KR20240058453A - Heat dissipation composite composition for semiconductors of remote/wireless device for nuclear power decommission - Google Patents
Heat dissipation composite composition for semiconductors of remote/wireless device for nuclear power decommission Download PDFInfo
- Publication number
- KR20240058453A KR20240058453A KR1020220139196A KR20220139196A KR20240058453A KR 20240058453 A KR20240058453 A KR 20240058453A KR 1020220139196 A KR1020220139196 A KR 1020220139196A KR 20220139196 A KR20220139196 A KR 20220139196A KR 20240058453 A KR20240058453 A KR 20240058453A
- Authority
- KR
- South Korea
- Prior art keywords
- semiconductors
- composite composition
- remote
- expanded graphite
- weight
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 62
- 239000000203 mixture Substances 0.000 title claims abstract description 58
- 239000004065 semiconductor Substances 0.000 title claims abstract description 50
- 230000017525 heat dissipation Effects 0.000 title claims abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 67
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 36
- 239000010439 graphite Substances 0.000 claims abstract description 36
- 229920002050 silicone resin Polymers 0.000 claims abstract description 20
- 239000000945 filler Substances 0.000 claims abstract description 19
- 239000002105 nanoparticle Substances 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims description 18
- 239000002253 acid Substances 0.000 claims description 16
- 239000002041 carbon nanotube Substances 0.000 claims description 12
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 238000010298 pulverizing process Methods 0.000 claims description 5
- 238000000227 grinding Methods 0.000 claims 1
- 238000000034 method Methods 0.000 claims 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 25
- 229910052709 silver Inorganic materials 0.000 description 25
- 239000004332 silver Substances 0.000 description 25
- 239000002904 solvent Substances 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- -1 carboxylic acid compound Chemical class 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000002048 multi walled nanotube Substances 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- 229920002545 silicone oil Polymers 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000003685 thermal hair damage Effects 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000002082 metal nanoparticle Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- NSLNFHKUIKHPGY-UHFFFAOYSA-N 2,2,4,4,6,6,8-heptamethyl-8-phenyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound O1[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si]1(C)C1=CC=CC=C1 NSLNFHKUIKHPGY-UHFFFAOYSA-N 0.000 description 1
- LTIUDPOSFOYSKA-UHFFFAOYSA-N 2-ethenyl-2,4,4,6,6,8,8-heptamethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C=C)O[Si](C)(C)O1 LTIUDPOSFOYSKA-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- YFCGDEUVHLPRCZ-UHFFFAOYSA-N [dimethyl(trimethylsilyloxy)silyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C YFCGDEUVHLPRCZ-UHFFFAOYSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 230000003254 anti-foaming effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- HTDJPCNNEPUOOQ-UHFFFAOYSA-N hexamethylcyclotrisiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O1 HTDJPCNNEPUOOQ-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Transmitters (AREA)
Abstract
전자파차폐율, 내열성 및 열전도도 성능이 모두 우수한 원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물이 제공된다. 본 발명의 일 실시예는 실리콘 수지, 상기 실리콘 수지 100 중량부를 기준으로 복합 충진제 10 내지 30 중량부 및 금속계 나노입자 10 내지 30 중량부를 포함하고, 상기 복합 충진제는, 개질 팽창그라파이트 및 개질 탄소나노튜브를 포함하는 원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물을 제공한다.A heat dissipating composite composition for semiconductors with excellent electromagnetic wave shielding rate, heat resistance, and thermal conductivity performance is provided for application to remote/wireless equipment for nuclear decommissioning. One embodiment of the present invention includes a silicone resin, 10 to 30 parts by weight of a composite filler and 10 to 30 parts by weight of metallic nanoparticles based on 100 parts by weight of the silicone resin, and the composite filler includes modified expanded graphite and modified carbon nanotubes. Provides a heat dissipation composite composition for semiconductors for application to remote/wireless equipment for nuclear decommissioning, including.
Description
본 발명은 원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물에 관한 것으로, 보다 구체적으로 반도체 장치의 구동에 따른 열적 손상을 최소화할 수 있는 우수한 원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물에 관한 것이다.The present invention relates to a heat dissipation composite composition for semiconductors for the application of remote/wireless equipment for nuclear decommissioning, and more specifically, to a heat dissipation composite composition for semiconductors for the application of remote/wireless equipment for nuclear decommissioning, which is excellent for minimizing thermal damage caused by the operation of semiconductor devices. It relates to composite compositions.
원자력 시설들의 기간 만료에 따라 안전하고 친환경적인 방법으로 상기 원자력 시설을 제거하여 기존의 자연상태로 돌리기 위한 기술에 관한 연구가 대두되고 있다. 2018년 12월을 기준으로, 전세계에서 운영중인 원전(nuclear power)은 453기, 영구정지 원전은 170기이고, 이 중 21기만 해체가 완료된 상황이다.As nuclear facilities expire, research on technologies to remove them and return them to their natural state in a safe and environmentally friendly manner is emerging. As of December 2018, there are 453 nuclear power plants in operation around the world, and 170 nuclear power plants are permanently shut down, of which only 21 have been decommissioned.
한편, 안전하게 원자력 시설의 해체 작업을 하기 위해 해체 준비단계부터 인체 접촉을 최소화할 수 있는 원격 또는 무선 해체장비의 개발 및 이용이 확대되고 있다. 예를 들어, 국내뿐만 아니라 일본, 중국 등에서도 원전해체주기의 도래에 대비하기 위한 원전해체기기(nuclear power decommissioning instrument) 개발에 대한 관심 및 투자가 이어지고 있다. 이러한 원전해체기기의 정교한 작업 및 작동불량을 배제하기 위해서는 전자파 차폐기술이 필수적으로 요구된다. Meanwhile, in order to safely dismantle nuclear facilities, the development and use of remote or wireless dismantling equipment that can minimize human contact from the decommissioning preparation stage is expanding. For example, interest in and investment in the development of nuclear power decommissioning instruments to prepare for the advent of the nuclear power plant decommissioning cycle is continuing not only in Korea but also in Japan and China. Electromagnetic wave shielding technology is essential to prevent sophisticated work and malfunction of nuclear power plant decommissioning equipment.
