KR20240061444A - Method For Manufacturing Highly Wear-Resistant Milling Roll Through Characteristic Analysys Of Powder - Google Patents
Method For Manufacturing Highly Wear-Resistant Milling Roll Through Characteristic Analysys Of Powder Download PDFInfo
- Publication number
- KR20240061444A KR20240061444A KR1020220143106A KR20220143106A KR20240061444A KR 20240061444 A KR20240061444 A KR 20240061444A KR 1020220143106 A KR1020220143106 A KR 1020220143106A KR 20220143106 A KR20220143106 A KR 20220143106A KR 20240061444 A KR20240061444 A KR 20240061444A
- Authority
- KR
- South Korea
- Prior art keywords
- powder
- wear
- manufacturing
- carbide
- resistant
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 111
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000005096 rolling process Methods 0.000 claims abstract description 33
- 239000002245 particle Substances 0.000 claims abstract description 22
- 239000002994 raw material Substances 0.000 claims abstract description 15
- 238000000465 moulding Methods 0.000 claims abstract description 13
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 13
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000009826 distribution Methods 0.000 claims abstract description 11
- 230000000704 physical effect Effects 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000005299 abrasion Methods 0.000 claims 1
- 238000001513 hot isostatic pressing Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/12—Metallic powder containing non-metallic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/10—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
- B22F5/106—Tube or ring forms
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
- B22F2003/153—Hot isostatic pressing apparatus specific to HIP
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Abstract
본 발명은 바나듐 기반의 탄화물을 함유한 내마모 분말을 고온 성형하여 압연롤을 제조하는 고내마모 압연롤 제조방법에 관한 것이다. 본 발명은 (a) 바나듐 기반 탄화물을 함유한 분말을 준비하는 단계, (b) 상기 (a) 단계의 준비된 분말을 분급하고 분급 분말의 탄화물 크기와 입도 분포 및 분말 물성을 분석하는 단계, (c) 상기 (b) 단계의 분석 결과에 따라 내마모 압연롤 제조를 위한 원료 분말을 선정하는 단계, (d) 상기 (c) 단계의 원료 분말에 대해 고온 성형하여 내마모 압연롤의 벌크 제품을 제조하는 단계를 포함하는 것을 특징으로 한다.The present invention relates to a method for manufacturing a highly wear-resistant rolling roll by high-temperature molding of wear-resistant powder containing vanadium-based carbide. The present invention includes the steps of (a) preparing a powder containing vanadium-based carbide, (b) classifying the powder prepared in step (a) and analyzing the carbide size and particle size distribution and powder physical properties of the classified powder, (c) ) Selecting raw material powder for manufacturing wear-resistant rolling rolls according to the analysis results of step (b), (d) high-temperature molding of the raw material powder in step (c) to manufacture bulk products of wear-resistant rolling rolls It is characterized by comprising the step of:
Description
본 발명은 바나듐 기반의 탄화물을 함유한 내마모 분말을 고온 성형하여 고내마모 압연롤을 제조하는 고내마모 압연롤 제조방법에 관한 것이다. The present invention relates to a method of manufacturing a high wear-resistant rolling roll by high-temperature molding of wear-resistant powder containing vanadium-based carbide.
최근 철강 소재의 강도가 증가함에 따라 철강 원소재를 판재 또는 봉재 등의 형상으로 제조하는 압연 공정의 공구강으로 사용되는 압연롤 또한 보다 높은 내마모 특성이 요구되고 있다. Recently, as the strength of steel materials has increased, rolling rolls used as tool steel in the rolling process of manufacturing raw steel materials into shapes such as plates or bars are also required to have higher wear resistance properties.
압연 공정의 압연롤은 실제 가공되는 피가공물 소재와 접촉하여 최종 제품을 성형하기 때문에 가공되는 철강 소재의 강도 증가에 따라 압연롤의 마모도 증가하게 된다.Since the rolling roll of the rolling process forms the final product by contacting the material being processed, the wear of the rolling roll increases as the strength of the steel material being processed increases.
