KR20240105276A - Method of isolating cannabidiol from Cannabis sativa L. using supercritical fluid - Google Patents
Method of isolating cannabidiol from Cannabis sativa L. using supercritical fluid Download PDFInfo
- Publication number
- KR20240105276A KR20240105276A KR1020230191099A KR20230191099A KR20240105276A KR 20240105276 A KR20240105276 A KR 20240105276A KR 1020230191099 A KR1020230191099 A KR 1020230191099A KR 20230191099 A KR20230191099 A KR 20230191099A KR 20240105276 A KR20240105276 A KR 20240105276A
- Authority
- KR
- South Korea
- Prior art keywords
- bar
- cannabidiol
- supercritical
- pressure
- minutes
- Prior art date
Links
- QHMBSVQNZZTUGM-ZWKOTPCHSA-N cannabidiol Chemical compound OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-ZWKOTPCHSA-N 0.000 title claims abstract description 119
- ZTGXAWYVTLUPDT-UHFFFAOYSA-N cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CC=C(C)C1 ZTGXAWYVTLUPDT-UHFFFAOYSA-N 0.000 title claims abstract description 119
- QHMBSVQNZZTUGM-UHFFFAOYSA-N Trans-Cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-UHFFFAOYSA-N 0.000 title claims abstract description 118
- 229950011318 cannabidiol Drugs 0.000 title claims abstract description 118
- PCXRACLQFPRCBB-ZWKOTPCHSA-N dihydrocannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)C)CCC(C)=C1 PCXRACLQFPRCBB-ZWKOTPCHSA-N 0.000 title claims abstract description 118
- 244000025254 Cannabis sativa Species 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000012530 fluid Substances 0.000 title claims abstract description 23
- 235000008697 Cannabis sativa Nutrition 0.000 title description 5
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 claims abstract description 34
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 claims abstract description 34
- 235000009120 camo Nutrition 0.000 claims abstract description 34
- 235000005607 chanvre indien Nutrition 0.000 claims abstract description 34
- 239000011487 hemp Substances 0.000 claims abstract description 34
- 230000000911 decarboxylating effect Effects 0.000 claims abstract description 4
- 239000000284 extract Substances 0.000 claims description 45
- 238000000605 extraction Methods 0.000 claims description 41
- 238000006114 decarboxylation reaction Methods 0.000 claims description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 11
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 9
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 6
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 6
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 claims description 4
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 3
- 239000001273 butane Substances 0.000 claims description 3
- UHCBBWUQDAVSMS-UHFFFAOYSA-N fluoroethane Chemical compound CCF UHCBBWUQDAVSMS-UHFFFAOYSA-N 0.000 claims description 3
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 3
- 239000001294 propane Substances 0.000 claims description 3
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims description 3
- 238000000746 purification Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 6
- 230000000052 comparative effect Effects 0.000 description 34
- 238000004519 manufacturing process Methods 0.000 description 27
- 239000012535 impurity Substances 0.000 description 25
- 241000218236 Cannabis Species 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000002425 crystallisation Methods 0.000 description 11
- 230000008025 crystallization Effects 0.000 description 10
- 239000003814 drug Substances 0.000 description 8
- 239000004615 ingredient Substances 0.000 description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 7
- 229930003827 cannabinoid Natural products 0.000 description 7
- 239000003557 cannabinoid Substances 0.000 description 7
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 7
- 229960004242 dronabinol Drugs 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 6
- WVOLTBSCXRRQFR-DLBZAZTESA-N cannabidiolic acid Chemical compound OC1=C(C(O)=O)C(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 WVOLTBSCXRRQFR-DLBZAZTESA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 229940065144 cannabinoids Drugs 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 4
- 230000003110 anti-inflammatory effect Effects 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 235000019253 formic acid Nutrition 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000000556 agonist Substances 0.000 description 3
- LGEQQWMQCRIYKG-DOFZRALJSA-N anandamide Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)NCCO LGEQQWMQCRIYKG-DOFZRALJSA-N 0.000 description 3
- LGEQQWMQCRIYKG-UHFFFAOYSA-N arachidonic acid ethanolamide Natural products CCCCCC=CCC=CCC=CCC=CCCCC(=O)NCCO LGEQQWMQCRIYKG-UHFFFAOYSA-N 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- TWKHUZXSTKISQC-UHFFFAOYSA-N 2-(5-methyl-2-prop-1-en-2-ylphenyl)-5-pentylbenzene-1,3-diol Chemical compound OC1=CC(CCCCC)=CC(O)=C1C1=CC(C)=CC=C1C(C)=C TWKHUZXSTKISQC-UHFFFAOYSA-N 0.000 description 2
- 102000009132 CB1 Cannabinoid Receptor Human genes 0.000 description 2
- 108010073366 CB1 Cannabinoid Receptor Proteins 0.000 description 2
- 102000009135 CB2 Cannabinoid Receptor Human genes 0.000 description 2
- 108010073376 CB2 Cannabinoid Receptor Proteins 0.000 description 2
- WVOLTBSCXRRQFR-SJORKVTESA-N Cannabidiolic acid Natural products OC1=C(C(O)=O)C(CCCCC)=CC(O)=C1[C@@H]1[C@@H](C(C)=C)CCC(C)=C1 WVOLTBSCXRRQFR-SJORKVTESA-N 0.000 description 2
- VBGLYOIFKLUMQG-UHFFFAOYSA-N Cannabinol Chemical compound C1=C(C)C=C2C3=C(O)C=C(CCCCC)C=C3OC(C)(C)C2=C1 VBGLYOIFKLUMQG-UHFFFAOYSA-N 0.000 description 2
- 206010010774 Constipation Diseases 0.000 description 2
- 238000010162 Tukey test Methods 0.000 description 2
- 230000000202 analgesic effect Effects 0.000 description 2
- 230000001093 anti-cancer Effects 0.000 description 2
- 230000003474 anti-emetic effect Effects 0.000 description 2
- 230000003556 anti-epileptic effect Effects 0.000 description 2
- 239000001961 anticonvulsive agent Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 208000010515 dystocia Diseases 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001543 one-way ANOVA Methods 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000000194 supercritical-fluid extraction Methods 0.000 description 2
- SSNHGLKFJISNTR-FWUPRJFYSA-N (6ar,10ar)-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-ol;2-[(6r)-3-methyl-6-prop-1-en-2-ylcyclohex-2-en-1-yl]-5-pentylbenzene-1,3-diol Chemical compound OC1=CC(CCCCC)=CC(O)=C1C1[C@H](C(C)=C)CCC(C)=C1.C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 SSNHGLKFJISNTR-FWUPRJFYSA-N 0.000 description 1
- 102000040125 5-hydroxytryptamine receptor family Human genes 0.000 description 1
- 108091032151 5-hydroxytryptamine receptor family Proteins 0.000 description 1
- 108060003345 Adrenergic Receptor Proteins 0.000 description 1
- 102000017910 Adrenergic receptor Human genes 0.000 description 1
- 240000003291 Armoracia rusticana Species 0.000 description 1
- 235000011330 Armoracia rusticana Nutrition 0.000 description 1
- 241000218235 Cannabaceae Species 0.000 description 1
- UVOLYTDXHDXWJU-UHFFFAOYSA-N Cannabichromene Chemical compound C1=CC(C)(CCC=C(C)C)OC2=CC(CCCCC)=CC(O)=C21 UVOLYTDXHDXWJU-UHFFFAOYSA-N 0.000 description 1
- UVOLYTDXHDXWJU-NRFANRHFSA-N Cannabichromene Natural products C1=C[C@](C)(CCC=C(C)C)OC2=CC(CCCCC)=CC(O)=C21 UVOLYTDXHDXWJU-NRFANRHFSA-N 0.000 description 1
- 102000018208 Cannabinoid Receptor Human genes 0.000 description 1
- 108050007331 Cannabinoid receptor Proteins 0.000 description 1
- 102100033868 Cannabinoid receptor 1 Human genes 0.000 description 1
- 101710187010 Cannabinoid receptor 1 Proteins 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- ORKZJYDOERTGKY-UHFFFAOYSA-N Dihydrocannabichromen Natural products C1CC(C)(CCC=C(C)C)OC2=CC(CCCCC)=CC(O)=C21 ORKZJYDOERTGKY-UHFFFAOYSA-N 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 238000003820 Medium-pressure liquid chromatography Methods 0.000 description 1
