KR20240017577A - Simultaneous realization of automobile fuel port cover injection olding and two-color coating using in-mold coating - Google Patents
Simultaneous realization of automobile fuel port cover injection olding and two-color coating using in-mold coating Download PDFInfo
- Publication number
- KR20240017577A KR20240017577A KR1020220095456A KR20220095456A KR20240017577A KR 20240017577 A KR20240017577 A KR 20240017577A KR 1020220095456 A KR1020220095456 A KR 1020220095456A KR 20220095456 A KR20220095456 A KR 20220095456A KR 20240017577 A KR20240017577 A KR 20240017577A
- Authority
- KR
- South Korea
- Prior art keywords
- coating
- mold
- injection molding
- product
- flow
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 101
- 239000011248 coating agent Substances 0.000 title claims abstract description 89
- 238000009500 colour coating Methods 0.000 title claims abstract description 6
- 238000002347 injection Methods 0.000 title abstract description 9
- 239000007924 injection Substances 0.000 title abstract description 9
- 239000000446 fuel Substances 0.000 title 1
- 239000000463 material Substances 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000001746 injection moulding Methods 0.000 claims abstract description 22
- 239000000945 filler Substances 0.000 claims abstract description 7
- 238000013461 design Methods 0.000 claims description 16
- 238000005206 flow analysis Methods 0.000 claims description 8
- 238000000465 moulding Methods 0.000 abstract description 5
- 230000007547 defect Effects 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000012855 volatile organic compound Substances 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 abstract description 2
- 239000002699 waste material Substances 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 description 10
- 238000007789 sealing Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000003086 colorant Substances 0.000 description 2
- 238000005034 decoration Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004848 polyfunctional curative Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920002396 Polyurea Polymers 0.000 description 1
- 238000012356 Product development Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/16—Making multilayered or multicoloured articles
- B29C45/1679—Making multilayered or multicoloured articles applying surface layers onto injection-moulded substrates inside the mould cavity, e.g. in-mould coating [IMC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3835—Designing moulds, e.g. using CAD-CAM
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0053—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
- B29C45/0055—Shaping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0053—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
- B29C2045/0079—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping applying a coating or covering
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
본 발명은 기존의 인몰드 코팅공정을 개선하여 자동차 주유 커버 사출성형과 2색 코팅을 동시에 구현하는 기술에 관한 것으로 자동차 주유 커버를 사출하는 1단계, 주유구 커버의 중앙부 영역에 대해 1차 코팅을 수행하는 2단계, 테두리 영역에 대해 2차 코팅을 하는 3단계로 공정을 구성하고 믹싱헤드로부터 토출된 코팅 소재가 코팅하고자 하는 제품 표면까지 유동할 수 있게 하는 1차 및 2차 코팅 채널과 코팅 소재의 유동 과정에서 발생하는 기포를 제거하기 위한 1차 및 2차 오버플로우 영역을 설치하여 금형을 설계하는 것이 특징으로 사출성형 공정 중 성형품을 금형으로부터 취출하기 전에 금형 안에서 성형품 표면을 코팅하기 때문에 점도가 매우 낮은 코팅 소재를 사용하여 표면에 마이크로 형상을 구현할 수 있으며 웰드라인, 플로 마크 등과 같은 사출 성형품의 외관 불량이 코팅 이후에 은폐되는 효과와 매우 두꺼운 코팅두께를 단일공정으로 구현할 수 있고 경화 반응에 의해 도막을 형성하기 때문에 성형과정에서 휘발성 유기화합물이 배출되지 않는 장점이 있으며 코팅 소재가 모두 도막으로서 제품에 부착되기 때문에 폐기물의 발생도 크게 감소되는 효과는 물론 인몰드코팅공정 중 코팅액이 건조될 때 압력을 가하여 압축 잔류 응역을 상대적으로 증가시켜 제품의 표면 물성을 증가시킴에 따라 피로수명을 연장시키는 효과를 기대할 수 있다.The present invention relates to a technology that improves the existing in-mold coating process to simultaneously implement injection molding and two-color coating of an automobile gas cover. The first step of injection molding the automobile gas filler cover is to perform the first coating on the central area of the gas filler cover. The process consists of two steps, a second coating on the border area, and a third step of secondary coating on the border area. The first and second coating channels and coating materials that allow the coating material discharged from the mixing head to flow to the surface of the product to be coated The mold is designed by installing primary and secondary overflow areas to remove air bubbles generated during the flow process. During the injection molding process, the surface of the molded product is coated before taking it out of the mold, so the viscosity is very high. By using a low coating material, micro shapes can be created on the surface, defects in the appearance of injection molded products such as weld lines and flow marks are concealed after coating, and a very thick coating thickness can be realized in a single process, and the coating film is formed through a curing reaction. Because it forms a molding process, it has the advantage that volatile organic compounds are not discharged during the molding process. Since all coating materials are attached to the product as a coating film, the generation of waste is greatly reduced, as well as the pressure is reduced when the coating solution dries during the in-mold coating process. By relatively increasing the compressive residual stress, the effect of extending the fatigue life can be expected by increasing the surface properties of the product.