본 발명의 목적은 전자파차폐율, 내열성 및 열전도도 성능이 모두 우수한 원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물을 제공하는 것이다.The purpose of the present invention is to provide a heat dissipation composite composition for semiconductors for application to remote/wireless equipment for nuclear decommissioning, which has excellent electromagnetic wave shielding rate, heat resistance, and thermal conductivity performance.
본 발명의 다른 목적은 반도체용 방열복합조성물로 제조된 반도체 장치를 제공하는 것이다.Another object of the present invention is to provide a semiconductor device manufactured from a heat dissipating composite composition for semiconductors.
본 발명의 또 다른 목적은 상기 반도체 장치를 포함하는 원전해체기기를 제공하는 것이다.Another object of the present invention is to provide a nuclear power plant decommissioning device including the above semiconductor device.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 청구범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the objects mentioned above, and other objects and advantages of the present invention that are not mentioned can be understood by the following description and will be more clearly understood by the examples of the present invention. Additionally, it will be readily apparent that the objects and advantages of the present invention can be realized by means and combinations thereof as set forth in the claims.
상기 목적을 달성하기 위한 본 발명의 일 실시예는, 실리콘 수지, 상기 실리콘 수지 100 중량부를 기준으로 복합 충진제 10 내지 30 중량부 및 금속계 나노입자 10 내지 30 중량부를 포함하고, 상기 복합 충진제는, 개질 팽창그라파이트 및 개질 탄소나노튜브를 포함하는, 원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물을 제공한다.One embodiment of the present invention for achieving the above object includes a silicone resin, 10 to 30 parts by weight of a composite filler and 10 to 30 parts by weight of metallic nanoparticles based on 100 parts by weight of the silicone resin, and the composite filler is modified. Provided is a heat dissipating composite composition for semiconductors, including expanded graphite and modified carbon nanotubes, for use in remote/wireless equipment for nuclear decommissioning.
구체적으로 상기 실리콘 수지는 열경화형 일액형 또는 이액형 수지일 수 있다.Specifically, the silicone resin may be a thermosetting one-component or two-component resin.
구체적으로 상기 개질 팽창그라파이트와 상기 개질 탄소나노튜브의 중량비는 1:9 내지 9:1일 수 있다.Specifically, the weight ratio of the modified expanded graphite and the modified carbon nanotube may be 1:9 to 9:1.
상기 개질 팽창그라파이트의 제조방법은, 팽창그라파이트를 초음파 분쇄기로 분쇄하는 단계 및 분쇄된 상기 팽창그라파이트의 표면을 제1 산 화합물로 처리하는 단계를 포함한다. 상기 제1 산 화합물은, 질산, 황산, 염산, 제1 카르복시산 화합물로 이루어진 군에서 선택된 적어도 1종 이상일 수 있다.The method for producing the modified expanded graphite includes pulverizing the expanded graphite with an ultrasonic grinder and treating the surface of the pulverized expanded graphite with a first acid compound. The first acid compound may be at least one selected from the group consisting of nitric acid, sulfuric acid, hydrochloric acid, and a first carboxylic acid compound.
상기 개질 탄소나노튜브의 제조방법은, 탄소나노튜브를 초음파 분쇄기로 분쇄하는 단계 및 분쇄된 상기 탄소나노튜브의 표면을 제2 산 화합물로 처리하는 단계를 포함한다. 상기 제2 산 화합물은, 질산, 황산, 염산, 제2 카르복시산 화합물로 이루어진 군에서 선택된 적어도 1종 이상일 수 있다.The method for producing the modified carbon nanotubes includes pulverizing the carbon nanotubes using an ultrasonic grinder and treating the surface of the pulverized carbon nanotubes with a second acid compound. The second acid compound may be at least one selected from the group consisting of nitric acid, sulfuric acid, hydrochloric acid, and a second carboxylic acid compound.
구체적으로 상기 금속계 나노입자는, 금, 은, 구리, 알루미늄, 은이 코팅된 구리, 은이 코팅된 니켈, 은이 코팅된 알루미늄, 산화알루미늄, 산화철, 산화마그네슘, 산화아연, 수산화알루미늄, 수산화마그네슘, 질화알루미늄 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있다.Specifically, the metal nanoparticles include gold, silver, copper, aluminum, silver-coated copper, silver-coated nickel, silver-coated aluminum, aluminum oxide, iron oxide, magnesium oxide, zinc oxide, aluminum hydroxide, magnesium hydroxide, and aluminum nitride. It may be any one selected from the group consisting of and mixtures thereof.
상기 목적을 달성하기 위한 본 발명의 또 다른 실시예는, 용매를 더 포함하는 원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물을 제공한다. 구체적으로, 상기 용매는 액상 실리콘 오일을 포함할 수 있다.Another embodiment of the present invention for achieving the above object provides a heat dissipation composite composition for semiconductors for application to remote/wireless equipment for nuclear decommissioning, further comprising a solvent. Specifically, the solvent may include liquid silicone oil.
상기 목적을 달성하기 위한 본 발명의 또 다른 실시예는 상기 원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물로 제조된 반도체 장치 및 이를 포함하는 원전해체기기를 제공할 수 있다.Another embodiment of the present invention to achieve the above object can provide a semiconductor device made of a heat dissipating composite composition for semiconductors for application to the nuclear power plant decommissioning remote/wireless equipment and a nuclear power plant decommissioning device including the same.
본 발명의 일 측면(Aspect)에 따르면, 전자파차폐율, 내열성 및 열전도도 성능이 모두 우수한 원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물을 제공할 수 있다. 또한, 이러한 방열복합조성물은 원전해체기기에 적용되어, 원전해체작업의 안전한 작업 환경을 구현할 수 있을 뿐만 아니라 반도체 장치의 구동에 따른 열적 손상을 최소화할 수 있다.According to one aspect of the present invention, it is possible to provide a heat dissipating composite composition for semiconductors for application to remote/wireless equipment for nuclear decommissioning, which has excellent electromagnetic wave shielding rate, heat resistance, and thermal conductivity performance. In addition, this heat dissipating composite composition can be applied to nuclear power plant decommissioning equipment, not only creating a safe working environment for nuclear power plant decommissioning work, but also minimizing thermal damage caused by the operation of semiconductor devices.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 내용을 설명하면서 함께 기술한다.In addition to the above-described effects, specific effects of the present invention are described below while explaining specific details for carrying out the invention.
