합적으로 고려했을 때 aTTP mimic 마우스 모델에서 GC1126A의 치료적 유효용량범위는 0.100-0.146 mg/kg임을 확인했다.To confirm the therapeutically effective dose range of GC1126A using the aTTP mimic mouse model, the number of PLTs, LDH levels, and ADAMTS13 residual activity were analyzed at 6 or 24 hours after administration of various doses of GC1126A (FIG. 40a). Analysis results 6 hours after drug administration showed a dose-related recovery in the number of PLTs as the GC1126A administered dose increased (FIG. 40b). This recovery in the number of PLTs was statistically significant from 0.110 mg/kg (680.90±149.61 cells/μL) compared to the vehicle-administered group (192.00±111.14 cells/μL), and from the same dose, the WT group (1006.5±132.08 cells/μL) It was confirmed that the saturation level was approximately 70%. In the case of LDH levels, a dose-related recovery was confirmed as the GC1126A administration dose increased, and statistically significant results were observed from 0.110 mg/kg (3146.50 ± 537.79 U/L) compared to the vehicle administration group (4263.89 ± 876.23 U/L). I could see it. The recovery of LDH levels was saturated to about twice that of the WT group (1217.00±213.08 U/L) in the 0.146 mg/kg (2683.90±852.15 U/L) administration group. Through these analysis results, it was confirmed that the maximum effective dose of GC1126A, which saturates the recovery of both PLT count and LDH level, is 0.146 mg/kg. In the analysis results 24 hours after drug administration, the recovery of PLT numbers showed a dose correlation as the dose increased (Figure 40c). The recovery of PLT count was statistically significant in the 0.100 mg/kg administration group (558.8±276.5 cells/μL) compared to the vehicle group (88.7±41.9 cells/μL), and the 0.200 mg/kg administration group (742.0±213.8 cells/μL). showed similar values to the WT group (839.8±295.6 cells/μL). The recovery of LDH levels following GC1126A administration showed a statistically significant decrease from the 0.050 mg/kg administration group (3943.0±2592.0 U/L) compared to the vehicle administration group (9205.0±3619.0 U/L), showing a dose-related recovery. As a result of ADAMTS13 residual activity analysis, a dose-related increase in ADAMTS13 residual activity was confirmed. The increase in ADAMTS13 residual activity following GC1126A administration was statistically significant starting from the 0.050 mg/kg administered group (30.5±12.4%) compared to the vehicle administered group (7.7±7.9%), but this value was lower than LLOQ (the lower limit of quantification, 0.31). Since the value was less than IU/mL, it was difficult to view it as a reliable result. When the increase in ADAMTS13 residual activity following GC1126A administration was greater than the intrinsic ADAMTS13 activity level (100%) of mice in the WT group (0.200 mg/kg administration group, 521.2±188.2%), recovery of PLT levels was confirmed to be similar to that of the WT group. did. Overall, it was confirmed that the recovery of PLT count, LDH level, and ADAMTS13 residual activity following therapeutic administration of GC1126A in the aTTP mimic mouse model showed a dose correlation. In addition, it was confirmed that the minimum effective dose of GC1126A, which showed statistically significant recovery of PLT count and LDH level compared to the vehicle-administered group, was 0.100 mg/kg. When comprehensively considering the analysis results 6 or 24 hours after GC1126A administration, it was confirmed that the therapeutic effective dose range of GC1126A in the aTTP mimic mouse model was 0.100-0.146 mg/kg.

ADAMTS13 넉-아웃 마우스 및 정상 원숭이에서 GC1126A의 약물동태 평가Pharmacokinetic evaluation of GC1126A in ADAMTS13 knock-out mice and normal monkeys

ADAMTS13 넉-아웃 마우스를 이용하여 GC1126A의 치료적 유효용량을 포함하는 0.025-0.20 mg/kg 용량범위에서 약물동태를 평가하기 위해 GC1126A 투여 후 0.0833, 0.5, 1, 4, 8, 24시간, 2, 3, 5, 7일(총 10 point)에 ADAMTS13 항원과 ADAMTS13 잔존활성을 분석하였다(도 41a). GC1126A의 정맥 투여 후, 최대 혈중 약물 농도(Cmax)로부터 계산된 체내 회수율(IVR)은 53.4-66.5%로 확인되었고 반감기(T1/2)는 7.1 - 23.5 hr로 확인되었다. 최대 혈중 약물 농도(Cmax)와 전신 노출(AUC)은 투여 용량에 비례하여 증가되었으나, 소실률(CL)은 일정하게 유지되는 선형 약동학 프로파일이 확인되었다(도 41a, 표 13).To evaluate the pharmacokinetics in the 0.025-0.20 mg/kg dose range, which includes the therapeutically effective dose of GC1126A, using ADAMTS13 knock-out mice, 0.0833, 0.5, 1, 4, 8, 24 hours, 2, ADAMTS13 antigen and ADAMTS13 residual activity were analyzed on days 3, 5, and 7 (total of 10 points) (Figure 41a). After intravenous administration of GC1126A, the in vivo recovery rate (IVR) calculated from the maximum blood drug concentration (C max ) was confirmed to be 53.4-66.5% and the half-life (T 1/2 ) was confirmed to be 7.1 - 23.5 hr. A linear pharmacokinetic profile was confirmed in which the maximum blood drug concentration (C max ) and systemic exposure (AUC) increased in proportion to the administered dose, but the clearance rate (CL) remained constant (Figure 41a, Table 13).

용량
(mg/kg)
Volume
(mg/kg)
Cmax
(ng/mL)
C max
(ng/mL)
AUClast
(hr·ng/mL)
AUC last
(hr·ng/mL)
용량-보정된 AUClast
(hr·kg·ng/mL/mg)
Dose-corrected AUC last
(hr·kg·ng/mL/mg)
T1/2
(hr)
T 1/2
(hr)
CL(mL/hr/ kg)CL (mL/hr/kg) IVR
(%)
IVR
(%)
0.0250.025 314.12
± 36.69
314.12
±36.69
2156.01
± 61.62
2156.01
±61.62
56737.07 ±
1621.69
56737.07 ±
1621.69
15.25
±3.63
15.25
±3.63
18.07
±0.55
18.07
±0.55
62.862.8
0.100.10 1275.60
±199.39
1275.60
±199.39
9219.07
± 933.76
9219.07
±933.76
61460.49 ±
6225.09
61460.49 ±
6225.09
19.86
± 3.25
19.86
±3.25
16.31
± 1.54
16.31
±1.54
63.863.8
0.200.20 2660.00
±348.90
2660.00
±348.90
18625.60
± 1532.28
18625.60
±1532.28
62085.34 ±
5107.61
62085.34 ±
5107.61
23.49
±3.44
23.49
±3.44
16.14
±1.33
16.14
±1.33
66.566.5
용량
(mg/kg)
Volume
(mg/kg)
Cmax
(IU/mL)
C max
(IU/mL)
AUClast
(hr·IU/mL)
AUC last
(hr·IU/mL)
용량-보정된 AUClast
(hr·kg·IU/mL/mg)
Dose-corrected AUC last
(hr·kg·IU/mL/mg)
T1/2(hr)T 1/2 (hr) CL
(mg/(hr*IU/mL)/kg)
CL
(mg/(hr*IU/mL)/kg)
IVR
(%)
IVR
(%)
0.0250.025 12.20
±0.92
12.20
±0.92
74.19
±6.27
74.19
±6.27
1952.47 ±
165.10
1952.47 ±
165.10
7.06
±1.45
7.06
±1.45
4.68e-4
±5.52e-5
4.68e -4
±5.52e -5
61.0
61.0
0.100.10 42.68
±3.94
42.68
±3.94
281.24
± 7.98
281.24
±7.98
1874.91
±53.21
1874.91
±53.21
7.88
±1.31
7.88
±1.31
4.76e-4
±2.80e-5
4.76e -4
±2.80e -5
53.4
53.4
0.200.20 104.87
±19.88
104.87
±19.88
625.01
±43.39
625.01
±43.39
2083.38
±144.63
2083.38
±144.63
10.33
±1.15
10.33
±1.15
4.61e-4
±3.83e-5
4.61e -4
±3.83e -5
65.565.5