고내마모 압연롤 제조방법의 하나로서 바나듐 기반의 탄화물을 함유한 내마모 분말을 주로 사용하고 있으며 대표적으로 가스 아토마이저 방식으로 제작된 CPM-9V 제품이 있다. 여기에 사용된 내마모 분말은 최종적으로 열간 정수압성형 공정(HIP, hot isostatic press)을 통해 벌크(bulk) 제품으로 제조되고 있다. 예를 들어 한국공개특허 제10-2008-0043251호에서 분말야금 방식으로 성형된 분말 입자를 고온 성형하기 위하여 HIP 공정을 적용한다. As one of the high-wear-resistant rolling roll manufacturing methods, wear-resistant powder containing vanadium-based carbide is mainly used, and a representative example is the CPM-9V product manufactured using a gas atomizer method. The wear-resistant powder used here is ultimately manufactured as a bulk product through a hot isostatic pressing (HIP) process. For example, in Korean Patent Publication No. 10-2008-0043251, the HIP process is applied to high temperature molding of powder particles formed by powder metallurgy.
그런데 분말 입도에 따라 고온 성형을 위한 HIP 공정으로 최종 제조된 벌크 제품의 내마모 특성이 변하는 양상을 보이고 있기 때문에, 이에 대응하여 고내마모 압연롤에 적합한 최적의 물성을 확보할 수 있는 압연롤 제조방법이 요구되고 있다.However, since the wear resistance characteristics of the bulk product finally manufactured through the HIP process for high temperature molding change depending on the powder particle size, a rolling roll manufacturing method that can secure optimal physical properties suitable for high wear resistance rolling rolls is needed in response to this. This is being demanded.
본 발명의 목적은 바나듐 기반의 탄화물을 함유한 내마모 분말의 분석 결과에 따라 선정된 원료 분말로 고온 성형함으로써 고내마모 압연롤에 적합한 최적 물성을 확보할 수 있는 분말 특성 분석을 통한 고내마모 압연롤 제조방법을 제공하는데 있다.The purpose of the present invention is to create a high-wear-resistant rolling roll through powder characteristic analysis that can secure optimal physical properties suitable for high-wear-resistant rolling rolls by high-temperature molding with raw material powder selected according to the analysis results of wear-resistant powder containing vanadium-based carbide. The purpose is to provide a manufacturing method.
상기 목적을 달성하기 위한 본 발명에 따른 분말 특성 분석을 통한 고내마모 압연롤 제조방법은, (a) 바나듐 기반 탄화물을 함유한 분말을 준비하는 단계; (b) 상기 (a) 단계의 준비된 분말을 분급하고, 분급 분말의 탄화물 크기와 입도 분포 및 분말 물성을 분석하는 단계; (c) 상기 (b) 단계의 분석 결과에 따라 내마모 압연롤 제조를 위한 원료 분말을 선정하는 단계; (d) 상기 (c) 단계의 원료 분말에 대해 고온 성형하여 내마모 압연롤의 벌크 제품을 제조하는 단계;를 포함하는 것을 특징으로 한다.A method for manufacturing a high wear resistance rolling roll through powder characteristic analysis according to the present invention to achieve the above object includes the steps of (a) preparing powder containing vanadium-based carbide; (b) classifying the powder prepared in step (a) and analyzing the carbide size, particle size distribution, and powder physical properties of the classified powder; (c) selecting raw material powder for manufacturing wear-resistant rolling rolls according to the analysis results of step (b); (d) manufacturing a bulk product of wear-resistant rolling rolls by high-temperature molding of the raw material powder of step (c).