도 1은 원전해체기기의 회로기판을 나타낸 것이다.Figure 1 shows the circuit board of a nuclear power plant decommissioning device.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 각 구성을 보다 상세히 설명하나, 이는 하나의 예시에 불과할 뿐, 본 발명의 권리범위가 다음 내용에 의해 제한되지 아니한다.Hereinafter, each configuration of the present invention will be described in more detail so that those skilled in the art can easily implement it. However, this is only an example, and the scope of rights of the present invention is determined by the following contents. Not limited.
본 발명의 일 실시예는 실리콘 수지, 상기 실리콘 수지 100 중량부를 기준으로 복합 충진제 10 내지 30 중량부 및 금속계 나노입자 10 내지 30 중량부를 포함하고, 상기 복합 충진제는, 개질 팽창그라파이트 및 개질 탄소나노튜브를 포함하는 원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물을 제공한다. 본 발명의 일 측면(Aspect)에 따르면, 전자파차폐율, 내열성 및 열전도도 성능이 모두 우수한 원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물을 제공할 수 있다. 또한, 이러한 방열복합조성물은 원전해체기기에 적용되어, 원전해체작업의 안전한 작업 환경을 구현할 수 있을 뿐만 아니라 반도체 장치의 구동에 따른 열적 손상을 최소화할 수 있다.One embodiment of the present invention includes a silicone resin, 10 to 30 parts by weight of a composite filler and 10 to 30 parts by weight of metallic nanoparticles based on 100 parts by weight of the silicone resin, and the composite filler includes modified expanded graphite and modified carbon nanotubes. Provides a heat dissipation composite composition for semiconductors for application to remote/wireless equipment for nuclear decommissioning, including. According to one aspect of the present invention, it is possible to provide a heat dissipating composite composition for semiconductors for application to remote/wireless equipment for nuclear decommissioning, which has excellent electromagnetic wave shielding rate, heat resistance, and thermal conductivity performance. In addition, this heat dissipating composite composition can be applied to nuclear power plant decommissioning equipment, not only creating a safe working environment for nuclear power plant decommissioning work, but also minimizing thermal damage caused by the operation of semiconductor devices.
설명의 편의를 위해, 본 명세서에서 '원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물'은 '반도체용 방열복합조성물'로 후술한다.For convenience of explanation, in this specification, 'heat dissipation composite composition for semiconductors for application to remote/wireless equipment for nuclear decommissioning' will be referred to later as 'heat dissipation composite composition for semiconductors'.
이하에서는, 본 발명의 구성을 보다 상세히 설명한다.Below, the configuration of the present invention will be described in more detail.
1. 원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물1. Heat dissipating composite composition for semiconductors for application to remote/wireless equipment for nuclear decommissioning
본 발명에 따른 반도체용 방열복합조성물은 실리콘 수지를 포함한다. 구체적으로, 상기 실리콘 수지는 열경화형 일액형 또는 이액형 수지일 수 있고, 바람직하게는 열경화형 일액형 수지일 수 있다. 상기 실리콘 수지의 점도는 예를 들어, 상온에서 비흐름성 내지 3,000cP일 수 있다.The heat dissipating composite composition for semiconductors according to the present invention includes a silicone resin. Specifically, the silicone resin may be a thermosetting one-component or two-component resin, and preferably may be a thermosetting one-component resin. The viscosity of the silicone resin may be, for example, non-flowing to 3,000 cP at room temperature.
본 발명의 일 실시예에 따른 실리콘 수지는 필요에 따라 경화제 또는 경화 촉매를 추가적으로 포함할 수 있다. 상기 경화제는 헥산계 화합물 또는 과산화물계 화합물일 수 있고, 상기 경화 촉매는 예를 들어 이미다졸(Imidazole)계 촉매일 수 있으나, 이에 한정되는 것은 아니다.The silicone resin according to an embodiment of the present invention may additionally include a curing agent or a curing catalyst as needed. The curing agent may be a hexane-based compound or a peroxide-based compound, and the curing catalyst may be, for example, an imidazole-based catalyst, but is not limited thereto.
본 발명에 따른 반도체용 방열복합조성물은 전자파차폐율 및 열전도도를 높이기 위해 복합 충진제를 포함한다. 상기 복합 충진제의 함량은 상기 실리콘 수지 100 중량부를 기준으로 10 내지 30 중량부, 바람직하게는 15 내지 25 중량부, 더욱 바람직하게는 17 내지 23 중량부일 수 있다. 상기 복합 충진제의 함량이 상기 수치 범위를 미만일 경우 높은 열전도도 성능이 구현되지 않을 수 있고, 상기 수치 범위를 초과할 경우, 복합 충진제가 상기 반도체용 방열복합조성물 내에서 충분히 분산되지 못하고 응집체를 형성할 수 있다. 이러한 응집체가 상기 반도체용 방열복합조성물 내에 형성될 경우 전자파차폐율 및 열전도도 성능이 충분히 개선되지 못할 수 있다.The heat dissipating composite composition for semiconductors according to the present invention includes a composite filler to increase electromagnetic wave shielding rate and thermal conductivity. The content of the composite filler may be 10 to 30 parts by weight, preferably 15 to 25 parts by weight, and more preferably 17 to 23 parts by weight, based on 100 parts by weight of the silicone resin. If the content of the composite filler is less than the above numerical range, high thermal conductivity performance may not be realized, and if it exceeds the above numerical range, the composite filler may not be sufficiently dispersed within the heat dissipating composite composition for a semiconductor and may form aggregates. You can. If such aggregates are formed in the heat dissipating composite composition for semiconductors, the electromagnetic wave shielding rate and thermal conductivity performance may not be sufficiently improved.
