KR20230023945A - High strength steel plate having low yield ratio and method of manufacturing the same - Google Patents
High strength steel plate having low yield ratio and method of manufacturing the same Download PDFInfo
- Publication number
- KR20230023945A KR20230023945A KR1020210105856A KR20210105856A KR20230023945A KR 20230023945 A KR20230023945 A KR 20230023945A KR 1020210105856 A KR1020210105856 A KR 1020210105856A KR 20210105856 A KR20210105856 A KR 20210105856A KR 20230023945 A KR20230023945 A KR 20230023945A
- Authority
- KR
- South Korea
- Prior art keywords
- less
- steel sheet
- cooling
- present
- steel
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 56
- 239000010959 steel Substances 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 238000001816 cooling Methods 0.000 claims description 67
- 238000004804 winding Methods 0.000 claims description 28
- 229910001563 bainite Inorganic materials 0.000 claims description 17
- 229910052748 manganese Inorganic materials 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 229910052758 niobium Inorganic materials 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 238000005098 hot rolling Methods 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 238000003303 reheating Methods 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 238000005096 rolling process Methods 0.000 claims description 5
- 230000000052 comparative effect Effects 0.000 description 27
- 239000011572 manganese Substances 0.000 description 17
- 239000011651 chromium Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 239000010955 niobium Substances 0.000 description 12
- 239000010936 titanium Substances 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000005728 strengthening Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 238000009628 steelmaking Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910001035 Soft ferrite Inorganic materials 0.000 description 2
- 229910000746 Structural steel Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- DBGSRZSKGVSXRK-UHFFFAOYSA-N 1-[2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]acetyl]-3,6-dihydro-2H-pyridine-4-carboxylic acid Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CCC(=CC1)C(=O)O DBGSRZSKGVSXRK-UHFFFAOYSA-N 0.000 description 1
- XYLOFRFPOPXJOQ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-(piperazine-1-carbonyl)pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound O=C(Cn1cc(c(n1)C(=O)N1CCNCC1)-c1cnc(NC2Cc3ccccc3C2)nc1)N1CCc2n[nH]nc2C1 XYLOFRFPOPXJOQ-UHFFFAOYSA-N 0.000 description 1
- AWFYPPSBLUWMFQ-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(1,4,6,7-tetrahydropyrazolo[4,3-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=C2 AWFYPPSBLUWMFQ-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- 241000219307 Atriplex rosea Species 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C47/00—Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
- B21C47/02—Winding-up or coiling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
본 발명은 고강도 강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 고강도이면서, 저항복비 특성을 가지는 강판 및 그 제조방법에 관한 것이다.The present invention relates to a high-strength steel sheet and a manufacturing method thereof, and more particularly, to a steel sheet having high strength and low yield ratio characteristics and a manufacturing method thereof.
구조용 강은 건축, 토목용으로 사용되는 고강도 열연강판으로, 지진 등 외부 응력이 발생했을 때 에너지를 흡수하여 쉽게 파단되지 않도록 함으로써 건축물 등의 안정성을 확보할 수 있어야 한다. 따라서, 구조용 강은 상기 효과를 확보하기 위하여 저항복비와 충격특성을 구비할 필요가 있다.Structural steel is a high-strength hot-rolled steel sheet used for construction and civil engineering, and should be able to secure the stability of buildings by absorbing energy when external stresses such as earthquakes occur so that they do not break easily. Therefore, structural steel needs to have a low yield ratio and impact characteristics in order to secure the above effect.
한편, 이를 위해 0.1중량% 이하의 탄소량에 Ti, Nb, V 등과 같은 석출강화 원소를 이용하게 되면, 강도 및 저항복비 확보가 용이하지 않다. 또한, 고가의 석출강화 원소를 많이 첨가함으로써 생산원가가 올라가는 문제점을 가지고 있을 뿐 아니라, 조대한 석출물이 생성될 경우 충격특성이 매우 열위해지는 문제점이 있다. 더하여, 열연재의 경우, 권취 이후에 코일의 내권부와 외권부의 냉각속도가 달라 재질편차를 유발하기 쉬운 문제점이 있다.On the other hand, when precipitation strengthening elements such as Ti, Nb, V, etc. are used for this purpose in a carbon amount of 0.1% by weight or less, it is not easy to secure strength and a low yield ratio. In addition, there is a problem in that production cost increases due to the addition of a lot of expensive precipitation strengthening elements, and when coarse precipitates are generated, there is a problem in that impact properties are very inferior. In addition, in the case of hot-rolled steel, there is a problem in that the cooling rate of the inner winding part and the outer winding part of the coil are different after winding, which easily causes material deviation.
본 발명의 일 측면에 따르면 저항복비 고강도 강판 및 그 제조방법을 제공하고자 하는 것이다.According to one aspect of the present invention, it is intended to provide a low yield ratio high strength steel sheet and a manufacturing method thereof.
본 발명의 과제는 상술한 내용에 한정되지 않는다. 통상의 기술자라면 본 명세서의 전반적인 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.The object of the present invention is not limited to the above. A person skilled in the art will have no difficulty understanding the further subject matter of the present invention from the general content of this specification.
본 발명의 일 측면은, 중량%로, C: 0.13~0.20%, Si: 0.6% 이하, Mn: 1.4~3.0%, Al: 0.1% 이하, Nb: 0.02~1.0%, Ti: 0.03% 이하(0% 제외), Cr: 0.3~1.0%, P: 0.03% 이하, S: 0.02% 이하, N: 0.015% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,One aspect of the present invention, in weight%, C: 0.13 ~ 0.20%, Si: 0.6% or less, Mn: 1.4 ~ 3.0%, Al: 0.1% or less, Nb: 0.02 ~ 1.0%, Ti: 0.03% or less ( 0% excluded), Cr: 0.3 to 1.0%, P: 0.03% or less, S: 0.02% or less, N: 0.015% or less, the balance including Fe and other unavoidable impurities,
Mn 및 Si 함량의 합이 1.8% 이상이고,The sum of the Mn and Si contents is 1.8% or more,
미세조직으로, 베이나이트를 50면적% 이상 포함하고, 잔여 기타 조직을 포함하며,It is a microstructure, containing 50 area% or more of bainite, and including remaining other tissues,
폭방향 인장강도 편차가 80MPa 이하(여기서, 폭방향 인장강도 편차는 엣지로부터 50mm 떨어진 지점, 폭 1/4 지점, 폭 1/2 지점에서 압연방향으로 인장강도 값을 각각 측정하여 최대값과 최소값의 차이를 나타낸 것이다.)인 강판을 제공할 수 있다.Tensile strength deviation in the width direction is 80 MPa or less (here, the tensile strength deviation in the width direction is determined by measuring the tensile strength values in the rolling direction at a point 50 mm away from the edge, a point of 1/4 of the width, and a point of 1/2 of the width, respectively, and measuring the maximum and minimum values It shows the difference.) can provide a steel sheet.