- 208000037093 Menstruation Disturbances Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 244000131316 Panax pseudoginseng Species 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 206010046798 Uterine leiomyoma Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 230000000507 anthelmentic effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003178 anti-diabetic effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- 239000002111 antiemetic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 210000004227 basal ganglia Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229960003453 cannabinol Drugs 0.000 description 1
- 210000001638 cerebellum Anatomy 0.000 description 1
- 210000003710 cerebral cortex Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000011097 chromatography purification Methods 0.000 description 1
- 208000022371 chronic pain syndrome Diseases 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 230000001882 diuretic effect Effects 0.000 description 1
- 208000001848 dysentery Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 208000007565 gingivitis Diseases 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 206010022437 insomnia Diseases 0.000 description 1
- 230000007803 itching Effects 0.000 description 1
- 201000010260 leiomyoma Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 231100000544 menstrual irregularity Toxicity 0.000 description 1
- PQIOSYKVBBWRRI-UHFFFAOYSA-N methylphosphonyl difluoride Chemical group CP(F)(F)=O PQIOSYKVBBWRRI-UHFFFAOYSA-N 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 230000000324 neuroprotective effect Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 208000027753 pain disease Diseases 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 230000001624 sedative effect Effects 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/50—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/008—Processes carried out under supercritical conditions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/68—Purification; separation; Use of additives, e.g. for stabilisation
- C07C37/70—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
- C07C37/84—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by crystallisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C39/00—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
- C07C39/23—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic, containing six-membered aromatic rings and other rings, with unsaturation outside the aromatic rings
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
본 발명은 대마로부터 칸나비디올의 수득방법에 관한 것으로 (A) 대마를 탈카르복실화시키는 단계; 및 (B) 상기 탈카르복실화된 대마를 초임계유체 하에서 100 bar에서 200 bar로 압력을 높인 후 200 bar에서 100 bar로 압력을 낮추는 과정을 포함하여 추출하는 단계;를 포함함으로써, 종래에 수행되던 정제과정을 수행하지 않아도 순도가 99% 이상인 칸나비디올을 수득할 수 있다.The present invention relates to a method for obtaining cannabidiol from hemp, comprising the steps of (A) decarboxylating hemp; And (B) extracting the decarboxylated hemp, including the process of increasing the pressure from 100 bar to 200 bar under supercritical fluid and then lowering the pressure from 200 bar to 100 bar. By including, performed in the prior art. It is possible to obtain cannabidiol with a purity of over 99% without performing the usual purification process.
Description
본 발명은 종래에 수행되던 정제과정을 수행하지 않아도 순도가 99% 이상인 칸나비디올을 수득할 수 있는 대마로부터 칸나비디올을 수득하는 방법에 관한 것이다.The present invention relates to a method of obtaining cannabidiol from hemp, which allows cannabidiol with a purity of 99% or more to be obtained without performing the conventional purification process.
중국을 비롯한 한국의 전통의약서에서는 대마 종자의 껍질을 제거한 마자인(麻子仁) 또는 화마인(火麻仁)이 변비, 당뇨, 통증질환, 월경불순, 피부질환 및 이질 등에 사용되어 왔고, 삼잎인 대마초(大麻草, 마엽(麻葉))는 구충제, 모발보호, 천식, 진통작용, 마취, 이뇨제 등으로 사용한 기록들이 있다. 또한 마근(麻根)은 난산 치료와 어혈해소에, 마피(麻皮)는 타박상과 열림창동에, 마화(麻化)는 마비증상과 가려움증 등에 사용했으며, 마분(麻賁)은 난산, 변비, 통풍, 진관, 불면 등에 대마의 각 부위에 따라 병증에 맞게 사용한 기록들이 전해진다.In traditional medicine in China and Korea, Mazain (麻子仁) or Hwamain (火麻仁), obtained by removing the skin of hemp seeds, has been used for constipation, diabetes, pain diseases, menstrual irregularities, skin diseases and dysentery, and hemp leaves. There are records of use of cannabis (大麻草, hemp leaf) as an anthelmintic, hair protection, asthma, analgesic, anesthetic, and diuretic. In addition, horse root (麻根) was used for the treatment of dystocia and relieving blood clots, hemp root (麻皮) was used for bruises and fibroids, horseradish (麻化) was used for paralysis and itching, and horse powder (麻賁) was used to treat dystocia, constipation, etc. There are records of the use of cannabis according to the condition for each part of the plant, such as gout, gingivitis, and insomnia.
대마에는 약 400여 개의 화합물이 있으며, 그 중 대부분이 칸나비노이드(cannabinoids)와 테르펜(terpene), 페놀류 화합물(phenolic compounds)이고 이중 의·약학적 중요 천연 성분인 칸나비노이드류는 90여 가지로 대마에서만 발견되는 성분도 다수 있다. There are about 400 compounds in hemp, most of which are cannabinoids, terpenes, and phenolic compounds, of which there are about 90 types of cannabinoids, which are important natural ingredients in medicine and pharmaceuticals. There are also many ingredients found only in hemp.
대마 성분 중 향정신성 칸나비노이드로 알려진 물질은 테트라히드로칸나비놀(tetrahydrocannabinol, THC), 칸나비놀(cannabinol, CBN), 칸나비노디올(cannabinodiol, CBDL)이고, 칸나비디올(cannabidiol, CBD)은 비향정신성 성분으로서 아드레날린 수용체 및 칸나비노이드 수용체를 비롯한 인체 내 다양한 수용체를 통해 생리활성 효과를 나타내는 성분으로 알려져 있다.Among cannabis components, substances known as psychoactive cannabinoids are tetrahydrocannabinol (THC), cannabinol (CBN), and cannabinodiol (CBDL), and cannabidiol (CBD) is As a non-psychoactive ingredient, it is known to have physiological effects through various receptors in the human body, including adrenergic receptors and cannabinoid receptors.
특히, 과학자들이 대마의 향정신성 작용 기전을 연구하던 중 1988년 뇌에서 칸나비노이드가 선택적으로 결합하는 수용체를 발견하였으며, 이는 우리 몸에서도 칸나비노이드와 유사한 분자가 만들어지고 있고 이러한 칸나비노이드류 분자는 뇌의 국소부위에서 만들어지는 지방산 형태의 신경전달물질로 아난다마이드(anandamide)라고 한다(Science, 1992, 258, 1946). In particular, while scientists were researching the psychoactive mechanism of cannabis, they discovered a receptor in the brain that selectively binds cannabinoids in the brain in 1988, indicating that molecules similar to cannabinoids are also produced in our bodies, and these cannabinoid molecules are It is a fatty acid-type neurotransmitter produced in local areas of the brain and is called anandamide (Science, 1992, 258, 1946).
약용으로 사용되는 대마의 주요한 유효성분인 THC는 CB1 수용체(뇌피질, 해마, 소뇌, 기저핵 등 뇌의 전반에 걸쳐 분포함)에 강한 친화력을 가진 작용제로 이것이 향정신성 작용을 나타내는 주요 기전으로 나타나 있으나 CBD의 경우는 수많은 연구결과를 통해 항염증작용, 항간질작용, 진토작용, 항암작용 등 유익한 작용을 갖는다고 밝혀졌는데 THC로 인한 부작용을 줄이고(Current Pharmaceutical Design, 2012, 18, 4906., Bioorganic Medicinal Chemistry, 2015, 23, 1377), THC와 같은 CB1과 CB2 수용체(주로 대식세포나 골수, 폐, 췌장, 평활근 등 말초조직에 주로 분포하여 면역계와 관련성이 깊음) 작용제에 대한 길항작용을 통해 내인성 칸나비노이드인 아난다마이드의 재흡수 및 분해를 억제하는 동시에 세로토닌 수용체의 작용제 알려져 있다(Neurochemcal Research, 2005, 30, 1037). THC, the main active ingredient in cannabis used for medicinal purposes, is an agonist with strong affinity for CB1 receptors (distributed throughout the brain, including the cerebral cortex, hippocampus, cerebellum, and basal ganglia), and this appears to be the main mechanism of psychoactive action, but CBD In the case of numerous research results, it has been found to have beneficial effects such as anti-inflammatory, anti-epileptic, anti-emetic, and anti-cancer effects. It reduces side effects caused by THC (Current Pharmaceutical Design, 2012, 18, 4906., Bioorganic Medicinal Chemistry) , 2015, 23, 1377), endogenous cannabis through antagonism against CB1 and CB2 receptors (mainly distributed in peripheral tissues such as macrophages, bone marrow, lung, pancreas, and smooth muscle, and closely related to the immune system) agonists such as THC. It is known to inhibit the reuptake and decomposition of anandamide, an anandamide, and to be an agonist of the serotonin receptor (Neurochemcal Research, 2005, 30, 1037).