본 발명에 따른 복합 충진제는 개질 팽창그라파이트 및 개질 탄소나노튜브를 포함한다. 상기 개질 팽창그라파이트와 상기 개질 탄소나노튜브의 중량비(개질 팽창그라파이트: 개질 탄소나노튜브)는 1:9 내지 9:1일 수 있고, 바람직하게는 2:8 내지 8:2, 더욱 바람직하게는 4:6 내지 6:4일 수 있다. 상기 개질 팽창그라파이트 및 개질 탄소나노튜브의 중량비가 상기 수치 범위를 벗어날 경우 반도체용 방열복합조성물 내에서 분산이 충분히 잘 되지 못하여 응집체가 형성되는 문제가 생길 수 있고, 이러한 응집체로 인해 전자파차폐 효율이 낮아질 수 있다. 만약 개질 팽창그라파이트와 미개질 탄소나노튜브를 조합할 경우 반도체용 방열복합조성물 내에서 분산이 충분히 잘 되지 못하여 응집체가 형성됨에 따라 전자파차폐 효율이 낮아질 수 있고, 내열성이 충분히 개선되지 못할 수 있다. 또한, 미개질 팽창그라파이트와 개질 탄소나노튜브를 조합할 경우 반도체용 방열복합조성물 내에서 분산이 충분히 잘 되지 못하여 응집체가 형성됨에 따라 전자파차폐 효율이 낮아질 수 있고, 내열성이 충분히 개선되지 못할 수 있다.The composite filler according to the present invention includes modified expanded graphite and modified carbon nanotubes. The weight ratio of the modified expanded graphite and the modified carbon nanotube (modified expanded graphite: modified carbon nanotube) may be 1:9 to 9:1, preferably 2:8 to 8:2, and more preferably 4. :6 to 6:4. If the weight ratio of the modified expanded graphite and the modified carbon nanotube is outside the above numerical range, the dispersion may not be good enough in the heat dissipating composite composition for a semiconductor, resulting in the formation of aggregates, and such aggregates may lower the electromagnetic wave shielding efficiency. You can. If modified expanded graphite and unmodified carbon nanotubes are combined, electromagnetic wave shielding efficiency may be lowered as aggregates are formed due to insufficient dispersion within the heat dissipating composite composition for semiconductors, and heat resistance may not be sufficiently improved. In addition, when unmodified expanded graphite and modified carbon nanotubes are combined, electromagnetic wave shielding efficiency may be lowered as aggregates are formed due to insufficient dispersion within the heat dissipating composite composition for semiconductors, and heat resistance may not be sufficiently improved.
본 발명에 따른 개질 팽창그라파이트의 제조방법은, 팽창그라파이트를 초음파 분쇄기로 분쇄하는 단계 및 분쇄된 상기 팽창그라파이트의 표면을 제1 산 화합물로 처리하는 단계를 포함한다. 상기 팽창그라파이트는 상기 제1 산 화합물에 의해 개질됨으로써, 상기 실리콘 수지와의 호환성이 우수해질 수 있고, 열전도도 성능을 유지하면서 상기 반도체용 방열복합조성물 내에서 잘 분산될 수 있다.The method for producing modified expanded graphite according to the present invention includes the steps of pulverizing expanded graphite with an ultrasonic grinder and treating the surface of the pulverized expanded graphite with a first acid compound. By being modified by the first acid compound, the expanded graphite can have excellent compatibility with the silicone resin and can be well dispersed in the heat dissipation composite composition for a semiconductor while maintaining thermal conductivity performance.
상기 팽창그라파이트는 예를 들어, 평균기공의 직경이 20 내지 50㎛일 수 있고, 팽창율이 200 내지 400%일 수 있고, 밀도가 0.002 내지 0.008g/cm3일 수 있다. For example, the expanded graphite may have an average pore diameter of 20 to 50 ㎛, an expansion rate of 200 to 400%, and a density of 0.002 to 0.008 g/cm 3 .
상기 제1 산 화합물은 예를 들어, 질산, 황산, 염산 및 제1 카르복시산 화합물로 이루어진 군에서 선택된 적어도 1종 이상일 수 있다. 구체적으로 상기 제1 카르복시산 화합물은 폼산, 아세트산, 프로피온산 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있다. 또한, 상기 제1 산 화합물의 조성을 적절한 함량비로 혼합함으로써, 상기 팽창그라파이트의 표면 개질 효율이 높아질 수 있다.For example, the first acid compound may be at least one selected from the group consisting of nitric acid, sulfuric acid, hydrochloric acid, and a first carboxylic acid compound. Specifically, the first carboxylic acid compound may be any one selected from the group consisting of formic acid, acetic acid, propionic acid, and mixtures thereof. Additionally, by mixing the composition of the first acid compound at an appropriate content ratio, the surface modification efficiency of the expanded graphite can be increased.
본 발명에 따른 개질 탄소나노튜브의 제조방법은, 탄소나노튜브를 초음파 분쇄기로 분쇄하는 단계 및 분쇄된 상기 탄소나노튜브의 표면을 제2 산 화합물로 처리하는 단계를 포함한다.The method for producing modified carbon nanotubes according to the present invention includes pulverizing carbon nanotubes using an ultrasonic grinder and treating the surface of the pulverized carbon nanotubes with a second acid compound.
상기 제2 산 화합물은, 질산, 황산, 염산 및 제2 카르복시산 화합물로 이루어진 군에서 선택된 적어도 1종 이상일 수 있다. 구체적으로, 상기 제2 카르복시산 화합물은 상기 제1 카르복시산 화합물과 동일하거나 상이할 수 있다. 또한, 상기 제2 산 화합물의 조성을 적절한 함량비로 혼합함으로써, 상기 탄소나노튜브의 표면 개질 효율이 높아질 수 있다. 상기 제2 산 화합물은 상기 제1 산 화합물과 동일하거나 상이할 수 있다.The second acid compound may be at least one selected from the group consisting of nitric acid, sulfuric acid, hydrochloric acid, and second carboxylic acid compounds. Specifically, the second carboxylic acid compound may be the same as or different from the first carboxylic acid compound. Additionally, by mixing the composition of the second acid compound at an appropriate content ratio, the surface modification efficiency of the carbon nanotubes can be increased. The second acid compound may be the same as or different from the first acid compound.