또한 상기 (a) 단계에서 바나듐 기반 탄화물을 함유한 분말로서 CPM-9V 제품을 사용하고, 그 성분의 조성은 C 1.85wt%, Mn 0.44wt%, Si 0.98wt%, Cr 5.18wt%, Mo 1.33wt%, V 8.8wt%, 나머지 Fe 이다.In addition, in step (a), CPM-9V product was used as a powder containing vanadium-based carbide, and its composition was C 1.85 wt%, Mn 0.44 wt%, Si 0.98 wt%, Cr 5.18 wt%, Mo 1.33 wt%, V 8.8wt%, the remainder is Fe.
또한 상기 (c) 단계에서 분말 내부의 탄화물 분율 및 면적이 커서 비커스 경도는 크고 마모량이 적은 분말을 선정하는 것을 특징으로 한다.In addition, in step (c), a powder is selected that has a high Vickers hardness and a small amount of wear due to a large carbide fraction and area inside the powder.
또한 상기 (d) 단계에서 고온 성형을 위해 열간정수압 공정(HIP)을 이용하며, 상기 열간정수압 공정은 열처리로 분위기 온도 1100~1700℃, 압력 900~1100bar, 공정시간 3~5hour 진행하는 것을 특징으로 한다.In addition, in step (d), a hot isostatic pressure process (HIP) is used for high temperature molding, and the hot isostatic pressure process is characterized by heat treatment at an ambient temperature of 1100 to 1700°C, a pressure of 900 to 1100 bar, and a process time of 3 to 5 hours. do.
본 발명에 따르면 바나듐 기반의 탄화물을 함유한 분말을 분급하고, 분급 분말에 대해 탄화물의 분율과 면적을 분석하며, 분석 결과에 따라 내마모 압연롤의 원료 분말을 선정하기 때문에 탄화물 크기와 분율이 큰 원료 분말을 고온 성형하여 경도는 높고 마모량은 적은 고내마모 압연롤을 제조할 수 있다.According to the present invention, powder containing vanadium-based carbide is classified, the fraction and area of carbide are analyzed for the classified powder, and the raw material powder for the wear-resistant rolling roll is selected according to the analysis results, so that the carbide size and fraction are large. By high-temperature molding of raw material powder, a high-wear rolling roll with high hardness and low wear can be manufactured.
도 1은 분말 크기 500㎛ 이상 분말에서 연결된 탄화물의 입자 분포를 나타내는 SEM 사진,
도 2는 분말 입도별 분말 내부의 탄화물 크기와 분포를 나타내는 SEM 사진,
도 3은 분말 입도별 분말 내부의 탄화물 면적비를 나타내는 그래프,
도 4는 본 발명의 실시예에 따른 분말 특성 분석을 통한 고내마모 압연롤 제조방법의 흐름도,
도 5는 4개 그룹의 분급 분말에 대해 입도 분포를 나타내는 그래프,
도 6은 4개 그룹의 분급 분말에 대해 HIP 공정을 진행하여 탄화물의 분산 상태를 나타내는 SEM 사진,
도 7은 4개 그룹의 분급 분말에 대해 탄화물의 분율과 면적을 나타내는 그래프,
도 8은 4개 그룹의 분급 분말에 대해 비커스 경도를 나타내는 그래프,
도 9는 4개 그룹의 분급 분말에 대해 마모량을 나타내는 그래프,
도 10은 4개 그룹의 분급 분말의 표면을 나타내는 SEM 사진이다.Figure 1 is an SEM photograph showing the particle distribution of connected carbide in powder with a powder size of 500㎛ or more;
Figure 2 is an SEM photograph showing the size and distribution of carbides inside the powder by powder particle size;
Figure 3 is a graph showing the carbide area ratio inside the powder by powder particle size;
Figure 4 is a flow chart of a method for manufacturing a high wear resistance rolling roll through powder property analysis according to an embodiment of the present invention;
Figure 5 is a graph showing particle size distribution for four groups of classified powders;
Figure 6 is an SEM photograph showing the dispersion state of carbides after performing the HIP process on four groups of classified powders;
Figure 7 is a graph showing the fraction and area of carbide for four groups of classified powders;
Figure 8 is a graph showing Vickers hardness for four groups of classified powders;
Figure 9 is a graph showing the amount of wear for four groups of classified powders;
Figure 10 is an SEM photograph showing the surfaces of four groups of classified powders.