이 밖에도 대마 성분 중 칸나비크로민(cannabichromene)은 항염증, 진정작용, 항진균작용 등이, CBN은 CB1보다는 CB2 수용체와 결합하여 면역기능 향상에 도움(Frontiers in Plant Science 2016, 7, 19)이 된다고 밝혀지는 등 대마 함유 성분들에 대한 약학적 기전 연구가 매우 활발히 진행되고 있다.In addition, among cannabis ingredients, cannabichromene has anti-inflammatory, sedative, and antifungal effects, and CBN helps improve immune function by binding to CB2 receptors rather than CB1 (Frontiers in Plant Science 2016, 7, 19). Research on the pharmaceutical mechanisms of cannabis-containing ingredients is being conducted very actively.
미국에서 식품의약국(Food and Drug Administration, FDA)이 승인한 CBD를 주성분으로 하는 액상 약물인 에피디오렉스(Epidiolex)가 소아 간질에, 단일 CBD 약물이 아닌 대마 추출물 형태의 칸나도르(Cannador, THC:CBD=2:1)가 다발성 경화증 및 심각한 만성 통증 질환에 대한 임상실험을 하는 등 광범위하고 활발히 연구가 진행중이다.In the United States, Epidiolex, a liquid drug containing CBD as the main ingredient approved by the Food and Drug Administration (FDA), is used for epilepsy in children, and is not a single CBD drug, but a hemp extract form of Cannador (THC). :CBD=2:1) is undergoing extensive and active research, including clinical trials for multiple sclerosis and serious chronic pain diseases.
따라서, 대마의 주요 약학 성분 중에서 비향정신성 성분인 CBD에 대한 추출수율 증대 및 CBD의 함량을 높이는 기술이 요구되고 있다.Therefore, there is a need for technology to increase the extraction yield and increase the content of CBD, a non-psychoactive ingredient among the major pharmaceutical ingredients of hemp.
본 발명의 목적은 종래에 수행되던 정제과정을 수행하지 않아도 순도가 99% 이상인 칸나비디올을 수득할 수 있는 방법을 제공하는데 있다.The purpose of the present invention is to provide a method of obtaining cannabidiol with a purity of 99% or more without performing the conventional purification process.
상기한 목적을 달성하기 위한 본 발명의 대마로부터 칸나비디올을 수득하는 방법은 (A) 대마를 탈카르복실화시키는 단계; 및 (B) 상기 탈카르복실화된 대마를 초임계유체 하에서 100 bar에서 200 bar로 압력을 높인 후 200 bar에서 100 bar로 압력을 낮추는 과정을 포함하여 추출하는 단계;를 포함할 수 있다.The method for obtaining cannabidiol from hemp of the present invention to achieve the above object includes the steps of (A) decarboxylating hemp; And (B) extracting the decarboxylated hemp, including the process of increasing the pressure from 100 bar to 200 bar under supercritical fluid and then lowering the pressure from 200 bar to 100 bar.
상기 (A)단계에서 탈카르복실화는 100 내지 150 ℃에서 120 내지 240분, 바람직하게는 115 내지 130 ℃에서 140 내지 240분 동안 수행될 수 있다.In step (A), decarboxylation may be performed at 100 to 150°C for 120 to 240 minutes, preferably at 115 to 130°C for 140 to 240 minutes.
상기 (B)단계에서 초임계유체 하에서의 압력조건은 (a) 100 bar에서 50 내지 80분 동안 유지시키는 단계; (b) 상기 100 bar에서 유지된 압력을 200 bar로 승압시키는 단계; (c) 상기 승압되어 200 bar에 도달하면 100 bar로 강압시키는 단계; 및 (d) 상기 강압되어 100 bar에 도달하면 50 내지 80분 동안 유지시킨 후 다시 200 bar로 승압시키는 단계;를 반복하는 것일 수 있다.In step (B), the pressure conditions under the supercritical fluid include (a) maintaining at 100 bar for 50 to 80 minutes; (b) increasing the pressure maintained at 100 bar to 200 bar; (c) step of lowering the pressure to 100 bar when it reaches 200 bar; and (d) the step of maintaining the pressure for 50 to 80 minutes when the pressure reaches 100 bar and then increasing the pressure to 200 bar; may be repeated.
상기 승압은 각각 2 내지 5 bar/분의 속도로 수행될 수 있다.The pressure boosting may be performed at a rate of 2 to 5 bar/min, respectively.
상기 강압은 200 bar에서 즉시 100 bar로 압력을 낮추는 것일 수 있다.The pressure reduction may be to immediately lower the pressure from 200 bar to 100 bar.
상기 승압은 30 내지 40분 동안 수행될 수 있다.The pressure increase may be performed for 30 to 40 minutes.
상기 압력조건으로 초임계유체 하에서 추출되는 시간은 4 내지 8시간일 수 있다.The extraction time under the supercritical fluid under the above pressure conditions may be 4 to 8 hours.
상기 초임계유체는 초임계이산화탄소, 초임계에탄, 초임계프로판, 초임계부탄, 초임계펜탄, 초임계헥산, 초임계헵탄, 초임계디메틸에테르, 초임계테트라플루오로메탄, 초임계디플루오로메탄 및 초임계플루오로에탄으로 이루어진 군에서 선택된 1종일 수 있다.The supercritical fluid is supercritical carbon dioxide, supercritical ethane, supercritical propane, supercritical butane, supercritical pentane, supercritical hexane, supercritical heptane, supercritical dimethyl ether, supercritical tetrafluoromethane, and supercritical difluoro. It may be one selected from the group consisting of methane and supercritical fluoroethane.
상기 (B)단계 이후에 (C) 상기 초임계유체로 추출된 추출물을 탈왁스시키는 단계; 및 (D) 상기 탈왁스된 추출물을 결정화하여 칸나비디올을 수득하는 단계;를 추가할 수 있다.After step (B), (C) dewaxing the extract extracted with the supercritical fluid; and (D) crystallizing the dewaxed extract to obtain cannabidiol.
상기 결정화된 칸나비디올의 순도는 99.0 내지 100%일 수 있다.The purity of the crystallized cannabidiol may be 99.0 to 100%.
본 발명의 대마로부터 칸나비디올을 수득하는 방법은 초임계유체 하에서 압력조건에 변화를 주면서 추출을 수행함으로써, 추출물 내의 칸나비디올(CBD) 함량 및 추출율을 높일 수 있다.The method of obtaining cannabidiol from hemp of the present invention can increase the cannabidiol (CBD) content and extraction rate in the extract by performing extraction while changing pressure conditions under supercritical fluid.
특히, 본 발명은 종래에 사용하던 정제과정을 수행하지 않아도 추출물 내의 불순물의 함량을 낮춤으로써 순도가 높은 칸나비디올(CBD)을 수득할 수 있다. In particular, the present invention can obtain high purity cannabidiol (CBD) by lowering the content of impurities in the extract without performing the conventional purification process.
이에 따라, 상기 칸나비디올(CBD)을 항간질, 신경보호, 혈관이완, 항암, 항염증, 항당뇨, 항균, 진통, 골다공증, 면역 또는 진토작용 등의 의약품 및 의약외품에 이용할 수 있다.Accordingly, the cannabidiol (CBD) can be used in pharmaceuticals and quasi-drugs such as anti-epileptic, neuroprotective, vascular relaxation, anti-cancer, anti-inflammatory, anti-diabetic, antibacterial, analgesic, osteoporosis, immune or anti-emetic effects.