상기 탄소나노튜브는 상기 제2 산 화합물에 의해 개질됨으로써, 상기 실리콘 수지와의 호환성이 우수해질 수 있고, 열전도도 성능을 유지하면서 상기 반도체용 방열복합조성물 내에서 잘 분산될 수 있다. By being modified by the second acid compound, the carbon nanotubes can have excellent compatibility with the silicone resin and can be well dispersed in the heat dissipation composite composition for a semiconductor while maintaining thermal conductivity performance.
상기 탄소나노튜브는 예를 들어, 단일벽 탄소나노튜브, 다중벽 탄소나노튜브 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있다. 구체적으로, 상기 탄소나노튜브의 직경은 5 내지 30nm일 수 있고, 길이는 3 내지 30㎛일 수 있다. For example, the carbon nanotube may be any one selected from the group consisting of single-walled carbon nanotubes, multi-walled carbon nanotubes, and mixtures thereof. Specifically, the diameter of the carbon nanotube may be 5 to 30 nm, and the length may be 3 to 30 μm.
본 발명에 따른 반도체용 방열복합조성물은 금속계 나노입자를 포함한다. 상기 금속계 나노입자의 함량은 상기 실리콘 수지 100 중량부를 기준으로 10 내지 30 중량부, 바람직하게는 10 내지 20 중량부, 더욱 바람직하게는 10 내지 15 중량부일 수 있다. 상기 금속계 나노입자의 함량이 상기 수치 범위를 벗어날 경우 열전도도 성능이 충분히 개선되지 못할 수 있다.The heat dissipating composite composition for semiconductors according to the present invention includes metal nanoparticles. The content of the metallic nanoparticles may be 10 to 30 parts by weight, preferably 10 to 20 parts by weight, and more preferably 10 to 15 parts by weight, based on 100 parts by weight of the silicone resin. If the content of the metallic nanoparticles is outside the above range, thermal conductivity performance may not be sufficiently improved.
상기 금속계 나노입자는 예를 들어, 금, 은, 구리, 알루미늄, 은이 코팅된 구리, 은이 코팅된 니켈, 은이 코팅된 알루미늄, 산화알루미늄, 산화철, 산화마그네슘, 산화아연, 수산화알루미늄, 수산화마그네슘, 질화알루미늄 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있다.The metal nanoparticles include, for example, gold, silver, copper, aluminum, silver-coated copper, silver-coated nickel, silver-coated aluminum, aluminum oxide, iron oxide, magnesium oxide, zinc oxide, aluminum hydroxide, magnesium hydroxide, and nitride. It may be any one selected from the group consisting of aluminum and mixtures thereof.
예를 들어, 은이 코팅된 구리에서, 은의 함량은 상기 은이 코팅된 구리의전체 중량을 기준으로 10 내지 20 중량%일 수 있다. 은이 코팅된 구리는 구리의 표면에 은이 코팅됨으로써, 다른 금속계 나노입자들보다 내구성이 우수해질 수 있다. For example, in silver-coated copper, the silver content may be 10 to 20% by weight based on the total weight of the silver-coated copper. Silver-coated copper can be more durable than other metallic nanoparticles by coating the surface of the copper with silver.
또 다른 예로 은이 코팅된 니켈에서 은의 함량은 상기 은이 코팅된 니켈의 전체 중량을 기준으로 10 내지 20 중량%일 수 있다. 은이 코팅된 니켈도 전술한 은이 코팅된 구리와 마찬가지로 높은 내구성을 가질 수 있다. As another example, the silver content in silver-coated nickel may be 10 to 20% by weight based on the total weight of the silver-coated nickel. Silver-coated nickel can also have high durability, similar to the silver-coated copper described above.
또 다른 예로, 은이 코팅된 알루미늄에서 은의 함량은 상기 은이 코팅된 알루미늄의 전체 중량을 기준으로 10 내지 20 중량%일 수 있다. 은이 코팅된 알루미늄도 전술한 은이 코팅된 구리와 마찬가지로 높은 내구성을 가질 수 있다.As another example, the silver content in silver-coated aluminum may be 10 to 20% by weight based on the total weight of the silver-coated aluminum. Silver-coated aluminum can also have high durability, similar to the silver-coated copper described above.
본 발명에 따른 반도체용 방열복합조성물은, 용매를 더 포함할 수 있다. 상기 용매는 예를 들어 톨루엔, 크실렌, 사이클로헥산 등과 같은 탄화수소 용매; 클로로포름, 사염화탄소 등과 같은 할로겐화 탄화수소계 용매; 초산에틸, 초산부틸 등의 에스테르계 용매; 헥산메틸디실록산, 옥타메틸트리실록산, 데카메틸테트라실록산 등의 사슬형 실록산계 용매; 및 헥사메틸사이클로트리실록산, 옥타메틸사이클로테트라실록산, 헵타메틸페닐사이클로테트라실록산, 헵타메틸비닐사이클로테트라실록산, 데카메틸사이클로펜타실록산 등의 고리형 실록산계 용매; 로 이루어진 군에서 선택된 어느 하나일 수 있다.The heat dissipating composite composition for semiconductors according to the present invention may further include a solvent. The solvent may include, for example, hydrocarbon solvents such as toluene, xylene, cyclohexane, etc.; Halogenated hydrocarbon-based solvents such as chloroform and carbon tetrachloride; Ester solvents such as ethyl acetate and butyl acetate; Chain siloxane-based solvents such as hexanemethyldisiloxane, octamethyltrisiloxane, and decamethyltetrasiloxane; and cyclic siloxane-based solvents such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, heptamethylphenylcyclotetrasiloxane, heptamethylvinylcyclotetrasiloxane, and decamethylcyclopentasiloxane; It may be any one selected from the group consisting of.
또 다른 예로, 상기 용매는 액상 실리콘 오일일 수 있다. 상기 액상 실리콘 오일의 점도는 상온에서 3 내지 4.5cP일 수 있다. 상기 액상 실리콘 오일은 유기 작용기(organic group)가 결합되어 있는 규소가 실록산 결합(Si-O-Si)에 의해 연결된 분자구조를 가진 것으로서, 점도조절이 용이하고, 온도에 따른 점도 변화가 작으며, 전기절연성이 우수할 뿐만 아니라 바인더(binder)로서의 역할을 할 수 있다. 또한, 액상 실리콘 오일은 표면장력이 작고, 소포성을 갖는다.As another example, the solvent may be liquid silicone oil. The viscosity of the liquid silicone oil may be 3 to 4.5 cP at room temperature. The liquid silicone oil has a molecular structure in which silicon to which organic groups are bonded is connected by a siloxane bond (Si-O-Si), and the viscosity is easy to control and the viscosity change according to temperature is small. Not only does it have excellent electrical insulation properties, but it can also act as a binder. Additionally, liquid silicone oil has low surface tension and anti-foaming properties.