Description
본 발명은 기존의 인몰드 코팅공정을 개선하여 자동차 주유 커버 사출성형과 2색 코팅을 동시에 구현하는 기술에 관한 것이다.The present invention relates to a technology that improves the existing in-mold coating process to simultaneously implement injection molding and two-color coating of an automobile gas cover.
사출성형은 다른 후공정을 거치지 않으면서 높은 품질의 가공제품을 빠른 생산 속도로 제작 가능한 고분자 성형 방법으로 고분자 제품 제작 공정 중에서 장 많이 사용되는 공정이다.Injection molding is a polymer molding method that can produce high-quality processed products at a fast production speed without going through other post-processes, and is the most widely used process among polymer product manufacturing processes.
코팅공정은 완성된 제품을 약품, 물 등의 외부요인으로부터 보호하기 한 공정이다. 표면 물성 향상, 장식 등을 위해 증발 코팅, 바 코팅, 침지, 블라스팅,스프레드 등의 가공법으로 물체의 표면을 피복하는 필수적인 후 공정이다.The coating process is a process to protect the finished product from external factors such as chemicals and water. It is an essential post-process that covers the surface of an object using processing methods such as evaporation coating, bar coating, dipping, blasting, and spreading to improve surface properties and decoration.
유동 해석은 금형 설계에서 양산화를 하는 과정에서 발생하는시행착오를 줄여 제품의 개발기간을 단축하는 것으로 기존의 사출 불량 문제를 실제수지를 가지고 사출 성형기에 금형을 설치하여 여러 번 실험을 통해 해결했던 기존의방식을 탈피, 컴퓨터를 이용하여 실제 사출 시에 볼 수 없었던 냉각가정, 압력 거동,수지의 이동 등을 분석해 보고 이를 통해 휨, 웰드라인, 수축 등의 불량을 예측 및해결 방법을 제시한다. 유동 해석을 사용하면 설계변경 대응, 문제점 해결, 신제품개발 및 설계속도 증진, 실제 공정에 대한 이상적 모델의 구현, 노하우의 체계적축적, 설계관리 범위의 확장과 수립 등을 기대할 수 있다.Flow analysis shortens the product development period by reducing the trial and error that occurs in the process of mass production from mold design. The problem of existing injection defects was solved through multiple experiments by installing the mold on an injection molding machine with real resin. Breaking away from the conventional method, we use a computer to analyze cooling assumptions, pressure behavior, and resin movement that were not visible during actual injection, and through this, we predict and suggest solutions for defects such as bending, weld lines, and shrinkage. Using flow analysis, you can expect to respond to design changes, solve problems, develop new products and increase design speed, implement ideal models for actual processes, systematically accumulate know-how, and expand and establish the scope of design management.