이하 첨부한 도면을 참조하여 본 발명의 실시 예를 설명함으로써 본 발명을 설명한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다. 또한 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, the present invention will be described by explaining embodiments of the present invention with reference to the attached drawings. The same reference numerals in each drawing indicate the same member. Additionally, in describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. Additionally, when a part is said to “include” a certain component, this means that it may further include other components, rather than excluding other components, unless specifically stated to the contrary.
일반적으로 압연롤 제조에 사용되는 분말 소재의 입도는 정규 분포를 나타내고 있으며, 분말 크기가 500㎛ 이상 분말이 저렴하여 경제적으로 유리하다. 도 1을 참고하여 500㎛ 이상 분말에서 연결된 탄화물 입자가 분포함에 따라 열간정수압 공정(HIP)을 통한 고온 성형시 경도 및 내마모 특성이 떨어질 수 있는 요인이 된다.In general, the particle size of the powder material used to manufacture rolling rolls shows a normal distribution, and powders with a powder size of 500 ㎛ or more are inexpensive and are economically advantageous. Referring to FIG. 1, the distribution of connected carbide particles in powder over 500㎛ becomes a factor that may reduce hardness and wear resistance characteristics during high-temperature molding through hot isostatic pressure process (HIP).
가스 아토마이저 공정은 제조하고자 하는 소재 합금을 완전히 용해시켜 용탕을 형성 후 노즐을 통해 낙하하는 용탕에 고압 가스를 분사하여 최종 분말을 제조한다. 여기서 용탕에서 분말로 변할 때 분말 입도에 따라 냉각속도가 다를 수 있고, 이로 인하여 도 2에서와 같이 분말 입도 50㎛, 100㎛, 200㎛, 300㎛에서 내부 탄화물의 크기와 분포는 차이가 발생할 수 있다. 이때 분말 입도별 탄화물 평균 크기는 0.064±0.053㎛, 0.054±0.060㎛, 0.137±0.099㎛, 0.204±0.161㎛로 나타났다. 또 분말 내부의 탄화물이 차지하는 면적(Area percentage)을 분석하면 도 3에서와 같이 분말 입도(50㎛, 100㎛, 200㎛, 300㎛)에 대응하여 17.437±0.8815%, 11.68±1.776%, 11.56±2.074%, 14.17±2.485%로 나타났다.The gas atomizer process completely dissolves the material alloy to be manufactured to form molten metal, and then sprays high-pressure gas onto the molten metal falling through a nozzle to produce the final powder. Here, when changing from molten metal to powder, the cooling rate may vary depending on the powder particle size, and because of this, differences may occur in the size and distribution of internal carbides at powder particle sizes of 50㎛, 100㎛, 200㎛, and 300㎛, as shown in Figure 2. there is. At this time, the average carbide size for each powder particle size was 0.064±0.053㎛, 0.054±0.060㎛, 0.137±0.099㎛, and 0.204±0.161㎛. In addition, when analyzing the area occupied by the carbide inside the powder (Area percentage), it is 17.437 ± 0.8815%, 11.68 ± 1.776%, 11.56 ± 15%, corresponding to the powder particle size (50㎛, 100㎛, 200㎛, 300㎛), as shown in Figure 3. It was found to be 2.074% and 14.17±2.485%.