또한, 상기 칸나비디올(CBD)을 항산화 또는 항염증 기능의 일반 화장품, 또는 기능성 화장품에 이용할 수 있다.In addition, cannabidiol (CBD) can be used in general cosmetics or functional cosmetics with antioxidant or anti-inflammatory functions.
도 1은 본 발명의 일실시예에 따라 초임계유체 하에서 추출하는 압력조건을 나타낸 그래프이다.
도 2는 본 발명의 실시예 1, 비교예 1 내지 3에 따라 제조된 추출물을 분광광도계로 측정한 그래프이다.
도 3은 본 발명의 실시예 1, 비교예 1 내지 3에 따라 제조된 추출물이 결정화된 후의 칸나비디올 순도를 측정한 크로마토그램이다.Figure 1 is a graph showing pressure conditions for extraction under supercritical fluid according to an embodiment of the present invention.
Figure 2 is a graph measuring extracts prepared according to Example 1 and Comparative Examples 1 to 3 of the present invention using a spectrophotometer.
Figure 3 is a chromatogram measuring the purity of cannabidiol after crystallization of the extract prepared according to Example 1 and Comparative Examples 1 to 3 of the present invention.
본 발명은 종래에 수행되던 정제과정을 수행하지 않아도 순도가 99% 이상인 칸나비디올을 수득할 수 있는 대마로부터 칸나비디올을 수득하는 방법에 관한 것이다.The present invention relates to a method of obtaining cannabidiol from hemp, which allows cannabidiol with a purity of 99% or more to be obtained without performing the conventional purification process.
종래에는 대마로부터 칸나비디올을 수득하기 위해서는 탈카르복실화, 추출, 탈왁스, 정제 및 결정화 순서로 처리해야 하지만, 본 발명은 탈카르복실화, 추출, 탈왁스 및 결정화 순서로 처리해도 순도가 높은 칸나비디올을 수득할 수 있다.Conventionally, in order to obtain cannabidiol from hemp, it must be processed in the following order: decarboxylation, extraction, dewaxing, purification, and crystallization. However, in the present invention, the purity can be maintained even if processed in the order of decarboxylation, extraction, dewaxing, and crystallization. High cannabidiol levels can be obtained.
즉, 본 발명은 추출공정을 종래와 다른 방법으로 처리함으로써 정제과정을 수행하지 않아도 높은 수율로 고순도의 칸나비디올을 수득할 수 있다. That is, the present invention can obtain high-purity cannabidiol in high yield without performing a purification process by treating the extraction process in a different way than the conventional method.
이하, 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.
본 발명의 칸나비디올을 수득하는 방법은 (A) 대마를 탈카르복실화시키는 단계; 및 (B) 상기 탈카르복실화된 대마를 초임계유체 하에서 100 bar에서 200 bar로 압력을 높인 후 200 bar에서 100 bar로 압력을 낮추는 과정을 포함하여 추출하는 단계;를 포함할 수 있다. 또한, 상기 (B)단계 이후에 (C) 상기 초임계유체로 추출된 추출물을 탈왁스시키는 단계; 및 (D) 상기 탈왁스된 추출물을 결정화하여 칸나비디올(cannabidiol, CBD)을 수득하는 단계;를 추가할 수 있다.The method for obtaining cannabidiol of the present invention includes the steps of (A) decarboxylating hemp; And (B) extracting the decarboxylated hemp, including the process of increasing the pressure from 100 bar to 200 bar under supercritical fluid and then lowering the pressure from 200 bar to 100 bar. In addition, after step (B), (C) dewaxing the extract extracted with the supercritical fluid; and (D) crystallizing the dewaxed extract to obtain cannabidiol (CBD).
먼저, 상기 (A)단계에서는 대마를 탈카르복실화시킨다.First, in step (A), hemp is decarboxylated.
상기 대마(大麻, Cannabis sativa L.)는 중앙아시아를 중심으로 12,000년 전부터 열대와 온대지방에서 널리 재배된 삼과(Cannabaceae) 대마속의 한해살이 식물로서 야생삼을 포함하며, 의·약학적 성분으로 알려진 다양한 종류의 칸나비노이드 화합물을 함유하는 칸나비스 케모바스(cannabis chemovars)와 그의 변형체, 변종 var. indica 및 var. kafiristanica를 포함한 칸나비스 사티바 서브스페시스 사티바(Cannabis sativa subspecies sativa), 칸나비스 사티바 서브스페시스 인디카(Cannabis sativa subspecies indica), 칸나비스 사티바 서브스페시스 루데라리스(Cannabis sativa subspecies ruderalis) 및 유전 교배, 자기 교배 또는 그의 교잡 식물을 통칭해서 말한다.The hemp ( Cannabis sativa L. ) is an annual plant of the Cannabaceae genus, which has been widely cultivated in tropical and temperate regions, mainly in Central Asia, for 12,000 years. It includes wild ginseng and various medicinal and pharmaceutical ingredients. Cannabis chemovars containing a variety of cannabinoid compounds and their variants, strains var. indica and var. Cannabis sativa subspecies sativa, including kafiristanica, Cannabis sativa subspecies indica, and Cannabis sativa subspecies ruderalis. and genetic crosses, self-crosses, or hybrid plants thereof.
상기 대마는 칸나비디올산(Cannabidiolic acid, CBDA)을 포함하는 것으로서 탈카르복실화를 통해 상기 칸나비디올산(CBDA)을 칸나비디올(CBD)로 전환시킨다.The hemp contains cannabidiolic acid (CBDA), and the cannabidiolic acid (CBDA) is converted into cannabidiol (CBD) through decarboxylation.
본 발명의 탈카르복실화는 100 내지 150 ℃, 바람직하게는 115 내지 130 ℃에서 120 내지 240분, 바람직하게는 140 내지 240분 동안 수행된다. 탈카르복실화를 수행 시 온도 및 시간이 상기 범위를 벗어나는 경우에는 칸나비디올산(CBDA)에서 칸나비디올(CBD)로의 전환율이 현저히 낮을 수 있다. 특히, 탈카르복실화를 수행 시 온도가 상기 상한치 초과인 경우에는 가온에 의해 칸나비디올(CBD)로 전환되는 과정에서 분해가 일어나 전환율이 급격히 저하될 수 있다.Decarboxylation of the present invention is carried out at 100 to 150°C, preferably 115 to 130°C for 120 to 240 minutes, preferably 140 to 240 minutes. If the temperature and time during decarboxylation are outside the above range, the conversion rate from cannabidiolic acid (CBDA) to cannabidiol (CBD) may be significantly low. In particular, if the temperature during decarboxylation exceeds the above upper limit, decomposition may occur in the process of conversion to cannabidiol (CBD) by heating, and the conversion rate may rapidly decrease.
다음으로, 상기 (B)단계에서는 상기 탈카르복실화된 대마를 초임계유체 하에서 100 bar에서 200 bar로 압력을 높인 후 200 bar에서 100 bar로 압력을 낮추는 과정을 포함하여 추출할 수 있다.Next, in step (B), the decarboxylated hemp can be extracted by increasing the pressure from 100 bar to 200 bar under supercritical fluid and then lowering the pressure from 200 bar to 100 bar.
본 발명은 초임계유체 하에서 압력조건에 변화를 주면서 처리함으로써, 칸나비디올(CBD)의 추출율을 더욱 높이고 불순물의 함량을 낮추어 고순도의 칸나비디올(CBD)을 수득할 수 있다.The present invention can obtain high purity cannabidiol (CBD) by further increasing the extraction rate of cannabidiol (CBD) and lowering the content of impurities by treating it under supercritical fluid while changing the pressure conditions.