정상 원숭이를 이용하여 GC1126A의 치료적 유효용량을 포함하는 0.038-0.30 mg/kg 용량범위에서 약물동태를 평가하기 위해 GC1126A 투여 후 0.0833, 0.5, 1, 4, 8, 24시간, 2, 3, 5, 7, 10, 13일(총 12 point)에 ADAMTS13 항원과 ADAMTS13 잔존활성을 분석하였다(도 41b). GC1126A의 정맥 투여 후, 최대 혈중 약물 농도(Cmax)로부터 계산된 체내 회수율(IVR)은 73.8-82.6%로 확인되었고 반감기(T1/2)는 20.1 - 37.8 시간으로 확인되었다. 사람과 상동성이 높은 원숭이는 설치류보다 체내 회수율 및 반감기가 증가한 결과를 확인할 수 있었다. 용량 증가에 따른 비례적 체내노출(Cmax, AUC) 및 일정한 약물 소실률(CL)이 확인됨에 따라, 선형 약동학 프로파일이 확인되었다(도 41b, 표 14).To evaluate the pharmacokinetics in normal monkeys in the 0.038-0.30 mg/kg dose range, which includes the therapeutically effective dose of GC1126A, 0.0833, 0.5, 1, 4, 8, 24 hours, 2, 3, 5 after GC1126A administration. , ADAMTS13 antigen and ADAMTS13 residual activity were analyzed on days 7, 10, and 13 (total 12 points) (Figure 41b). After intravenous administration of GC1126A, the in vivo recovery rate (IVR) calculated from the maximum blood drug concentration (C max ) was confirmed to be 73.8-82.6% and the half-life (T 1/2 ) was confirmed to be 20.1 to 37.8 hours. Monkeys, which are highly homologous to humans, showed increased recovery rate and half-life in the body compared to rodents. As proportional body exposure (C max , AUC) and constant drug elimination rate (CL) were confirmed as the dose increased, a linear pharmacokinetic profile was confirmed (Figure 41b, Table 14).

용량
(mg/kg)
Volume
(mg/kg)
Cmax
(ng/mL)
C max
(ng/mL)
AUClast
(hr·ng/mL)
AUC last
(hr·ng/mL)
용량-보정된 AUClast
(hr·kg·ng/mL/mg)
Dose-corrected AUC last
(hr·kg·ng/mL/mg)
T1/2
(hr)
T 1/2
(hr)
CL(mL/hr/ kg)CL (mL/hr/kg) IVR
(%)
IVR
(%)
0.0380.038 622.50
±141.97
622.50
±141.97
6288.80
±2038.40
6288.80
±2038.40
165494.65
±53642.21
165494.65
±53642.21
37.35
±5.31
37.35
±5.31
6.53
±2.45
6.53
±2.45
73.873.8
0.150.15 2520.00
±710.21
2520.00
±710.21
23426.44
±1640.57
23426.44
±1640.57
156176.23
±10937.12
156176.23
±10937.12
35.45
±3.00
35.45
±3.00
6.42
±0.47
6.42
±0.47
75.675.6
0.300.30 4986.67
±1357.66
4986.67
±1357.66
44200.65
±6351.94
44200.65
±6351.94
147335.50
±21173.14
147335.50
±21173.14
37.78
±6.24
37.78
±6.24
6.88
±1.05
6.88
±1.05
74.874.8
Dose
(mg/kg)
Dose
(mg/kg)
Cmax
(IU/mL)
C max
(IU/mL)
AUClast
(hr·IU/mL)
AUC last
(hr·IU/mL)
용량-보정된 AUClast
(hr*kg*IU/mL/mg)
Dose-corrected AUClast
(hr*kg*IU/mL/mg)
T1/2
(hr)
T 1/2
(hr)
CL
(mg/(hr*IU/mL)/kg)
CL
(mg/(hr*IU/mL)/kg)
IVR
(%)
IVR
(%)
0.0380.038 28.17
±1.19
28.17
±1.19
309.24
±73.50
309.24
±73.50
8137.90
±1934.23
8137.90
±1934.23
20.09 ±8.1620.09 ±8.16 1.19e-4
±3.52e-5
1.19e -4
±3.52e -5
82.682.6
0.150.15 99.81
±20.47
99.81
±20.47
1192.91
±117.73
1192.91
±117.73
7952.71
±784.84
7952.71
±784.84
32.79 ±2.3632.79 ±2.36 1.21e-4
±1.36e-5
1.21e -4
±1.36e -5
74.174.1
0.300.30 207.77
±7.36
207.77
±7.36
2209.78
±124.86
2209.78
±124.86
7365.94
±416.22
7365.94
±416.22
30.04
±5.33
30.04
±5.33
1.33e-4
±7.00e-6
1.33e -4
±7.00e -6
77.277.2

ADAMTS13 넉-아웃 마우스 및 정상 원숭이를 활용한 인간 PK 모델링 및 시뮬레이션Human PK modeling and simulation using ADAMTS13 knock-out mice and normal monkeys