도 4를 참고하여, 본 발명의 실시예에 따른 분말 특성 분석을 통한 고내마모 압연롤 제조방법은, 바나듐 기반 탄화물을 함유한 분말을 준비하고(S100), 준비된 분말을 분급하고 분급 분말의 탄화물 크기와 입도 분포 및 분말 물성을 분석하며(S200), 분석 결과에 따라 내마모 압연롤 제조를 위한 원료 분말을 선정하고(S300), 선정된 원료 분말에 대해 고온 성형하여 내마모 압연롤의 벌크 제품을 제조(S400)하는 단계로 구성된다.Referring to FIG. 4, the high wear resistance rolling roll manufacturing method through powder property analysis according to an embodiment of the present invention prepares powder containing vanadium-based carbide (S100), classifies the prepared powder, and determines the carbide size of the classified powder. and particle size distribution and powder physical properties are analyzed (S200), and according to the analysis results, raw material powder for manufacturing wear-resistant rolling rolls is selected (S300), and the selected raw material powder is subjected to high-temperature molding to produce bulk products of wear-resistant rolling rolls. It consists of a manufacturing step (S400).
상기 S100 단계에서, 바나듐 기반 탄화물을 함유한 분말로서 CPM-9V 제품을 사용하고, 그 성분의 조성은 C 1.85wt%, Mn 0.44wt%, Si 0.98wt%, Cr 5.18wt%, Mo 1.33wt%, V 8.8wt%, 나머지 Fe 이다.In the S100 step, CPM-9V product is used as a powder containing vanadium-based carbide, and its composition is C 1.85wt%, Mn 0.44wt%, Si 0.98wt%, Cr 5.18wt%, Mo 1.33wt% , V 8.8wt%, the remainder is Fe.
상기 S200 단계에서, CPM-9V 제품의 분말에 대해 분말 크기에 따라 분급하여 4개 그룹의 분말을 준비한다. 도 5를 참고하여 제1그룹 분말은 초기 분말로서 입도 약 400㎛ 이하로 분급(40mesh), 제2그룹 분말은 입도 300㎛ 이하로 분급(50mesh), 제3그룹 분말은 입도 약 200㎛ 이하로 분급(70mesh), 제4그룹 분말은 입도 약 100㎛ 이하 분말(140mesh)로 구분한다. In step S200, the powder of the CPM-9V product is classified according to powder size to prepare four groups of powders. Referring to Figure 5, the first group powder is an initial powder and classified into a particle size of about 400㎛ or less (40mesh), the second group powder is classified into a particle size of about 300㎛ or less (50mesh), and the third group powder is classified into a particle size of about 200㎛ or less. Classification (70mesh), Group 4 powder is classified into powders (140mesh) with a particle size of about 100㎛ or less.
4개 그룹 분말에 대해 열간정수압 공정(HIP)을 통해 고내마모 압연롤의 모재 원료로서 벌크(bulk) 소재를 제조한다. 실시예에서 열간정수압 공정(HIP)은 1165℃, 1000bar, 4시간으로 실행한다.Bulk materials are manufactured as base materials for high wear-resistant rolling rolls through the hot isostatic pressure process (HIP) for four groups of powders. In the example, the hot isostatic process (HIP) is performed at 1165°C, 1000 bar, and 4 hours.
열간정수압 공정(HIP)을 진행한 결과, 도 6의 SEM 사진에서와 같이 제1 내지 제4 그룹의 분급 분말에서 탄화물이 잘 분리되어 분산된 양상을 보여주고 있다.As a result of the hot isostatic pressure process (HIP), carbides were well separated and dispersed in the first to fourth group classified powders, as shown in the SEM photo of FIG. 6.
제1 내지 제4 그룹의 분급 분말에 대해 탄화물의 분율과 면적을 분석한다. 분석 결과 분말 입자 크기가 큰 제4 그룹의 분급 분말(40mesh)에서 분말 내부의 탄화물 분율 24.38%, 면적 0.418㎛2 으로 나타났고 다른 그룹의 분급 분말 보다 상대적으로 높다(도 7 참고).The fraction and area of carbide are analyzed for the classified powders of the first to fourth groups. As a result of the analysis, in the fourth group of classified powders (40mesh) with large powder particle size, the carbide fraction inside the powder was 24.38% and the area was 0.418㎛ 2 , which was relatively higher than the classified powders of other groups (see Figure 7).