상기 압력조건은 (a) 탈카르복실화된 대마를 초임계유체 하에서 100 bar로 50 내지 80분 동안 유지시키는 단계; (b) 상기 100 bar에서 유지된 압력을 200 bar로 승압시키는 단계; (c) 상기 승압되어 200 bar에 도달하면 100 bar로 강압시키는 단계; 및 (d) 상기 강압되어 100 bar에 도달하면 50 내지 80분 동안 압력을 유지시킨 후 다시 200 bar로 승압시키는 단계;를 반복하여 수행한다.The pressure conditions include (a) maintaining decarboxylated hemp at 100 bar for 50 to 80 minutes under supercritical fluid; (b) increasing the pressure maintained at 100 bar to 200 bar; (c) step of lowering the pressure to 100 bar when it reaches 200 bar; and (d) when the pressure is reduced and reaches 100 bar, the pressure is maintained for 50 to 80 minutes and then the pressure is increased to 200 bar. This is repeated.
구체적으로, 100 bar에서 50 내지 80분, 바람직하게는 60 내지 70분 동안 압력을 유지((a)단계)시킨 후 100 bar에서부터 2 내지 5 bar/분, 바람직하게는 3 내지 4 bar/분의 속도로 30 내지 40분 동안 승압시켜 200 bar에 도달하도록((b)단계) 한 다음 200 bar에서 즉시 100 bar로 강압시켜 압력을 낮추고((c)단계), 강압되어 100 bar에 도달하면 50 내지 80분, 바람직하게는 60 내지 70분 동안 압력을 유지시킨 후 다시 200 bar로 승압시키는 과정을 반복하여 총 4 내지 8시간, 바람직하게는 4 내지 6시간 동안 추출을 수행한다. 상기 200 bar에서 즉시 100 bar로 강압시킬 때의 즉시는 1 내지 2분이다.Specifically, the pressure is maintained at 100 bar for 50 to 80 minutes, preferably 60 to 70 minutes (step (a)), and then the pressure is increased from 100 bar to 2 to 5 bar/min, preferably 3 to 4 bar/min. The pressure is increased for 30 to 40 minutes to reach 200 bar (step (b)), and then immediately lowered from 200 bar to 100 bar to lower the pressure (step (c)). When the pressure is reduced and reaches 100 bar, the pressure is reduced by 50 to The pressure is maintained for 80 minutes, preferably 60 to 70 minutes, and then the process of increasing the pressure to 200 bar is repeated, and extraction is performed for a total of 4 to 8 hours, preferably 4 to 6 hours. When the pressure is immediately lowered from 200 bar to 100 bar, it takes 1 to 2 minutes.
본 발명과 같이, 초임계유체 하에서 압력조건에 변화를 주면서 추출하는 것이 아니라 동일한 압력하에서 추출을 수행하는 경우에는 불순물이 다량 함유되어 있어 정제과정을 거쳐야 하는 문제가 있다. 상기 정제과정을 거치는 경우에는 칸나비디올(CBD)의 추출율이 더욱 낮아질 수 있다.As in the present invention, when extraction is performed under the same pressure rather than by changing the pressure conditions under supercritical fluid, there is a problem that a large amount of impurities are contained and a purification process must be performed. When going through the above purification process, the extraction rate of cannabidiol (CBD) may be further lowered.
상기 (a)단계에서 (c)단계까지가 한 사이클로서, 한 사이클이 끝나고 100 bar에서 압력을 유지 시((d)단계) 상기 (a)단계와 다른 시간으로 압력을 유지하는 경우에는 불순물이 다량 발생할 수 있으므로 (a)단계에서 유지시간을 동일하게 하는 것이 바람직하다. Steps (a) to (c) are one cycle, and when the pressure is maintained at 100 bar after one cycle (step (d)), if the pressure is maintained for a time different from step (a), impurities are Since this can occur in large quantities, it is desirable to keep the holding time the same in step (a).
또한, 상기 (a)단계에서 100 bar에서 압력을 유지하는 대신 200 bar에서 유지하는 경우에는 불순물이 다량 함유될 수 있으며; 100 bar에서 압력을 유지 시 시간이 상기 하한치 미만인 경우에는 칸나비디올(CBD)의 추출율이 저하될 수 있으며, 상기 상한치 초과인 경우에는 칸나비디올(CBD)의 추출율이 낮아지고 불순물도 다량 함유될 수 있다.Additionally, in step (a), if the pressure is maintained at 200 bar instead of 100 bar, a large amount of impurities may be contained; When maintaining the pressure at 100 bar, if the time is less than the lower limit above, the extraction rate of cannabidiol (CBD) may decrease, and if it exceeds the upper limit above, the extraction rate of cannabidiol (CBD) will be lowered and a large amount of impurities may be contained. You can.
또한, 상기 (c)단계에서 100 bar로 강압시키지 않고 200 bar에서 유지하는 경우에는 추출물의 거의 대부분이 불순물로 채워질 수 있으며, 강압 시 즉시 100 bar로 압력을 낮추는 것이 아니라 점차 속도를 낮추는 경우에는 추출물 내에 불순물이 80 중량% 이상 함유될 수 있다.In addition, if the pressure is maintained at 200 bar rather than lowered to 100 bar in step (c), almost all of the extract may be filled with impurities, and if the pressure is gradually lowered rather than immediately lowered to 100 bar upon pressure, the extract It may contain more than 80% by weight of impurities.
또한, 승압 시 속도가 상기 하한치 미만인 경우에는 불순물이 다량 발생할 수 있으며, 상기 상한치 초과인 경우에는 칸나비디올(CBD)의 추출율이 낮아지고 불순물도 발생할 수 있다.In addition, if the speed during pressure increase is less than the above lower limit, a large amount of impurities may be generated, and if the speed is higher than the above upper limit, the extraction rate of cannabidiol (CBD) may be lowered and impurities may be generated.
또한, 승압 시 처리시간이 상기 하한치 미만인 경우에는 불순물이 다량 발생할 수 있으며, 상기 상한치 초과인 경우에는 칸나비디올(CBD)의 추출율이 매우 낮아질 수 있다.In addition, if the processing time during pressure increase is less than the lower limit, a large amount of impurities may be generated, and if it exceeds the upper limit, the extraction rate of cannabidiol (CBD) may be very low.
본 발명의 (B)단계에 따라 초임계유체 하에서 압력조건에 변화를 주면서 추출하는 경우의 총 추출시간이 상기 하한치 미만인 경우에는 원하는 칸나비디올(CBD)의 추출율을 수득하지 못할 수 있으며, 상기 상한치 초과인 경우에는 불순물이 다량 발생할 수 있다.If the total extraction time in the case of extraction while changing the pressure conditions under supercritical fluid according to step (B) of the present invention is less than the lower limit, the desired extraction rate of cannabidiol (CBD) may not be obtained, and the upper limit may not be obtained. If it is excessive, a large amount of impurities may be generated.
상기 초임계유체는 칸나비디올을 수득할 수 있는 것이라면 특별히 한정되지 않지만, 바람직하게는 초임계이산화탄소, 초임계에탄, 초임계프로판, 초임계부탄, 초임계펜탄, 초임계헥산, 초임계헵탄, 초임계디메틸에테르, 초임계테트라플루오로메탄, 초임계디플루오로메탄 및 초임계플루오로에탄으로 이루어진 군에서 선택된 1종일 수 있으며, 더욱 바람직하게는 초임계이산화탄소일 수 있다. The supercritical fluid is not particularly limited as long as it can obtain cannabidiol, but is preferably supercritical carbon dioxide, supercritical ethane, supercritical propane, supercritical butane, supercritical pentane, supercritical hexane, supercritical heptane, It may be one selected from the group consisting of supercritical dimethyl ether, supercritical tetrafluoromethane, supercritical difluoromethane, and supercritical fluoroethane, and more preferably, it may be supercritical carbon dioxide.
다음으로, 상기 (C)단계에서는 상기 초임계유체로 추출된 추출물을 알코올로 탈왁스시킨 후 (D)단계에서 상기 탈왁스된 추출물을 결정화하여 칸나비디올(CBD)을 수득한다.Next, in step (C), the extract extracted with the supercritical fluid is dewaxed with alcohol, and then in step (D), the dewaxed extract is crystallized to obtain cannabidiol (CBD).
상기 탈왁스 및 결정화 방법은 통상 칸나비디올(CBD)을 수득하는 방법에 사용되는 것이라면 특별히 한정되지 않는다.The dewaxing and crystallization method is not particularly limited as long as it is generally used in the method of obtaining cannabidiol (CBD).