상기 강판은 항복강도가 650MPa 이상이고, 인장강도가 800MPa 이상이고, 항복비가 85% 이하이며, 연신율이 15% 이상일 수 있다.The steel sheet may have a yield strength of 650 MPa or more, a tensile strength of 800 MPa or more, a yield ratio of 85% or less, and an elongation of 15% or more.
상기 강판은 코일의 내권부 항복강도가 650MPa 이상(여기서, 내권부는 코일 길이방향의 1/2 지점을 나타낸다.)일 수 있다.The steel sheet may have a yield strength of 650 MPa or more in the inner winding portion of the coil (here, the inner winding portion represents a half point in the coil length direction).
상기 강판은 -5℃에서의 샤르피 충격흡수에너지가 47J 이상일 수 있다.The steel sheet may have a Charpy impact absorption energy of 47J or more at -5°C.
본 발명의 다른 일 측면은, 중량%로, C: 0.13~0.20%, Si: 0.6% 이하, Mn: 1.4~3.0%, Al: 0.1% 이하, Nb: 0.02~1.0%, Ti: 0.03% 이하(0% 제외), Cr: 0.3~1.0%, P: 0.03% 이하, S: 0.02% 이하, N: 0.015% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, Mn 및 Si 함량의 합이 1.8% 이상인 강 슬라브를 재가열하는 단계;Another aspect of the present invention, in weight%, C: 0.13 ~ 0.20%, Si: 0.6% or less, Mn: 1.4 ~ 3.0%, Al: 0.1% or less, Nb: 0.02 ~ 1.0%, Ti: 0.03% or less (excluding 0%), Cr: 0.3~1.0%, P: 0.03% or less, S: 0.02% or less, N: 0.015% or less, the balance including Fe and other unavoidable impurities, and the sum of Mn and Si content is 1.8% reheating the steel slabs above;
상기 재가열된 강 슬라브를 750~880℃의 마무리 열간압연 온도로 열간압연하는 단계;hot-rolling the reheated steel slab at a finishing hot-rolling temperature of 750 to 880° C.;
상기 열간압연된 강판을 Bs-100℃~Bs의 온도범위까지 25℃/s 이상의 냉각속도로 냉각하는 1차 냉각 단계;A first cooling step of cooling the hot-rolled steel sheet to a temperature range of Bs-100°C to Bs at a cooling rate of 25°C/s or more;
상기 1차 냉각된 강판을 450℃~Bs의 온도범위까지 10~20℃/s의 냉각속도로 냉각하는 2차 냉각 단계; 및A secondary cooling step of cooling the primary cooled steel sheet to a temperature range of 450 °C to Bs at a cooling rate of 10 to 20 °C/s; and
상기 2차 냉각된 강판을 권취하는 단계를 포함하는 강판 제조방법을 제공할 수 있다.It is possible to provide a steel sheet manufacturing method comprising the step of winding the secondary cooled steel sheet.
상기 재가열은 1100~1300℃에서 실시할 수 있다.The reheating may be carried out at 1100 to 1300 ° C.
상기 1차 냉각 시, 냉각속도는 25~80℃/s일 수 있다.During the primary cooling, the cooling rate may be 25 to 80° C./s.
본 발명의 일 측면에 따르면 고강도 및 저항복비 특성을 가지는 강판 및 그 제조방법을 제공할 수 있다. According to one aspect of the present invention, it is possible to provide a steel sheet having high strength and low yield ratio and a manufacturing method thereof.
도 1의 (a) 및 (b)는 각각 본 발명의 실시예에 따른 발명예 1 및 비교예 4의 미세조직 사진이다.1 (a) and (b) are microstructure photographs of Inventive Example 1 and Comparative Example 4 according to an embodiment of the present invention, respectively.
이하에서는 본 발명의 바람직한 구현예들을 설명하고자 한다. 본 발명의 구현예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명되는 구현예들에 한정되는 것으로 해석되어서는 안된다. 본 구현예들은 당해 발명이 속하는 기술분야에서 통상의 기술자에게 본 발명을 더욱 상세하게 설명하기 위하여 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. These embodiments are provided to explain the present invention in more detail to those skilled in the art.
본 발명은 상술한 문제점을 해결하기 위하여, 합금조성 및 제조조건을 최적화하였다. 특히, C, Cr, Mn, Si 등의 원소 함량을 엄격히 제어하고, 냉각 및 권취 온도을 제어함으로써 저항복비를 가지면서도 충분한 강도 및 충격인성 등의 물성을 확보할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.The present invention has optimized the alloy composition and manufacturing conditions in order to solve the above-mentioned problems. In particular, it was confirmed that physical properties such as sufficient strength and impact toughness can be secured while having a low yield ratio by strictly controlling the content of elements such as C, Cr, Mn, and Si, and controlling the cooling and coiling temperatures, and completed the present invention. I came to do it.
이하, 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.
이하에서는, 본 발명의 강 조성에 대해 자세히 설명한다.Hereinafter, the steel composition of the present invention will be described in detail.
본 발명에서 특별히 달리 언급하지 않는 한 각 원소의 함량을 표시하는 %는 중량을 기준으로 한다.In the present invention, unless otherwise specified, % indicating the content of each element is based on weight.
본 발명의 일 측면에 따르는 강은 중량%로, C: 0.13~0.20%, Si: 0.6% 이하, Mn: 1.4~3.0%, Al: 0.1% 이하, Nb: 0.02~1.0%, Ti: 0.03% 이하(0% 제외), Cr: 0.3~1.0%, P: 0.03% 이하, S: 0.02% 이하, N: 0.015% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다.Steel according to one aspect of the present invention, by weight%, C: 0.13 ~ 0.20%, Si: 0.6% or less, Mn: 1.4 ~ 3.0%, Al: 0.1% or less, Nb: 0.02 ~ 1.0%, Ti: 0.03% or less (excluding 0%), Cr: 0.3 to 1.0%, P: 0.03% or less, S: 0.02% or less, N: 0.015% or less, the balance may include Fe and other unavoidable impurities.