제1 내지 제4 그룹의 분급 분말에 대해 비커스 경도(vickers hardness)를 분석하면, 제4 그룹의 분급 분말(40mesh)이 594 HV로 나타났고 다른 그룹의 분급 분말 보다 상대적으로 높다(도 8 참고).When analyzing the Vickers hardness of the classified powders of the first to fourth groups, the classified powder of the fourth group (40mesh) was found to be 594 HV, which is relatively higher than the classified powders of other groups (see Figure 8). .
제1 내지 제4 그룹의 분급 분말에 대해 마모량(weight loss)을 분석하면, 제4 그룹의 분급 분말(40mesh)이 6 mg로 나타났고 다른 그룹의 분급 분말 보다 상대적으로 적다(도 9 참고).When analyzing the weight loss of the classified powders of the first to fourth groups, the weight loss of the classified powders of the fourth group (40mesh) was found to be 6 mg, which is relatively less than the classified powders of the other groups (see Figure 9).
이 분석에서 제4 그룹의 분급 분말(40mesh)과 같이 탄화물 크기와 분율이 클수록 경도는 높고 마모량은 적게 나타났다. 제4 그룹의 분급 분말(40mesh)은 마모량이 적게 나타나 내마모성 특성이 상대적으로 우수한 것으로 분석되었다. 이로부터 탄화물의 크기와 마모량은 상반 관계가 있음을 알 수 있다. In this analysis, as in the 4th group classified powder (40mesh), the larger the carbide size and fraction, the higher the hardness and the lower the amount of wear. The fourth group's classified powder (40mesh) showed a small amount of wear and was analyzed to have relatively excellent wear resistance characteristics. From this, it can be seen that there is a conflicting relationship between the size of carbide and the amount of wear.
도 10은 4개 그룹의 분급 분말의 표면을 나타내는 SEM 사진으로, 각 그룹의 분급 분말의 표면에서 2가지 양상(Torn surface, Scratched surface)으로 나타난다.Figure 10 is an SEM photograph showing the surfaces of four groups of classified powders, and the surfaces of each group of classified powders appear in two aspects (Torn surface, Scratched surface).
제1 그룹의 분급 분말(140mesh)의 표면은 대부분(80~90%)이 Torn surface(찢어진 표면)로 나타났고, 제2 그룹의 분급 분말(70mesh)의 표면은 Torn surface(찢어진 표면)이 줄고 Scratched area(긁힌 표면)이 일부 형성되는 것으로 나타났으며, 제3 그룹의 분급 분말(50mesh)의 표면은 Torn surface(찢어진 표면)이 더욱 줄어들어 Scratched area(긁힌 표면) 보다 적게 나타났고, 제4 그룹의 분급 분말(40mesh)의 표면은 대부분(80~90%)이 Scratched area(긁힌 표면)로 나타났다.Most (80-90%) of the surfaces of the first group of classified powders (140mesh) appeared as torn surfaces, and the surfaces of the second group of classified powders (70mesh) showed a reduced torn surface. It was found that some scratched areas were formed, and the Torn surface of the classified powder (50mesh) of the third group was further reduced, showing less scratched area than that of the fourth group. Most (80-90%) of the surface of the classified powder (40mesh) appeared as a scratched area.
제4 그룹의 분급 분말(40mesh)에서와 같이 탄화물 크기가 크면 긁힘에 의한 마모(Scratched area)가 발생할 확률이 높아지고 그 결과 마모량이 적어 내마모성 특성이 상대적으로 우수한 것으로 분석되었다. As in the 4th group classified powder (40mesh), the larger the carbide size, the higher the probability of scratched area occurring, and as a result, the amount of wear was small, showing that the wear resistance characteristics were relatively excellent.