상기 결정화된 칸나비디올의 순도는 99.0 내지 100%이며, 칸나비디올(CBD)의 수율은 40 내지 60%이다.The purity of the crystallized cannabidiol is 99.0 to 100%, and the yield of cannabidiol (CBD) is 40 to 60%.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred embodiments are presented to aid understanding of the present invention. However, the following examples are merely illustrative of the present invention, and it is clear to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the attached patent claims.
[탈카르복실화 효율 측정] [Measurement of decarboxylation efficiency]
제조예 1 내지 9. 105 ℃Preparation Examples 1 to 9. 105°C
건조 및 분쇄된 대마를 용기에 담아 105 ℃로 가온하여 탈카르복실화를 수행하였다.Decarboxylation was performed by placing dried and ground cannabis in a container and heating it to 105°C.
제조예 10 내지 18. 120 ℃Preparation Examples 10 to 18. 120°C
건조 및 분쇄된 대마를 용기에 담아 120 ℃로 가온하여 탈카르복실화를 수행하였다.Decarboxylation was performed by placing dried and ground cannabis in a container and heating it to 120°C.
제조예 19 내지 27. 150 ℃Preparation Examples 19 to 27. 150°C
건조 및 분쇄된 대마를 용기에 담아 150 ℃로 가온하여 탈카르복실화를 수행하였다.Decarboxylation was performed by placing dried and ground cannabis in a container and heating it to 150°C.
<시험예 Ⅰ><Test Example Ⅰ>
본 실험 결과의 분석은 통계프로그램 Grahpad prism(ver. 6, Sandiego, California, USA)를 사용하였으며, 각 실험 항목의 측정 결과를 평균±표준편차 (mean±SD)로 표시하였다. 그룹 간 평균 차이는 one-way ANOVA로 확인하였고 통계적 유의성은 Tukey test를 실시하여 P<0.05 수준에서 검정하였다.The statistical program Grahpad prism (ver. 6, Sandiego, California, USA) was used to analyze the results of this experiment, and the measurement results of each experimental item were expressed as mean ± standard deviation (mean ± SD). The mean difference between groups was confirmed by one-way ANOVA, and statistical significance was tested at the P<0.05 level using the Tukey test.
시험예 1. 칸나비디올(CBD)의 전환율 측정Test Example 1. Measurement of conversion rate of cannabidiol (CBD)
탈카르복실화를 통해 칸나비디올산(CBDA)에서 칸나비디올(CBD)로 전환되는 전환율을 측정하였다. * 동일 처리시간에서 온도 간의 유의성을 확인하였다(p<0.05). The conversion rate of cannabidiolic acid (CBDA) to cannabidiol (CBD) was measured through decarboxylation. * Significance between temperatures at the same treatment time was confirmed (p<0.05).
전환율은 HPLC(High Performance Liquid Chromatography) 분석을 통해 수행되었다.Conversion was performed through High Performance Liquid Chromatography (HPLC) analysis.
[수학식 1][Equation 1]
CBD 전환율(%) = 100 * (현시점의 CBD함량)/{(초기 CBD함량) + (초기 CBDA함량)}CBD conversion rate (%) = 100 * (Current CBD content)/{(Initial CBD content) + (Initial CBDA content)}
위 표 1에 나타낸 바와 같이, 105 ℃에서는 240분까지도 전환율이 90% 미만이었으며 120 ℃에서는 150분(102.15%), 150 ℃에서는 120분(93.15%)에서 전환율이 우수한 것을 확인하였다. As shown in Table 1 above, the conversion rate was less than 90% even at 240 minutes at 105 ℃, and the conversion rate was confirmed to be excellent at 150 minutes (102.15%) at 120 ℃ and 120 minutes (93.15%) at 150 ℃.
150 ℃의 경우에는 가온에 의해 칸나비디올로 전환되는 과정에서 분해가 일어나 전환율이 급격히 감소하는 것을 확인하였다. In the case of 150°C, it was confirmed that decomposition occurred during the conversion process to cannabidiol due to heating and the conversion rate decreased rapidly.
이에 따라, 전환율이 가장 우수한 120 ℃ 및 150분의 조건을 이용하여 하기 시험을 수행하였다.Accordingly, the following test was performed using the conditions of 120°C and 150 minutes, which had the best conversion rate.
[칸나비디올(CBD)의 추출효율 측정][Measurement of extraction efficiency of cannabidiol (CBD)]
실시예 1. Example 1.
건조 및 분쇄된 대마를 용기에 담아 120 ℃로 가온하여 150분 동안 처리하여 탈카르복실화된 대마를 수득한 후 10L 초임계유체추출장비(POSENTECH사)를 이용하여 50 ℃에서 이산화탄소를 사용하여(보조용매 사용하지 않음) 압력조건에 변화를 주면서 6시간 동안 추출하였다. 상기 압력조건은 도 1에 도시된 바와 같이, 100 bar에서 60분 동안 압력을 유지시킨 후 100 bar에서부터 3.3 bar/분의 속도로 30분 동안 승압시켜 200 bar에 도달하도록 한 다음 200 bar에서 1초 내로 강압시켜 100 bar로 압력을 낮추고(1 사이클), 100 bar에 도달하면 60분 동안 압력을 유지시킨 후 다시 200 bar로 승압시키는 과정을 반복하여 총 6시간 동안 수행함으로써 추출물을 수득하였다. 즉, 상기 사이클을 3회 반복한 후 100 bar에 도달하면 60분 동안 압력을 유지시킨 다음 다시 200 bar로 승압시킴으로써 추출이 완료되었다.Dried and ground cannabis was placed in a container, heated to 120°C and treated for 150 minutes to obtain decarboxylated cannabis, and then extracted using carbon dioxide at 50°C using a 10L supercritical fluid extraction equipment (POSENTECH). Extraction was performed for 6 hours while changing pressure conditions (no auxiliary solvent was used). As shown in Figure 1, the pressure conditions are maintained at 100 bar for 60 minutes, then increased from 100 bar at a rate of 3.3 bar/min for 30 minutes to reach 200 bar, and then at 200 bar for 1 second. The extract was obtained by lowering the pressure to 100 bar (1 cycle), maintaining the pressure for 60 minutes when it reached 100 bar, and then increasing the pressure again to 200 bar for a total of 6 hours. That is, after repeating the above cycle three times, when 100 bar was reached, the pressure was maintained for 60 minutes and then the pressure was raised to 200 bar again to complete the extraction.
비교예 1. 100 barComparative Example 1. 100 bar
건조 및 분쇄된 대마를 용기에 담아 120 ℃로 가온하여 150분 동안 처리하여 탈카르복실화된 대마를 수득한 후 10L 초임계유체추출장비(POSENTECH사)를 이용하여 이산화탄소하에서(보조용매 사용하지 않음) 50 ℃ 및 100 bar로 6시간 동안 추출하여 추출물을 수득하였다.Dried and ground cannabis was placed in a container, heated to 120°C and treated for 150 minutes to obtain decarboxylated cannabis, and then extracted under carbon dioxide (no auxiliary solvent) using a 10L supercritical fluid extraction equipment (POSENTECH). ) The extract was obtained by extraction at 50°C and 100 bar for 6 hours.
비교예 2. 200 barComparative Example 2. 200 bar
상기 비교예 1과 동일하게 실시하되, 100 bar 대신 200 bar로 6시간 동안 추출하여 추출물을 수득하였다.The same procedure as Comparative Example 1 was performed, but extraction was performed at 200 bar instead of 100 bar for 6 hours to obtain an extract.
비교예 3. 300 barComparative Example 3. 300 bar
상기 비교예 1과 동일하게 실시하되, 100 bar 대신 300 bar로 6시간 동안 추출하여 추출물을 수득하였다.The same procedure as Comparative Example 1 was performed, but extraction was performed at 300 bar instead of 100 bar for 6 hours to obtain an extract.