독일의 Krauss Maffei에서 상용화시킨 인몰드 코팅 방법은 기재사출성형과 코팅이 각각 서로 다른 캐비티에서 이루어지도록 하는 금형 캐비티교체방식이다. 열가소성 수지를 사용하여 기재를 사출성형 한 이후에 금형을개방하고 고정 측에 부착된 캐비티 플레이트를 슬라이딩하여 이동하거나 가동 측금형을 회전시켜 기재가 부착되어 있는 코어와 코팅용 캐비티를 결합하고 코팅 소재를 주입하여 경화시키는 공정으로 이루어져 있다.The in-mold coating method commercialized by Krauss Maffei in Germany is a mold cavity replacement method that allows substrate injection molding and coating to be carried out in different cavities. After injection molding the substrate using a thermoplastic resin, the mold is opened and the cavity plate attached to the fixed side is moved by sliding or the movable side mold is rotated to combine the core to which the substrate is attached and the coating cavity and apply the coating material. It consists of an injection and hardening process.
자동차 플라스틱 성형제품은 대량생산, 원가절감에 유리하나 고객이요구하는 고급화의 관점에서 큰 한계를 가지고 있으며 이에 대응하기 위해 도금,도장, 증착 등 별도의 후처리 공정이 요구된다. 그러나 후처리 공정은 제조과정이복잡하고 여러 차례 반복 작업으로 인해 리드타임이 길며 유해 물질을 사용하기때문에 다량의 휘발성 유기화합물 및 악취가 발생하는 문제가 있다.Automotive plastic molded products are advantageous for mass production and cost reduction, but have significant limitations in terms of the high quality demanded by customers, and separate post-processing processes such as plating, painting, and deposition are required to respond to this. However, the post-treatment process has a complex manufacturing process, a long lead time due to multiple repetitive operations, and the use of hazardous substances, which generates a large amount of volatile organic compounds and bad odors.
사출성형에 대한 기존의 표면처리 방법들은 대부분 제조공정이복잡하고 코팅두께가 두꺼울 경우 여러 번의 반복적인 코팅공정이 요구된다. 또한플라스틱 사출물의 표면 상태 및 제조환경의 영향을 많이 받아 불량품이 많이발생하는 문제가 있다.Most of the existing surface treatment methods for injection molding have complex manufacturing processes and require multiple repetitive coating processes when the coating thickness is thick. In addition, there is a problem that many defective products are generated due to the influence of the surface condition and manufacturing environment of the plastic injection molded product.
이러한 문제들을 줄이기 위해 사출성형 과정에 미리 원하는 형상으로성형한 코팅재를 금형 내에 배치시켜 사출과 코팅공정을 일체화시킨 인몰드데코레이션, 인몰드 라벨, 필름인서트성형 등과 같은 기술이 도입되었으나 후가공공정 단계가 줄어들긴 하지만 코팅재를 미리 준비해야 하는 단점이 있다.In order to reduce these problems, technologies such as in-mold decoration, in-mold label, and film insert molding, which integrate the injection and coating processes by placing a coating material molded into the desired shape in advance in the mold during the injection molding process, have been introduced, but the post-processing steps are reduced. Although it is long, it has the disadvantage of having to prepare the coating material in advance.
기존의 인몰드 코팅은 사출성형과 한 가지 종류의 코팅 소재를 금형안에서 동시에 구현하는 것이었으나 최근 자동차 내, 외장 부품에서 디자인 고감성화를 위하여 두 가지 서로 다른 색상을 코팅할 필요성이 증가하고 있는실정이다.Existing in-mold coating was to implement injection molding and one type of coating material simultaneously in the mold, but recently, the need to coat two different colors in automobile interior and exterior parts to enhance design sensitivity is increasing. .
자동차 주유구 커버를 사출성형과 동시에 금형 안에서 두 가지색상으로 코팅하는 기술을 개발하기 위해서는 1차 코팅과 2차 코팅공정에서 발생하는코팅 소재의 누설 방지를 위한 실링엣지, 기포 제거를 위한 오버플로우 영역, 코팅채널 등을 개선해서 금형을 개발할 필요가 있다.In order to develop a technology for coating an automobile gas filler cover with two colors in a mold at the same time as injection molding, a sealing edge to prevent leakage of the coating material that occurs during the first and second coating processes, an overflow area to remove air bubbles, There is a need to develop molds by improving coating channels, etc.