상기 S300 단계에서, 분석 결과에 따라 내마모 압연롤 제조를 위한 원료 분말을 선정한다. 즉 원료 분말 선정시 분말 내부의 연결된 탄화물 발생, 불균일한 탄화물 분포 등 고내마모 압연롤 제품의 불량 요인을 제외하고 가능한 분말 크기가 큰 분말 입도를 가진 원료 분말을 선정한다.In step S300, raw material powder for manufacturing wear-resistant rolling rolls is selected according to the analysis results. In other words, when selecting raw material powders, select raw material powders with as large a powder particle size as possible, excluding defective factors in high-wear rolling roll products such as the generation of connected carbides inside the powder and uneven distribution of carbides.
상기 S400 단계에서, 선정된 원료 분말에 대해 고온 성형하여 내마모 압연롤의 벌크 제품을 제조한다. 여기서 고온 성형은 열간정수압 소결법을 적용한다. 여기서 열간정수압 공정(HIP)은 열처리로 분위기 온도 1100~1700℃, 압력 900~1100bar, 공정시간 3~5hour 진행하며, 실시예에서 1165℃, 1000bar, 4시간으로 실행한다.In step S400, the selected raw material powder is molded at high temperature to manufacture a bulk product of wear-resistant rolling rolls. Here, hot isostatic pressure sintering method is applied for high temperature forming. Here, the hot isostatic pressure process (HIP) is a heat treatment performed at an ambient temperature of 1100 to 1700°C, a pressure of 900 to 1100 bar, and a process time of 3 to 5 hours. In the example, it is performed at 1165°C, 1000 bar, and 4 hours.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다.The description of the present invention described above is for illustrative purposes, and those skilled in the art will understand that the present invention can be easily modified into other specific forms without changing the technical idea or essential features of the present invention. will be.
Claims (4)
(b) 상기 (a) 단계의 준비된 분말을 분급하고, 분급 분말의 탄화물 크기와 입도 분포 및 분말 물성을 분석하는 단계;
(c) 상기 (b) 단계의 분석 결과에 따라 내마모 압연롤 제조를 위한 원료 분말을 선정하는 단계;
(d) 상기 (c) 단계의 원료 분말에 대해 고온 성형하여 내마모 압연롤의 벌크 제품을 제조하는 단계;를 포함하는 것을 특징으로 하는 분말 특성 분석을 통한 고내마모 압연롤 제조방법.(a) preparing a powder containing vanadium-based carbide;
(b) classifying the powder prepared in step (a) and analyzing the carbide size, particle size distribution, and powder physical properties of the classified powder;
(c) selecting raw material powder for manufacturing wear-resistant rolling rolls according to the analysis results of step (b);
(d) manufacturing a bulk product of the wear-resistant rolling roll by high-temperature molding of the raw material powder of step (c).
상기 (a) 단계에서 바나듐 기반 탄화물을 함유한 분말로서 CPM-9V 제품을 사용하고, 그 성분의 조성은 다음과 같은 것을 특징으로 하는 분말 특성 분석을 통한 고내마모 압연롤 제조방법.
C 1.85wt%,
Mn 0.44wt%,
Si 0.98wt%,
Cr 5.18wt%,
Mo 1.33wt%,
V 8.8wt%,
나머지 FeAccording to paragraph 1,
In step (a), CPM-9V product is used as a powder containing vanadium-based carbide, and its composition is as follows. A method of manufacturing a high wear resistance rolling roll through powder characteristic analysis.
C 1.85wt%,
Mn 0.44wt%,
Si 0.98wt%,
Cr 5.18wt%,
Mo 1.33wt%,
V 8.8wt%,
The rest Fe
상기 (c) 단계에서 분말 내부의 탄화물 분율 및 면적이 커서 비커스 경도는 크고 마모량이 적은 분말을 선정하는 것을 특징으로 하는 분말 특성 분석을 통한 고내마모 압연롤 제조방법.According to paragraph 1,
In step (c), a high abrasion resistance rolling roll manufacturing method through powder characteristic analysis is characterized in that a powder having a high Vickers hardness and low wear amount is selected because the carbide fraction and area inside the powder are large.