인간 PK 모델링을 사용하여 다양한 용량, 용법을 시뮬레이션하였다. 예상되는 임상 유효 용량 기준은 ADAMTS13 넉-아웃 마우스의 치료적 유효 용량(0.10 mg/kg)에서 PK 노출(AUC, Cmax)과 잔여 활성 1 IU/mL을 만족하는 Ctrough를 efficacious target으로 설정하였다(표 10). 인간의 PK 모델링 시뮬레이션 시험결과, 각 PK 파라미터(AUC, Cmax, Ctrough)의 타겟을 충족하는 임상 유효 용량 용법으로 주 2회 투여 기준 최소 0.03 mg/kg 이상, 주 1회 투여 기준 최소 0.2 mg/kg 이상으로 예측할 수 있었다(도 42, 표 12). Various doses and administrations were simulated using human PK modeling. The expected clinically effective dose standard was set as an efficacious target at a therapeutically effective dose (0.10 mg/kg) in ADAMTS13 knock-out mice, with C trough satisfying PK exposure (AUC, C max ) and residual activity of 1 IU/mL. (Table 10). As a result of human PK modeling simulation test, the clinically effective dose regimen that meets the target of each PK parameter (AUC, C max , C trough ) is at least 0.03 mg/kg based on twice-weekly administration and at least 0.2 mg based on once-weekly administration. It was predicted to be more than /kg (Figure 42, Table 12).

aTTP mimic 마우스 모델에서 경쟁물질(Cablivi ® ) 및 GC1126A의 치료효과 비교 Comparison of therapeutic effects of competitor substance (Cablivi ® ) and GC1126A in aTTP mimic mouse model

aTTP mimic 마우스 모델을 이용하여 경쟁물질(Cablivi®) 대비 GC1126A의 치료적 효력을 확인하기 위해 각 약물 투여 후 최종 6시간째 PLT 수치를 측정하였다(도 43a). rh-VWF 2,000 IU/kg 투여로 혈전을 유도한 aTTP mimic 마우스 모델에서는 Cablivi®에 의한 효력을 볼 수 없었기 때문에(데이터 미기재) GC1126A와의 효과 비교를 위해 rh-VWF는 500 IU/kg로 낮게 투여하여 실험을 진행하였다. To confirm the therapeutic efficacy of GC1126A compared to the competitor (Cablivi ® ) using the aTTP mimic mouse model, PLT levels were measured at the final 6 hours after administration of each drug (Figure 43a). Since the effect of Cablivi ® could not be seen in the aTTP mimic mouse model in which thrombosis was induced by administering 2,000 IU/kg of rh-VWF (data not shown), rh-VWF was administered as low as 500 IU/kg to compare the effect with GC1126A. An experiment was conducted.

투여 6시간째 PLT 측정 결과에서 비이클 군 대비 Cablivi® 군은 2 mg/kg (990.30 ± 41.41 G/L) 투여군에 한하여 통계적으로 유의한 PLT 수치 회복이 확인되었다(도 43b). GC1126A 0.1 mg/kg 투여군 (1,284.00±153.50 G/L)의 경우 비이클 군 대비 통계적으로 유의미한 PLT 수치 회복이 나타났으며, 이때 PLT 수치는 WT 마우스의 PLT 수준과 유사하였다. 투여 24시간째 결과 또한 Cablivi® 2 mg/kg 투여군 (465.50 ± 140.50 G/L) 및 GC1126A 0.1 mg/kg 투여군 (1,122.00 ± 83.60 G/L)에서 비이클 군 대비 통계적으로 유의적인 PLT 수치 차이가 확인되었다. 그러나, Cablivi® 2 mg/kg 투여군의 PLT 수치는 6시간째 수치 대비 53.0% 급격히 감소한 반면, GC1126A 0.1 mg/kg 투여군은 12.6% 감소에 그쳐 여전히 WT 마우스의 PLT 수준과 유사한 수준을 유지하였다. 이러한 경향성은 투여 48시간째 결과에서 더욱 심화되었으며, Cablivi® 2 mg/kg 투여군(378.00 ± 242.90 G/L)의 경우 비이클 대비 PLT 회복의 통계적 유의성이 확인되지 않았다. 반면, GC1126A 0.1 mg/kg 투여군 (1,119 ± 67.12 G/L)의 PLT 수치는 6시간 째 PLT 수치(1,284.00 ± 153.50 G/L)와 유사하게 측정되었으며 비이클 대비 유의미한 PLT 수치의 회복이 유지됨을 확인하였다. 결과적으로 통계적으로 유의미한 PLT 수치의 회복을 보이는 치료적 유효 효력 용량으로 Cablivi®는 2 mg/kg, GC1126A 는 0.1 mg/kg임을 확인하였고, mg/kg 투여용량 기준으로 Cablivi®대비 GC1126A가 약 20배 정도 낮은 용량에서 유사 수준의 효력을 보임을 알 수 있었다. 뿐만 아니라 Cablivi®는 투여 24시간 째 치료 효력이 급격하게 감소하는 반면 GC1126A는 최대 48시간까지 치료 효력이 유지되어 효력 유지력 측면에서 GC1126A가 우월함을 확인하였다. In the PLT measurement results at 6 hours after administration, statistically significant recovery of PLT values was confirmed in the Cablivi ® group only in the 2 mg/kg (990.30 ± 41.41 G/L) administered group compared to the vehicle group (FIG. 43b). In the case of the GC1126A 0.1 mg/kg administered group (1,284.00±153.50 G/L), a statistically significant recovery of PLT levels was observed compared to the vehicle group, and at this time, the PLT levels were similar to those of WT mice. At 24 hours after administration, a statistically significant difference in PLT levels was confirmed in the Cablivi ® 2 mg/kg group (465.50 ± 140.50 G/L) and the GC1126A 0.1 mg/kg group (1,122.00 ± 83.60 G/L) compared to the vehicle group. . However, the PLT level of the Cablivi ® 2 mg/kg group decreased rapidly by 53.0% compared to the value at 6 hours, while the GC1126A 0.1 mg/kg group decreased by only 12.6%, still maintaining a similar level to that of WT mice. This tendency was further intensified in the results at 48 hours after administration, and in the case of the Cablivi ® 2 mg/kg group (378.00 ± 242.90 G/L), statistical significance in PLT recovery compared to the vehicle was not confirmed. On the other hand, the PLT level of the GC1126A 0.1 mg/kg administered group (1,119 ± 67.12 G/L) was measured to be similar to the PLT level (1,284.00 ± 153.50 G/L) at 6 hours, and it was confirmed that significant recovery of PLT level was maintained compared to the vehicle. . As a result, it was confirmed that the therapeutically effective dose showing statistically significant recovery of PLT levels was 2 mg/kg for Cablivi ® and 0.1 mg/kg for GC1126A, and based on the mg/kg administered dose, GC1126A was approximately 20 times more effective than Cablivi ® . It was found that similar levels of efficacy were observed at low doses. In addition, the therapeutic effect of Cablivi ® decreases rapidly 24 hours after administration, while the therapeutic effect of GC1126A is maintained for up to 48 hours, confirming that GC1126A is superior in terms of maintaining effect.