탄소(C): 0.13~0.20%Carbon (C): 0.13 to 0.20%
탄소(C)는 강도를 확보하기 위하여 첨가되는 가장 효과적인 원소로 우수한 경도를 얻기 위해서는 0.13% 이상 첨가되는 것이 바람직하며, 보다 바람직하게는 0.14% 이상 첨가하는 것이 바람직하다. 한편, 그 함량이 0.20%를 초과하게 되면 용접성이 저하될 수 있을 뿐 아니라, 강도가 지나치게 높아지고 충격특성 및 연신율이 저하될 우려가 있다. 보다 바람직한 상한은 0.19%일 수 있다.Carbon (C) is the most effective element added to secure strength. In order to obtain excellent hardness, it is preferable to add 0.13% or more, more preferably 0.14% or more. On the other hand, when the content exceeds 0.20%, weldability may be deteriorated, and strength may be excessively increased and impact properties and elongation may be deteriorated. A more preferable upper limit may be 0.19%.
실리콘(Si): 0.6% 이하Silicon (Si): 0.6% or less
실리콘(Si)은 강 중에 포함되어 탈산제로 사용될 수 있으며, 고용강화를 위해 사용될 수 있는 원소이다. 그러나, 그 함량이 과다할 경우, 입계 산화 및 표면에 붉은형 스케일을 유발할 수 있으므로 그 상한을 0.6%로 제한하며, 보다 바람직하게는 0.5%로 제한할 수 있다.Silicon (Si) is included in steel and can be used as a deoxidizer and is an element that can be used for solid solution strengthening. However, if the content is excessive, it may cause grain boundary oxidation and red scale on the surface, so the upper limit may be limited to 0.6%, more preferably 0.5%.
망간(Mn): 1.4~3.0%Manganese (Mn): 1.4 to 3.0%
망간(Mn)은 C와 함께 강재의 강도를 향상시키기 위하여 가장 일반적으로 사용되는 원소이다. 망간(Mn)의 함량이 1.4% 미만이면 고용강화능이 저하되어 강도 확보에 불리할 수 있으며, 보다 바람직하게는 1.5% 이상 포함할 수 있다. 반면, 그 함량이 3.0%를 초과하면 중심 편석, 개재물 형성, 입계 산화를 일으켜 강재의 품질뿐만 아니라, 용접성도 저하시킬 수 있게 된다. 또한, 치환형 고용강화 원소가 과도하면 저항복비 확보가 어려울 수 있으므로, 보다 바람직하게 함량의 상한을 2.5%로 제한할 수 있다.Manganese (Mn) is the most commonly used element together with C to improve the strength of steel. If the content of manganese (Mn) is less than 1.4%, the solid solution strengthening ability is lowered, which may be disadvantageous in securing strength, and more preferably, it may contain 1.5% or more. On the other hand, if the content exceeds 3.0%, center segregation, formation of inclusions, and grain boundary oxidation may be caused to deteriorate not only the quality of steel but also weldability. In addition, since it may be difficult to secure a low yield ratio if the substitutional solid solution strengthening element is excessive, the upper limit of the content may be more preferably limited to 2.5%.
알루미늄(Al): 0.1% 이하Aluminum (Al): 0.1% or less
알루미늄(Al)은 탈산제로 사용되거나 고용강화 효과를 위해 첨가되는 원소이다. 알루미늄(Al)의 함량이 0.1%를 초과하면 연주에서 슬라브 크랙을 유발할 뿐 아니라, 최종 제품에서 입계 산화를 일으킬 우려가 있으며, 보다 바람직하게는 상한을 0.05%로 제한할 수 있다.Aluminum (Al) is an element used as a deoxidizer or added for a solid solution strengthening effect. If the content of aluminum (Al) exceeds 0.1%, there is a risk of not only causing slab cracking in the casting, but also causing grain boundary oxidation in the final product, and more preferably, the upper limit can be limited to 0.05%.
니오븀(Nb): 0.02~1.0%Niobium (Nb): 0.02 to 1.0%
니오븀(Nb)은 석출강화와 결정립 미세화를 위해 사용되는 원소로, 0.02% 이상 포함할 수 있으며, 보다 바람직하게는 0.03% 이상 포함할 수 있다. 한편, 니오븀(Nb)은 고가의 원소이므로 생산성을 고려하여, 그 상한을 1.0%로 제한할 수 있으며, 보다 바람직하게는 0.08%로 제한할 수 있다.Niobium (Nb) is an element used for precipitation strengthening and crystal grain refinement, and may contain 0.02% or more, more preferably 0.03% or more. Meanwhile, since niobium (Nb) is an expensive element, the upper limit thereof may be limited to 1.0%, more preferably 0.08%, in consideration of productivity.
타이타늄(Ti): 0.03% 이하(0% 제외)Titanium (Ti): 0.03% or less (excluding 0%)
타이타늄(Ti)은 TiN의 석출물을 형성하여 강도를 향상시키며, 용접부의 인성을 향상시키는 역할을 하는 원소이다. 그러나, 그 함량이 0.03%를 초과하면 조대한 TiN이 형성되어 오히려 인성을 저하시킬 우려가 있다. 보다 바람직하게 상한을 0.025%로 제한할 수 있다. 본 발명에서는 타이타늄(Ti)의 효과를 확보하기 위하여 0%는 제외한다.Titanium (Ti) is an element that serves to improve strength by forming TiN precipitates and improve toughness of welded parts. However, if the content exceeds 0.03%, coarse TiN may be formed and toughness may be rather deteriorated. More preferably, the upper limit may be limited to 0.025%. In the present invention, 0% is excluded in order to secure the effect of titanium (Ti).
크롬(Cr): 0.3~1.0%Chromium (Cr): 0.3 to 1.0%
크롬(Cr)은 경화능을 높여주는 원소로, 크롬(Cr)을 0.3% 이상 첨가하면 베이나이트의 미세화가 유리하여 강도와 저항복비를 동시에 확보하기 유리하며, 보다 바람직하게는 0.35% 이상 포함할 수 있다. 반면, 그 함량이 1.0%를 초과하면 강도가 과도하게 높아져 충격특성 및 연신율이 오히려 저하될 수 있다. 보다 바람직한 상한은 0.8%일 수 있다.Chromium (Cr) is an element that enhances hardenability. When 0.3% or more of chromium (Cr) is added, it is advantageous to refine bainite, thereby securing strength and low yield ratio at the same time. More preferably, 0.35% or more is included. can On the other hand, if the content exceeds 1.0%, the strength is excessively increased, and thus the impact properties and elongation may rather deteriorate. A more preferable upper limit may be 0.8%.
인(P): 0.03% 이하Phosphorus (P): 0.03% or less
인(P)은 제강에서 불가피하게 함유되는 원소로, 편석에 의해 취성을 유발하기 때문에 최소한의 양이 포함되도록 하는 것이 바람직하므로, 본 발명에서는 그 상한을 0.03%로 제한할 수 있다.Phosphorus (P) is an element inevitably contained in steelmaking, and since it causes brittleness by segregation, it is desirable to include a minimum amount of phosphorus, so in the present invention, the upper limit can be limited to 0.03%.