상기 (d) 단계에서 고온 성형을 위해 열간정수압 공정(HIP)을 이용하며,
상기 열간정수압 공정은 열처리로 분위기 온도 1100~1700℃, 압력 900~1100bar, 공정시간 3~5hour 진행하는 것을 특징으로 하는 분말 특성 분석을 통한 고내마모 압연롤 제조방법.According to paragraph 1,
In step (d), a hot isostatic pressure process (HIP) is used for high temperature molding,
The hot isostatic pressure process is a method of manufacturing a high wear resistance rolling roll through powder property analysis, characterized in that the heat treatment is performed at an ambient temperature of 1100 to 1700°C, a pressure of 900 to 1100 bar, and a process time of 3 to 5 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220143106A KR20240061444A (en) | 2022-10-31 | 2022-10-31 | Method For Manufacturing Highly Wear-Resistant Milling Roll Through Characteristic Analysys Of Powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220143106A KR20240061444A (en) | 2022-10-31 | 2022-10-31 | Method For Manufacturing Highly Wear-Resistant Milling Roll Through Characteristic Analysys Of Powder |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240061444A true KR20240061444A (en) | 2024-05-08 |
Family
ID=91074744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220143106A KR20240061444A (en) | 2022-10-31 | 2022-10-31 | Method For Manufacturing Highly Wear-Resistant Milling Roll Through Characteristic Analysys Of Powder |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20240061444A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080043251A (en) | 2006-11-13 | 2008-05-16 | 크루서블 머티리얼스 코포레이션 | Corrosion and wear resistant alloy |
-
2022
- 2022-10-31 KR KR1020220143106A patent/KR20240061444A/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080043251A (en) | 2006-11-13 | 2008-05-16 | 크루서블 머티리얼스 코포레이션 | Corrosion and wear resistant alloy |
Non-Patent Citations (1)
Title |
---|
없음 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4249945A (en) | Powder-metallurgy steel article with high vanadium-carbide content | |
US8524375B2 (en) | Thermal spray coated work rolls for use in metal and metal alloy sheet manufacture | |
CN102046824B (en) | Iron-base sintered alloy for valve sheet and valve sheet for internal combustion engine | |
US6482534B2 (en) | Spray powder, thermal spraying process using it, and sprayed coating | |
EP2590766B1 (en) | Molybdenum / molybdenum disulfide metal articles and methods for producing same | |
EP0626893A1 (en) | Method of producing bearings | |
FI115830B (en) | Process for the manufacture of multi-material components and multi-material components | |
JP2022517323A (en) | Hard powder particles with improved compressibility and green strength | |
CA2294066A1 (en) | Method for manufacturing high carbon sintered powder metal steel parts of high density | |
US6162276A (en) | Coating powder and method for its production | |
US7300488B2 (en) | Powder metal composition and method for producing components thereof | |
EP3433392B1 (en) | Iron based powder | |
KR20240061444A (en) | Method For Manufacturing Highly Wear-Resistant Milling Roll Through Characteristic Analysys Of Powder | |
JP2005213599A (en) | TiCN-BASED CERMET AND ITS MANUFACTURING METHOD | |
JPH05271844A (en) | Cemented carbide roll, and its manufacture | |
JP2003293113A (en) | Molding die and manufacturing method therefor | |
KR102533137B1 (en) | Iron-based mixed powder for powder metallurgy and iron-based sintered body | |
JP5088532B2 (en) | High-strength tool with excellent softening and surface finish characteristics and manufacturing method thereof | |
JPH0266135A (en) | Cermet for hot guide roll | |
Yang et al. | Soundness of spray formed disc shape tools of hot-work steels | |
Zhou et al. | High temperature wear resistance of cobalt-based cladding layer surfacing on H13 steel | |
TW205573B (en) | ||
US20010022945A1 (en) | Material produced using powder metallurgy with improved mechanical properties | |
US11236408B1 (en) | Cemented tungsten carbide with functionally designed microstructure and surface and methods for making the same | |
JPH01154808A (en) | Tool for drawing steel tube |