aTTP mimic 마우스 모델에서 GC1126A 및 rh WT ADAMTS-13의 치료 효과 비교Comparison of therapeutic effects of GC1126A and rh WT ADAMTS-13 in aTTP mimic mouse model

aTTP mimic 마우스 모델을 이용하여 rh WT-ADAMTS13 대비 GC1126A의 치료적 효력을 확인하기 위해 각 약물 투여 후 최종 6시간째 PLT 수치를 측정하였다(도 44a). 비교 평가를 위해 동량의 약물 투여가 필요하여 몰농도(molarity) 기준으로 환산하였을 때, GC1126A의 유효 치료 효력 농도인 0.08 mg/kg은 rh WT-ADAMTS13 0.07 mg/kg였다. PLT 수치 확인 결과, GC1126A 0.08 mg/kg 투여군은 비이클 대비 유의미한 PLT 수치 회복(610.70±142.50 G/L)을 보였다. 반면, rh WT-ADAMTS13 0.07 mg/kg 투여군은 비이클 수준의 PLT 수치를 나타내어 PLT 수치 회복을 볼 수 없었고, WT ADAMTS13 2.15 mg/kg 투여군은 GC1126A 0.08 mg/kg와 유사한 수준으로 PLT 수치 회복(479.3±120.3 G/L)을 보였다(도 44b). To confirm the therapeutic effect of GC1126A compared to rh WT-ADAMTS13 using the aTTP mimic mouse model, PLT levels were measured at the final 6 hours after administration of each drug (FIG. 44a). When the same amount of drug was administered for comparative evaluation and converted to molarity, the effective therapeutic concentration of GC1126A, 0.08 mg/kg, was 0.07 mg/kg for rh WT-ADAMTS13. As a result of checking the PLT level, the GC1126A 0.08 mg/kg administration group showed significant PLT level recovery (610.70±142.50 G/L) compared to the vehicle. On the other hand, the group administered rh WT-ADAMTS13 0.07 mg/kg showed PLT levels at the vehicle level and no recovery of PLT levels was observed, while the group administered 2.15 mg/kg WT ADAMTS13 recovered PLT levels to a level similar to that of GC1126A 0.08 mg/kg (479.3 ± 120.3 G/L) (Figure 44b).

aTTP mimic 마우스 모델에서 시간에 따른 GC1126A 및 경쟁 물질 (rh WT ADAMTS13과 CabliviTime-dependent expression of GC1126A and competitors (rh WT ADAMTS13 and Cablivi) in aTTP mimic mouse model ®® )의 PLT 감소 예방 능력과 회복 능력 비교) Comparison of PLT reduction prevention and recovery abilities

GC1126A와 rh WT-ADAMTS13, Cablivi®의 투여 후 시간에 따른 PLT 감소 예방 능력을 비교 평가하기 위하여 중화항체와 rh-vWF를 투여 30분 후 세 종류의 약물을 각각 투여하여 시간에 따른 PLT 수치 변화를 비교하였다 (도 45a). 물질 투여 후 6시간부터 48시간까지 rh WT ADAMTS13 0.1 mg/kg 투여군과 두 용량(0.1, 2 mg/kg)의 Cablivi® 투여군은 모두 비이클 투여군과 유사한 수준의 PLT 감소가 확인되었다(도 45b). 그러나 GC1126A 0.1 mg/kg 투여군과 rh WT-ADAMTS13 0.5 mg/kg 투여군은 투여 후 6시간에서 48시간까지 감소 추이 없이 PLT 수치가 유지되는 것을 확인하였다. 또한 혈중 ADAMTS13 잔존 활성 측정 결과, GC1126A 0.1 mg/kg 투여군은 투여 1시간 후 평균 15.95 IU/mL의 높은 잔존활성을 보이고, 시간에 따라 그 활성이 점차 감소하였지만, 72시간까지도 측정 한계인 0.03 IU/mL 이상의 잔존활성을 보여주었다(도 45c). rh WT-ADAMTS13 0.5 mg/kg 투여군은 1시간 후 평균 3.71 IU/mL의 낮은 잔존 활성을 보이고, 시간에 따라 그 활성이 점차 감소하여 48시간 이후 측정 한계 아래로 값을 도출할 수 없었다. 두 투여군은 상대적으로 높은 활성에 의해 PLT 감소가 예방되었고, rh WT-ADAMTS13 0.1 mg/kg 투여군은 1시간 후 이미 0.07 IU/mL의 낮은 활성으로 PLT 감소를 막을 수 없었던 것으로 추정된다. 따라서 mg/kg 기준으로 본다면, 경쟁 물질인 Cablivi® 대비 최소 20배, rh WT-ADAMTS13 대비 최소 5배 낮은 투여 용량에서도 PLT 감소 예방을 유도할 수 있음을 확인하였다.To compare and evaluate the ability to prevent PLT decline over time after administration of GC1126A, rh WT-ADAMTS13, and Cablivi ®, three types of drugs were administered each 30 minutes after administration of neutralizing antibody and rh-vWF, and changes in PLT values over time were measured. Comparison was made (Figure 45a). From 6 hours to 48 hours after administration of the substance, both the rh WT ADAMTS13 0.1 mg/kg group and the two doses (0.1 and 2 mg/kg) of Cablivi ® administered groups showed a PLT reduction similar to that of the vehicle group (FIG. 45b). However, in the GC1126A 0.1 mg/kg group and the rh WT-ADAMTS13 0.5 mg/kg group, it was confirmed that PLT levels were maintained without a decrease from 6 to 48 hours after administration. In addition, as a result of measuring the residual activity of ADAMTS13 in the blood, the GC1126A 0.1 mg/kg administration group showed a high residual activity of 15.95 IU/mL on average 1 hour after administration, and the activity gradually decreased over time, but remained at the measurement limit of 0.03 IU/mL even at 72 hours. It showed residual activity of more than mL (Figure 45c). The group administered rh WT-ADAMTS13 0.5 mg/kg showed a low residual activity of 3.71 IU/mL on average after 1 hour, and the activity gradually decreased over time, making it impossible to derive a value below the measurement limit after 48 hours. It is estimated that the PLT decrease was prevented in both groups due to relatively high activity, and the rh WT-ADAMTS13 0.1 mg/kg group was unable to prevent the PLT decrease due to its low activity of 0.07 IU/mL after 1 hour. Therefore, on a mg/kg basis, it was confirmed that PLT reduction prevention can be induced even at an administration dose that is at least 20 times lower than that of the competing substance, Cablivi ® , and at least 5 times lower than that of rh WT-ADAMTS13.