황(S): 0.02% 이하Sulfur (S): 0.02% or less
황(S)은 제강에서 불가피하게 함유되는 원소로, 개재물을 형성하거나 융점이 낮은 FeS 화합물을 형성하여, 열간압연 중 입계 취성을 일으킬 수 있는 원소이다. 따라서, 최소한의 양이 포함되도록 하는 것이 바람직하므로, 본 발명에서는 그 상한을 0.02%로 제한할 수 있다.Sulfur (S) is an element that is unavoidably contained in steelmaking, and is an element that can cause intergranular brittleness during hot rolling by forming inclusions or forming FeS compounds with a low melting point. Therefore, since it is desirable to include the minimum amount, in the present invention, the upper limit can be limited to 0.02%.
질소(N): 0.015% 이하Nitrogen (N): 0.015% or less
질소(N)는 제강에서 불가피하게 함유되는 원소로, 본 발명에서는 그 상한을 0.015%로 제한할 수 있다.Nitrogen (N) is an element unavoidably contained in steelmaking, and in the present invention, its upper limit can be limited to 0.015%.
본 발명의 강은, 상술한 조성 이외에 나머지 철(Fe) 및 불가피한 불순물을 포함할 수 있다. 불가피한 불순물은 통상의 제조공정에서 의도되지 않게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이러한 불순물들은 통상의 철강제조분야의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The steel of the present invention may include remaining iron (Fe) and unavoidable impurities in addition to the above-described composition. Since unavoidable impurities may be unintentionally incorporated in the normal manufacturing process, they cannot be excluded. Since these impurities are known to anyone skilled in the steel manufacturing field, not all of them are specifically mentioned in this specification.
본 발명의 일 측면에 따르는 강은 Mn 및 Si 함량의 합이 1.8% 이상일 수 있다.In the steel according to one aspect of the present invention, the sum of Mn and Si contents may be 1.8% or more.
본 발명에서는 권취 후 코일의 내권부 재질 연화를 방지하기 위하여 Mn 및 Si 함량의 합을 제어할 수 있다. 본 발명에서는 C 위주로 강도를 확보하게 될 경우, 입계에 더 많은 탄화물이 형성되어 충격특성을 확보하기 어렵고, 코일 내권부의 연화가 더 많이 발생할 수 있는 문제점을 인지하고, Mn 및 Si 함량의 합을 통해 코일 내권부 재질 연화를 방지하고자 한다. Mn 및 Si의 합량이 1.8% 미만이면 본 발명에서 목적하는 충격특성과 항복강도를 만족하지 못하는 문제점이 있을 수 있다.In the present invention, the sum of Mn and Si contents can be controlled to prevent material softening of the inner winding portion of the coil after winding. In the present invention, when strength is secured mainly in C, more carbides are formed at grain boundaries, making it difficult to secure impact characteristics, and recognizing the problem that more softening of the inner winding part of the coil may occur, and the sum of Mn and Si contents Through this, it is intended to prevent the material softening of the inner winding part of the coil. If the total amount of Mn and Si is less than 1.8%, there may be a problem in that the desired impact characteristics and yield strength in the present invention are not satisfied.
이하에서는, 본 발명의 강 미세조직에 대해 자세히 설명한다.Hereinafter, the steel microstructure of the present invention will be described in detail.
본 발명에서 특별히 달리 언급하지 않는 한 미세조직의 분율을 표시하는 %는 면적을 기준으로 한다.In the present invention, % representing the fraction of the microstructure is based on the area unless otherwise specified.
본 발명의 일 측면에 따르는 강은 미세조직으로 베이나이트를 50면적% 이상 포함하고, 잔여 기타 조직을 포함할 수 있다.The steel according to one aspect of the present invention may include bainite at 50 area% or more as a microstructure, and may include other structures remaining.
본 발명에서는 목표 재질을 만족하기 위하여 베이나이트를 50% 이상으로 포함하는 것이 바람직하며, 잔여 기타 조직을 포함할 수 있다. 기타 조직으로는 페라이트, 잔류 오스테나이트, 마르텐사이트 등이 포함될 수 있으며, 베이나이트가 50% 미만으로 포함될 경우 본 발명에서 목적하는 항복강도 또는 저항복비를 확보하지 못할 우려가 있다.In the present invention, in order to satisfy the target material, it is preferable to include 50% or more of bainite, and other structures may be included. Other structures may include ferrite, retained austenite, martensite, and the like, and if bainite is included in an amount of less than 50%, there is a concern that yield strength or low yield ratio desired in the present invention may not be secured.
이하에서는, 본 발명의 강 제조방법에 대해 자세히 설명한다.Hereinafter, the steel manufacturing method of the present invention will be described in detail.
본 발명의 일 측면에 따르는 강은 상술한 합금조성을 만족하는 강 슬라브를 재가열, 열간압연, 1차 냉각, 2차 냉각 및 권취하여 제조될 수 있다.Steel according to one aspect of the present invention can be produced by reheating, hot rolling, primary cooling, secondary cooling and winding a steel slab satisfying the above-described alloy composition.
재가열reheat
본 발명의 합금조성을 만족하는 강 슬라브를 1100~1300℃의 온도범위로 재가열할 수 있다.A steel slab satisfying the alloy composition of the present invention can be reheated to a temperature range of 1100 to 1300 ° C.
C의 함량이 높은 경우, Ti, Nb 등 석출물의 고용도가 낮기 때문에, 저항복비 특성을 확보하기 위해서는 슬라브 가열온도를 높게 설정하는 것이 바람직하다. 따라서, 본 발명에서는 슬라브 가열온도를 1100℃ 이상으로 제한할 수 있다. 반면, 가열온도가 과도하게 높을 경우, 오스테나이트 결정립이 과도하게 커져 충격특성 및 항복강도 확보에 불리하므로 그 상한을 1300℃로 제한할 수 있으며, 보다 바람직한 가열 온도범위는 1200~1300℃일 수 있다.When the content of C is high, since the solubility of precipitates such as Ti and Nb is low, it is preferable to set the slab heating temperature high in order to secure the low yield ratio characteristics. Therefore, in the present invention, the slab heating temperature can be limited to 1100 ° C or higher. On the other hand, if the heating temperature is excessively high, the austenite crystal grains become excessively large, which is disadvantageous in securing impact properties and yield strength, so the upper limit can be limited to 1300 ° C., and a more preferable heating temperature range is 1200 ~ 1300 ° C. .