상기 용매의 함량은 상기 실리콘 수지 100 중량부를 기준으로 5 내지 15 중량부, 바람직하게는 7 내지 13 중량부, 더욱 바람직하게는 8 내지 12 중량부일 수 있다. 상기 용매의 함량이 상기 수치 범위를 벗어날 경우, 상기 반도체용 방열복합조성물의 점도 조절이 어려워 원하는 위치에 코팅하는 단계가 어려워질 수 있다.The content of the solvent may be 5 to 15 parts by weight, preferably 7 to 13 parts by weight, and more preferably 8 to 12 parts by weight, based on 100 parts by weight of the silicone resin. If the content of the solvent is outside the above numerical range, it may be difficult to control the viscosity of the heat dissipating composite composition for semiconductors, making it difficult to coat the desired location.
2. 반도체 장치 및 이를 포함하는 원전해체기기2. Semiconductor devices and nuclear power plant decommissioning equipment including them
본 발명의 또 다른 실시예는 상기 반도체용 방열복합조성물로 제조된 반도체 장치 및 이를 포함하는 원전해체기기를 제공할 수 있다. 예를 들어, 상기 원전해체기기는 원격(remote) 또는 무선(wireless) 로봇일 수 있고, 더욱 구체적으로 실내 내모니터링 로봇, 드론, 원전 해체 로봇 등일 수 있다. Another embodiment of the present invention can provide a semiconductor device manufactured from the heat dissipating composite composition for semiconductors and a nuclear power plant decommissioning device including the same. For example, the nuclear power plant decommissioning device may be a remote or wireless robot, and more specifically, may be an indoor monitoring robot, drone, nuclear power plant decommissioning robot, etc.
이하, 도 1을 참고하여 본 발명의 구성을 상세히 설명한다.Hereinafter, the configuration of the present invention will be described in detail with reference to FIG. 1.
도 1은 원전해체기기의 회로기판을 나타낸 것이다.Figure 1 shows the circuit board of a nuclear power plant decommissioning device.
도 1을 참고하면, 원전해체기기는 기기를 제어하는 회로기판을 포함할 수 있다. 상기 회로기판은 기판과 상기 기판 상에 상기 원전해체기기의 작동을 제어하는 회로를 포함할 수 있다. Referring to Figure 1, nuclear decommissioning equipment may include a circuit board that controls the equipment. The circuit board may include a board and a circuit on the board to control the operation of the nuclear power plant decommissioning equipment.
본 발명에 따른 반도체용 방열복합조성물은 스프레이 코팅 방법에 의해 상기 회로기판의 표면 상에 코팅될 수 있다. 구체적으로, 상기 스프레이 코팅 방법에 따르면 액상의 상기 반도체용 방열복합조성물을 미립화시킴으로써, 상기 회로기판의 표면에 상기 반도체용 방열복합조성물의 코팅 작업이 용이하게 할 수 있다.The heat dissipating composite composition for semiconductors according to the present invention can be coated on the surface of the circuit board by a spray coating method. Specifically, according to the spray coating method, the liquid heat dissipation composite composition for a semiconductor is atomized, thereby making it easy to coat the surface of the circuit board with the heat dissipation composite composition for a semiconductor.
상기 코팅 단계 이후에, 회로기판의 표면에 코팅된 반도체용 방열복합조성물을 경화하는 단계가 수행될 수 있다. 구체적으로, 상기 경화하는 단계는 100 내지 150℃에서 0.5 내지 30분 동안 수행되는 것이 바람직하다.After the coating step, a step of curing the heat dissipating composite composition for a semiconductor coated on the surface of the circuit board may be performed. Specifically, the curing step is preferably performed at 100 to 150°C for 0.5 to 30 minutes.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명하나, 이는 하나의 예시에 불과할 뿐, 본 발명의 권리범위가 다음 내용에 의해 제한되지 아니한다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. However, this is only an example, and the scope of rights of the present invention is determined by the following contents. Not limited.
[제조준비예 1: 복합 충진제의 제조][Manufacturing Example 1: Preparation of composite filler]
(a) 단계: 개질 팽창그라파이트의 제조Step (a): Preparation of modified expanded graphite
평균기공의 직경이 40㎛이고 팽창율이 300%이고, 밀도가 0.003g/cm3인 팽창그라파이트를 초음파 분쇄기를 이용하여 3회 분쇄하였다. 상기 분쇄된 팽창그라파이트를 25℃에서 1시간 동안 건조시켜 수분을 제거하여 건조된 팽창그라파이트를 제조하였다. 상기 건조된 팽창그라파이트의 표면을 질산과 아세트산의 부피비가 1:3(v/v)인 혼합물로 개질하여 결과적으로 개질 팽창그라파이트를 제조하였다. Expanded graphite with an average pore diameter of 40㎛, an expansion rate of 300%, and a density of 0.003g/cm 3 was pulverized three times using an ultrasonic grinder. The pulverized expanded graphite was dried at 25°C for 1 hour to remove moisture to prepare dried expanded graphite. The surface of the dried expanded graphite was modified with a mixture of nitric acid and acetic acid at a volume ratio of 1:3 (v/v), resulting in the production of modified expanded graphite.