<시험예 Ⅱ><Test Example Ⅱ>
본 실험 결과의 분석은 통계프로그램 Grahpad prism(ver. 6, Sandiego, California, USA)를 사용하였으며, 각 실험 항목의 측정 결과를 평균±표준편차 (mean±SD)로 표시하였다. 그룹 간 평균 차이는 one-way ANOVA로 확인하였고 통계적 유의성은 Tukey test를 실시하여 P<0.05 수준에서 검정하였다.The statistical program Grahpad prism (ver. 6, Sandiego, California, USA) was used to analyze the results of this experiment, and the measurement results of each experimental item were expressed as mean ± standard deviation (mean ± SD). The mean difference between groups was confirmed by one-way ANOVA, and statistical significance was tested at the P<0.05 level using the Tukey test.
시험예 2. 칸나비디올(CBD) 추출율 등 측정Test Example 2. Measurement of cannabidiol (CBD) extraction rate, etc.
실시예 1, 비교예 1 내지 3에 따라 제조된 추출물 내의 칸나비디올(CBD) 함량, 순도 및 추출율을 측정하였다. * 각 군 간의 유의성을 확인하였다(p<0.05). The cannabidiol (CBD) content, purity, and extraction rate in the extract prepared according to Example 1 and Comparative Examples 1 to 3 were measured. * Significance between each group was confirmed (p<0.05).
칸나비디올(CBD) 함량, 순도 및 추출율은 HPLC(High Performance Liquid Chromatography)를 이용하여 측정하였다. 사용된 컬럼은 Column (Luna C18(2) Column 150 X 4.60 mm id, 3 μm Particle Size, Phenomenex, USA)을 사용하였다. 컬럼 온도는 28 ℃를 유지, 유속은 1.2 mL/min, 시료는 5 μL로 주입하였다. 시료 성분의 검출은 Diode Array Detector (DAD)를 사용하여 220 nm에서 분석하였다. 이동상 A는 0.1% 포름산 수용액, 이동상 B는 0.1% 포름산 함유 아세토나이트릴을 사용하였고, 하기 [표 2]와 같이 Gradient 조건으로 분석하였다. 검량곡선 표준용액으로 크로마토그램 상의 각 피크면적을 통해 검량선을 작성하고, 시료에 함유된 CBD 및 THC의 함량을 작성된 검량선을 이용하여 정량하였다.Cannabidiol (CBD) content, purity, and extraction rate were measured using High Performance Liquid Chromatography (HPLC). The column used was Column (Luna C18(2) Column 150 The column temperature was maintained at 28°C, the flow rate was 1.2 mL/min, and the sample was injected at 5 μL. Detection of sample components was analyzed at 220 nm using a Diode Array Detector (DAD). Mobile phase A used a 0.1% formic acid aqueous solution, and mobile phase B used acetonitrile containing 0.1% formic acid, and were analyzed under gradient conditions as shown in [Table 2] below. Calibration curve A calibration curve was prepared using each peak area on the chromatogram using the standard solution, and the contents of CBD and THC contained in the sample were quantified using the prepared calibration curve.
*0.1% Formic acid in water, †0.1% Formic acid in acetonitrile * 0.1% Formic acid in water, † 0.1% Formic acid in acetonitrile
위 표 3에 나타낸 바와 같이, 본 발명의 실시예 1에 따라 제조된 추출물은 비교예 1 내지 3에 비하여 추출물 내의 칸나비디올(CBD)의 함량 및 추출율이 높은 것을 확인하였다. As shown in Table 3 above, the extract prepared according to Example 1 of the present invention was confirmed to have a higher content and extraction rate of cannabidiol (CBD) in the extract compared to Comparative Examples 1 to 3.
반면, 비교예 1은 추출수율, 추출물 내의 칸나비디올(CBD)의 함량 및 추출율이 매우 낮으며, 비교예 3은 추출물 내의 칸나비디올(CBD)의 함량 및 추출율이 낮은 것을 확인하였다.On the other hand, in Comparative Example 1, the extraction yield, content and extraction rate of cannabidiol (CBD) in the extract were very low, and in Comparative Example 3, the content and extraction rate of cannabidiol (CBD) in the extract were low.
시험예 3. 추출물 내 불순물 확인Test Example 3. Confirmation of impurities in extract
실시예 1, 비교예 1 내지 3에 따라 제조된 추출물 내에 함유된 불순물을 측정하기 위하여 분광광도계를 이용하여 파장 400~700 nm에서 불순물의 흡광도를 확인하였고, 파장 450 nm에서 불순물의 흡광도 값을 비교하였다.In order to measure impurities contained in the extracts prepared according to Example 1 and Comparative Examples 1 to 3, the absorbance of the impurities was confirmed at a wavelength of 400 to 700 nm using a spectrophotometer, and the absorbance values of the impurities were compared at a wavelength of 450 nm. did.
도 2는 본 발명의 실시예 1, 비교예 1 내지 3에 따라 제조된 추출물을 분광광도계로 측정한 그래프이다.Figure 2 is a graph measuring extracts prepared according to Example 1 and Comparative Examples 1 to 3 of the present invention using a spectrophotometer.
하기 [표 4]는 상기 도 2에서 흡광하는 물질을 확인한 400 내지 500 nm, 특히 450 nm에서의 불순물의 흡광도 값, 및 이에 따른 추출물의 사진을 나타내었다.[Table 4] below shows the absorbance values of impurities at 400 to 500 nm, especially 450 nm, which confirmed the light-absorbing substances in FIG. 2, and photos of the resulting extract.
하기 크로마토그래피(Medium Pressure Liquid Chromatography)는 비교예 2에서 제조된 추출물을 크로마토그래피로 정제한 것이다.The following chromatography (Medium Pressure Liquid Chromatography) is a chromatographic purification of the extract prepared in Comparative Example 2.
도 2 및 표 4에 나타낸 바와 같이, 본 발명의 실시예 1에 따라 제조된 추출물의 흡광도 값은 비교예 1과 유사하며, 비교예 2 및 3에 비해서는 낮은 것을 확인하였다. As shown in Figure 2 and Table 4, the absorbance value of the extract prepared according to Example 1 of the present invention was similar to Comparative Example 1, and was confirmed to be lower than Comparative Examples 2 and 3.
흡광도 값이 높을수록 불순물의 함량이 높다는 것을 의미하며, 이에 따라 진한 갈색을 띠는 바, 실시예 1의 추출물은 연한 갈색을 띠며 흡광도 값이 낮으므로 추출물 내에 불순물의 함량이 적은 것을 확인하였다.A higher absorbance value means a higher content of impurities, which results in a dark brown color. The extract of Example 1 was light brown in color and had a low absorbance value, confirming that the content of impurities in the extract was low.
또한, 본 발명의 실시예 1의 추출물은 정제과정을 수행하지 않아도 불순물의 함량이 적음을 확인하였다.In addition, it was confirmed that the extract of Example 1 of the present invention had a low content of impurities even without purification.
상기 시험예 2 및 3의 결과를 종합하면, 비교예 1은 추출물 내의 불순물의 함량이 적지만 추출수율, 추출물 내의 칸나비디올(CBD)의 함량 및 추출율이 매우 낮으며, 비교예 2는 추출물 내의 칸나비디올(CBD) 함량 및 추출율이 우수한 편이지만 추출물 내의 불순물 함량이 높고, 비교예 3은 추출물 내의 칸나비디올(CBD) 함량 및 추출율도 낮고 추출물 내의 불순물 함량도 높으므로, 추출물 내의 칸나비디올(CBD) 함량 및 추출율이 높으면서 불순물의 함량도 낮은 실시예 1이 가장 우수한 것을 확인하였다.Summarizing the results of Test Examples 2 and 3, Comparative Example 1 has a low content of impurities in the extract, but the extraction yield, content of cannabidiol (CBD) in the extract, and extraction rate are very low, and Comparative Example 2 has a low content of impurities in the extract. Although the cannabidiol (CBD) content and extraction rate are excellent, the impurity content in the extract is high, and in Comparative Example 3, the cannabidiol (CBD) content and extraction rate in the extract are low and the impurity content in the extract is also high, so the cannabidiol content in the extract is high. It was confirmed that Example 1, which had high (CBD) content and extraction rate and low impurity content, was the best.