열간압연hot rolled
상기 재가열된 강 슬라브를 750~880℃의 마무리 열간압연 온도로 열간압연할 수 있다.The reheated steel slab may be hot rolled at a finishing hot rolling temperature of 750 to 880 ° C.
마무리 열간압연 온도가 750℃ 미만이면 압연부하가 심하여 롤 관리 및 열연재의 사이즈 제어에 어려움이 있어 바람직하지 않으며, 그 온도가 880℃를 초과하면 오스테나이트 결정립이 과도하게 조대화되는 문제점이 있다.If the finish hot rolling temperature is less than 750 ° C, the rolling load is severe and there is difficulty in roll management and size control of the hot-rolled material, which is undesirable, and if the temperature exceeds 880 ° C, austenite grains are excessively coarsened.
1차 냉각1st cooling
상기 열간압연된 강판을 Bs-100℃~Bs의 온도범위까지 25℃/s 이상의 냉각속도로 1차 냉각할 수 있다.The hot-rolled steel sheet may be primarily cooled at a cooling rate of 25° C./s or more to a temperature range of Bs-100° C. to Bs.
본 발명에서는 저항복비를 확보하기 위하여 1차 냉각 및 2차 냉각을 적용할 수 있다.In the present invention, primary cooling and secondary cooling may be applied to secure the low yield ratio.
1차 냉각속도는 최종 변태조직의 미세화를 위하여 25℃/s 이상이 바람직하며, 형상 및 냉각 종료온도 제어를 위해 상한은 80℃/s로 제한하는 것이 보다 바람직하다.The primary cooling rate is preferably 25 ° C / s or more for miniaturization of the final transformed structure, and it is more preferable to limit the upper limit to 80 ° C / s for shape and cooling end temperature control.
냉각종료온도가 Bs를 초과하면, 결정립이 조대화될 우려가 있으며, 연질의 페라이트 및 펄라이트 조직이 형성되어 항복강도가 급격히 하락하는 문제점이 있다. 반면, 그 온도가 Bs-100℃ 미만이면 연신율이 급격히 하락하게 되고, 강도가 지나치게 높아져 충격특성 또한 저하될 수 있다. 이는, 탄소가 많은 조직에서 지나친 강도 향상으로 베이나이트 입계에 탄화물이 석출되어 나타나는 현상일 수 있다.When the cooling end temperature exceeds Bs, there is a risk of coarsening of crystal grains, and soft ferrite and pearlite structures are formed, resulting in a rapid decrease in yield strength. On the other hand, if the temperature is less than Bs-100 ° C., the elongation rate decreases rapidly, and the strength is excessively increased, so that the impact properties may also be deteriorated. This may be a phenomenon in which carbides are precipitated at bainite grain boundaries due to excessive strength improvement in a carbon-rich structure.
2차 냉각 및 권취Secondary cooling and winding
상기 1차 냉각된 강판을 450℃~Bs의 온도범위까지 10~20℃/s의 냉각속도로 2차 냉각한 후 권취할 수 있다.The primary cooled steel sheet may be wound after secondary cooling at a cooling rate of 10 to 20 °C/s to a temperature range of 450 °C to Bs.
본 발명에서는 한정된 냉각대 길이에서 권취온도를 맞추기 위해 2차 냉각이 실시될 수 있다. 2차 냉각은 1차 냉각 후 소재의 온도가 Bs 이상으로 복열하는 것을 방지하고, 1차 냉각 시 급냉으로 인해 형성된 두께방향, 폭방향 재질 편차를 줄이기 위해서 1차 냉각을 실시한 후 1차 냉각보다 느린 냉각속도로 냉각할 수 있다. 지나치게 빠른 냉각속도로 냉각할 경우 높은 경화능으로 인해 판의 엣지부 크랙이 발생할 우려가 있다. 또한, 1차 냉각 종료 온도보다 권취온도를 낮게 제어함으로써 저항복비 확보를 보다 유리하게 할 수 있다. In the present invention, secondary cooling may be performed to adjust the winding temperature in a limited cooling zone length. Secondary cooling is performed at a slower rate than the first cooling after the first cooling is performed to prevent the temperature of the material from reheating above Bs after the first cooling and to reduce the material deviation in the thickness and width directions formed by rapid cooling during the first cooling. It can be cooled at the cooling rate. When cooling at an excessively fast cooling rate, cracks may occur at the edges of the plate due to high hardenability. In addition, by controlling the coiling temperature lower than the primary cooling end temperature, it is possible to more advantageously secure the low yield ratio.
본 발명에서와 같이 2차 냉각을 행할 경우, 정밀하게 권취온도를 제어하여 원하는 미세조직을 얻어 목표하는 재질을 편차 없이 얻을 수 있고, 표면 불량을 억제할 수 있다. 이러한 2차 냉각 없이 1차 냉각으로만 냉각을 행한 후 권취할 경우, 복열에 의해 재질 연화가 발생하여 목표하는 항복강도를 만족시키기 어렵고, 1차 냉각에 의한 표면 과냉 후 복열하여 재질편차가 커지고, 형상이 불량해지는 문제점이 있을 수 있다.When secondary cooling is performed as in the present invention, a desired microstructure can be obtained by precisely controlling the coiling temperature, a desired material can be obtained without deviation, and surface defects can be suppressed. When winding is performed after cooling only by primary cooling without such secondary cooling, material softening occurs due to recuperation, making it difficult to satisfy the target yield strength, and material deviation increases due to recuperation after surface supercooling by primary cooling, There may be a problem of poor shape.
상기 1차 냉각 후, Bs 이하의 온도에서 권취하게 되면 베이나이트가 형성되어 강도와 저항복비를 동시에 확보할 수 있게 된다. 그러나, 1차 냉각 후에는 높은 경화능으로 인해 표면과 중심부의 재질 편차가 발생하기 쉽고, 탄소 함량이 높아 10℃/s 미만으로 냉각 시, 냉각 수 주수량이 작아 상대적으로 크게 복열이 발생하여 Bs 온도 이상으로 온도가 올라갈 우려가 있다. 즉, 1차 냉각만으로는 권취온도를 정밀 제어하기 어렵고, 재질편차를 크게 할 수 있다. 따라서, 1차 냉각 종료 후, 2차 냉각을 실시하여 복열이 일어나지 않도록 하고, 450℃ 이상에서 권취함으로써 강도가 지나치게 높아지지 않도록 하여 재질편차를 줄일 수 있다. 또한, 동시에 연신율과 충격특성도 확보할 수 있다. 단, 2차 냉각 시, 20℃/s를 초과하는 빠른 속도로 냉각할 경우, 주수량이 많아져 판 엣지부 크랙을 유발하는 문제가 있을 수 있다.After the primary cooling, when winding at a temperature below Bs, bainite is formed, so that strength and low yield ratio can be secured at the same time. However, after the primary cooling, material deviations between the surface and the center are likely to occur due to high hardenability, and when cooling at less than 10 °C/s due to the high carbon content, relatively large recuperation occurs due to the small amount of coolant injection, resulting in Bs There is a possibility that the temperature rises above the temperature. That is, it is difficult to precisely control the coiling temperature with only the primary cooling, and material variation can be increased. Therefore, after the primary cooling is finished, secondary cooling is performed to prevent reheating, and by winding at 450° C. or higher, strength is not excessively increased, thereby reducing material variation. In addition, elongation and impact properties can be secured at the same time. However, in the case of secondary cooling, when cooling at a rapid rate exceeding 20 ° C / s, there may be a problem of causing cracks at the edge of the plate due to an increased amount of water.