(b) 단계: 개질 탄소나노튜브의 제조Step (b): Preparation of modified carbon nanotubes
평균직경이 20nm이고 길이가 20㎛인 다중벽 탄소나노튜브를 초음파 분쇄기를 이용하여 5회 분쇄하였다. 상기 분쇄된 다중벽 탄소나노튜브를 25℃에서 1시간 동안 건조시켜 수분을 제거하여 건조된 다중벽 탄소나노튜브를 제조하였다. 상기 건조된 다중벽 탄소나노튜브의 표면을 질산과 황산의 부피비가 1:3(v/v)인 혼합물로 개질하여 결과적으로 개질 탄소나노튜브를 제조하였다.Multi-walled carbon nanotubes with an average diameter of 20 nm and a length of 20 μm were pulverized five times using an ultrasonic grinder. The pulverized multi-walled carbon nanotubes were dried at 25°C for 1 hour to remove moisture, thereby producing dried multi-walled carbon nanotubes. The surface of the dried multi-walled carbon nanotube was modified with a mixture of nitric acid and sulfuric acid at a volume ratio of 1:3 (v/v), resulting in the production of modified carbon nanotubes.
(c) 단계: 복합 충진제의 제조Step (c): Preparation of composite filler
상기 개질 팽창그라파이트와 상기 개질 탄소나노튜브의 중량비가 1:1로 혼합된 복합 충진제를 제조하였다.A composite filler was prepared by mixing the modified expanded graphite and the modified carbon nanotubes at a weight ratio of 1:1.
[제조예 1: 원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물의 제조][Manufacturing Example 1: Manufacturing of a heat dissipating composite composition for semiconductors for application to remote/wireless equipment for nuclear decommissioning]
하기 표 1과 같은 조성으로 비교예 및 실시예에 따른 반도체용 방열복합조성물을 제조하였다. 반도체용 방열복합조성물은 통상의 방법에 의해 제조되었다.Heat dissipating composite compositions for semiconductors according to comparative examples and examples were prepared with the compositions shown in Table 1 below. The heat dissipating composite composition for semiconductors was manufactured by a conventional method.
팽창그라파이트3-1) reformed
Expanded Graphite 3-1)
탄소나노튜브3-2) reformed
Carbon nanotube 3-2)
2-1) 평균기공의 직경이 40㎛이고 팽창율이 300%이고, 밀도가 0.003g/cm3인 팽창그라파이트
2-2) 평균직경이 20nm이고 길이가 20㎛인 다중벽 탄소나노튜브
3-1) 상기 제조준비예 1에 따른 개질 팽창그라파이트
3-2) 상기 제조준비예 1에 따른 개질 탄소나노튜브
4) 은의 함량이 15 중량%인 은이 코팅된 구리
5) 상온에서 점도가 4cP인 액상 실리콘 오일1) Manufacturer: Dow Corning, Product Name: SE 1775
2-1) Expanded graphite with an average pore diameter of 40㎛, an expansion rate of 300%, and a density of 0.003g/cm 3
2-2) Multi-walled carbon nanotubes with an average diameter of 20nm and a length of 20㎛
3-1) Modified expanded graphite according to Preparation Example 1 above
3-2) Modified carbon nanotube according to Manufacturing Preparation Example 1 above
4) Silver-coated copper with a silver content of 15% by weight
5) Liquid silicone oil with a viscosity of 4cP at room temperature
[실험예: 반도체용 방열복합조성물로 제조된 시편의 전자파차폐율, 내열성 및 열전도도 측정][Experimental example: Measurement of electromagnetic wave shielding rate, heat resistance and thermal conductivity of specimens manufactured with heat dissipating composite composition for semiconductors]
상기 실시예 및 비교예에 따른 전자파차폐 실릴용 조성물로 제조된 시편을 한국고분자시험연구소에 의뢰하여 하기와 같은 방법으로 측정하였다.Specimens prepared with the composition for electromagnetic wave shielding silyl according to the above examples and comparative examples were requested to the Korea Polymer Testing Laboratory and measured in the following manner.
1) 전자파차폐율(dB)1) Electromagnetic wave shielding rate (dB)
ASTM D4935-18 시험규격으로 상기 전자파차폐 실릴용 조성물로 제조된 시편의 전자파차폐율을 평가하였다.The electromagnetic wave shielding rate of the specimen prepared with the electromagnetic wave shielding silyl composition was evaluated according to the ASTM D4935-18 test standard.
2) 내열성(℃)2) Heat resistance (℃)
ASTM D648 시험규격으로 상기 전자파차폐 실릴용 조성물로 제조된 시편의 내열성을 평가하였다.The heat resistance of specimens manufactured with the electromagnetic wave shielding silyl composition was evaluated according to the ASTM D648 test standard.
3) 열전도도(W/mK)3) Thermal conductivity (W/mK)
ASTM E1461 시험규격으로 상기 전자파차폐 실릴용 조성물로 제조된 시편의 열전도도를 평가하였다.Thermal conductivity of specimens manufactured with the electromagnetic wave shielding silyl composition was evaluated according to ASTM E1461 test standards.
상기 표 2를 참고하면, 실시예 1은 비교예 1 대비, 개질 팽창그라파이트와 개질 탄소나노튜브가 혼합된 복합 충진제가 실리콘 수지 내에 잘 분산되어, 원전해체기기에서 발생하는 전자파를 효과적으로 차폐할 수 있을 뿐만 아니라 원전해체기기의 작동 과정에서 발생하는 열에 대한 개선된 내열성 성능을 보일 수 있다. 또한, 실시예 1은, 비교예 1 대비 원전해체기기에서 발생하는 열을 외부로 신속히 전달할 수 있는 열전도도 성능도 뛰어남을 확인할 수 있다.Referring to Table 2, Example 1, compared to Comparative Example 1, shows that the composite filler mixed with modified expanded graphite and modified carbon nanotubes is well dispersed in the silicone resin, and can effectively shield electromagnetic waves generated from nuclear power plant decommissioning equipment. In addition, it can show improved heat resistance performance against heat generated during the operation of nuclear decommissioning equipment. In addition, it can be confirmed that Example 1 has excellent thermal conductivity performance compared to Comparative Example 1, capable of quickly transferring heat generated from the nuclear power plant decommissioning equipment to the outside.
본 발명의 일 측면(Aspect)에 따르면, 전자파차폐율, 내열성 및 열전도도 성능이 모두 우수한 원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물을 제공할 수 있다. 또한, 이러한 방열복합조성물은 원전해체기기에 적용되어, 원전해체작업의 안전한 작업 환경을 구현할 수 있을 뿐만 아니라 반도체 장치의 구동에 따른 열적 손상을 최소화할 수 있다.According to one aspect of the present invention, it is possible to provide a heat dissipating composite composition for semiconductors for application to remote/wireless equipment for nuclear decommissioning, which has excellent electromagnetic wave shielding rate, heat resistance, and thermal conductivity performance. In addition, this heat dissipating composite composition can be applied to nuclear power plant decommissioning equipment, not only creating a safe working environment for nuclear power plant decommissioning work, but also minimizing thermal damage caused by the operation of semiconductor devices.