GC1126A와 rh WT-ADAMTS13, Cablivi®의 투여 후 시간에 따라 PLT 수치의 회복 능력을 비교하기 위하여 rh-vWF 투여 8시간 후 PLT 수치가 감소되어 있는 상태에서 중화항체와 세 종류의 약물을 각각 투여하였다. 약물 투여 1시간 후(rh-vWF 1차 투여 9시간 후)보다 16시간 후에 PLT 수치가 더 감소한 비이클이나 Calbivi®, rh WT-ADAMTS13 투여군들과 달리 GC1126A 0.1 mg/kg 투여군은 통계적으로 유의미한 수준으로 신속하게 PLT 수치를 회복하였고, 그에 따라 72 시간 후에는 WT 마우스의 PLT 수치와 가장 근접한 수준의 PLT 회복을 보이는 것을 확인하였다(도 45e). 잔존 활성의 측정 결과에서도 GC1126A 0.1 mg/kg 투여군은 물질 투여 1시간 후 평균 7.15 IU/mL의 높은 잔존활성을 보였고, 시간에 따라 그 활성이 점차 감소하여 48시간 후에도 측정 한계 이상인 평균 0.04 IU/mL의 잔존활성을 보였다(도 45f). 하지만 rh WT-ADAMTS13 0.5 mg/kg 투여군은 1시간 후 평균 0.04 IU/mL으로 측정 한계에 가까운 낮은 잔존 활성이 관찰되고, 16시간 이후부터 잔존활성을 측정할 수 없었으며, 0.1 mg/kg 투여 시에는 모든 시간대에서 측정한계 미만으로 나타났다. GC1126A의 높은 활성은 투여 이후 추가적인 PLT 감소를 예방하고, 일정 수준의 PLT를 유지시켜 정상 수준으로 보다 빠르게 회복시킬 수 있다. 따라서 mg/kg 기준에서 GC1126A는 경쟁 물질인 Cablivi® 대비 최소 20배, rh WT-ADAMTS13 대비 최소 5배 낮은 투여 용량에서도 PLT의 추가적인 감소를 막아 정상 수치로의 빠른 회복을 유도함을 확인하였다.To compare the recovery ability of PLT levels over time after administration of GC1126A, rh WT-ADAMTS13, and Cablivi ® , neutralizing antibodies and three types of drugs were administered while PLT levels were reduced 8 hours after rh-vWF administration. . Unlike the vehicle, Calbivi ® , and rh WT-ADAMTS13 administration groups, where the PLT level decreased more 16 hours after drug administration than 1 hour after drug administration (9 hours after the first rh-vWF administration), the GC1126A 0.1 mg/kg administration group showed a statistically significant decrease. PLT levels were quickly recovered, and it was confirmed that PLT recovery was at a level closest to that of WT mice after 72 hours (FIG. 45e). In the measurement results of residual activity, the GC1126A 0.1 mg/kg group showed a high residual activity of 7.15 IU/mL on average 1 hour after administration, and the activity gradually decreased over time, reaching an average of 0.04 IU/mL, which was above the measurement limit even after 48 hours. showed residual activity (Figure 45f). However, in the group administered rh WT-ADAMTS13 0.5 mg/kg, low residual activity was observed, close to the measurement limit, with an average of 0.04 IU/mL after 1 hour, and residual activity could not be measured after 16 hours, and when administered at 0.1 mg/kg, It was found to be below the measurement limit at all times. The high activity of GC1126A prevents further decrease in PLT after administration and maintains a certain level of PLT, allowing it to recover to normal level more quickly. Therefore, on a mg/kg basis, it was confirmed that GC1126A prevents further decrease in PLT and induces rapid recovery to normal values even at an administered dose that is at least 20 times lower than that of the competing substance Cablivi ® and at least 5 times lower than that of rh WT-ADAMTS13.

aTTP 환자 혈장을 이용한 rh WT-ADAMT13 및 GC1126A의 자가 항체 회피력 비교 Comparison of autoantibody evasion ability of rh WT-ADAMT13 and GC1126A using aTTP patient plasma.

GC1126A, MDTCS-Fc 및 rh WT-ADAMTS13의 aTTP 환자 혈장 내 존재하는 자가 항체 회피능을 비교 평가하기 위해 한국인 aTTP 환자 혈장 6례를 확보하여 ADAMTS13의 잔존활성을 측정하였다. GC1126A는 자가항체 활성 농도(BU/mL)와 상관없이 상대 잔존 활성이 70%에서 130% 범위로 유지됨을 확인하였으며, 이는 물질 처리 농도와 상관없이 유지됨을 관찰하였다(도 46, 붉은 점). 반면 MDTCS-Fc 혹은 rh WT-ADAMTS13 처리 그룹은 GC1126A 대비 낮은 상대 잔존활성 수준을 보였으며, 각 물질 처리 농도 의존적으로 상대 잔존활성이 증가함을 확인하였다(도 40, 흑색 및 청색 점). 이는 각 시험조건에서 자가항체 이상의 물질 농도가 처리되어 나타나는 현상으로 추측된다. MDTCS-Fc 및 rh WT-ADAMTS13 대비 GC1126A에서 보이는 우수한 자가항체 회피능은 자가항체 활성 농도가 높은 조건(3.0 BU/mL)에서 낮은 물질 농도(1.5 nM)를 처리했을 때 더 뚜렷함을 확인할 수 있었다(도 46). 결론적으로 GC1126A는 MDTCS-Fc 및 rh WT-ADAMTS13 대비 aTTP 환자에 존재하는 자가항체 회피능이 우수한 것을 알 수 있었다. To compare and evaluate the ability of GC1126A, MDTCS-Fc, and rh WT-ADAMTS13 to evade autoantibodies present in the plasma of aTTP patients, 6 cases of plasma from Korean aTTP patients were obtained and the residual activity of ADAMTS13 was measured. It was confirmed that the relative residual activity of GC1126A was maintained in the range of 70% to 130% regardless of the autoantibody activity concentration (BU/mL), and this was observed to be maintained regardless of the material treatment concentration (Figure 46, red dot). On the other hand, the MDTCS-Fc or rh WT-ADAMTS13 treatment group showed a lower relative residual activity level compared to GC1126A, and it was confirmed that the relative residual activity increased depending on the treatment concentration of each substance (Figure 40, black and blue dots). This is presumed to be a phenomenon that occurs when the concentration of substances exceeding that of autoantibodies is processed under each test condition. The excellent autoantibody evasion ability seen in GC1126A compared to MDTCS-Fc and rh WT-ADAMTS13 was confirmed to be more evident when treated with a low substance concentration (1.5 nM) under conditions of high autoantibody activity concentration (3.0 BU/mL). (Figure 46). In conclusion, GC1126A was found to have superior ability to evade autoantibodies present in aTTP patients compared to MDTCS-Fc and rh WT-ADAMTS13.