자동차 주유 커버를 사출하는 1단계, 주유구 커버의 중앙부 영역에 대해 1차 코팅을 수행하는 2단계, 테두리 영역에 대해 2차 코팅을 하는 3단계로 공정을 구성하고 믹싱헤드로부터 토출된 코팅 소재가 코팅하고자 하는 제품 표면까지 유동할 수 있게 하는 1차 및 2차 코팅 채널과 코팅 소재의 유동 과정에서 발생하는 기포를 제거하기 위한 1차 및 2차 오버플로우 영역을 설치할 수 있도록 금형을 설계한다.The process consists of the first step of injecting the car gas cover, the second step of performing the first coating on the central area of the gas filler cover, and the third step of performing the second coating on the border area, and the coating material discharged from the mixing head is coated. The mold is designed to install primary and secondary coating channels that allow the product to flow to the surface of the desired product, and primary and secondary overflow areas to remove air bubbles generated during the flow of the coating material.
코팅 채널과 오버플로우 영역을 포함한 기재 사출성형 공정에서 수지의 유동 밸런스를 만족시키기 위한 게이트 위치 및 살 두께 설계가 중요하므로 코팅 채널에 대한 폭과 깊이의 설계변수를 각각 달리하여 3가지 종류의 설계안을 Moldex3D를 사용하여 유동 해석을 거쳐 최적의 설계안을 도출한다.In the substrate injection molding process including the coating channel and overflow area, the gate position and thickness design to satisfy the flow balance of the resin are important, so three types of design plans were created by varying the design variables of the width and depth of the coating channel. Using Moldex3D, the optimal design is derived through flow analysis.
사출성형 공정 중 성형품을 금형으로부터 취출하기 전에 금형 안에서 성형품 표면을 코팅하기 때문에 점도가 매우 낮은 코팅 소재를 사용하여 표면에 마이크로 형상을 구현할 수 있으며 웰드라인, 플로 마크 등과 같은 사출 성형품의 외관불량이 코팅 이후에 은폐되는 효과가 있다.During the injection molding process, since the surface of the molded product is coated within the mold before taking it out of the mold, micro shapes can be created on the surface using a coating material with very low viscosity, and external defects in the injection molded product such as weld lines and flow marks are prevented by coating. It has the effect of being concealed afterwards.
매우 두꺼운 코팅두께를 단일공정으로 구현할 수 있으며 경화 반응에 의해 도막을 형성하기 때문에 성형과정에서 휘발성 유기화합물이 배출되지 않는 장점이 있다.A very thick coating thickness can be achieved in a single process, and since the coating film is formed through a curing reaction, there is an advantage that volatile organic compounds are not discharged during the molding process.
또한 코팅 소재가 모두 도막으로서 제품에 부착되기 때문에 폐기물의 발생도 크게 감소되는 효과가 있다.In addition, since all coating materials are attached to the product as a coating film, the generation of waste is greatly reduced.
인몰드 코팅공정 중 코팅액이 건조될 때 압력을 가하여 압축 잔류 응역을 상대적으로 증가시켜 제품의 표면 물성을 증가시킴에 따라 피로수명을 연장시키는 효과가 있다.When the coating liquid dries during the in-mold coating process, pressure is applied to relatively increase the compressive residual stress, thereby increasing the surface properties of the product, which has the effect of extending fatigue life.
1, 2차 코팅을 위한 금형의 개략도Schematic diagram of the mold for 1st and 2nd coatings
본 발명에 따른 금형 제작 전 Moldex3D를 사용하여 사출성형 유동해석을 실시하여 코팅 채널과 오버플로우 영역의 폭과 깊이 값을 산출하여 설계한다. 이는 기재 사출성형 공정에서 수지의 유동밸런스를 만족시키는 게이트 위치 및 살두께가 매우 중요하기 때문이다.Before manufacturing the mold according to the present invention, injection molding flow analysis is performed using Moldex3D to calculate and design the width and depth values of the coating channel and overflow area. This is because the gate location and thickness that satisfy the flow balance of the resin are very important in the substrate injection molding process.