이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements can also be made by those skilled in the art using the basic concept of the present invention defined in the following claims. It falls within the scope of invention rights.
Claims (3)
상기 실리콘 수지 100 중량부를 기준으로 복합 충진제 10 내지 30 중량부; 및
금속계 나노입자 10 내지 30 중량부를 포함하고,
상기 복합 충진제는,
개질 팽창그라파이트 및 개질 탄소나노튜브를 포함하는
원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물.
silicone resin;
10 to 30 parts by weight of composite filler based on 100 parts by weight of the silicone resin; and
Contains 10 to 30 parts by weight of metallic nanoparticles,
The composite filler is,
Containing modified expanded graphite and modified carbon nanotubes
A heat dissipating composite composition for semiconductors for use in remote/wireless equipment for nuclear power plant decommissioning.
상기 개질 팽창그라파이트와 상기 개질 탄소나노튜브의 중량비는 1:9 내지 9:1인,
원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물.
According to paragraph 1,
The weight ratio of the modified expanded graphite and the modified carbon nanotube is 1:9 to 9:1,
Heat dissipation composite composition for semiconductors for application to remote/wireless equipment for nuclear decommissioning.
상기 개질 팽창그라파이트의 제조방법은,
팽창그라파이트를 초음파 분쇄기로 분쇄하는 단계, 및
분쇄된 상기 팽창그라파이트의 표면을 제1 산 화합물로 처리하는 단계를 포함하고,
상기 개질 탄소나노튜브의 제조방법은,
탄소나노튜브를 초음파 분쇄기로 분쇄하는 단계 및
분쇄된 상기 탄소나노튜브의 표면을 제2 산 화합물로 처리하는 단계를 포함하는,
원전해체 원격/무선 장비 적용을 위한 반도체용 방열복합조성물.
According to paragraph 1,
The method for manufacturing the modified expanded graphite is,
pulverizing expanded graphite with an ultrasonic grinder, and
Comprising the step of treating the surface of the pulverized expanded graphite with a first acid compound,
The method for producing the modified carbon nanotubes is,
Grinding carbon nanotubes with an ultrasonic grinder and
Comprising the step of treating the surface of the pulverized carbon nanotubes with a second acid compound,
Heat dissipating composite composition for semiconductors for application to remote/wireless equipment for nuclear power plant decommissioning.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220139196A KR20240058453A (en) | 2022-10-26 | 2022-10-26 | Heat dissipation composite composition for semiconductors of remote/wireless device for nuclear power decommission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220139196A KR20240058453A (en) | 2022-10-26 | 2022-10-26 | Heat dissipation composite composition for semiconductors of remote/wireless device for nuclear power decommission |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240058453A true KR20240058453A (en) | 2024-05-03 |
Family
ID=91077101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220139196A KR20240058453A (en) | 2022-10-26 | 2022-10-26 | Heat dissipation composite composition for semiconductors of remote/wireless device for nuclear power decommission |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20240058453A (en) |
-
2022
- 2022-10-26 KR KR1020220139196A patent/KR20240058453A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103756631B (en) | Double-component self-adhesive addition type flame retardant heat conducting room temperature curing organic silicon pouring sealant | |
CN104497575B (en) | High-thermal-conductivity organosilicone mud and preparation method thereof | |
CN107384148A (en) | Graphene-based heat radiation coating and preparation method thereof | |
CN110157196B (en) | Graphene material directional arrangement and silica gel pad composite forming method and product | |
CN112608565A (en) | High-thermal-conductivity graphene heat dissipation film and preparation method thereof | |
US20230081969A1 (en) | Preparation method for spherical silica powder filler, powder filler obtained thereby and use thereof | |
CN111171381B (en) | Nano alpha-alumina-loaded thermal reduction graphene, preparation method and high-thermal-conductivity electrical insulation elastomer thermal interface material | |
KR100791831B1 (en) | Manufacturing method of poly(epoxy-imide)-nano silica hybrid material via cs sol-gel process and the material | |
CN113292859A (en) | Nano-modified rapid-forming high-molecular insulating material and preparation method thereof | |
Jiang et al. | Preparation of functionalized boron nitride sheets/epoxy resin composites by using a green and efficient approach for elevated thermal conductivity | |
KR102659638B1 (en) | Sealing composition to shield electromagnetic wave for nuclear power decommissioning instrument | |
KR20240058453A (en) | Heat dissipation composite composition for semiconductors of remote/wireless device for nuclear power decommission | |
CN118185543B (en) | High-heat-conductivity waterproof sealing adhesive for electronic element packaging and preparation method thereof | |
CN110157388A (en) | A kind of high thermal conductivity cream and preparation method thereof | |
Ni et al. | Coordinating of thermal and dielectric properties for cyanate ester composites filled with silica‐coated sulfonated graphene oxide hybrids | |
CN113817452A (en) | Preparation method of carbon nitride modified carbon nanotube composite heat-conducting silicone grease | |
CN117264426A (en) | Insulating heat-conducting gasket and preparation method thereof | |
CN115558448A (en) | Epoxy heat-conducting structural adhesive and preparation method and application thereof | |
CN108948978A (en) | A kind of heat radiation coating and preparation method thereof being applied on power device | |
JP6011056B2 (en) | Nanocomposite resin composition | |
KR102073319B1 (en) | Stretchable conductive film | |
CN114045031A (en) | Heat-conducting insulating composite high polymer material containing expanded graphite coated with in-situ surface coating and preparation method thereof | |
CN111171718A (en) | Coating with good insulativity and coating process thereof | |
KR101732533B1 (en) | Method for manufacturing heat dissipation ink and method for activating surface of coating layer | |
CN111410770A (en) | Nano gamma-alumina loaded carbon nanotube, preparation method and high-thermal-conductivity electrical-insulation elastomer thermal interface material |