ADAMTS13 중화항체를 효과적으로 회피하는 novel 변이체 GC1126A의 치료 효력 농도를 확인하고, TTP 치료제로서 기 승인된 약물 Cablivi® 와 개발 중인 약물 rh WT-ADAMTS13과 효력 비교 평가를 위해 aTTP mimic 질환 마우스 혹은 aTTP 환자 혈장에서 확인하였다. aTTP mimic 마우스에서 GC1126A는 중화항체를 효과적으로 회피하고 높은 ADAMTS13 잔존활성을 나타내며, 이는 PLT의 추가적인 감소를 예방하여 더 빠른 회복을 유도할 수 있다. mg/kg 기준 투여 농도 기준으로 GC1126A는 Cablivi® 및 rh WT-ADAMTS13 대비 각각 약 20배, 약 5배 낮은 투여 용량에서 유사 수준의 효력을 갖는 것으로 확인하였다. 또한 rh WT-ADAMTS13과 Cablivi® 대비 GC1126A는 치료 효력이 48시간까지 유지되어 치료 효력 유지력 측면에서 우월성을 보여주었다. aTTP 환자 혈장 시험계에서도 GC1126A는 rh WT-ADAMTS13 혹은 변이체를 포함하고 있지 않은 MDTCS-Fc 비교 물질 대비 자가항체 회피력이 우수함을 보여주었으며, 이러한 효과는 자가항체 활성 농도가 높을수록 더 뚜렷함을 확인하였다. 결론적으로 GC1126A는 aTTP mimic 마우스와 aTTP 환자 혈장에서 효력 평가를 통해 기존 TTP 치료제 대비 치료적 효력 및 유지력 측면에서 우월성을 확인하였으며 TTP 질환에 대한 효과적인 치료제로 이용될 수 있음을 보여주었다. 또한 aTTP mimic 마우스 모델에서 GC1126A의 치료적 유효용량 범위는 0.100-0.146 mg/kg 임을 확인하였고, 정상 원숭이에서 치료적 유효용량을 포함하는 3개의 용량 약동학적 평가를 통해 선형 약동학 특성을 확인하였다. 이 결과를 바탕으로 인간 PK 모델링 및 시뮬레이션을 통해 건강 성인에서 유효용량을 고려한 용량범위는 0.03 - 0.2 mg/kg로 예측할 수 있었다. To confirm the therapeutic effect concentration of GC1126A, a novel variant that effectively avoids ADAMTS13 neutralizing antibodies, and to compare its efficacy with Cablivi ® , a drug already approved as a TTP treatment, and rh WT-ADAMTS13, a drug under development, it was tested in the plasma of aTTP mimic disease mice or aTTP patients. Confirmed. In aTTP mimic mice, GC1126A effectively evades neutralizing antibodies and exhibits high ADAMTS13 residual activity, which can prevent further decrease in PLT and lead to faster recovery. Based on the administration concentration based on mg/kg, GC1126A was confirmed to have a similar level of efficacy at doses that were approximately 20 times and approximately 5 times lower than Cablivi ® and rh WT-ADAMTS13, respectively. In addition, compared to rh WT-ADAMTS13 and Cablivi ® , GC1126A showed superiority in terms of maintaining the therapeutic effect by maintaining the therapeutic effect for up to 48 hours. In the aTTP patient plasma test system, GC1126A showed superior autoantibody evasion compared to rh WT-ADAMTS13 or the MDTCS-Fc comparison material that does not contain the variant, and this effect was confirmed to be more pronounced the higher the autoantibody activity concentration. In conclusion, GC1126A was confirmed to be superior in terms of therapeutic efficacy and maintenance compared to existing TTP treatments through efficacy evaluation in aTTP mimic mouse and aTTP patient plasma, and showed that it can be used as an effective treatment for TTP disease. In addition, the therapeutically effective dose range of GC1126A in the aTTP mimic mouse model was confirmed to be 0.100-0.146 mg/kg, and linear pharmacokinetic characteristics were confirmed through pharmacokinetic evaluation of three doses including the therapeutically effective dose in normal monkeys. Based on these results, the dosage range considering the effective dose in healthy adults was predicted to be 0.03 - 0.2 mg/kg through human PK modeling and simulation.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

서열목록 전자파일 첨부Sequence list electronic file attached

Claims (22)