코팅 채널은 상기의 유동 해석에 기초하여 믹싱헤드를 통해 주입된 코팅 소재가 균일한 유동을 만족하며 기재표면을 흐르도록 폭 7.952mm, 깊이 1m로 설계한다.Based on the above flow analysis, the coating channel is designed to have a width of 7.952 mm and a depth of 1 m so that the coating material injected through the mixing head satisfies uniform flow and flows on the surface of the substrate.
이때 사용하는 코팅 소재는 2액형 폴리우레아로 주제와 경화제의 점도가 일반적인 열가소성 수지에 비해 1/10,000~1/100,000 정도로 매우 작기 때문에 코팅 채널 양쪽 라인을 따라 코팅 소재의 누설을 방지할 수 있도록 실링 엣지를 설치하도록 설계한다.The coating material used at this time is a two-component polyurea, and the viscosity of the base material and hardener is very small, about 1/10,000 to 1/100,000 compared to general thermoplastic resin, so a sealing edge is installed along both lines of the coating channel to prevent leakage of the coating material. Designed to be installed.
오버플로우 영역은 코팅 소재의 유동 방향을 제어하고 제품 표면에 기포가 발생하지 않도록 상기의 유동 해석을 고려하여 코팅두께의 3~4배에 해당하는 폭 9.107mm, 깊이 9mm의 홈을 설치하여 코팅 소재와 함께 기포가 용이하게 배출될 수 있도록 설계한다.In the overflow area, a groove with a width of 9.107 mm and a depth of 9 mm, which is 3 to 4 times the coating thickness, is installed in consideration of the above flow analysis to control the flow direction of the coating material and prevent bubbles from occurring on the product surface. It is designed so that air bubbles can be easily discharged.
실링엣지는 1차 코팅 및 2차 코팅공정에서 각각 코팅 소재가 누설되지 않도록 설계한다. 가운데 영역에 대한 1차 코팅의 경우 코팅 채널 및 오버플로우 영역에서 사각형 형상 실링엣지를 설치하고 파팅면에서는 별도의 실링엣지를 설치하지 않는다.The sealing edge is designed to prevent coating material from leaking during the first and second coating processes. In the case of the first coating in the center area, a square-shaped sealing edge is installed in the coating channel and overflow area, and a separate sealing edge is not installed on the parting surface.
또한 테두리 영역에 대한 2차 코팅의 경우에는 2차 코팅 소재가 1차 코팅 영역으로 침범하지 않도록 별도의 실링엣지가 필요하다. 따라서 1차 코팅 소재를 사용하여 폭 0.7mm, 높이 1mm인 삼각형 형상의 실링엣지를 형성시키고 2차 코팅을 위해 금형을 닫았을 때 실링엣지가 눌리면서 2차 코팅 소재가 1차 코팅 영역으로 침범하지 못하도록 구성하고 파팅부에는 사출성형 기재를 사용하여 폭 0.1mm, 높이 0.5mm인 삼각형 형상의 실링엣지를 형성하여 2차 코팅 소재의 누설을 방지하도록 하여 설계한다.Additionally, in the case of secondary coating on the border area, a separate sealing edge is required to prevent the secondary coating material from infiltrating the primary coating area. Therefore, the first coating material is used to form a triangular sealing edge with a width of 0.7 mm and a height of 1 mm. When the mold is closed for the second coating, the sealing edge is pressed to prevent the second coating material from invading the first coating area. It is designed to prevent leakage of the secondary coating material by forming a triangular sealing edge with a width of 0.1 mm and a height of 0.5 mm using injection molding materials in the parting part.