시험예 4. 결정화 후의 순도 측정Test Example 4. Purity measurement after crystallization
실시예 1, 비교예 1 내지 3에 따라 제조된 각 추출물에 에탄올을 10배수(1 : 10의 중량비) 첨가한 후 -80 ℃에서 24시간 방치하고 이때 생성된 침전물을 필터페이퍼로 여과하여 탈왁스된 추출물을 얻었다. 상기 탈왁스된 추출물을 회전감압농축기로 농축하여 에탄올을 제거한 다음 1 내지 1.5배수의 펜탄을 넣고 40 ℃에서 완전히 용해시킨 후 5 ℃에서 30분간 유지하여 교반하였다. 그 다음 0 ℃에서 15분간 유지하여 교반시켜주고, 60분에 걸쳐 -10 ℃까지 온도를 내린 후 -10 ℃에서 30분간 교반시켜 결정화를 수행하였다.Example 1, Comparative Examples 1 to 3 were added with 10 times ethanol (weight ratio of 1:10) to each extract, left at -80°C for 24 hours, and the resulting precipitate was filtered through filter paper and dewaxed. obtained extract. The dewaxed extract was concentrated using a rotary vacuum concentrator to remove ethanol, then 1 to 1.5 times the amount of pentane was added and completely dissolved at 40°C, and then kept at 5°C for 30 minutes and stirred. Next, the temperature was maintained at 0°C for 15 minutes and stirred, the temperature was lowered to -10°C over 60 minutes, and then stirred at -10°C for 30 minutes to perform crystallization.
도 3은 실시예 1, 비교예 1 내지 3에 따라 제조된 추출물이 결정화된 후의 칸나비디올 순도를 측정한 크로마토그램이다.Figure 3 is a chromatogram measuring the purity of cannabidiol after crystallization of extracts prepared according to Example 1 and Comparative Examples 1 to 3.
도 3 및 위 표 5에 나타낸 바와 같이, 실시예 1, 비교예 1 내지 3에 따라 제조된 추출물이 결정화된 후의 칸나비디올 순도는 모두 100%인 것을 확인하였다.As shown in Figure 3 and Table 5 above, the cannabidiol purity after crystallization of the extracts prepared according to Example 1 and Comparative Examples 1 to 3 was confirmed to be 100%.
위 표 6에 나타낸 바와 같이, 대마 원물에서부터 최종 결정화된 칸나비디올의 수득율은 비교예 1, 비교예 2 및 비교예 3에 비해서 실시예 1에서 높은 수득율로 얻었음을 확인하였다.As shown in Table 6 above, it was confirmed that the yield of cannabidiol finally crystallized from the hemp raw material was obtained at a higher yield in Example 1 compared to Comparative Example 1, Comparative Example 2, and Comparative Example 3.
Claims (11)
(B) 상기 탈카르복실화된 대마를 초임계유체 하에서 100 bar에서 200 bar로 압력을 높인 후 200 bar에서 100 bar로 압력을 낮추는 과정을 포함하여 추출하는 단계;를 포함하는 것을 특징으로 하는 대마로부터 칸나비디올의 수득방법.(A) decarboxylating hemp; and
(B) extracting the decarboxylated hemp including increasing the pressure from 100 bar to 200 bar under supercritical fluid and then lowering the pressure from 200 bar to 100 bar; Method for obtaining cannabidiol from.
(a) 100 bar에서 50 내지 80분 동안 유지시키는 단계;
(b) 상기 100 bar에서 유지된 압력을 200 bar로 승압시키는 단계;
(c) 상기 승압되어 200 bar에 도달하면 100 bar로 강압시키는 단계; 및
(d) 상기 강압되어 100 bar에 도달하면 50 내지 80분 동안 유지시킨 후 다시 200 bar로 승압시키는 단계;를 반복하는 것을 특징으로 하는 대마로부터 칸나비디올의 수득방법. The method of claim 1, wherein the pressure conditions under the supercritical fluid in step (B) are
(a) maintaining at 100 bar for 50 to 80 minutes;
(b) increasing the pressure maintained at 100 bar to 200 bar;
(c) step of lowering the pressure to 100 bar when it reaches 200 bar; and
(d) When the pressure reaches 100 bar, it is maintained for 50 to 80 minutes and then the pressure is increased to 200 bar. A method of obtaining cannabidiol from hemp, characterized in that the step is repeated.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220186597 | 2022-12-28 | ||
KR20220186597 | 2022-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240105276A true KR20240105276A (en) | 2024-07-05 |
Family
ID=91949135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230191099A KR20240105276A (en) | 2022-12-28 | 2023-12-26 | Method of isolating cannabidiol from Cannabis sativa L. using supercritical fluid |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20240105276A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040033280A1 (en) | 2002-08-14 | 2004-02-19 | Whittle Brian A. | Extraction of pharmaceutically active components from plant materials |
KR20210060410A (en) | 2019-06-05 | 2021-05-26 | 한국과학기술연구원 | Method of isolating cannabidiol from Cannabis sp. and uses thereof |
-
2023
- 2023-12-26 KR KR1020230191099A patent/KR20240105276A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040033280A1 (en) | 2002-08-14 | 2004-02-19 | Whittle Brian A. | Extraction of pharmaceutically active components from plant materials |
KR20210060410A (en) | 2019-06-05 | 2021-05-26 | 한국과학기술연구원 | Method of isolating cannabidiol from Cannabis sp. and uses thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102256712B1 (en) | Method of isolating cannabidiol from Cannabis sp. and uses thereof | |
EP2844243B1 (en) | Method for preparing a cannabis plant isolate comprising delta-9-tetrahydrocannabinol | |
US20200102283A1 (en) | Methods for Obtaining Purified Cannabis Extracts and THCA Crystals | |
US9770479B2 (en) | Extract of Rehmannia glutinasa Libosch for reducing blood sugar, reducing blood fat, treating leukemia, and preparation method and uses thereof | |
Ashraf-Khorassani et al. | Sequential fractionation of grape seeds into oils, polyphenols, and procyanidins via a single system employing CO2-based fluids | |
US20130309337A1 (en) | Process for the preparation of plant extracts for treating skin disorders and enhancing healing of wounds | |
US20070292540A1 (en) | Extracts and Methods Comprising Cinnamon Species | |
WO2018000094A1 (en) | Decarboxylated cannabis resins, uses thereof and methods of making same | |
KR102277523B1 (en) | Method of continuously producing cannabidiol from Cannabis sp. and uses thereof | |
EP3274321A1 (en) | Cannabidiol isolate from industrial-hemp and use thereof in pharmaceutical and/or cosmetic preparations | |
KR102287355B1 (en) | Method of isolating tetrahydrocannabinol from cannabis sp and uses thereof | |
EP1326598A1 (en) | Method for producing an extract from cannabis plant matter, containing a tetrahydrocannabinol and a cannabidiol and cannabis extracts | |
WO2019210401A1 (en) | Novel anti-inflammatory, analgesic, anti-depressant cannabinoid and methods related to manufacture of same | |
JP6444461B2 (en) | Tie2 activator, blood vessel maturation agent, blood vessel stabilizer, and food and drink for Tie2 activation | |
CN110669034B (en) | Isoflavone-chalcone dimer and chalcone dimer, preparation method and application | |
KR101794006B1 (en) | Anti inflammatory comprising plant extract | |
KR20020008809A (en) | Fungicide composition containing extracts derived from plant | |
KR20240105276A (en) | Method of isolating cannabidiol from Cannabis sativa L. using supercritical fluid | |
CN113209165A (en) | Piper laetispicum extract and preparation method and application thereof | |
KR100387939B1 (en) | Fungicide composition containing extracts derived from plant | |
KR100427584B1 (en) | Fungicide composition containing extracts derived from plant | |
KR101503372B1 (en) | Composition for prevention and treatment of stroke containing extract, fraction or compound separated from Lindera erythrocarpa as active ingredient | |
CN103989966B (en) | Medicine composition for preventing and treating migraine disease and preparation method and application thereof | |
KR100437576B1 (en) | Fungicide composition containing cinnamylalcohol | |
KR20230117982A (en) | Manufacturing method of isolating cannabinoid analysys method for isolating cannabinoid |