ADAMTS13(a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) 단백질, 이의 변이체 및 이의 기능적 일부 절편으로 구성된 군으로부터 선택되는 혈장 단백질을 유효성분으로 포함하는 약제학적 제형 조성물로서, 상기 혈장 단백질은 대상체의 체중 1kg 당 0.02 mg 내지 0.25 mg으로 투여되도록 상기 조성물 내에 포함되는 것을 특징으로 하는 조성물.
A pharmaceutical formulation composition containing as an active ingredient a plasma protein selected from the group consisting of ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) protein, variants thereof, and functional fragments thereof, wherein the plasma protein is administered to the subject. A composition characterized in that it is included in the composition to be administered at 0.02 mg to 0.25 mg per 1 kg of body weight.
제 1 항에 있어서, 상기 혈장 단백질은 대상체의 체중 1kg 당 0.03 mg 내지 0.2 mg으로 투여되도록 상기 조성물 내에 포함되는 것을 특징으로 하는 조성물.
The composition according to claim 1, wherein the plasma protein is included in the composition to be administered in an amount of 0.03 mg to 0.2 mg per 1 kg of body weight of the subject.
제 1 항에 있어서, 상기 조성물은 정맥 투여되는 것을 특징으로 하는 조성물.
The composition according to claim 1, wherein the composition is administered intravenously.
제 1 항에 있어서, 상기 조성물은 0.2 mg/ml 내지 1.2 mg/ml의 혈장 단백질 및 40 mM 내지 200 mM의 아미노산 안정화제(stabilizer)를 포함하는 것을 특징으로 하는 조성물.
The composition of claim 1, wherein the composition comprises 0.2 mg/ml to 1.2 mg/ml of plasma protein and 40 to 200 mM of an amino acid stabilizer.
제 4 항에 있어서, 상기 아미노산은 아르기닌(Arg), 프롤린(Pro) 및 이들의 약제학적으로 허용되는 염으로 구성된 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 조성물.
The composition according to claim 4, wherein the amino acid is at least one selected from the group consisting of arginine (Arg), proline (Pro), and pharmaceutically acceptable salts thereof.
제 4 항에 있어서, 상기 조성물은 전체 조성물에 대해 0 내지 1.5 w/v%의 당(sugar) 안정화제를 추가적으로 포함하는 것을 특징으로 하는 제형 조성물.
The formulation composition according to claim 4, wherein the composition additionally contains 0 to 1.5 w/v% of a sugar stabilizer based on the total composition.
제 6 항에 있어서, 상기 당은 수크로스, 트레할로스 및 이들의 약제학적으로 허용되는 염으로 구성된 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 조성물.
The composition according to claim 6, wherein the sugar is at least one selected from the group consisting of sucrose, trehalose, and pharmaceutically acceptable salts thereof.
제 4 항에 있어서, 상기 조성물은 100 mM 내지 400 mM의 무기염을 추가적으로 포함하는 것을 특징으로 하는 제형 조성물.
The formulation composition according to claim 4, wherein the composition additionally contains 100mM to 400mM of an inorganic salt.
제 8 항에 있어서, 상기 무기염은 NaCl, CaCl2, KCl 및 MgCl2로 구성된 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 조성물.
The composition according to claim 8, wherein the inorganic salt is at least one selected from the group consisting of NaCl, CaCl 2 , KCl and MgCl 2 .
제 9 항에 있어서, 상기 무기염은 NaCl 및 CaCl2의 혼합물인 것을 특징으로 하는 조성물.
The composition according to claim 9, wherein the inorganic salt is a mixture of NaCl and CaCl 2 .
제 4 항에 있어서, 상기 조성물은 전체 조성물에 대해 0.01 내지 0.1 v/v %의 비이온성 계면활성제를 추가적으로 포함하는 것을 특징으로 하는 조성물.
The composition according to claim 4, wherein the composition additionally comprises 0.01 to 0.1 v/v % of a nonionic surfactant based on the total composition.
제 11 항에 있어서, 상기 비이온성 계면활성제는 폴리소르베이트 80, 폴리소르베이트 60 및 폴리소르베이트 40으로 구성된 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 조성물.
The composition of claim 11, wherein the nonionic surfactant is at least one selected from the group consisting of polysorbate 80, polysorbate 60, and polysorbate 40.
제 1 항에 있어서, 상기 ADAMTS13 단백질의 변이체는 서열목록 제1서열의 85, 93, 126, 135, 278, 282, 308, 314, 317, 334, 364, 376, 413, 427, 452, 465, 567, 578, 585, 589, 607, 608, 609, 612, 618, 624, 630, 635, 643, 650, 651, 654, 655, 656, 658, 664 및 672번째 잔기로 구성된 군으로부터 선택되는 하나 이상의 아미노산 잔기의 치환을 포함하는 것을 특징으로 하는 조성물.
The method of claim 1, wherein the variant of the ADAMTS13 protein is 85, 93, 126, 135, 278, 282, 308, 314, 317, 334, 364, 376, 413, 427, 452, 465 of the first sequence of the sequence listing. one selected from the group consisting of residues 567, 578, 585, 589, 607, 608, 609, 612, 618, 624, 630, 635, 643, 650, 651, 654, 655, 656, 658, 664 and 672 A composition comprising substitution of one or more amino acid residues.
제 13 항에 있어서, 상기 ADAMTS13 단백질의 변이체는 하기의 위치에서의 하나 이상의 아미노산 잔기의 치환을 포함하는 각 변이 단백질들로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물:
- 85 및 317번째 잔기; 612번째 잔기; 282, 465 및 672번째 잔기 중 둘 이상; 635번째 잔기; 452 및 612번째 잔기; 278, 334 및 427번째 잔기 중 둘 이상; 618번째 잔기; 135번째 잔기; 126, 567 및 651번째 잔기 중 둘 이상; 413번째 잔기; 334번째 잔기; 314번째 잔기; 93, 364 및 376번째 잔기 중 둘 이상; 308번째 잔기; 656번째 잔기; 607번째 잔기; 612 및 624번째 잔기; 589번째 잔기; 650 및 656번째 잔기; 643번째 잔기; 585 및 658번째 잔기; 630, 654 및 664번째 잔기 중 둘 이상; 589, 608, 609, 624 및 655번째 잔기 중 넷 이상; 578번째 잔기; 585번째 잔기; 314 및 635번째 잔기; 및 314 및 612번째 잔기.
The composition of claim 13, wherein the variant of the ADAMTS13 protein is selected from the group consisting of mutant proteins each containing a substitution of one or more amino acid residues at the following positions:
- Residues 85 and 317; Residue 612; two or more of residues 282, 465, and 672; residue 635; residues 452 and 612; two or more of residues 278, 334, and 427; Residue 618; residue 135; two or more of residues 126, 567, and 651; residue 413; Residue 334; residue 314; two or more of residues 93, 364, and 376; Residue 308; Residue 656; Residue 607; Residues 612 and 624; residue 589; Residues 650 and 656; Residue 643; Residues 585 and 658; Two or more of residues 630, 654, and 664; Four or more of residues 589, 608, 609, 624, and 655; Residue 578; residue 585; Residues 314 and 635; and residues 314 and 612.
제 13 항에 있어서, 상기 아미노산 잔기의 치환은 85번째 잔기의 Phe로의 치환, 93번째 잔기의 Val으로의 치환, 126번째 잔기의 Met으로의 치환, 135번째 잔기의 Ile으로의 치환, 278번째 잔기의 Ile으로의 치환, 282번째 잔기의 Ala으로의 치환, 308번째 잔기의 Lys으로의 치환, 314번째 잔기의 Thr으로의 치환, 317번째 잔기의 His으로의 치환, 334번째 잔기의 Thr 또는 Val으로의 치환, 364번째 잔기의 Arg으로의 치환, 376번째 잔기의 Asp으로의 치환, 413번째 잔기의 Asp으로의 치환, 427번째 잔기의 Asn으로의 치환, 452번째 잔기의 Ile으로의 치환, 465번째 잔기의 Asp으로의 치환, 567번째 잔기의 Ser으로의 치환, 578번째 잔기의 Leu으로의 치환, 585번째 잔기의 Asn 또는 Met으로의 치환, 589번째 잔기의 Gln으로의 치환, 607번째 잔기의 Arg으로의 치환, 608번째 잔기의 Met으로의 치환, 609번째 잔기의 Leu으로의 치환, 612번째 잔기의 Phe 또는 Tyr으로의 치환, 618번째 잔기의 Ser으로의 치환, 624번째 잔기의 Asp 또는 Cys으로의 치환, 630번째 잔기의 Leu으로의 치환, 635번째 잔기의 Val으로의 치환, 643번째 잔기의 Phe으로의 치환, 650번째 잔기의 His으로의 치환, 651번째 잔기의 Asp으로의 치환, 654번째 잔기의 Gly으로의 치환, 655번째 잔기의 Val으로의 치환, 656번째 잔기의 Arg 또는 His으로의 치환, 658번째 잔기의 His으로의 치환, 664번째 잔기의 Asn으로의 치환 및 672번째 잔기의 Val으로의 치환으로 구성된 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 조성물.
The method of claim 13, wherein the substitution of the amino acid residue is substitution of the 85th residue with Phe, substitution of the 93rd residue with Val, substitution of the 126th residue with Met, substitution of the 135th residue with Ile, and substitution of the 278th residue. substitution of Ile, substitution of residue 282 with Ala, substitution of residue 308 with Lys, substitution of residue 314 with Thr, substitution of residue 317 with His, substitution of residue 334 with Thr or Val. Substitution of, substitution of the 364th residue with Arg, substitution of the 376th residue with Asp, substitution of the 413th residue with Asp, substitution of the 427th residue with Asn, substitution of the 452nd residue with Ile, 465th Substitution of residues with Asp, substitution of residue 567 with Ser, substitution of residue 578 with Leu, substitution of residue 585 with Asn or Met, substitution of residue 589 with Gln, Arg at residue 607. Substitution, substitution of residue 608 with Met, substitution of residue 609 with Leu, substitution of residue 612 with Phe or Tyr, substitution of residue 618 with Ser, substitution of residue 624 with Asp or Cys. Substitution of, substitution of the 630th residue with Leu, substitution of the 635th residue with Val, substitution of the 643rd residue with Phe, substitution of the 650th residue with His, substitution of the 651st residue with Asp, 654th Substitution of residues with Gly, substitution of residue 655 with Val, substitution of residue 656 with Arg or His, substitution of residue 658 with His, substitution of residue 664 with Asn and substitution of residue 672 with Val. A composition characterized in that it is one or more selected from the group consisting of substitution with .
제 1 항에 있어서, 상기 ADAMTS13 단백질, 이의 변이체 및 이의 기능적 일부 절편으로 구성된 군으로부터 선택되는 혈장 단백질은 IgG4 면역글로불린의 Fc 영역이 접합된 것을 특징으로 하는 조성물.
The composition according to claim 1, wherein the plasma protein selected from the group consisting of the ADAMTS13 protein, its variant, and its functional fragment is conjugated with the Fc region of an IgG4 immunoglobulin.
제 16 항에 있어서, 상기 Fc 영역은 서열목록 제2서열의 22, 24 및 26번째 잔기로 구성된 군으로부터 선택되는 하나 이상의 아미노산 잔기의 치환을 포함하는 것을 특징으로 하는 조성물.
The composition of claim 16, wherein the Fc region comprises a substitution of one or more amino acid residues selected from the group consisting of residues 22, 24, and 26 of SEQ ID NO:2.
제 17 항에 있어서, 상기 22번째 잔기는 Tyr, 24번째 잔기는 Thr, 26번째 잔기는 Glu으로 각각 치환되는 것을 특징으로 하는 조성물.
The composition according to claim 17, wherein the 22nd residue is substituted with Tyr, the 24th residue with Thr, and the 26th residue with Glu.
제 16 항에 있어서, 상기 혈장 단백질과 상기 IgG4 면역글로불린의 Fc 영역 사이에 IgG1 면역글로불린의 힌지(hinge) 영역이 추가적으로 포함되는 것을 특징으로 하는 조성물.
The composition of claim 16, wherein a hinge region of an IgG1 immunoglobulin is additionally included between the plasma protein and the Fc region of the IgG4 immunoglobulin.
제 1 항 내지 제 19 항 중 어느 한 항의 조성물을 유효성분으로 포함하는 혈전성 질환의 예방 또는 치료용 조성물.
A composition for preventing or treating thrombotic diseases comprising the composition of any one of claims 1 to 19 as an active ingredient.
제 20 항에 있어서, 상기 혈전성 질환은 혈전성 미세 혈관병증(thrombotic microangiopathy, TMA)인 것을 특징으로 하는 조성물.
The composition of claim 20, wherein the thrombotic disease is thrombotic microangiopathy (TMA).
제 21 항에 있어서, 상기 혈전성 미세 혈관병증은 혈전성 혈소판 감소성 자반증(thrombocytopenic purpura, TTP), 용혈성 요독성 증후군(Hemolytic uremic syndrome, HUS), HELLP(Hemolysis, Elevated Liver enzymes, Low Platelet count), 자간전증(Preeclampsia) 및 겸상적혈구질환(sickle cell disease)으로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물.
The method of claim 21, wherein the thrombotic microangiopathy is thrombocytopenic purpura (TTP), hemolytic uremic syndrome (HUS), HELLP (Hemolysis, Elevated Liver enzymes, Low Platelet count) , a composition selected from the group consisting of preeclampsia and sickle cell disease.
KR1020240004681A 2023-01-11 2024-01-11 A Novel Liquid Formulation for Preventing or Treating Thrombotic Disease KR20240112755A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20230004111 2023-01-11
KR1020230004111 2023-01-11