이와 같이 제조된 본 발명의 강은 항복강도가 650MPa 이상이고, 인장강도가 800MPa 이상이고, 항복비가 85% 이하이며, 폭방향 인장강도 편차가 80MPa 이하(여기서, 폭방향 인장강도 편차는 엣지로부터 50mm 떨어진 지점, 폭 1/4 지점, 폭 1/2 지점에서 압연방향으로 인장강도 값을 각각 측정하여 최대값과 최소값의 차이를 나타낸 것이다.)이고, 코일의 내권부 항복강도가 650MPa 이상(여기서, 내권부는 코일 길이방향의 1/2 지점을 나타낸다.)이고, 연신율이 15% 이상이며, -5℃에서의 샤르피 충격흡수에너지가 47J 이상으로, 고강도이면서 저항복비 특성을 구비할 수 있다.The steel of the present invention thus manufactured has a yield strength of 650 MPa or more, a tensile strength of 800 MPa or more, a yield ratio of 85% or less, and a tensile strength deviation in the width direction of 80 MPa or less (wherein, the tensile strength deviation in the width direction is 50 mm from the edge). The tensile strength values are measured in the rolling direction at the point of separation, 1/4 of the width, and 1/2 of the width, respectively, and the difference between the maximum and minimum values is shown.), and the inner winding yield strength of the coil is 650 MPa or more (where, The inner winding part represents the 1/2 point in the coil longitudinal direction), the elongation is 15% or more, and the Charpy shock absorption energy at -5 ° C is 47J or more, so it can have high strength and low yield ratio characteristics.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 아래의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are only for illustrating the present invention in more detail and are not intended to limit the scope of the present invention.
(실시예)(Example)
하기 표 1의 조성을 갖는 강 슬라브를 1100~1300℃에서 가열하고, 하기 표 2의 조건으로 열간압연, 1차 냉각 및 2차 냉각 후 권취하여 강판을 제조하였다. 여기서, 권취 후 상온까지는 통상의 조건으로 냉각하였다. A steel slab having the composition shown in Table 1 below was heated at 1100 to 1300° C., hot-rolled under the conditions shown in Table 2, primary cooling, and secondary cooling followed by winding to prepare a steel plate. Here, after winding, it was cooled to room temperature under normal conditions.
하기 표 1에는 각 강종의 합금 원소 함량에 따른 Bs 온도를 기재하였으며, Bs 온도는 통상의 딜라토미터 실험으로 구하였다.In Table 1 below, the Bs temperature according to the alloy element content of each steel type was described, and the Bs temperature was obtained by a normal dilatometer experiment.
번호Psalter
number
열간압연
온도 (℃)finish
hot rolled
Temperature (℃)
(℃/s)cooling rate
(℃/s)
온도 (℃)cooling end
Temperature (℃)
(℃/s)cooling rate
(℃/s)
(℃)temperature
(℃)
하기 표 3에는 각 시편의 미세조직을 관찰하고, 물성을 측정하여 나타내었다. 미세조직 분율은 광학현미경을 이용하여 측정하였으며, 하기 표 3의 베이나이트를 제외한 미세조직 분율은 페라이트, 잔류 오스테나이트 및 마르텐사이트를 포함한다. 항복강도(YS), 인장강도(TS), 연신율(El), 항복비(YS/TS)의 값은 KSB0802에 규정된 조건으로 인장시험을 행하여 측정되었으며, 샤르피 충격흡수에너지는 -5℃에서의 샤르피 충격시험을 통하여 측정된 결과 값을 기재하였다. 이 때, 물성은 코일의 길이방향 중앙부위의 폭 1/4 지점에서 인장시편을 채취한 후 인장시험으로 얻어진 값을 나타내었으며, 폭방향 인장강도 편차는 엣지(Edge)로부터 50mm 떨어진 지점, 폭 1/4 지점, 폭 1/2 지점에서 압연방향으로 인장강도 값을 각각 측정하여 최대값과 최소값의 차이를 나타내었다. 내권부 항복강도는 코일 길이방향의 1/2 지점의 항복강도를 나타낸 것이다. 또한, 강판 엣지부의 크랙에 대하여 육안으로 관찰 후 발생 여부를 나타내었다.In Table 3 below, the microstructure of each specimen was observed and the physical properties were measured and shown. The microstructure fraction was measured using an optical microscope, and the microstructure fraction excluding bainite in Table 3 includes ferrite, retained austenite, and martensite. The values of yield strength (YS), tensile strength (TS), elongation (El), and yield ratio (YS/TS) were measured by performing a tensile test under the conditions specified in KSB0802, and the Charpy impact absorption energy at -5 ℃ The result values measured through the Charpy impact test were described. At this time, the physical properties showed the values obtained by the tensile test after taking the tensile specimen at the point of 1/4 of the width of the central part in the longitudinal direction of the coil, and the tensile strength deviation in the width direction was 50 mm away from the edge, width 1 The tensile strength values were measured in the rolling direction at the /4 point and the width 1/2 point, respectively, and the difference between the maximum and minimum values was shown. The yield strength of the inner winding represents the yield strength at the 1/2 point in the length direction of the coil. In addition, the presence or absence of cracks in the edge portion of the steel sheet was observed after visual observation.
편
번
호city
side
th
like
종river
bell
분율(%)bainite
fraction (%)
강도
(MPa)surrender
robbery
(MPa)
강도
(MPa)Seal
robbery
(MPa)
(%)elongation rate
(%)
(%)yield ratio
(%)
에너지
(-5℃, J)shock absorption
energy
(-5℃, J)
항복강도
(MPa)inner circle
yield strength
(MPa)
발생 여부edge crack
Occurrence
인장강도
편차(MPa)width direction
tensile strength
Deviation (MPa)
표 3에 나타난 바와 같이, 본 발명의 합금조성 및 제조조건을 만족하는 발명예 1 내지 6은 본 발명에서 제안하는 미세조직 및 석출물 특징을 만족 하였으며, 본 발명에서 목적으로 하는 물성을 확보하였다.As shown in Table 3, Inventive Examples 1 to 6 satisfying the alloy composition and manufacturing conditions of the present invention satisfied the microstructure and precipitate characteristics proposed in the present invention, and secured the desired physical properties in the present invention.