상기에 기술한 설계 종합하면 코어 금형에 기재가 부착되어 있는 상태에서 1차 코팅 캐비티와 결합하고 측면에 부착된 믹싱헤드를 통해 토출된 1차 코팅 소재가 코팅 채널을 통해 제품 가운데 영역을 코팅하고 1차 오버플로우영역으로 유동하도록 구성한다.In summary, the design described above is combined with the primary coating cavity while the substrate is attached to the core mold, and the primary coating material discharged through the mixing head attached to the side coats the center area of the product through the coating channel and 1 It is configured to flow into the secondary overflow area.
1차 코팅 소재의 경화가 종료된 후 금형을 열고 유압실린더를 작동시켜 코팅 캐비티를 상부로 이동하도록 구성하고 이후 1차 코팅된 기재가 부착되어 있는 코어 금형과 2차 코팅 캐비티를 결합하고 믹싱헤드를 통해 토출된 2차 코팅 소재가 제품 테두리 영역을 코팅하도록 구성하는 것이다. 하기의 그림 1은 사출 성형된 기재표면에 대해 1차 코팅과 2차 코팅을 금형 안에서 수행하기 위한 코팅 캐비티 및 코어 금형을 나타낸 것이다.After curing of the primary coating material is completed, the mold is opened and the hydraulic cylinder is operated to move the coating cavity upward. Afterwards, the core mold to which the primary coated substrate is attached and the secondary coating cavity are combined and the mixing head is operated. The secondary coating material discharged through the product is configured to coat the edge area of the product. Figure 1 below shows the coating cavity and core mold for performing the first and second coatings on the injection molded substrate surface within the mold.
금형은 사출성형 종료 후에 기재가 가동 측 금형에 부착되어 있는 상태에서 형판과 함께 180 회전하고 1차 코팅 캐비티와 2차 코팅 캐비티 측면에 믹싱헤드를 체결하여 1차 코팅이 완료되면 유압실린더를 작동하여 형판이 위쪽 방향으로 이동하고 2차 코팅을 수행할 수 있도록 설계한다.After injection molding is completed, the mold is rotated 180 degrees with the template while the substrate is attached to the mold on the movable side, and the mixing head is fastened to the side of the first coating cavity and the second coating cavity. When the first coating is completed, the hydraulic cylinder is operated. The template is designed to move upward and perform secondary coating.
코팅은 고압 펌프에 의해 믹싱헤드로 공급된 주제와 경화제가 필터를 거쳐 각각 노즐 A와 B를 통하여 분사되고 분사 시 발생하는 충돌 에너지에 의해 균일하게 혼합되어 믹싱헤드 출구를 통해 금형 안으로 토출되며 이루어지도록 설계한다. 코팅을 위한 믹싱헤드의 각 노즐의 직경은 상기의 유동 해석에 기초하여 1차 코팅을 위한 노즐 A와 B는 각각 0.38mm, 00.40mm로 2차 코팅을 위한 노즐 A와 B는 각각 0.18mm, 0.20mm로 설계한다.Coating is achieved by the base material and hardener supplied to the mixing head by a high-pressure pump, passing through a filter, then being sprayed through nozzles A and B, respectively, mixed uniformly by the collision energy generated during spraying, and discharged into the mold through the mixing head exit. Design. Based on the above flow analysis, the diameter of each nozzle of the mixing head for coating is 0.38 mm and 0.40 mm for nozzles A and B for the first coating, and 0.18 mm and 0.20 mm for nozzles A and B for the second coating, respectively. Designed in mm.
Claims (3)
The process consists of the first step of injecting the car gas cover, the second step of performing the first coating on the central area of the gas filler cover, and the third step of performing the second coating on the border area, and the coating material discharged from the mixing head is coated. In-mold coating is designed to design a mold by installing primary and secondary coating channels that allow the product to flow to the desired product surface, and primary and secondary overflow areas to remove air bubbles generated during the flow of the coating material. A method of simultaneously implementing injection molding and two-color coating on a car gas filler cover.
코팅 채널에 대한 폭과 깊이의 설계변수를 각각 달리하여 3가지 종류의 설계안을 Moldex3D를 사용하여 유동 해석을 거쳐 금형을 설계하는 인몰드 코팅을 이용한 자동차 주유구 커버 사출성형과 2색 코팅 동시 구현 방법.
In claim 1,
A method of simultaneously implementing injection molding of a car gas tank cover and two-color coating using in-mold coating to design a mold through flow analysis using Moldex3D for three types of design plans by varying the design variables of the width and depth of the coating channel.
사출성형 종료 후에 기재가 가동 측 금형에 부착되어 있는 상태에서 형판과 함께 180 회전하고 1차 코팅 캐비티와 2차 코팅 캐비티 측면에 믹싱헤드를 체결하여 1차 코팅이 완료되면 유압실린더를 작동하여 형판이 위쪽 방향으로 이동하고 2차 코팅을 수행할 수 있도록 설계한 인몰드 코팅을 이용한 자동차 주유구 커버 사출성형과 2색 코팅 동시 구현 방법.
In claim 1,
After injection molding is completed, while the base material is attached to the mold on the movable side, it rotates 180 degrees with the template and fastens the mixing head to the side of the first coating cavity and the second coating cavity. When the first coating is completed, the hydraulic cylinder is operated to move the template. A method of simultaneous injection molding and two-color coating of an automobile gas filler cover using in-mold coating designed to move upward and perform secondary coating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220095456A KR20240017577A (en) | 2022-08-01 | 2022-08-01 | Simultaneous realization of automobile fuel port cover injection olding and two-color coating using in-mold coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220095456A KR20240017577A (en) | 2022-08-01 | 2022-08-01 | Simultaneous realization of automobile fuel port cover injection olding and two-color coating using in-mold coating |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240017577A true KR20240017577A (en) | 2024-02-08 |
Family
ID=89900079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220095456A KR20240017577A (en) | 2022-08-01 | 2022-08-01 | Simultaneous realization of automobile fuel port cover injection olding and two-color coating using in-mold coating |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20240017577A (en) |
-
2022
- 2022-08-01 KR KR1020220095456A patent/KR20240017577A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2380088C (en) | Method of forming a coating layer on the surface of a molded product within a mold | |
US4207049A (en) | Device for mold coating plastic parts | |
CN102292198B (en) | Mould and method for producing multi-layer shaped parts of plastic | |
KR101597791B1 (en) | In-mold coating mold for simultaneous injection molding and surface coating and method thereof | |
US20160368187A1 (en) | Method for producing plastic components, which have a high mechanical load-bearing capacity, with a correct final contour | |
JP2009101670A (en) | Method of manufacturing in-mold coated article and apparatus for forming in-mold coated article | |
US7289874B2 (en) | Method of designing and producing a mold | |
KR20240017577A (en) | Simultaneous realization of automobile fuel port cover injection olding and two-color coating using in-mold coating | |
JP2007230031A (en) | Injection mold and injection molding method | |
JPH0952257A (en) | Mold for in-mold coating molding method and manufacture thereof | |
WO1996016785A1 (en) | Injection compression molding method and apparatus | |
JP5557106B2 (en) | In-mold coating mold and in-mold coating method | |
JP2016186327A (en) | Method of molding gasket integrated with plate | |
JP5541579B2 (en) | In-mold coating mold and in-mold coating method | |
JPH04125118A (en) | Mold for in-mold coating | |
JP3925385B2 (en) | In-mold coating mold | |
US11318648B2 (en) | Method for producing a composite part | |
JP7004341B2 (en) | Painted coating molded product | |
CN105848846B (en) | Handrail case lid and its manufacture method | |
JP6999968B2 (en) | Painted coating molded product | |
JP7270500B2 (en) | Resin product, its manufacturing method, mold | |
WO2004048068A1 (en) | Method for retrofitting existing molds for use with an in-mold coating system | |
Goodship et al. | In-mould painting by spraying thermoset powder coating into a closed mould, followed by standard thermoplastic injection moulding: Part 1: Introducing the IN-SPIRE process | |
JP2009160756A (en) | Manufacturing method for internal-mold coated article, and internal-mold coated article forming apparatus | |
JP7025049B2 (en) | Painted coating molded product |