Publications (1)

Publication Number Publication Date
KR20240112755A true KR20240112755A (en) 2024-07-19

Family

ID=91897294

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020240004681A KR20240112755A (en) 2023-01-11 2024-01-11 A Novel Liquid Formulation for Preventing or Treating Thrombotic Disease

Country Status (2)

Country Link
KR (1) KR20240112755A (en)
WO (1) WO2024151093A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016492A2 (en) * 2001-08-16 2003-02-27 The Regents Of The University Of Michigan Adamts13 genes and proteins and variants, and uses thereof
US20070015703A1 (en) * 2005-06-17 2007-01-18 Denisa Wagner ADAMTS13-containing compositions having thrombolytic activity
JP5819303B2 (en) * 2009-09-21 2015-11-24 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated Stabilized liquid and lyophilized ADAMTS13 formulations
EP3269805A1 (en) * 2010-04-20 2018-01-17 Octapharma AG New stabilizing agent for pharmaceutical proteins
AU2013203062C1 (en) * 2013-03-15 2018-06-28 Takeda Pharmaceutical Company Limited Subcutaneous administration of adamts13
IL287916B2 (en) * 2015-07-30 2023-09-01 Macrogenics Inc Pd-1-binding molecules and methods of use thereof
KR20230159285A (en) * 2022-05-10 2023-11-21 주식회사 녹십자 A Novel Liquid Formulation for Lyophilization of Plasma Protein
KR20230159284A (en) * 2022-05-10 2023-11-21 주식회사 녹십자 A Novel Liquid Formulation for Plasma Protein

Also Published As

Publication number Publication date
WO2024151093A1 (en) 2024-07-18

Similar Documents

Publication Publication Date Title
JP6723319B2 (en) Modified serpins for the treatment of hemorrhagic disorders
EP3668972B1 (en) Engineered dnase enzymes and use in therapy
EP2209485B1 (en) Extracellular histones as biomarkers for prognosis and molecular targets for therapy
JP2020506693A (en) Active low molecular weight mutant of angiotensin converting enzyme 2 (ACE2)
EP3013366B1 (en) Combination therapy using a factor xii inhibitor and a c1-inhibitor
JP7045133B2 (en) Ornithodoros complement inhibitor for use in the treatment of complement-mediated diseases in patients with C5 polymorphisms
EP3302519B1 (en) Ornithodoros moubata complement inhibitor for use in the treatment of acute graft versus host disease
US8470557B2 (en) Isolated nucleic acids encoding activated factor V and methods for production thereof
EP3157548B1 (en) Therapy using a factor xii inhibitor in a neurotraumatic disorder
RU2142806C1 (en) Method of purification and storage of, aqueous solution of purified factor ix, composition containing factor ix, and method of treatment
US8741844B2 (en) Use of mutated antithrombins for treating or preventing coagulation disorders
KR20230159284A (en) A Novel Liquid Formulation for Plasma Protein
KR20230159285A (en) A Novel Liquid Formulation for Lyophilization of Plasma Protein
WO2015185945A2 (en) Polypeptides and uses thereof
KR20240112755A (en) A Novel Liquid Formulation for Preventing or Treating Thrombotic Disease
EP4249594A1 (en) Adamts13 variant having increased escaping rate or activity against autoantibody
JP2012529445A (en) Treatment of coagulopathy with increased fibrinolysis
JP2024001135A (en) Methods of treating initial episode of ttp with immunoglobulin single variable domains
WO2019025782A1 (en) Polypeptides and uses thereof