반면, 본 발명의 조성 또는 제조 조건을 충족하지 못한 비교예들은 본 발명에서 목적으로 하는 미세조직 및 물성을 확보하지 못하였다.On the other hand, comparative examples that did not satisfy the composition or manufacturing conditions of the present invention did not secure the microstructure and physical properties aimed at in the present invention.
도 1의 (a) 및 (b)는 각각 발명예 1 및 비교예 4의 미세조직 사진을 나타낸 것으로, (a)는 본 발명의 베이나이트 분율을 만족하였으나, (b)의 경우, 본 발명에서 목적하는 수준의 베이나이트가 형성되지 않았고, 1차 냉각 종료 온도가 높아 확산이 상대적으로 빨라 페라이트와 중심부 편석대가 많이 형성되었음을 확인할 수 있다.1 (a) and (b) show microstructure photographs of Inventive Example 1 and Comparative Example 4, respectively. (a) satisfied the bainite fraction of the present invention, but in the case of (b), in the present invention It can be seen that the desired level of bainite was not formed, and the diffusion was relatively fast due to the high primary cooling end temperature, and a large number of ferrite and central segregation zones were formed.
구체적으로, 비교예 1은 마무리 열간압연 온도가 본 발명의 범위를 초과한 것으로, 오스테나이트 결정립 크기의 조대화로 인해 충격특성이 열위하였다.Specifically, in Comparative Example 1, the finish hot rolling temperature exceeded the range of the present invention, and the impact properties were inferior due to the coarsening of the austenite grain size.
비교예 2는 1차 냉각속도가 본 발명의 범위에 미달되는 것으로, 오스테나이트 결정립 조대화 및 조대한 페라이트 및 펄라이트의 형성으로 충격특성이 열위하였으며, 목적하는 항복강도를 확보하지 못하였다.In Comparative Example 2, the primary cooling rate was less than the range of the present invention, and the impact characteristics were poor due to the coarsening of austenite grains and the formation of coarse ferrite and pearlite, and the desired yield strength was not secured.
비교예 3은 1차 냉각 종료 온도가 지나치게 낮아 상부 베이나이트의 강도가 과도해져 충격특성이 열위하였으며, 연신율 또한 저하하였다.In Comparative Example 3, the strength of the upper bainite was excessively low due to the excessively low end temperature of the primary cooling, resulting in poor impact properties and a decrease in elongation.
비교예 4는 1차 냉각 종료 온도가 Bs 온도 이상으로, 베이나이트가 충분히 형성되지 못하였으며, 연질상이 일부 생성되어 항복강도가 급격하게 저하되었다.In Comparative Example 4, the first cooling end temperature was higher than the Bs temperature, bainite was not sufficiently formed, and a soft phase was partially formed, resulting in a rapid decrease in yield strength.
비교예 5는 권취온도가 높아 연질상의 페라이트 및 펄라이트가 생성되어 목적하는 강도를 확보하지 못하였다.In Comparative Example 5, due to the high coiling temperature, soft ferrite and pearlite were formed, and the desired strength was not secured.
비교예 6은 권취온도가 낮아 강도가 급격히 상승하여, 연신율을 확보하기 어려웠다.In Comparative Example 6, since the winding temperature was low and the strength rapidly increased, it was difficult to secure the elongation.
비교예 7은 Cr이 미첨가된 예로, Cr 첨가에 따른 효과인 경화능 증가 및 베이나이트 미세화의 효과를 확보하지 못하여, 경화능이 작고, 베이나이트의 래스(lath)가 상대적으로 조대하여 강도 확보가 어려웠다. Comparative Example 7 is an example in which Cr is not added, and the effects of increasing hardenability and refining of bainite, which are effects of adding Cr, are not secured, so the hardenability is small and the lath of bainite is relatively coarse, so it is difficult to secure strength. It was difficult.
비교예 8은 Cr이 과도하게 첨가되어, 강도가 과도하게 상승하여 충격특성이 저하되었다.In Comparative Example 8, Cr was excessively added, and the strength was excessively increased, resulting in a decrease in impact properties.
비교예 9는 C 함량이 부족한 경우로, 베이나이트가 충분히 형성되지 못하였고, 목적하는 강도를 확보하지 못하였으며, 비교예 10은 C 함량이 과도한 경우로, 충격특성이 열위하였다. In Comparative Example 9, when the C content was insufficient, bainite was not sufficiently formed and desired strength was not secured, and in Comparative Example 10, when the C content was excessive, impact properties were inferior.
비교예 11은 Mn+Si 함량의 합이 본 발명의 범위를 만족하지 못한 경우로, 내권부 연화가 발생하여 내권부의 강도가 부족하였다.In Comparative Example 11, the sum of the contents of Mn+Si did not satisfy the range of the present invention, and the strength of the inner winding part was insufficient due to softening of the inner winding part.
비교예 12는 2차 냉각속도가 과도한 경우로, 강재 엣지부에 크랙이 발생하였으며, 폭 방향의 인장강도 편차가 본 발명에서 제안하는 범위를 벗어나 재질 편차가 열위하였다.In Comparative Example 12, the secondary cooling rate was excessive, and cracks occurred at the edge of the steel material, and the tensile strength deviation in the width direction was outside the range proposed in the present invention, and the material deviation was poor.
이상에서 실시예를 통하여 본 발명을 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.Although the present invention has been described in detail through examples above, other types of embodiments are also possible. Therefore, the spirit and scope of the claims set forth below are not limited to the embodiments.
Claims (7)
Mn 및 Si 함량의 합이 1.8% 이상이고,
미세조직으로, 베이나이트를 50면적% 이상 포함하고, 잔여 기타 조직을 포함하며,
폭방향 인장강도 편차가 80MPa 이하(여기서, 폭방향 인장강도 편차는 엣지로부터 50mm 떨어진 지점, 폭 1/4 지점, 폭 1/2 지점에서 압연방향으로 인장강도 값을 각각 측정하여 최대값과 최소값의 차이를 나타낸 것이다.)인 강판.
In % by weight, C: 0.13 to 0.20%, Si: 0.6% or less, Mn: 1.4 to 3.0%, Al: 0.1% or less, Nb: 0.02 to 1.0%, Ti: 0.03% or less (excluding 0%), Cr: 0.3 to 1.0%, P: 0.03% or less, S: 0.02% or less, N: 0.015% or less, the balance including Fe and other unavoidable impurities,
the sum of the Mn and Si contents is 1.8% or more;
It is a microstructure, containing 50 area% or more of bainite, and including remaining other tissues,
Tensile strength deviation in the width direction is 80 MPa or less (here, the tensile strength deviation in the width direction is determined by measuring the tensile strength values in the rolling direction at a point 50 mm away from the edge, a point of 1/4 of the width, and a point of 1/2 of the width, respectively. It shows the difference).
상기 강판은 항복강도가 650MPa 이상이고, 인장강도가 800MPa 이상이고, 항복비가 85% 이하이며, 연신율이 15% 이상인 강판.
According to claim 1,
The steel sheet has a yield strength of 650 MPa or more, a tensile strength of 800 MPa or more, a yield ratio of 85% or less, and an elongation of 15% or more.
상기 강판은 코일의 내권부 항복강도가 650MPa 이상(여기서, 내권부는 코일 길이방향의 1/2 지점을 나타낸다.)인 강판.
According to claim 1,
The steel sheet has a yield strength of the inner winding portion of the coil of 650 MPa or more (here, the inner winding portion represents a half point in the coil longitudinal direction).
상기 강판은 -5℃에서의 샤르피 충격흡수에너지가 47J 이상인 강판.
According to claim 1,
The steel sheet is a steel sheet having a Charpy impact absorption energy of 47J or more at -5 ° C.
상기 재가열된 강 슬라브를 750~880℃의 마무리 열간압연 온도로 열간압연하는 단계;
상기 열간압연된 강판을 Bs-100℃~Bs의 온도범위까지 25℃/s 이상의 냉각속도로 냉각하는 1차 냉각 단계;
상기 1차 냉각된 강판을 450℃~Bs의 온도범위까지 10~20℃/s의 냉각속도로 냉각하는 2차 냉각 단계; 및
상기 2차 냉각된 강판을 권취하는 단계를 포함하는 강판 제조방법.
In % by weight, C: 0.13 to 0.20%, Si: 0.6% or less, Mn: 1.4 to 3.0%, Al: 0.1% or less, Nb: 0.02 to 1.0%, Ti: 0.03% or less (excluding 0%), Cr: Reheating a steel slab containing 0.3 to 1.0%, P: 0.03% or less, S: 0.02% or less, N: 0.015% or less, the balance including Fe and other unavoidable impurities, and the sum of Mn and Si contents being 1.8% or more;
hot-rolling the reheated steel slab at a finishing hot-rolling temperature of 750 to 880° C.;
A first cooling step of cooling the hot-rolled steel sheet to a temperature range of Bs-100°C to Bs at a cooling rate of 25°C/s or more;
A secondary cooling step of cooling the primary cooled steel sheet to a temperature range of 450 °C to Bs at a cooling rate of 10 to 20 °C/s; and
Steel sheet manufacturing method comprising the step of winding the secondary cooled steel sheet.
상기 재가열은 1100~1300℃에서 실시하는 강판 제조방법.
According to claim 5,
The reheating is a steel plate manufacturing method carried out at 1100 ~ 1300 ℃.
상기 1차 냉각 시, 냉각속도는 25~80℃/s인 강판 제조방법.
According to claim 5,
During the primary cooling, the cooling rate is 25 ~ 80 ℃ / s steel plate manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210105856A KR20230023945A (en) | 2021-08-11 | 2021-08-11 | High strength steel plate having low yield ratio and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210105856A KR20230023945A (en) | 2021-08-11 | 2021-08-11 | High strength steel plate having low yield ratio and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20230023945A true KR20230023945A (en) | 2023-02-20 |
Family
ID=85329134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210105856A KR20230023945A (en) | 2021-08-11 | 2021-08-11 | High strength steel plate having low yield ratio and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20230023945A (en) |
-
2021
- 2021-08-11 KR KR1020210105856A patent/KR20230023945A/en active Search and Examination
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101917453B1 (en) | Steel plate having excellent ultra low-temperature toughness and method for manufacturing same | |
KR101879082B1 (en) | Ultra high strength steel having low yield ratio method for manufacturing the same | |
KR101917473B1 (en) | Austenitic steel having excellent wear resistance and toughness and method for manufacturing thereof | |
KR101917454B1 (en) | Steel plate having excellent high-strength and high-toughness and method for manufacturing same | |
KR102164112B1 (en) | High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof | |
KR102348539B1 (en) | High strength steel having low yield ratio method for manufacturing the same | |
KR20180072493A (en) | Hot rolled steel sheet for use in oil well pipe, steel pipe using the same and method for manufacturing thereof | |
KR101767771B1 (en) | The steel sheet for welding structure having excellent heat affected zone toughness and method for manufacturing the same | |
KR20200076799A (en) | Ultra thick steel plate having excellent toughness at the center of thickness and manufacturing method for the same | |
KR101795882B1 (en) | Steel sheet for pipe having excellent strength and toughness, method for manufacturing the same, and method for manufacturing welded steel pipe using the same | |
KR20030054700A (en) | The method of manufacturing hot rolled steels with less anisotropic properties for linepipes | |
KR20230023945A (en) | High strength steel plate having low yield ratio and method of manufacturing the same | |
KR102492029B1 (en) | High strength steel having excellent shock-resistance and method for manufacturing thereof | |
KR102492030B1 (en) | High strength hot rolled steel sheet having low yield ratio and method of manufacturing the same | |
KR20200061921A (en) | Hot-rolled steel sheet for earthquake-resistant steel pipe and method for manufacturing the same | |
KR102484998B1 (en) | High strength steel sheet having excellent ductility and method for manufacturing thereof | |
KR20200047081A (en) | High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof | |
KR102495181B1 (en) | High strength hot rolled steel sheet for steel pipe having excellent impact toughness and method of manufacturing the same | |
KR101382888B1 (en) | Hot-rolled steel sheets with superior workability and low mechanical property deviation and method for producing the same | |
KR101518551B1 (en) | Ultrahigh strength hot rolled steel sheet having excellent impact resistant property and mehtod for production thereof | |
KR20110130987A (en) | Hot rolled steel sheet for pipe pile with high strength and high toughness and method of manufacturing the precipitation hardening steel pipe pile | |
KR102296840B1 (en) | High strength steel material having excellent ductility and manufacturing method for the same | |
KR101086330B1 (en) | Ultra-Strength Steel with Homogeneous Material and Method for Manufacturing Thereof | |
KR20240098720A (en) | Steel plate and method for manufacturing the same | |
KR20230023939A (en) | High strength steel plate having high seismic resistance and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination |