[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20220112277A - Silirane functionalized compounds, especially organosilicon compounds for the preparation of siloxanes - Google Patents

Silirane functionalized compounds, especially organosilicon compounds for the preparation of siloxanes Download PDF

Info

Publication number
KR20220112277A
KR20220112277A KR1020227022576A KR20227022576A KR20220112277A KR 20220112277 A KR20220112277 A KR 20220112277A KR 1020227022576 A KR1020227022576 A KR 1020227022576A KR 20227022576 A KR20227022576 A KR 20227022576A KR 20220112277 A KR20220112277 A KR 20220112277A
Authority
KR
South Korea
Prior art keywords
radicals
radical
group
sio
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020227022576A
Other languages
Korean (ko)
Inventor
리하르트 바이드너
파비앙 안드레아스 데이비드 헤르츠
마티아스 파비앙 노비스
베른하르트 리거
Original Assignee
와커 헤미 아게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 와커 헤미 아게 filed Critical 와커 헤미 아게
Publication of KR20220112277A publication Critical patent/KR20220112277A/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0805Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
    • C07F7/0807Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms comprising Si as a ring atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • C07F7/0872Preparation and treatment thereof
    • C07F7/0889Reactions not involving the Si atom of the Si-O-Si sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/54Nitrogen-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5445Silicon-containing compounds containing nitrogen containing at least one Si-N bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/549Silicon-containing compounds containing silicon in a ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicon Polymers (AREA)

Abstract

본 발명은 화학식 (I)의 2개 이상의 실리란기가 공유 결합된 기질로 이루어진 실리란 작용화된 화합물, 본 발명에 따른 실리란 작용화된 화합물을 포함하는 혼합물, 및 실록산의 제조 방법을 기술한다.The present invention describes silirane functionalized compounds consisting of a substrate to which two or more silirane groups of formula (I) are covalently bonded, mixtures comprising the silirane functionalized compounds according to the present invention, and processes for the preparation of siloxanes .

Description

안정한 실릴렌 전구체로서의 실리란 화합물 및 실록산의 무촉매 제조에서의 이의 용도Silirane compounds as stable silylene precursors and their use in the catalyst-free preparation of siloxanes

본 발명은 화학식 (I)의 2개 이상의 실리란기가 공유 결합된 기질로 이루어진 실리란 작용화된 화합물, 및 또한 본 발명의 실리란 작용화된 화합물을 포함하는 혼합물, 및 실록산의 제조 방법을 기술한다. 고반응성 실릴렌 종에 대한 안정한 전구체를 나타내는 다작용성 실리란의 열적 활성화를 통해 가교결합이 발생한다. 여기에서 네트워크 형성은 실릴렌과 작용화된 실록산 또는 폴리실록산의 반응을 통해 달성되며, 넓은 스펙트럼의 일반적인 실록산 화합물의 사용을 가능하게 한다.The present invention describes silirane functionalized compounds consisting of a substrate to which two or more silirane groups of formula ( I ) are covalently bonded, as well as mixtures comprising the silirane functionalized compounds of the present invention, and processes for the preparation of siloxanes do. Crosslinking occurs through thermal activation of polyfunctional silylenes that represent stable precursors to highly reactive silylene species. Network formation here is achieved via the reaction of silylene with functionalized siloxanes or polysiloxanes, allowing the use of a broad spectrum of common siloxane compounds.

선행기술 및 기술적 목적Prior art and technical purpose

실리콘은 뛰어난 화학적 및 물리적 특성으로 인해 큰 관심을 받고 있으며 따라서 다양하게 이용되고 있다. 탄소계 플라스틱의 상황과는 대조적으로, 실록산의 경우에 단독중합체 사슬 사이의 반데르발스 힘은 매우 약하다. 실록산 단독중합체에서 이는 매우 높은 분자량에서도 유동 거동 및 매우 열악한 특성으로 이어진다. 이러한 이유로, 실록산은 가교결합되고 따라서 고무 탄성 상태를 얻는다.Silicon is of great interest due to its excellent chemical and physical properties, and thus has been used in various ways. In contrast to the situation in carbon-based plastics, the van der Waals forces between homopolymer chains are very weak in the case of siloxanes. In siloxane homopolymers this leads to flow behavior and very poor properties even at very high molecular weights. For this reason, the siloxane is crosslinked and thus obtains a rubbery elastic state.

실록산을 가교결합하기 위한 여러 공지된 방법이 존재하며, 부가 가교결합, 축합 가교결합, 및 라디칼 가교결합 사이에 근본적인 구별이 이루어진다. 부가 가교결합의 경우에, 비닐 작용화된 실록산은 히드로실릴화로 지칭되는 공정에서 제거 생성물 없이 히드리도실록산과 반응한다(RTV-2 또는 HTV). 상기 반응은 회수될 수 없는 귀금속 촉매(일반적으로 백금)의 사용을 필요로 한다. 축합 가교결합의 경우에, 말단 실란올기는 다른 규소 작용기(예를 들어 Si-O-CH3, Si-O-C2H5, Si-O-COCH3)와 반응한다. 상기 반응은 아세트산 또는 알코올과 같은 작고 휘발성인 화합물의 제거, 및 따라서 또한 물리적 수축을 동반한다. 축합 가교결합 시스템은 소량의 물과의 접촉에 의해 활성화되는 1성분 시스템으로 작동될 수 있다(RTV-1). 혼합물은 일반적으로 금속 촉매(예를 들어, 주석계)와 혼합되어 가교결합 반응을 가속한다. 라디칼 가교결합의 경우에, 가열시 라디칼로 분해되는 유기 과산화물이 이용된다(HTV). 반응성 라디칼은 예를 들어 비닐 메틸 실록산을 가교결합한다.Several known methods exist for crosslinking siloxanes, and a fundamental distinction is made between addition crosslinking, condensation crosslinking, and radical crosslinking. In the case of addition crosslinking, vinyl functionalized siloxanes are reacted with hydridosiloxanes without removal products in a process called hydrosilylation (RTV-2 or HTV). The reaction requires the use of a non-recoverable noble metal catalyst (usually platinum). In the case of condensation crosslinking, the terminal silanol groups react with other silicon functional groups (eg Si-O-CH 3 , Si-OC 2 H 5 , Si-O-COCH 3 ). The reaction is accompanied by removal of small, volatile compounds such as acetic acid or alcohols, and thus also physical shrinkage. The condensation crosslinking system can be operated as a one-component system activated by contact with a small amount of water (RTV-1). The mixture is usually mixed with a metal catalyst (eg, tin-based) to accelerate the crosslinking reaction. In the case of radical crosslinking, organic peroxides that decompose into radicals upon heating are used (HTV). Reactive radicals crosslink, for example, vinyl methyl siloxane.

언급된 공정에서 높은 반응성은 촉매에 의해 유발되는 반면, 본원에 기술되는 가교결합법은 실릴렌의 특별히 높은 반응성을 기반으로 한다. 실릴렌은 무전하 2가 규소 화합물이며 따라서 카르벤의 더 무거운 동족체이다. 이의 다양한 반응성으로 인해, 실릴렌 화합물은 매우 다양한 단량체를 가교결합하는 데 적합하다. 예를 들어 실릴렌은 삽입 반응에서 Si-H 화합물과 반응하여 디실란을 형성한다. 실란올 또는 알코올과 같은 친핵체와의 반응은 마찬가지로 O-H 결합으로의 삽입을 통해 달성된다. 알콕시 실란의 Si-O 결합 내로 실릴렌을 삽입하여 디실란을 형성한다. 알켄 및 알킨과 함께, 실릴렌은 고리화 부가 반응에 들어가 각각 실라시클로프로판(실리란) 또는 실라시클로프로펜(실리렌)을 형성한다.While the high reactivity in the processes mentioned is induced by catalysts, the crosslinking method described herein is based on the particularly high reactivity of silylene. Silylene is an uncharged divalent silicon compound and is therefore a heavier homologue of carbene. Because of their variable reactivity, silylene compounds are suitable for crosslinking a wide variety of monomers. For example, silylene reacts with Si-H compounds in an insertion reaction to form disilane. Reaction with nucleophiles such as silanols or alcohols is likewise accomplished via insertion into an O-H bond. Insertion of silylene into the Si-O bond of the alkoxy silane forms the disilane. Together with alkenes and alkynes, silylene enters a cycloaddition reaction to form silacyclopropane (silirane) or silacyclopropene (silylene), respectively.

Figure pct00001
Figure pct00001

스킴 1: 실릴렌 화합물의 반응성. 실릴렌은 고리화 부가 반응에서 예를 들어 Si-H-, Si-OH- 및 Si-OR- 화합물에 삽입되거나 이중 결합과 반응한다.Scheme 1: Reactivity of the silylene compound. Silylenes are intercalated or reacted with double bonds in, for example, Si-H-, Si-OH- and Si-OR- compounds in cycloaddition reactions.

실릴렌의 합성에 대한 여러 공지된 방법이 존재한다. UV 광 또는 열에 의한 폴리실란의 분해로, 예를 들어, 안정하지 않고 빠르게 이량화되는 Me2Si:와 같은 고반응성 실릴렌을 수득한다. 폴리실란은 매우 가혹한 조건 하에서 제조되기 때문에, 이러한 합성법은 작용기의 선택에 있어 여지가 거의 없다. 더 복잡한 실릴렌은 디할로실란의 환원을 통해 이용 가능하다. 이용되는 환원제는 예를 들어 리튬 또는 KC8일 수 있다. 실온에서 확실히 안정한, 열역학적 및 동역학적 안정화기를 갖는 공지된 실릴렌 화합물이 존재한다. 따라서 실릴렌의 안정성이 증가함에 따라 반응성이 낮아지기 때문에, 고도로 안정화된 실릴렌은 실록산의 결합을 위한 작용기로서 덜 적합하다. 복잡한 리간드에 의한 비용이 높고 불편한 안정화는 또한 산업적 양에서 너무 비용이 높고 불편할 수 있다. 따라서, 본원에 기술된 실록산 결합법의 경우, 실릴렌보다는 전구체가 사용되며, 전구체는 외부 영향에 의해 실릴렌으로 전환될 수 있다. 이러한 목적에 특히 적합한 것은 실리란 화합물이며, 이는 예를 들어 적절한 활성화에 의해, 열분해 또는 광분해에 의해, 실릴렌 및 올레핀으로 절단될 수 있다. 해리의 원동력은 실리란의 높은 고리 장력이다. 실리란 화합물은 이의 실릴렌 유사체보다 훨씬 더 안정적이며 마스킹된 실릴렌으로 간주될 수 있다. 실리란의 안정성, 또는 필요한 분해 온도는 이의 작용화에 의해 제어될 수 있다. 실리란은 추가로 예를 들어 개환 반응에서 알코올과 같은 친핵성 화합물과 반응할 수 있다. 이는 부가 반응이므로, 이 경우에서 제거 생성물은 없다. 따라서, 실록산의 결합에서 실리란을 사용하면, 매우 넓은 스펙트럼의 작용기와 호환될 수 있다. 실리란은 시클릭 구조의 높은 고리 장력으로 인해 일반적으로 매우 반응성이 크다.There are several known methods for the synthesis of silylene. Decomposition of polysilanes by UV light or heat yields, for example, highly reactive silylenes such as Me 2 Si:, which are not stable and rapidly dimerize. Since polysilane is produced under very harsh conditions, this synthesis method leaves little room for functional group selection. More complex silylenes are available through reduction of dihalosilanes. The reducing agent used may be, for example, lithium or KC 8 . There are known silylene compounds with thermodynamic and kinetic stabilizing groups that are reliably stable at room temperature. Therefore, highly stabilized silylenes are less suitable as functional groups for bonding siloxanes because the reactivity decreases as the stability of silylenes increases. Expensive and inconvenient stabilization with complex ligands can also be too costly and inconvenient in industrial quantities. Thus, for the siloxane bonding methods described herein, a precursor rather than silylene is used, and the precursor can be converted to silylene by external influences. Particularly suitable for this purpose are silirane compounds, which can be cleaved, for example, by appropriate activation, pyrolysis or photolysis, into silylenes and olefins. The driving force for dissociation is the high ring tension of silirane. Silirane compounds are much more stable than their silylene analogues and can be considered as masked silylenes. The stability, or required decomposition temperature, of the silirane can be controlled by its functionalization. Silirane may further react with nucleophilic compounds such as alcohols, for example in ring opening reactions. Since this is an addition reaction, there are no removal products in this case. Therefore, the use of silanane in the bonding of siloxanes allows compatibility with a very broad spectrum of functional groups. Siliranes are generally very reactive due to the high ring tension of the cyclic structure.

Figure pct00002
Figure pct00002

스킴 2: 실리란 및 실릴렌의 반응 거동. 실리란은 열분해 또는 광분해에 의해 절단되어 올레핀 및 실리렌을 형성할 수 있다.Scheme 2: Reaction behavior of silylane and silylene. Silirane can be cleaved by pyrolysis or photolysis to form olefins and silylenes.

문헌 [Macromolecules 2003, 36, 1474-1479]에서, 단작용성 실리란은 음이온 중합될 수 있는 것으로 나타났다.In the literature [Macromolecules 2003 , 36 , 1474-1479], it has been shown that monofunctional silanes can be anionic polymerized.

문헌 (a) [Russian Journal of Applied Chemistry 2002, 75 (1), 127-134], (b) [Russian Chemical Reviews 2011, 80 (4), 3313-339], 및 (c) [Applied Organometallic Chemistry 1990, 4, 163-172]에서 Semenov et al.은 실란올 말단 비닐메틸실록산의 가교결합을 위한 광화학적으로 생성된 실릴렌의 공급원으로서의 올리고디메틸실란을 기술하고 있다. 가교결합은 고반응성 실릴렌과 비닐기에 의한 실리란의 형성에 의해 발생하며, 실리란은 이후에 실란올기와 반응할 수 있다. 형성된 실리란은 가교결합 중에 검출되지 않으며, 따라서 메커니즘의 정확성이 의심된다. 또한, 낮은 UV 투과율로 인해, 상기 방법은 매우 작은 필름 두께(~100 ㎛ 필름)로만 가능하다.References (a) [Russian Journal of Applied Chemistry 2002 , 75 (1) , 127-134], (b) [Russian Chemical Reviews 2011 , 80 (4) , 3313-339], and (c) [Applied Organometallic Chemistry 1990 ] , 4 , 163-172, Semenov et al. describe oligodimethylsilane as a source of photochemically generated silylene for crosslinking of silanol terminated vinylmethylsiloxanes. Crosslinking occurs by the formation of silanane with highly reactive silylene and vinyl groups, which can then react with silanol groups. The silylane formed is not detected during crosslinking, and therefore the correctness of the mechanism is questionable. Also, due to the low UV transmittance, this method is only possible with very small film thicknesses (~100 μm film).

또한, 하기 2작용성 비스-실리란 화합물이 문헌 [Journal of Organometallic Chemistry 2011, 696, 1957-1963]으로부터 알려져 있다:In addition, the following bifunctional bis-silirane compounds are known from Journal of Organometallic Chemistry 2011 , 696 , 1957-1963:

Figure pct00003
.
Figure pct00003
.

스킴 3: Fink et al.의 2작용성 비스-실리란Scheme 3: bifunctional bis-silylane by Fink et al.

또한 모노실리란은 OH기, NH2기 또는 NH기로 종결되는 기질의 표면 작용화에 사용될 수 있음이 WO2015/088901로부터 알려져 있다.It is also known from WO2015/088901 that monosilirane can be used for the surface functionalization of substrates terminated with OH groups, NH 2 groups or NH groups.

안정화된 비스-실릴렌(cf. 스킴 4)이 마찬가지로 문헌(Angew. Chem. Int Ed. 2009, 48, 8536-8538 및 J. Am. Chem. Soc. 2010, 132, 15890-15892)으로부터 알려져 있지만, 중합체 화학 섹터에서의 이의 용도는 기술되어 있지 않다.Stabilized bis-silylene (cf. Scheme 4) is likewise known from the literature (Angew. Chem. Int Ed. 2009 , 48 , 8536-8538 and J. Am. Chem. Soc. 2010 , 132 , 15890-15892), although , their use in the polymer chemistry sector is not described.

Figure pct00004
Figure pct00004

스킴 4: 문헌으로부터 알려진 안정화된 비스-실릴렌Scheme 4: Stabilized bis-silylene known from the literature

US2002/0042489A1만이 알켄 또는 알킨의 중합을 위한 촉매로서의 헤테로시클릭 실릴렌의 용도를 개시한다.Only US2002/0042489A1 discloses the use of heterocyclic silylenes as catalysts for the polymerization of alkenes or alkynes.

기술적 성취technical achievement

본 발명의 주제는 하기 화학식 (I)의 2개 이상의 실리란기가 공유 결합된 기질로 이루어진 실리란 작용화된 화합물이다:A subject of the present invention is a silirane functionalized compound consisting of a substrate to which two or more silirane groups of the formula ( I ) are covalently bonded:

Figure pct00005
Figure pct00005

상기 화학식 (I)에서 지수 n은 0 또는 1의 값을 취하고;the index n in the above formula ( I ) takes a value of 0 or 1;

라디칼 R a 는 2가 C1-C20 탄화수소 라디칼이고;the radical R a is a divalent C 1 -C 20 hydrocarbon radical;

라디칼 R 1 The radical R 1 is

(i) C1-C20 탄화수소 라디칼,(i) a C 1 -C 20 hydrocarbon radical,

(ii) C1-C20 히드로카르본옥시 라디칼,(ii) a C 1 -C 20 hydrocarbonoxy radical,

(iii) 실릴 라디칼 - SiR a R b R c (여기서, 라디칼 R a , R b , R c 는 서로 독립적으로 C1-C6 탄화수소 라디칼임),(iii) silyl radicals - SiR a R b R c , wherein the radicals R a , R b , R c independently of one another are C 1 -C 6 hydrocarbon radicals,

(iv) 아민 라디칼 - NR x 2 (여기서, 라디칼 R x 는 서로 독립적으로(iv) amine radicals - NR x 2 , wherein the radicals R x are independently of one another

(iv.i) 수소, (iv.i) hydrogen,

(iv.ii) C1-C20 탄화수소 라디칼, 및(iv.ii) a C 1 -C 20 hydrocarbon radical, and

(iv.iii) 실릴 라디칼 - SiR a R b R c (여기서, 라디칼 R a , R b , R c 는 서로 독립적으로 C1-C6 탄화수소 라디칼임)(iv.iii) silyl radicals - SiR a R b R c , wherein the radicals R a , R b , R c independently of one another are C 1 -C 6 hydrocarbon radicals.

로 이루어진 군으로부터 선택됨), 및selected from the group consisting of), and

(v) 이민 라디칼 -N=CR 1 R 2 (여기서, 라디칼 R 1 , R 2 는 서로 독립적으로(v) imine radicals -N=CR 1 R 2 , wherein the radicals R 1 , R 2 are independently of each other

(v.i) 수소, (v.i) hydrogen,

(v.ii) C1-C20 탄화수소 라디칼 및(v.ii) a C 1 -C 20 hydrocarbon radical and

(v.iii) 실릴 라디칼 -SiR a R b R c (여기서, 라디칼 R a , R b , R c 는 서로 독립적으로 C1-C6 탄화수소 라디칼임)(v.iii) silyl radicals —SiR a R b R c , wherein the radicals R a , R b , R c independently of one another are C 1 -C 6 hydrocarbon radicals

로 이루어진 군으로부터 선택됨)selected from the group consisting of)

로 이루어진 군으로부터 선택되고;is selected from the group consisting of;

라디칼 R 2 , R 3 , R 4 , R 5 는 서로 독립적으로 (i) 수소, (ii) 할로겐, 및 (iii) C1-C20 탄화수소 라디칼로 이루어진 군으로부터 선택되며, 라디칼 R 2 R 4 는 시클릭 라디칼의 일부일 수도 있다.The radicals R 2 , R 3 , R 4 , R 5 are independently of each other selected from the group consisting of (i) hydrogen, (ii) halogen, and (iii) C 1 -C 20 hydrocarbon radicals, the radicals R 2 and R 4 may be part of a cyclic radical.

기질은 바람직하게는 유기규소 화합물, 탄화수소, 실리카, 유리, 샌드, 스톤, 금속, 반금속, 금속 산화물, 혼합 금속 산화물, 및 탄소계 올리고머 및 중합체로 이루어진 군으로부터 선택된다.The substrate is preferably selected from the group consisting of organosilicon compounds, hydrocarbons, silica, glass, sand, stone, metal, semimetal, metal oxide, mixed metal oxide, and carbon-based oligomers and polymers.

기질은 보다 바람직하게는 실란, 실록산, 침강 실리카, 흄드 실리카, 유리, 탄화수소, 폴리올레핀, 아크릴레이트, 폴리아크릴레이트, 폴리비닐 아세테이트, 폴리우레탄 및 산화프로필렌 및/또는 산화에틸렌 단위로 구성된 폴리에테르로 이루어진 군으로부터 선택된다.The substrate is more preferably composed of silanes, siloxanes, precipitated silica, fumed silica, glass, hydrocarbons, polyolefins, acrylates, polyacrylates, polyvinyl acetates, polyurethanes and polyethers composed of propylene oxide and/or ethylene oxide units. selected from the group.

본 발명의 하나의 특정한 실시양태는 하기 일반식 (II)의 실리란 작용화된 유기규소 화합물이다:One particular embodiment of the present invention is a silirane functionalized organosilicon compound of the general formula ( II ):

(SiO(SiO 4/24/2 )) aa (R(R xx SiOSiO 3/23/2 )) bb (R'SiO(R'SiO 3/23/2 )) b'b' (R(R xx 22 SiOSiO 2/22/2 )) cc (R(R xx R'SiOR'SiO 2/22/2 )) c'c'

(R'(R' 22 SiOSiO 2/22/2 )) c''c'' (R(R xx 33 SiOSiO 1/21/2 )) dd (R'R(R'R xx 22 SiOSiO 1/21/2 )) d'd' (R'(R' 22 RR xx SiOSiO 1/21/2 )) d''d''

(R'(R' 33 SiOSiO 1/21/2 )) d'''d''' (II),(II);

상기 일반식에서 라디칼 R x 는 서로 독립적으로 (i) 수소, (ii) 할로겐, (iii) 치환되지 않거나 치환된 C1-C20 탄화수소 라디칼 및 (iv) 치환되지 않거나 치환된 C1-C20 히드로카르본옥시 라디칼로 이루어진 군으로부터 선택되고;In the above general formula, the radicals R x are independently of each other (i) hydrogen, (ii) halogen, (iii) unsubstituted or substituted C 1 -C 20 hydrocarbon radical and (iv) unsubstituted or substituted C 1 -C 20 hydro selected from the group consisting of a carbonoxy radical;

지수 a, b, b', c, c', c'', d, d', d'', d'''는 화합물의 각 실록산 단위의 수를 나타내고 서로 독립적으로 0 내지 100,000 범위의 정수이며, 단, a, b, b', c, c', c'', d, d', d'', d'''의 합은 2 이상의 값을 취하고 지수 b', c', d' 중 하나 이상은 2 이상이거나 지수 c'', d'' 또는 d''' 중 하나 이상은 0이 아니고;The indices a , b , b' , c, c', c'', d, d', d'', d''' represent the number of each siloxane unit of the compound and are independently of each other integers ranging from 0 to 100,000; , provided that the sum of a, b, b', c, c', c'', d, d', d'', d''' takes a value of 2 or more, and among the exponents b' , c', d ' at least one is at least 2 or at least one of the exponents c'', d'' or d''' is non-zero;

라디칼 R'는 하기 화학식 (IIa)의 실리란기이다:The radical R' is a silirane group of the formula ( IIa ):

Figure pct00006
Figure pct00006

상기 화학식에서 지수 n은 0 또는 1의 값을 취하고;In the above formula, the exponent n takes a value of 0 or 1;

라디칼 R a 는 2가 C1-C20 탄화수소 라디칼이고;the radical R a is a divalent C 1 -C 20 hydrocarbon radical;

라디칼 R 1 The radical R 1 is

(i) C1-C20 탄화수소 라디칼,(i) a C 1 -C 20 hydrocarbon radical,

(ii) C1-C20 히드로카르본옥시 라디칼,(ii) a C 1 -C 20 hydrocarbonoxy radical,

(iii) 실릴 라디칼 - SiR a R b R c (여기서, 라디칼 R a , R b , R c 는 서로 독립적으로 C1-C6 탄화수소 라디칼임),(iii) silyl radicals - SiR a R b R c , wherein the radicals R a , R b , R c independently of one another are C 1 -C 6 hydrocarbon radicals,

(iv) 아민 라디칼 - NR x 2 (여기서, 라디칼 R x 는 서로 독립적으로(iv) amine radicals - NR x 2 , wherein the radicals R x are independently of one another

(iv.i) 수소, (iv.i) hydrogen,

(iv.ii) C1-C6 탄화수소 라디칼, 및(iv.ii) a C 1 -C 6 hydrocarbon radical, and

(iv.iii) 실릴 라디칼 - SiR a R b R c (여기서, 라디칼 R a , R b , R c 는 서로 독립적으로 C1-C6 탄화수소 라디칼임)(iv.iii) silyl radicals - SiR a R b R c , wherein the radicals R a , R b , R c independently of one another are C 1 -C 6 hydrocarbon radicals.

로 이루어진 군으로부터 선택됨), 및selected from the group consisting of), and

(v) 이민 라디칼 -N=CR 1 R 2 (여기서, 라디칼 R 1 , R 2 는 서로 독립적으로(v) imine radicals -N=CR 1 R 2 , wherein the radicals R 1 , R 2 are independently of each other

(v.i) 수소, (v.i) hydrogen,

(v.ii) C1-C20 탄화수소 라디칼 및(v.ii) a C 1 -C 20 hydrocarbon radical and

(v.iii) 실릴 라디칼 - SiR a R b R c (여기서, 라디칼 R a , R b , R c 는 서로 독립적으로 C1-C6 탄화수소 라디칼임)(v.iii) silyl radicals - SiR a R b R c , wherein the radicals R a , R b , R c independently of one another are C 1 -C 6 hydrocarbon radicals.

로 이루어진 군으로부터 선택됨)selected from the group consisting of)

로 이루어진 군으로부터 선택되고;is selected from the group consisting of;

라디칼 R 2 , R 3 , R 4 , R 5 는 서로 독립적으로 (i) 수소, (ii) 할로겐, 및 (iii) C1-C20 탄화수소 라디칼로 이루어진 군으로부터 선택되며, 라디칼 R 2 R 4 는 시클릭 라디칼의 일부일 수도 있다.The radicals R 2 , R 3 , R 4 , R 5 are independently of each other selected from the group consisting of (i) hydrogen, (ii) halogen, and (iii) C 1 -C 20 hydrocarbon radicals, the radicals R 2 and R 4 may be part of a cyclic radical.

실리란 작용화된 화합물의 규소 원자의 배열은 근본적인 중요성을 갖는다. 규소 원자가 코어 스캐폴드를 통해 서로 연결되는 것이 절대적으로 필요하다. 이러한 방식으로, 실리란 작용화된 화합물의 활성화 후, 복수의 실릴렌기를 갖는 가교결합 가능한 화합물이 얻어진다. 규소 원자가 서로 브릿지되지 않는 경우, 실리란의 활성화로 유리 "모노실릴렌" 및 다작용성 비닐 화합물이 생성된다. 이러한 유리 모노실릴렌은 가교결합할 수 없으며, 실록산의 작용기와 반응한다(스킴 6과 비교).The arrangement of the silicon atoms of a silirane functionalized compound is of fundamental importance. It is absolutely necessary for the silicon atoms to be interconnected through the core scaffold. In this way, after activation of the silylene functionalized compound, a crosslinkable compound having a plurality of silylene groups is obtained. When the silicon atoms are not bridged with each other, activation of the sililane results in free "monosilylene" and polyfunctional vinyl compounds. This free monosilylene cannot crosslink and reacts with the functional groups of the siloxane (compare scheme 6).

화학식 (IIa)에서 라디칼 R a 는 바람직하게는 C1-C3 알킬렌 라디칼이다. 보다 바람직하게는 라디칼 R a 는 에틸렌 라디칼이다.The radical R a in the formula ( IIa ) is preferably a C 1 -C 3 alkylene radical. More preferably the radical R a is an ethylene radical.

실리란의 규소 원자 상의 치환기 R 1 에 의해, 동역학적 및 열역학적 제어를 통해, 실리란 작용화된 화합물의 반응성 및 안정성에 영향을 미칠 수 있다. 화학식 (IIa)에서 라디칼 R 1 은 바람직하게는 (i) C1-C6 탄화수소 라디칼 및 (ii) 아민 라디칼 - N(SiR a R b R c ) 2 (여기서, 라디칼 R a , R b , R c 는 서로 독립적으로 C1-C6 탄화수소 라디칼임)로 이루어진 군으로부터 선택된다. 화학식 (IIa)에서 라디칼 R 1 은 보다 바람직하게는 (i) C1-C6 알킬 라디칼 및 (ii) - N(SiMe 3 ) 2 로 이루어진 군으로부터 선택된다.By means of the substituents R 1 on the silicon atom of silirane, through kinetic and thermodynamic control, the reactivity and stability of the silirane functionalized compound can be affected. The radical R 1 in the formula ( IIa ) is preferably (i) a C 1 -C 6 hydrocarbon radical and (ii) an amine radical - N(SiR a R b R c ) 2 , wherein the radicals R a , R b , R c is, independently of each other, a C 1 -C 6 hydrocarbon radical). The radical R 1 in formula ( IIa ) is more preferably selected from the group consisting of (i) C 1 -C 6 alkyl radicals and (ii) - N(SiMe 3 ) 2 .

화학식 (IIa)에서 라디칼 R 2 , R 3 , R 4 , R 5 는 서로 독립적으로 바람직하게는 (i) 수소 및 (ii) C1-C6 알킬 라디칼로 이루어진 군으로부터 선택되며, 라디칼 R 2 R 4 는 시클릭 라디칼의 일부일 수도 있다. 화학식 (IIa)에서 라디칼 R 2 , R 3 , R 4 , R 5 는 서로 독립적으로 보다 바람직하게는 (i) 수소 및 (ii) C1-C6 알킬 라디칼로 이루어진 군으로부터 선택되며, 라디칼 R 2 R 4 는 헥세닐 라디칼의 일부일 수도 있다.The radicals R 2 , R 3 , R 4 , R 5 in the formula ( IIa ) are, independently of each other, preferably selected from the group consisting of (i) hydrogen and (ii) C 1 -C 6 alkyl radicals, the radicals R 2 and R 4 may be part of a cyclic radical. The radicals R 2 , R 3 , R 4 , R 5 in the formula ( IIa ) are independently of each other more preferably selected from the group consisting of (i) hydrogen and (ii) C 1 -C 6 alkyl radicals, the radicals R 2 and R 4 may be part of a hexenyl radical.

하나의 바람직한 실시양태는 실리란 작용화된 화합물로서, 여기에서 화학식 (II)에서 지수 a, b, b', c, c', c'', d, d''d'''는 0의 값을 취하고 지수 d'는 2의 값을 취하며; 화학식 (IIa)에서 지수 n은 1의 값을 취하고; 라디칼 R a 는 C1-C3 알킬렌 라디칼이고; 라디칼 R 1 은 (i) C1-C6 탄화수소 라디칼 및 (ii) 아민 라디칼 - N(SiR a R b R c ) 2 (여기서, 라디칼 R a , R b , R c 는 서로 독립적으로 C1-C6 탄화수소 라디칼임)로 이루어진 군으로부터 선택되고; 라디칼 R 2 , R 3 , R 4 , R 5 는 서로 독립적으로 (i) 수소 및 (ii) C1-C6 알킬 라디칼로 이루어진 군으로부터 선택되며, 라디칼 R 2 R 4 는 시클릭 라디칼의 일부일 수도 있다.One preferred embodiment is a silirane functionalized compound, wherein in formula ( II ) the indices a , b , b' , c, c', c'', d, d'' and d''' are 0 takes the value of and the exponent d' takes the value of 2; The index n in formula ( IIa ) takes a value of 1; the radical R a is a C 1 -C 3 alkylene radical; The radicals R 1 are (i) a C 1 -C 6 hydrocarbon radical and (ii) an amine radical - N(SiR a R b R c ) 2 , wherein the radicals R a , R b , R c independently of one another are C 1 - is a C 6 hydrocarbon radical; The radicals R 2 , R 3 , R 4 , R 5 are independently of each other selected from the group consisting of (i) hydrogen and (ii) C 1 -C 6 alkyl radicals, the radicals R 2 and R 4 being part of a cyclic radical may be

다른 바람직한 실시양태는 실리란 작용화된 화합물로서, 여기에서 화학식 (II)에서 지수 a, b, b', c, c', c'', d, d''d'''는 0의 값을 취하고 지수 d'는 2의 값을 취하며; 화학식 (IIa)에서 지수 n은 1의 값을 취하고; 라디칼 R a 는 에틸렌 라디칼이고; 라디칼 R 1 은 (i) C1-C6 알킬 라디칼 및 (ii) - N(SiMe 3 ) 2 로 이루어진 군으로부터 선택되고; 라디칼 R 2 , R 3 , R 4 , R 5 는 서로 독립적으로 (i) 수소 및 (ii) C1-C6 알킬 라디칼로 이루어진 군으로부터 선택되며, 라디칼 R 2 R 4 는 헥세닐 라디칼의 일부일 수도 있다.Another preferred embodiment is a silirane functionalized compound, wherein in formula ( II ) the indices a , b , b' , c, c', c'', d, d'' and d''' are zero. takes a value and the exponent d' takes a value of 2; The index n in formula ( IIa ) takes a value of 1; the radical R a is an ethylene radical; the radical R 1 is selected from the group consisting of (i) a C 1 -C 6 alkyl radical and (ii) - N(SiMe 3 ) 2 ; The radicals R 2 , R 3 , R 4 , R 5 are independently of each other selected from the group consisting of (i) hydrogen and (ii) C 1 -C 6 alkyl radicals, wherein the radicals R 2 and R 4 are part of a hexenyl radical may be

본 발명의 실리란 작용화된 화합물의 특히 바람직한 예시는 하기 스킴 5에 제시된 화합물 SV1, SV2SV3이다.Particularly preferred examples of silirane functionalized compounds of the present invention are the compounds SV1 , SV2 and SV3 shown in Scheme 5 below.

Figure pct00007
Figure pct00007

스킴 5: 특히 바람직한 실리란 작용화된 화합물Scheme 5: Particularly Preferred Silirane Functionalized Compounds

실리란 작용화된 유기규소 화합물은 예를 들어 극성 배위 용매(예를 들어, 테트라히드로푸란) 중에서 디할로실란을 리튬 또는 칼륨 그래파이트와 같은 환원제로 환원시켜 합성된다. 디할로실란기의 환원으로 중간체 실릴렌이 형성되며, 이는 올레핀 화합물로 제거되고 반응하여 실리란을 형성한다.Silirane functionalized organosilicon compounds are synthesized, for example, by reduction of dihalosilane with a reducing agent such as lithium or potassium graphite in a polar coordination solvent (eg, tetrahydrofuran). Reduction of the dihalosilane group forms the intermediate silylene, which is removed as an olefin compound and reacts to form silylene.

실릴렌을 제거하기 위한 올레핀 화합물로서, 일반적으로 이중 결합을 갖는 모든 화합물을 이용할 수 있다. 실리란 고리 상의 치환기는 반응성에 결정적인 영향을 미치기 때문에, 올레핀의 선택은 실리란 작용화된 유기규소 화합물의 거동에 영향을 미치기 위해 사용될 수도 있다. 실리란 작용화된 유기규소 화합물의 활성화 동안, 실리란은 다시 실릴렌과 올레핀으로 절단된다. 따라서 전환 반응의 반응 조건 하에서 가스상이고 휘발할 수 있는 올레핀계 화합물을 선택하는 것이 유리하다.As the olefin compound for removing silylene, generally any compound having a double bond can be used. Since the substituents on the silirane ring have a decisive effect on reactivity, the choice of olefin may be used to influence the behavior of the silirane functionalized organosilicon compound. During activation of the silylene functionalized organosilicon compound, the silylane is again cleaved into silylene and olefins. It is therefore advantageous to select olefinic compounds which are gaseous and volatilizable under the reaction conditions of the conversion reaction.

대안으로, 실리란 작용화된 화합물은 실리란 고리의 C-C 결합이 형성되는 부르츠(Wurtz) 커플링을 통해 제조될 수도 있다.Alternatively, silirane functionalized compounds may be prepared via Wurtz coupling in which a C-C bond of the silirane ring is formed.

본 발명의 다른 주제는Another subject of the present invention is

a) 본 발명의 1종 이상의 실리란 작용화된 화합물; 및a) at least one silirane functionalized compound of the present invention; and

b) 각 경우에 2개 이상의 라디칼 R'를 갖는 1종 이상의 화합물 A b) at least one compound A having in each case at least two radicals R'

를 포함하고, 상기 라디칼 R'는 서로 독립적으로Including, wherein the radicals R' are independently of each other

(i) -Si-H,(i) -Si-H ,

(ii) -OH,(ii) -OH ,

(iii) -C x H 2x -OH(여기서, x는 1 내지 20 범위의 정수임),(iii) -C x H 2x -OH , wherein x is an integer ranging from 1 to 20;

(iv) -C x H 2x -NH 2 (여기서, x는 1 내지 20 범위의 정수임),(iv) -C x H 2x -NH 2 , wherein x is an integer ranging from 1 to 20;

(v) - SH, 및(v) - SH , and

(vi) - R a n -CR=CR 2 (여기서, R a 는 2가 C1-C20 탄화수소 라디칼이고 지수 n은 0 또는 1의 값을 취하며 라디칼 R은 서로 독립적으로 (vi.i) 수소 및 (vi.ii) C1-C6 탄화수소 라디칼로 이루어진 군으로부터 선택됨)(vi) - R a n -CR=CR 2 , wherein R a is a divalent C 1 -C 20 hydrocarbon radical and the index n takes on the value 0 or 1 and the radicals R independently of one another (vi.i) hydrogen and (vi.ii) selected from the group consisting of C 1 -C 6 hydrocarbon radicals)

로 이루어진 군으로부터 선택되는 것인 혼합물이다.It is a mixture selected from the group consisting of.

본 발명의 하나의 특정 실시양태는 화합물 A가 하기 일반식 (III)의 작용화된 실록산으로부터 선택되는 혼합물이다:One particular embodiment of the present invention is a mixture wherein compound A is selected from functionalized siloxanes of the general formula ( III ):

(SiO(SiO 4/24/2 )) aa (R(R xx SiOSiO 3/23/2 )) bb (R'SiO(R'SiO 3/23/2 )) b'b' (R(R xx 22 SiOSiO 2/22/2 )) cc (R(R xx R'SiOR'SiO 2/22/2 )) c'c'

(R'(R' 22 SiOSiO 2/22/2 )) c''c'' (R(R xx 33 SiOSiO 1/21/2 )) dd (R'R(R'R xx 22 SiOSiO 1/21/2 )) d'd' (R'(R' 22 RR xx SiOSiO 1/21/2 )) d''d''

(R'(R' 33 SiOSiO 1/21/2 )) d'''d''' (III),(III),

상기 일반식에서 라디칼 R x 는 서로 독립적으로 (i) 할로겐, 및 (ii) 치환되지 않거나 치환된 C1-C20 탄화수소 라디칼로 이루어진 군으로부터 선택되고;The radicals R x in the above general formula are independently of each other selected from the group consisting of (i) halogen, and (ii) unsubstituted or substituted C 1 -C 20 hydrocarbon radicals;

라디칼 R'는 서로 독립적으로The radicals R' are independently of each other

(i) 수소,(i) hydrogen;

(ii) -OH,(ii) -OH ,

(iii) -C x H 2x -OH(여기서, x는 1 내지 20 범위의 정수임),(iii) -C x H 2x -OH , wherein x is an integer ranging from 1 to 20;

(iv) -C x H 2x -NH 2 (여기서, x는 1 내지 20 범위의 정수임),(iv) -C x H 2x -NH 2 , wherein x is an integer ranging from 1 to 20;

(v) - SH, 및(v) - SH , and

(vi) - R a n -CR=CR 2 (여기서, R a 는 2가 C1-C20 탄화수소 라디칼이고 지수 n은 0 또는 1의 값을 취하며 라디칼 R은 서로 독립적으로 (i) 수소 및 (ii) C1-C6 탄화수소 라디칼로 이루어진 군으로부터 선택됨)(vi) - R a n -CR=CR 2 , wherein R a is a divalent C 1 -C 20 hydrocarbon radical and the index n takes the value 0 or 1 and the radicals R are, independently of one another, (i) hydrogen and (ii) selected from the group consisting of C 1 -C 6 hydrocarbon radicals)

로 이루어진 군으로부터 선택되고;is selected from the group consisting of;

지수 a, b, b', c, c', c'', d, d', d'', d'''는 화합물의 각 실록산 단위의 수를 나타내고 서로 독립적으로 0 내지 100,000 범위의 정수이며, 단, a, b, b', c, c', c'', d, d', d'', d'''의 합은 2 이상의 값을 취하고 지수 b', c', d' 중 하나 이상은 2 이상이거나 지수 c'', d'' 또는 d''' 중 하나 이상은 0이 아니다.The indices a , b , b' , c, c', c'', d, d', d'', d''' represent the number of each siloxane unit of the compound and are independently of each other integers ranging from 0 to 100,000; , provided that the sum of a, b, b', c, c', c'', d, d', d'', d''' takes a value of 2 or more, and among the exponents b' , c', d ' at least one is greater than or equal to 2 or at least one of the exponents c'', d'' or d''' is non-zero.

본 발명의 실리란 작용화된 화합물은 고반응성 실릴렌의 안정한 전구체이다. 실릴렌기는 가교제의 활성화 후에만 각 실리란기로부터 형성된다. 따라서 본 발명의 실리란 작용화된 화합물은 가교제로서 기능할 수 있기 위해 2개 이상의 실리란기를 가져야 한다.The silirane functionalized compounds of the present invention are stable precursors of highly reactive silylenes. Silylene groups are formed from each silylene group only after activation of the crosslinking agent. Therefore, the silirane functionalized compounds of the present invention must have at least two silirane groups in order to be able to function as a crosslinking agent.

Figure pct00008
Figure pct00008

스킴 6: 두 가지 상이한 비스-실리란 구조의 개략적 비교. 상단: 구조적 스캐폴드를 통해 브릿징된 실리란 작용화된 화합물의 규소 원자는 활성화시 가교성 반응성 비스-실릴렌 종을 생성한다. 하단: 규소 원자를 통해 브릿징되지 않은 실리란기는 활성화시 비가교 절단 생성물로 분해된다.Scheme 6: Schematic comparison of two different bis-silane structures. Top: Silicon atoms of the silirane functionalized compound bridged through the structural scaffold generate crosslinkable reactive bis-silylene species upon activation. Bottom: Sililane groups that are not bridged via silicon atoms decompose into non-crosslinked cleavage products upon activation.

본 발명의 다른 주제는Another subject of the present invention is

(i) 특정 실시양태에 따라 본 발명에 따른 혼합물을 제공하는 단계, 및(i) according to certain embodiments, providing a mixture according to the invention, and

(ii) 열적 활성화, 광화학적 활성화 또는 촉매 활성화에 의해 혼합물을 반응시키는 단계(ii) reacting the mixture by thermal activation, photochemical activation or catalytic activation;

를 포함하는 실록산의 제조 방법이다.It is a method for producing a siloxane comprising a.

화학식 (III)의 작용화된 실록산의 혼합물의 연결 및 본 발명의 실리란 작용화된 화합물의 연결은 열적 활성화, 광화학적 활성화 또는 촉매 활성화를 통해 달성될 수 있다. 연결 절차에서 유기규소 화합물의 실리란 단위는 반응하여 실릴렌을 형성하고, 이어서 실록산의 작용기와 반응하고 가교결합한다.The linking of the mixture of functionalized siloxanes of formula ( III ) and the linking of the silirane functionalized compounds of the present invention can be achieved via thermal activation, photochemical activation or catalytic activation. In the linking procedure, the silirane units of the organosilicon compound react to form silylene, which then reacts and crosslinks with the functional groups of the siloxane.

본 발명의 실리란 작용화된 화합물이 활성화될 수 있는(즉, 실리란이 실릴렌으로 전환되는) 다양한 방식이 존재한다. 열적 활성화는 실리란 화합물의 분해 온도보다 높은 온도를 필요로 한다. 실리란 화합물은 광화학적 활성화에 의해 실리란으로 전환될 수도 있다. 이러한 목적을 위해 필요한 파장은 UV 범위 내에 있다. 실리란의 반응성은 두 활성화 방법 모두에서 동일하다. 또한, 촉매를 이용하여 연결 반응을 가속할 수도 있거나 촉매를 실온 가교결합에 사용할 수도 있다. 적절한 촉매는 실리란을 불안정하게 하여 실릴렌 및 올레핀으로의 절단을 유도하는 화합물이다. 이러한 촉매의 예는 AgOTf 및 Cu(OTf)2이다. 일반적으로 실리란의 활성화는 또한 올레핀성 화합물(예를 들어, 2-부텐)을 생성한다.There are a variety of ways in which the silirane functionalized compounds of the present invention can be activated (ie, silirane is converted to silylene). Thermal activation requires a temperature higher than the decomposition temperature of the silirane compound. Silirane compounds can also be converted to silirane by photochemical activation. The wavelengths required for this purpose are in the UV range. The reactivity of silirane is the same for both activation methods. In addition, catalysts may be used to accelerate the linking reaction or catalysts may be used for room temperature crosslinking. Suitable catalysts are compounds that destabilize the silylenes leading to cleavage into silylenes and olefins. Examples of such catalysts are AgOTf and Cu(OTf) 2 . In general, activation of silirane also yields olefinic compounds (eg, 2-butene).

높은 반응성으로 인해, 활성화된 실리란 작용화된 화합물은 넓은 스펙트럼의 작용기와 반응할 수 있다. 가능한 반응 파트너는, 예를 들어, Si-H, Si-OR, Si-OH, C-OH, -NH2, S-H 및 -비닐이다. 결과적으로 산업용 실록산의 모든 일반적인 작용기가 지원받는다. 작용화된 실록산은 네트워크 형성을 위해 2개 이상의 명시된 작용기를 가져야 한다. 이작용성 실록산과 실리란 화합물의 가교결합의 메커니즘은, 형성된 실릴렌의 각 삽입이 공격받을 수 있는 신규한 기를 형성하여 노드 포인트(nodal point)를 형성한다는 것이다.Due to their high reactivity, activated silirane functionalized compounds can react with a broad spectrum of functional groups. Possible reaction partners are, for example, Si-H, Si-OR, Si-OH, C-OH, -NH 2 , SH and -vinyl. As a result, all common functional groups of industrial siloxanes are supported. Functionalized siloxanes must have at least two specified functional groups to form a network. The mechanism of crosslinking of the bifunctional siloxane with the silylene compound is that each insertion of the formed silylene forms a new group that can be attacked to form a nodal point.

(폴리)실록산 상의 다른 작용기(예를 들어, 사슬의 Si-OH 말단, 메틸비닐기)도 가능하다. 반응성의 차이로 인해(고리 부가), 비닐 치환된 (폴리)실록산은 3개 이상의 비닐기를 가져야 한다.Other functional groups on the (poly)siloxane (eg, Si-OH end of the chain, methylvinyl group) are also possible. Due to differences in reactivity (ring addition), vinyl substituted (poly)siloxanes must have at least 3 vinyl groups.

가교결합된 중합체의 특성은 작용화된 실록산의 길이 및/또는 분자 질량을 통해 변경될 수 있다. 실릴렌 결합 방법은 낮은 분자 질량의 작용화된 실록산으로 및 높은 분자 질량의 작용화된 실록산으로 수행될 수 있다. 작용화된 실록산 화합물의 예를 하기 스킴 7에 제시한다.The properties of the crosslinked polymer can be altered through the length and/or molecular mass of the functionalized siloxane. The silylene bonding method can be performed with functionalized siloxanes of low molecular mass and functionalized siloxanes of high molecular mass. Examples of functionalized siloxane compounds are shown in Scheme 7 below.

Figure pct00009
Figure pct00009

스킴 7: 본 발명의 실리란 작용화된 화합물과의 반응에 사용될 수 있는 작용화된 실록산의 예Scheme 7: Examples of functionalized siloxanes that can be used for reaction with silirane functionalized compounds of the present invention

실릴렌과 실록산의 작용기의 반응은 실릴렌을 작용기 내로 삽입하는 것에 의해 달성된다. 실릴렌과 히드리도실록산 및 알콕시실록산의 반응은 실리란 작용화된 화합물과 실록산 사이의 디실란 결합을 생성한다. 이러한 디실란은 새롭게 형성된 Si-H 또는 Si-OR 기를 가지며, 이는 실릴렌에 대한 추가 공격 지점을 나타낸다. 이에 따라, 실릴렌과 실록산의 각 반응은 추가의 부착가능한 작용기를 생성한다. 실란올, 알코올 및 아민과 같은 친핵성 작용기는 마찬가지로 실릴렌을 작용기 내로 삽입하는 것을 통해 실릴렌과 반응한다. 이 경우 디실란이 형성되지 않고; 대신에, 실록산 및 실라잔이 형성되며, 이는 또한 추가 가교결합을 위한 새롭게 형성된 Si-H 작용기를 갖는다. 반응 동안의 신규한 부착 지점의 형성을 통해, 2개의 작용기만을 갖는 실록산도 이용할 수 있다.The reaction of the functional groups of the silylene with the siloxane is accomplished by inserting the silylene into the functional group. Reaction of silylene with hydridosiloxanes and alkoxysiloxanes produces a disilane bond between the silylene functionalized compound and the siloxane. These disilanes have newly formed Si-H or Si-OR groups, which represent an additional point of attack for silylene. Thus, each reaction of silylene with siloxane produces additional attachable functional groups. Nucleophilic functional groups such as silanols, alcohols and amines are likewise reacted with silylene via insertion of silylene into the functional group. In this case no disilane is formed; Instead, siloxanes and silazanes are formed, which also have newly formed Si—H functional groups for further crosslinking. Through the formation of novel attachment points during the reaction, siloxanes with only two functionalities are also available.

Figure pct00010
Figure pct00010

스킴 8: 히드리도실록산(좌측), 실록산올(중앙) 및 비닐실록산(우측)으로 실록산 네트워크를 형성하기 위한 가능한 가교결합 전략의 개요.Scheme 8: Overview of possible crosslinking strategies for forming siloxane networks with hydridosiloxanes (left), siloxanols (center) and vinylsiloxanes (right).

실록산의 제조를 위해, 균질한 혼합이 보장될 때까지 본 발명의 실리란 작용화된 화합물과 화학식 (III)의 작용화된 실록산을 혼합한다. 연결은 상기 세 가지 방법 중 하나에 의한 혼합물의 활성화를 통해서만 발생한다. 본 발명의 실리란 작용화된 화합물이 반응에 의해 완전히 소모될 때까지, 또는 원하는 특성이 달성될 때까지 혼합물을 활성화한다. 성공적인 가교결합 절차도 마찬가지로 가능하다. 공기에 민감한 실리란 작용화된 화합물의 경우, 산소 및 물과의 접촉을 방지하기 위해 불활성 가스 또는 다른 적절한 조치를 사용해야 한다.For the preparation of the siloxane, the functionalized siloxane of formula ( III ) is mixed with the silirane functionalized compound of the present invention until homogeneous mixing is ensured. Linking occurs only through activation of the mixture by one of the three methods above. The mixture is activated until the silirane functionalized compound of the present invention is completely consumed by the reaction, or until the desired properties are achieved. A successful crosslinking procedure is likewise possible. For air-sensitive silanic functionalized compounds, inert gas or other suitable measures should be used to prevent contact with oxygen and water.

반응 온도는 열분해에 의한 실릴렌의 형성인 실리란 작용화된 화합물의 분해 온도보다 높도록 선택된다. 통상적으로 상기 온도는 60 내지 200℃ 범위, 바람직하게는 80 내지 150℃ 범위, 보다 바람직하게는 130 내지 150℃ 범위이다.The reaction temperature is selected to be higher than the decomposition temperature of the silylene functionalized compound, which is the formation of silylene by pyrolysis. Typically the temperature is in the range of 60 to 200 °C, preferably in the range of 80 to 150 °C, more preferably in the range of 130 to 150 °C.

실리란 작용화된 화합물은 적절한 몰비로 화학식 (III)의 작용화된 실록산과 혼합된다. 통상적으로 실록산 중 실리란기:작용기의 몰비는 4:1 내지 1:4 범위, 바람직하게는 1:1 내지 1:4 범위이다.The silirane functionalized compound is mixed with the functionalized siloxane of formula ( III ) in an appropriate molar ratio. Typically the molar ratio of silirane groups to functional groups in the siloxane ranges from 4:1 to 1:4, preferably from 1:1 to 1:4.

실시예Example

Schlenk 조건 하의 베이킹된 유리 장치에서 모든 합성을 수행하였다. 아르곤 또는 질소를 불활성 가스로 사용하였다. 사용된 화학물질(비닐실란, 비닐실록산, 실리콘 오일 등)은 WACKER Chemie AG, ABCR 또는 Sigma-Aldrich로부터 입수하였다. 시스-2-부텐(2.0) 및 트랜스-2-부텐(2.0)을 Linde AG로부터 입수하였다. 모든 용매를 사용 전 건조 및 증류하였다. 모든 실리콘 오일을 사용 전 Al2O3 및 3 Å 분자체 상에서 건조하고 탈기하였다. 분자량은 평균값으로 나타내며 제조업체의 수치를 기반으로 한다. 사용된 폴리실록산은 랜덤 공중합체이다. 사용된 모든 화학물질을 불활성 가스 하에서 보관하였다. 아르곤 분위기 하의 니켈 도가니에서 200℃에서 원소 리튬(Sigma-Aldrich, 99%, 미량 금속 기반) 및 나트륨(Sigma-Aldrich, 99.8%, 나트륨 기반)을 용융시켜 2.5%의 나트륨 분획을 갖는 리튬을 얻었다. Li/Na 합금을 사용 전에 매우 작은 피스로 절단하여 표면적을 증가시켰다. Al2O3(중성) 및 활성탄을 72시간 동안 150℃에서 고진공 하에서 건조하였다.All syntheses were performed in a baked glass apparatus under Schlenk conditions. Argon or nitrogen was used as an inert gas. Chemicals used (vinylsilane, vinylsiloxane, silicone oil, etc.) were obtained from WACKER Chemie AG, ABCR or Sigma-Aldrich. Cis-2-butene (2.0) and trans-2-butene (2.0) were obtained from Linde AG. All solvents were dried and distilled before use. All silicone oils were dried and degassed over Al 2 O 3 and 3 Å molecular sieves prior to use. Molecular weights are expressed as average values and are based on the manufacturer's figures. The polysiloxane used is a random copolymer. All chemicals used were stored under inert gas. Elemental lithium (Sigma-Aldrich, 99%, trace metal based) and sodium (Sigma-Aldrich, 99.8%, sodium based) were melted at 200° C. in a nickel crucible under an argon atmosphere to obtain lithium having a sodium fraction of 2.5%. The Li/Na alloy was cut into very small pieces prior to use to increase the surface area. Al 2 O 3 (neutral) and activated carbon were dried under high vacuum at 150° C. for 72 hours.

Bruker Avance III 500 MHz를 이용하여 자기 공명 분광 분석(1H, 29Si)을 수행하였다.Magnetic resonance spectroscopy ( 1 H, 29 Si) was performed using a Bruker Avance III 500 MHz.

Linden CMS로부터의 이온 공급원과 함께 LIFDI-MS 700을 이용하여 질량 분광 분석을 수행하였다.Mass spectrometry analysis was performed using a LIFDI-MS 700 with an ion source from Linden CMS.

Elementar의 Vario EL을 이용하여 뮌헨 공과 대학교(Munich Technical University) 화학부의 미세 분석 실험실에서 원소 분석을 수행하였다.Elemental analysis was performed using Elementar's Vario EL in the microanalysis laboratory of the chemistry department of Munich Technical University.

합성예 1: 1,3-비스(2-(1-(Synthesis Example 1: 1,3-bis (2- (1- ( terttert -부틸)-2,3-디메틸실리란-1-일)에틸)-1,1,3,3-테트라메틸디실록산(-Butyl)-2,3-dimethylsiliran-1-yl)ethyl)-1,1,3,3-tetramethyldisiloxane ( SV1SV1 )의 제조) manufacturing

Figure pct00011
Figure pct00011

출발 화합물 디비닐테트라메틸디실록산에서 시작하여, 3 단계 반응 경로를 통해 비스-실리란(SV1)을 합성하였다. 제1 합성 단계에서 이 화합물을 Karstedt 촉매(백금(0)-1,3-디비닐-1,1,3,3-테트라메틸디실록산 착물)의 존재 하에 히드로실릴화 반응을 통해 트리클로로실란과 반응시켰다. 이 반응을 위해, 100 g(740 mmol, 4.0 당량)의 트리클로로실란을 250 mL의 Schlenk 플라스크 중 30 mL의 톨루엔에 도입하고 34.4 g(180 mmol, 1.0 당량)의 디비닐테트라메틸디실록산과 혼합하였다. 이어서 0.05 mL의 Karstedt 촉매(자일렌 중 2.1 내지 2.4% Pt)를 반응 혼합물에 첨가하고, 이를 18시간 동안 실온에서 교반하였다. 반응 종료 후, 건조된 중성 산화알루미늄을 통해 혼합물을 여과하고 잔류 용매를 감압 하에서 제거하였다. 이로써 투명한 무색 액체로 81.3 g(96%, 177 mmol)의 생성물 (Cl3SiCH2CH2SiMe2)2O를 얻었다.Starting from the starting compound divinyltetramethyldisiloxane, bis-silirane ( SV1 ) was synthesized through a three-step reaction route. In the first synthesis step, this compound was reacted with trichlorosilane via hydrosilylation in the presence of a Karstedt catalyst (platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex). reacted. For this reaction, 100 g (740 mmol, 4.0 equiv) of trichlorosilane was introduced into 30 mL of toluene in a 250 mL Schlenk flask and mixed with 34.4 g (180 mmol, 1.0 equiv) of divinyltetramethyldisiloxane. did. Then 0.05 mL of Karstedt catalyst (2.1-2.4% Pt in xylene) was added to the reaction mixture, which was stirred at room temperature for 18 hours. After completion of the reaction, the mixture was filtered through dried neutral aluminum oxide, and the residual solvent was removed under reduced pressure. This gave 81.3 g (96%, 177 mmol) of the product (Cl 3 SiCH 2 CH 2 SiMe 2 ) 2 O as a clear colorless liquid.

1H-NMR: (294 K, 500 MHz, C6D6) δ = 0.10 (s, 12 H, CH3), 0.55-0.60 (m, 4 H, CH2), 1.05-1.10 (m, 4 H, CH2). 1 H-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = 0.10 (s, 12 H, CH 3 ), 0.55-0.60 (m, 4 H, CH 2 ), 1.05-1.10 (m, 4 H, CH 2 ).

29Si-NMR: (294 K, 500 MHz, C6D6) δ = 8.14 (SiO), 13.84 (SiCl3). 29 Si-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = 8.14 (SiO), 13.84 (SiCl 3 ).

EA [%]: 계산: C = 21.01, H = 4.41, 실측: C = 20.93, H = 4.63EA [%]: Calculation: C = 21.01, H = 4.41, Actual measurement: C = 20.93, H = 4.63

헥사클로로실란을 tert-부틸리튬으로 치환하는 것을 통해 다음 합성 단계를 수행하였다. 이 반응을 위해, 30.0 g(65.6 mmol, 1.0 당량)의 (Cl3SiCH2CH2SiMe2)2O를 75 mL의 펜탄에 용해시키고 용액을 -10℃로 냉각하였다. 적하 깔때기를 통해 8.40 g(131 mmol, 2.0 당량) 1.7 M tert-부틸리튬 용액을 천천히 적가하였다. 이어서 반응물을 0℃로 가열하고 8시간 동안 교반하였다. 형성된 염화리튬을 여과로 제거하고 여액을 감압 하에서 용매로부터 분리하였다. 고진공(110℃, 10-5 mbar) 하에서의 미정제 생성물의 후속 승화로, 백색 고형물로 22.0 g(67%, 43.9 mmol)의 테트라클로로실란 (Cl2 tBuSiCH2CH2SiMe2)2O를 얻었다.The following synthetic steps were performed by substituting tert -butyllithium for hexachlorosilane. For this reaction, 30.0 g (65.6 mmol, 1.0 equiv) of (Cl 3 SiCH 2 CH 2 SiMe 2 ) 2 O was dissolved in 75 mL of pentane and the solution was cooled to -10°C. 8.40 g (131 mmol, 2.0 equiv) 1.7 M tert-butyllithium solution was slowly added dropwise via a dropping funnel. The reaction was then heated to 0° C. and stirred for 8 h. The formed lithium chloride was removed by filtration, and the filtrate was separated from the solvent under reduced pressure. Sublimation of the crude product under high vacuum (110° C., 10 −5 mbar) gave 22.0 g (67%, 43.9 mmol) of tetrachlorosilane (Cl 2 t BuSiCH 2 CH 2 SiMe 2 ) 2 O as a white solid. .

1H-NMR: (294 K, 500 MHz, C6D6) δ = 0.05 (s, 12 H, Si-CH3), 0.78-0.82 (m, 4 H, CH2), 1.00 (s, 18 H, SiC-CH3), 1.04-1.08 (m, 4 H, CH2). 1 H-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = 0.05 (s, 12 H, Si-CH 3 ), 0.78-0.82 (m, 4 H, CH 2 ), 1.00 (s, 18 H, SiC-CH 3 ), 1.04-1.08 (m, 4 H, CH 2 ).

29Si-NMR: (294 K, 500 MHz, C6D6) δ = 8.22 (Si-O), 38.47 (Si-tBuCl2). 29 Si-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = 8.22 (Si-O), 38.47 (Si- t BuCl 2 ).

EA [%]: 계산: C = 38.39, H = 7.65, 실측: C = 38.25, H = 7.76EA [%]: Calculation: C = 38.39, H = 7.65, Actual measurement: C = 38.25, H = 7.76

비스-실리란의 합성의 마지막 단계는 리튬-나트륨 합금(2.5% Na)에 의한 테트라클로로실란의 환원을 수반한다. 이 반응 단계를 위해, 10.0 g(20.0 mmol, 1.0 당량)의 테트라클로로실란 (Cl2 tBuSiCH2CH2SiMe2)2O를 50 mL의 THF에 용해시켰다. 반응 용액을 -30℃로 냉각하고, 그 후 33.6 g(600 mmol, 30.0 당량)의 시스-부텐을 축합에 의해 혼입시켰다. 아르곤 향류에서 2.10 g(300 mmol, 15.0 당량)의 리튬-나트륨 합금(2.5% Na)을 첨가하고 반응 용액을 실온에서 7일 동안 강하게 교반하였다. 클로로실란의 환원이 종료되었을 때, 용매를 감압 하에서 제거하고 잔류물을 펜탄에 흡수시켰다. 침전된 리튬염을 여과로 제거하고 여액을 다시 감압 하에서 건조하였다. 이로써 황색 오일로 7.80 g(86%, 16.7 mmol)의 비스-실리란(SV1)을 얻었다. 사용된 시스-부텐 가스의 순도로 인해(순도 2.0), 트랜스 및 1-부텐 종이 시스 종과 함께 발견되었다.The last step in the synthesis of bis-silirane involves the reduction of tetrachlorosilane by means of a lithium-sodium alloy (2.5% Na). For this reaction step, 10.0 g (20.0 mmol, 1.0 equiv) of tetrachlorosilane (Cl 2 tBu SiCH 2 CH 2 SiMe 2 ) 2 O was dissolved in 50 mL of THF. The reaction solution was cooled to -30°C, after which 33.6 g (600 mmol, 30.0 equiv) of cis-butene were incorporated by condensation. 2.10 g (300 mmol, 15.0 equiv) of lithium-sodium alloy (2.5% Na) were added in countercurrent argon and the reaction solution was stirred vigorously at room temperature for 7 days. When the reduction of chlorosilane was complete, the solvent was removed under reduced pressure and the residue was absorbed in pentane. The precipitated lithium salt was removed by filtration, and the filtrate was dried again under reduced pressure. This gave 7.80 g (86%, 16.7 mmol) of bis-silirane ( SV1 ) as a yellow oil. Due to the purity of the cis-butene gas used (purity 2.0), trans and 1-butene species were found along with the cis species.

트랜스 종:Trans Species:

1H-NMR: (294 K, 500 MHz, C6D6) δ = 0.12-0.14 (m, 12 H, Si-CH3), 0.46-0.52 (m, 4 H, Si CH2), 0.74-0.78 (m, 4 H, Si-CH2), 1.12 (s, 18 H, SiC-CH3), (m, 4 H, Si-CH), 1.43-1.45 (m, 12 H, SiCH-CH3). 1 H-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = 0.12-0.14 (m, 12 H, Si-CH 3 ), 0.46-0.52 (m, 4 H, Si CH 2 ), 0.74- 0.78 (m, 4 H, Si-CH 2 ), 1.12 (s, 18 H, SiC-CH 3 ), (m, 4 H, Si-CH), 1.43-1.45 (m, 12 H, SiCH-CH 3 ) ).

29Si-NMR: (294 K, 500 MHz, C6D6) δ = -53.11 (CH-Si-CH), 8.01 (Si-O). 29 Si-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = -53.11 (CH-Si-CH), 8.01 (Si-O).

시스 종:cis species:

1H-NMR: (294 K, 500 MHz, C6D6) δ = 0.14-0.16 (m, 12 H, Si-CH3), 0.86-0.88 (m, 8 H, CH2), 1.03 (s, 18 H, SiC-CH3), 1.08-1.11 (m, 4 H, Si-CH), 1.43-1.45 (m, 12 H, SiCH-CH3). 1 H-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = 0.14-0.16 (m, 12 H, Si-CH 3 ), 0.86-0.88 (m, 8 H, CH 2 ), 1.03 (s) , 18 H, SiC-CH 3 ), 1.08-1.11 (m, 4 H, Si-CH), 1.43-1.45 (m, 12 H, SiCH-CH 3 ).

29Si-NMR: (294 K, 500 MHz, C6D6) δ = -49.70 (CH-Si-CH), 7.30 (Si-O). 29 Si-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = -49.70 (CH-Si-CH), 7.30 (Si-O).

1-부텐 종:1-butene species:

1H-NMR: (294 K, 500 MHz, C6D6) δ = 0.07-0.10 (m, 12 H, Si-CH3), 0.59-0.68 (m, 4 H, Si-CH2), 0.79-0.81 (m, 4 H, Si-CH2), 1.08 (s, 18 H, SiC-CH3), 1.18-1.19 (m, 2 H, CH2Si-CH-CH2CH3), 1.19-1.20 (m, 4 H, CHSi-CH2), 1.39-1.40 (m, 4 H, SiCH-CH2-CH3), 1.47-1.49 (m, 6 H, SiCHCH2-CH3). 1 H-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = 0.07-0.10 (m, 12 H, Si-CH 3 ), 0.59-0.68 (m, 4 H, Si-CH 2 ), 0.79 -0.81 (m, 4 H, Si-CH 2 ), 1.08 (s, 18 H, SiC-CH 3 ), 1.18-1.19 (m, 2 H, CH 2 Si-CH-CH 2 CH 3 ), 1.19- 1.20 (m, 4 H, CHSi-CH 2 ), 1.39-1.40 (m, 4 H, SiCH-CH 2 -CH 3 ), 1.47-1.49 (m, 6 H, SiCHCH 2 -CH 3 ).

29Si-NMR: (294 K, 500 MHz, C6D6) δ = -42.34 (CH2-Si-CH), 6.89 (Si-O). 29 Si-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = -42.34 (CH 2 -Si-CH), 6.89 (Si-O).

EA [%]: 계산: C = 61.20, H = 11.56, 실측: C = 58.13, H = 11.31EA [%]: Calculation: C = 61.20, H = 11.56, Actual measurement: C = 58.13, H = 11.31

LIFDI-MS: (THF) m/z = 471.95 [M]+, 415.99 [M-C4H8]+, 360.01 [M-C8H16]+.LIFDI-MS: (THF) m/z = 471.95 [M] + , 415.99 [MC 4 H 8 ] + , 360.01 [MC 8 H 16 ] + .

세 가지 명시된 비스-실리란은 입체이성질체이기 때문에 동일한 분자 질량을 갖는다. 따라서 이들을 질량 스펙트럼에서 구별할 수 없다. 원소 분석 결과도 마찬가지이다.The three specified bis-silicones have the same molecular mass because they are stereoisomers. Therefore, they cannot be distinguished in the mass spectrum. The same is true for elemental analysis results.

합성예 2: 1,3-비스(2-(7-(tert-부틸)-7-실라비시클로[4.1.0]헵탄-7-일)에틸)-1,1,3,3-테트라메틸디실록산(Synthesis Example 2: 1,3-bis(2-(7-(tert-butyl)-7-silabicyclo[4.1.0]heptan-7-yl)ethyl)-1,1,3,3-tetramethyl disiloxane ( SV2SV2 )의 제조) manufacturing

Figure pct00012
Figure pct00012

이 합성의 출발 화합물을 나타내는 테트라클로로실란 (Cl2tBuSiCH2CH2SiMe2)2O를 합성예 1의 경로와 유사한 경로로 제조하였다. 후속 환원을 위해, 2.5 mL의 THF에서 1.00 g(2.00 mmol, 1.0 당량)의 테트라클로로실란을 3.94 g(47.9 mmol, 24.0 당량)의 시클로헥센과 혼합하였다. 반응 용액을 208 mg(29.9 mmol, 25.0 당량)의 리튬-나트륨 합금(2.5% Na)과 혼합하고 실온에서 10시간 동안 강하게 교반하였다. 모든 클로로실란의 환원이 완료되었을 때, 용매 및 과잉 시클로헥센을 감압 하에서 제거하고, 잔류물을 5 mL의 펜탄에 재현탁시켰다. 침전된 LiCl을 제거하고 여액을 감압 하에서 건조하였다. 이로써 투명한 오일로 382 mg(37%, 0.73 mmol)의 비스-실리란(SV2)을 얻었다. 비스-실리란(SV2)의 시스 및 트랜스 종을 얻었다.Tetrachlorosilane (Cl 2 tBuSiCH 2 CH 2 SiMe 2 ) 2 O representing the starting compound of this synthesis was prepared by a route similar to that of Synthesis Example 1. For subsequent reduction, 1.00 g (2.00 mmol, 1.0 equiv) of tetrachlorosilane was mixed with 3.94 g (47.9 mmol, 24.0 equiv) of cyclohexene in 2.5 mL of THF. The reaction solution was mixed with 208 mg (29.9 mmol, 25.0 equiv) of a lithium-sodium alloy (2.5% Na) and stirred vigorously at room temperature for 10 hours. When the reduction of all chlorosilanes was complete, the solvent and excess cyclohexene were removed under reduced pressure, and the residue was resuspended in 5 mL of pentane. The precipitated LiCl was removed and the filtrate was dried under reduced pressure. This gave 382 mg (37%, 0.73 mmol) of bis-silirane ( SV2 ) as a clear oil. Cis and trans species of bis-silirane ( SV2 ) were obtained.

시스 종:cis species:

1H-NMR: (294 K, 500 MHz, C6D6) δ = 0.13-0.15 (m, 12 H, Si-CH3), 0.90 (m, 8 H, Si-CH2), 1.03 (s, 18 H, SiC-CH3), 1.49-1.54 (m, 8 H, SiCHCH2-CH2), 1.71-1.78 (m, 8 H, SiCH-CH2), 1.98-2.05 (m, 4 H, Si-CH). 1 H-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = 0.13-0.15 (m, 12 H, Si-CH 3 ), 0.90 (m, 8 H, Si-CH 2 ), 1.03 (s) , 18 H, SiC-CH 3 ), 1.49-1.54 (m, 8 H, SiCHCH 2 —CH 2 ), 1.71-1.78 (m, 8 H, SiCH-CH 2 ), 1.98-2.05 (m, 4 H, Si-CH).

29Si-NMR: (294 K, 500 MHz, C6D6) δ = -49.09 (Si-CH), 7.27 (Si-O). 29 Si-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = -49.09 (Si-CH), 7.27 (Si-O).

트랜스 종:Trans Species:

1H-NMR: (294 K, 500 MHz, C6D6) δ = 0.12-0.13 (m, 12 H, Si-CH3), 0.47-0.52 (m, 4 H, Si-CH2), 0.77-0.81 (m, 4 H, Si-CH2), 1.15 (s, 18 H, SiC-CH3), 1.64-1.67 (m, 4 H, Si-CH), 1.78-1.83 (m, 8 H, SiCHCH2-CH2), 1.88- 1.97 (m, 8 H, SiCH-CH2). 1 H-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = 0.12-0.13 (m, 12 H, Si-CH 3 ), 0.47-0.52 (m, 4 H, Si-CH 2 ), 0.77 -0.81 (m, 4 H, Si-CH 2 ), 1.15 (s, 18 H, SiC-CH 3 ), 1.64-1.67 (m, 4 H, Si-CH), 1.78-1.83 (m, 8 H, SiCHCH 2 -CH 2 ), 1.88-1.97 (m, 8 H, SiCH-CH 2 ).

29Si-NMR: (294 K, 500 MHz, C6D6) δ = -53.75 (Si-CH), 7.89 (Si-O). 29 Si-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = -53.75 (Si-CH), 7.89 (Si-O).

합성예 3: 1,3-비스(2-(7-(Synthesis Example 3: 1,3-bis (2- (7- ( terttert -부틸)-7-실라비시클로[4.1.0]헵탄-7-일)에틸)-1,1,3,3-테트라메틸디실록산(-Butyl)-7-silabicyclo[4.1.0]heptan-7-yl)ethyl)-1,1,3,3-tetramethyldisiloxane ( SV3SV3 )의 제조) manufacturing

Figure pct00013
Figure pct00013

2 단계 합성을 통해 상응하는 헥사클로로실란으로 비스-실리란(SV3)을 제조하였다. 제1 단계에서 10.0 g(21.9 mmol, 1.0 당량)의 (Cl3SiCH2CH2SiMe2)2O를 40 mL의 THF에 도입하고 0℃로 냉각하였다. 이어서 30 ml의 THF 중 8.72 g(43.7 mmol, 2.0 당량)의 칼륨-헥사메틸디실라잔(KHMDS) 용액을 30분의 기간에 걸쳐 천천히 적가하였다. 형성된 현탁액을 실온에서 6시간 동안 교반하였다. 이어서 용매를 감압 하에서 제거하였다. 잔류물을 40 mL의 펜탄에 용해시키고 이어서 여과하였다. 감압 하에서 용매를 다시 제거하여 투명한 황색 액체로 12.5 g(81%, 17.7 mmol)의 (TMS2NCl2SiCH2CH2SiMe2)2O를 얻었다.Bis-silane ( SV3 ) was prepared from the corresponding hexachlorosilane via two-step synthesis. In the first step 10.0 g (21.9 mmol, 1.0 equiv) of (Cl 3 SiCH 2 CH 2 SiMe 2 ) 2 O was introduced into 40 mL of THF and cooled to 0°C. A solution of 8.72 g (43.7 mmol, 2.0 equiv) of potassium-hexamethyldisilazane (KHMDS) in 30 ml of THF was then slowly added dropwise over a period of 30 minutes. The resulting suspension was stirred at room temperature for 6 hours. The solvent was then removed under reduced pressure. The residue was dissolved in 40 mL of pentane and then filtered. The solvent was removed again under reduced pressure to obtain 12.5 g (81%, 17.7 mmol) of (TMS 2 NCl 2 SiCH 2 CH 2 SiMe 2 ) 2 O as a clear yellow liquid.

1H-NMR: (294 K, 500 MHz, C6D6) δ = 0.07 (s, 12 H, OSi-CH3), 0.33 (s, 36 H, NSi-CH3), 0.83-0.87 (m, 4 H, OSi-CH2), 1.25-1.29 (m, 4 H, NSi-CH2). 1 H-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = 0.07 (s, 12 H, OSi-CH 3 ), 0.33 (s, 36 H, NSi-CH 3 ), 0.83-0.87 (m , 4 H, OSi-CH 2 ), 1.25-1.29 (m, 4 H, NSi-CH 2 ).

29Si-NMR: (294 K, 500 MHz, C6D6) δ = 2.19 (Si-Cl2), 6.38 (Si-Me3), 8.45 (Si-O). 29 Si-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = 2.19 (Si-Cl 2 ), 6.38 (Si-Me 3 ), 8.45 (Si-O).

EA [%]: 계산: C = 33.97, H = 07.98, N = 03.96, 실측: C = 33.39, H = 07.96, N = 03.94EA [%]: Calculation: C = 33.97, H = 07.98, N = 03.96, Actual measurement: C = 33.39, H = 07.96, N = 03.94

다음 반응 단계는 테트라클로로실란을 환원시켜 상응하는 비스-실리란을 얻는 것을 수반한다. 이 반응을 위해, 10.0 g(14.2 mmol, 1.0 당량)의 (TMS2NCl2SiCH2CH2SiMe2)2O를 50 mL의 THF에 용해시키고 반응 혼합물을 -30℃로 컨디셔닝하였다. 이어서 23.10 g(424 mmol, 30.0 당량)의 시스-부텐을 축합에 의해 반응 용기에 도입하고, 1.47 g(212 mmol, 15.0 당량)의 리튬-나트륨 합금(2.5% Na)을 아르곤 향류에서 첨가하였다. 반응 혼합물을 실온으로 가온하고 5일 동안 교반하였다. 클로로실란의 완전 환원 후, 용매를 감압 하에서 제거하고 잔류물을 30 mL의 펜탄에 재현탁시켰다. 침전된 염화리튬을 분리해내고 생성물 용액을 건조된 중성 산화알루미늄을 통해 여과하였다. 이어서 여액을 감압 하에서 건조하여 황색 탁한 오일로 5.46 g(57%, 8.06 mmol)의 시스/트랜스 혼합물 및 또한 1-부텐 종으로부터의 상응하는 비스-실리란(SV3)을 얻었다.The next reaction step involves reduction of the tetrachlorosilane to give the corresponding bis-silane. For this reaction, 10.0 g (14.2 mmol, 1.0 equiv) of (TMS 2 NCl 2 SiCH 2 CH 2 SiMe 2 ) 2 O was dissolved in 50 mL of THF and the reaction mixture was conditioned to -30°C. Then 23.10 g (424 mmol, 30.0 equiv) of cis-butene were introduced into the reaction vessel by condensation and 1.47 g (212 mmol, 15.0 equiv) of a lithium-sodium alloy (2.5% Na) was added countercurrent to argon. The reaction mixture was warmed to room temperature and stirred for 5 days. After complete reduction of chlorosilane, the solvent was removed under reduced pressure and the residue was resuspended in 30 mL of pentane. The precipitated lithium chloride was isolated and the product solution was filtered through dry neutral aluminum oxide. The filtrate was then dried under reduced pressure to give 5.46 g (57%, 8.06 mmol) of a cis/trans mixture as a yellow turbid oil and also the corresponding bis-silane from the 1-butene species ( SV3 ).

시스 종:cis species:

1H-NMR: (294 K, 500 MHz, C6D6) δ = 0.12-0.13 (m, 12 H, OSi-CH3), 0.22 (s, 36 H, NSiCH3), 0.77-0.80 (m, 8 H, CH2), 1.12-1.15 (m, 4 H, Si-CH), 1.19-1.21 (m, 12 H, CH-CH3). 1 H-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = 0.12-0.13 (m, 12 H, OSi-CH 3 ), 0.22 (s, 36 H, NSiCH 3 ), 0.77-0.80 (m) , 8 H, CH 2 ), 1.12-1.15 (m, 4 H, Si-CH), 1.19-1.21 (m, 12 H, CH-CH 3 ).

29Si-NMR: (294 K, 500 MHz, C6D6) δ = -50.01 (CH-Si-CH), 4.71 (N-Si-TMS), 7.81 (Si-O). 29 Si-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = -50.01 (CH-Si-CH), 4.71 (N-Si-TMS), 7.81 (Si-O).

트랜스 종:Trans Species:

1H-NMR: (294 K, 500 MHz, C6D6) δ = 0.11-0.12 (m, 12 H, Si-CH3), 0.25-0.26 (m, 36 H, NSiCH3), 0.47-0.52 (m, 4 H, CH2), 0.81-0.85 (m, 4 H, CH2), 1.17-1.18 (m, 4 H, Si-CH), 1.27-1.30 (m, 12 H, CH-CH3). 1 H-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = 0.11-0.12 (m, 12 H, Si-CH 3 ), 0.25-0.26 (m, 36 H, NSiCH 3 ), 0.47-0.52 (m, 4 H, CH 2 ), 0.81-0.85 (m, 4 H, CH 2 ), 1.17-1.18 (m, 4 H, Si-CH), 1.27-1.30 (m, 12 H, CH-CH 3 ) ).

29Si-NMR: (294 K, 500 MHz, C6D6) δ = -44.90 (CH-Si-CH), 4.70 (N-Si-TMS), 7.68 (Si-O). 29 Si-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = -44.90 (CH-Si-CH), 4.70 (N-Si-TMS), 7.68 (Si-O).

1-부텐 종:1-butene species:

1H-NMR: (294 K, 500 MHz, C6D6) δ = 0.09-0.10 (m, 12 H, Si-CH3), 0.23-0.24 (m, 36 H, NSiCH3), 0.52-0.57 (m, 4 H, SiCH2), 0.67-0.71 (m, 4 H, SiCH2), 0.93-0.99 (m, 4 H, SiCH-CH2), 1.27 (m, 2 H, CH2Si-CH), 1.34-1.35 (m, 6 H, SiCHCH2-CH3). 1 H-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = 0.09-0.10 (m, 12 H, Si-CH 3 ), 0.23-0.24 (m, 36 H, NSiCH 3 ), 0.52-0.57 (m, 4 H, SiCH 2 ), 0.67-0.71 (m, 4 H, SiCH 2 ), 0.93-0.99 (m, 4 H, SiCH-CH 2 ), 1.27 (m, 2 H, CH 2 Si-CH ), 1.34-1.35 (m, 6 H, SiCHCH 2 -CH 3 ).

29Si-NMR: (294 K, 500 MHz, C6D6) δ = -41.12 (CH-Si-CH), 5.31 (N-Si-TMS), 7.86 (Si-O). 29 Si-NMR: (294 K, 500 MHz, C 6 D 6 ) δ = -41.12 (CH-Si-CH), 5.31 (N-Si-TMS), 7.86 (Si-O).

EA [%]: 계산: C = 49.63, H = 10.71, N = 4.13, 실측: C = 47.34, H = 10.60, N = 3.98EA [%]: Calculation: C = 49.63, H = 10.71, N = 4.13, Actual measurement: C = 47.34, H = 10.60, N = 3.98

LIFDI-MS: (THF) m/z= 675.69 [M]+, 619.75 [M-C4H8]+, 564.25 [M-C8H16]+, 244.06 [M-C20H52N2Si4]+.LIFDI-MS: (THF) m/z= 675.69 [M] + , 619.75 [MC 4 H 8 ] + , 564.25 [MC 8 H 16 ] + , 244.06 [MC 20 H 52 N 2 Si 4 ] + .

사용예 1: 히드리도메틸실록산-디메틸실록산 공중합체와 Use Example 1: hydridomethylsiloxane-dimethylsiloxane copolymer and SV1SV1 의 가교결합crosslinking of

Figure pct00014
Figure pct00014

SV1(100 mg, 212.3 μmol, 1.0 당량) 및 실리콘 오일(254 mg, 106.2 μmol, 0.5 당량, 2.395 g/mol, (25 내지 30% 메틸히드리도실록산-디메틸실록산 공중합체, Si-H 말단))을 불활성 가스 하에서 1:2의 몰비(실리란기 대 Si-H 기)로 적절한 용기에 칭량하였다. 혼합물을 0.5 mL의 펜탄에 용해시키고 균질한 혼합이 보장될 때까지 자기 교반 막대로 교반하였다. 이어서 펜탄을 감압 하에서 다시 제거하였다. 가교결합은 불활성 가스 하에서 24시간 동안 140℃에서 발생하였다. 생성물은 약간 탁하고 무색이며 점착성이 없고 약간 탄성이 있는 중합체였다. 실록산의 짧은 사슬 길이로 인해, 상기 물질은 상당히 취성이 있으며 인장 하중 하에서 파열된다. 상기 중합체는 벤젠에서 크게 팽창하며 용해되지 않는다. NMR 분광법에 의해 검출 가능한 가용성 성분이 없었다. 가교결합에서 형성되는 부텐은 특유의 냄새를 통해 감지될 수 있다. SV1 (100 mg, 212.3 μmol, 1.0 eq) and silicone oil (254 mg, 106.2 μmol, 0.5 eq, 2.395 g/mol, (25-30% methylhydridosiloxane-dimethylsiloxane copolymer, Si-H terminus)) was weighed into a suitable vessel under inert gas at a molar ratio of 1:2 (silirane groups to Si-H groups). The mixture was dissolved in 0.5 mL of pentane and stirred with a magnetic stir bar until homogeneous mixing was ensured. The pentane was then removed again under reduced pressure. Crosslinking occurred at 140° C. for 24 h under inert gas. The product was a slightly cloudy, colorless, non-tacky, slightly elastic polymer. Due to the short chain length of the siloxane, the material is quite brittle and ruptures under tensile loading. The polymer swells greatly in benzene and does not dissolve. There were no soluble components detectable by NMR spectroscopy. Butenes formed from cross-linking can be detected through their characteristic odor.

사용예 2: 히드리도메틸실록산-디메틸실록산 공중합체와 Use Example 2: hydridomethylsiloxane-dimethylsiloxane copolymer and SV3SV3 의 가교결합crosslinking of

Figure pct00015
Figure pct00015

SV3(100 mg, 147.6 μmol, 1.0 당량) 및 실리콘 오일(233 mg, 97.4 μmol, 0.66 당량, 2.395 g/mol, (25 내지 30% 메틸히드리도실록산-디메틸실록산 공중합체, Si-H 말단))을 불활성 가스 하에서 1:3의 몰비(실리란기 대 Si-H 기)로 적절한 용기에 칭량하였다. 균질한 혼합이 보장될 때까지 혼합물을 자기 교반 막대로 교반하였다. 가교결합은 불활성 가스 하에서 24시간 동안 140℃에서 발생하였다. 생성물은 투명하고 약간 황색이며 점착성이 없고 약간 탄성이 있는 중합체였다. 실록산의 짧은 사슬 길이로 인해, 상기 물질은 상당히 취성이 있으며 인장 하중 하에서 파열된다. 상기 중합체는 벤젠에서 크게 팽창하며 용해되지 않는다. NMR 분광법에 의해 검출 가능한 가용성 성분이 없었다. SV3 (100 mg, 147.6 μmol, 1.0 equiv) and silicone oil (233 mg, 97.4 µmol, 0.66 equiv, 2.395 g/mol, (25-30% methylhydridosiloxane-dimethylsiloxane copolymer, Si-H terminus)) was weighed into a suitable container under inert gas at a molar ratio of 1:3 (silirane groups to Si-H groups). The mixture was stirred with a magnetic stir bar until homogeneous mixing was ensured. Crosslinking occurred at 140° C. for 24 h under inert gas. The product was a clear, slightly yellow, non-tacky, slightly elastic polymer. Due to the short chain length of the siloxane, the material is quite brittle and ruptures under tensile loading. The polymer swells greatly in benzene and does not dissolve. There were no soluble components detectable by NMR spectroscopy.

사용예 3: 히드리도메틸실록산-디메틸실록산 공중합체와 Use example 3: hydridomethylsiloxane-dimethylsiloxane copolymer and SV3SV3 의 가교결합crosslinking of

Figure pct00016
Figure pct00016

SV3(100 mg, 147.6 μmol, 1.0 당량) 및 실리콘 오일(78 mg, 32.5 μmol, 0.22 당량, 2.395 g/mol, (25 내지 30% 메틸히드리도실록산-디메틸실록산 공중합체, Si-H 말단))을 불활성 가스 하에서 9:10의 몰비(실리란기 대 Si-H 기)로 적절한 용기에 칭량하였다. 균질한 혼합이 보장될 때까지 혼합물을 자기 교반 막대로 교반하였다. 가교결합은 불활성 가스 하에서 24시간 동안 140℃에서 발생하였다. 생성물은 투명하고 약간 황색이며 점착성이 없고 약간 탄성이 있는 중합체였다. 실록산의 짧은 사슬 길이로 인해, 상기 물질은 상당히 단단하고 취성이 있으며 인장 하중 하에서 파열된다. 상기 중합체는 벤젠에서 크게 팽창하며 용해되지 않는다. NMR 분광법에 의해 검출 가능한 가용성 성분이 없었다. 높은 실리란 분율로 인해, 상기 중합체는 사용예 2의 경우보다 훨씬 더 단단하다. SV3 (100 mg, 147.6 μmol, 1.0 equiv) and silicone oil (78 mg, 32.5 µmol, 0.22 equiv, 2.395 g/mol, (25-30% methylhydridosiloxane-dimethylsiloxane copolymer, Si-H terminus)) was weighed into a suitable vessel under inert gas at a molar ratio of 9:10 (silirane groups to Si-H groups). The mixture was stirred with a magnetic stir bar until homogeneous mixing was ensured. Crosslinking occurred at 140° C. for 24 h under inert gas. The product was a clear, slightly yellow, non-tacky, slightly elastic polymer. Due to the short chain length of the siloxane, the material is quite hard and brittle and ruptures under tensile loading. The polymer swells greatly in benzene and does not dissolve. There were no soluble components detectable by NMR spectroscopy. Due to the high silanane fraction, the polymer is much harder than in Use Example 2.

사용예 4: 히드리도메틸실록산-디메틸실록산 공중합체와 Use Example 4: hydridomethylsiloxane-dimethylsiloxane copolymer and SV3SV3 의 불활성 가스가 없는 가교결합crosslinking without inert gas of

Figure pct00017
Figure pct00017

SV3(100 mg, 147.6 μmol, 1.0 당량) 및 실리콘 오일(78 mg, 32.5 μmol, 0.22 당량, 2.395 g/mol, (25 내지 30% 메틸히드리도실록산-디메틸실록산 공중합체, Si-H 말단))을 불활성 가스 하에서 9:10의 몰비(실리란기 대 Si-H 기)로 적절한 용기에 칭량하였다. 균질한 혼합이 보장될 때까지 공기 중에서 혼합물을 자기 교반 막대로 교반하였다. 가교결합은 공기 중에서 24시간 동안 140℃에서 발생하였다. 생성물은 투명하고 약간 황색이며 점착성이 없고 약간 탄성이 있는 중합체였다. 상기 물질은 사용예 3에 기재된 엘라스토머의 특성과 유사한 특성을 나타내었다. 주위 공기의 산소 및 수분은 중합체의 가교결합에 식별 가능한 영향을 미치지 않았다. 따라서 비스-실리란(SV3)은 공기에 대하여 충분히 안정하다. SV3 (100 mg, 147.6 μmol, 1.0 equiv) and silicone oil (78 mg, 32.5 µmol, 0.22 equiv, 2.395 g/mol, (25-30% methylhydridosiloxane-dimethylsiloxane copolymer, Si-H terminus)) was weighed into a suitable vessel under inert gas at a molar ratio of 9:10 (silirane groups to Si-H groups). The mixture was stirred with a magnetic stir bar in air until homogeneous mixing was ensured. Crosslinking occurred at 140° C. for 24 h in air. The product was a clear, slightly yellow, non-tacky, slightly elastic polymer. This material exhibited properties similar to those of the elastomer described in Use Example 3. Oxygen and moisture in the ambient air had no discernible effect on the crosslinking of the polymer. Thus, bis-silirane ( SV3 ) is sufficiently stable with respect to air.

사용예 5: 히드리도메틸실록산-디메틸실록산 공중합체와 Use Example 5: hydridomethylsiloxane-dimethylsiloxane copolymer and SV1SV1 의 가교결합crosslinking of

Figure pct00018
Figure pct00018

SV1(87.5 mg, 185.6 μmol, 10.0 당량) 및 실리콘 오일(1.03 g, 18.58 μmol, 1.0 당량, 55.000 g/mol, (0.5 내지 1% 메틸히드리도실록산-디메틸실록산 공중합체, TMS 말단))을 불활성 가스 하에서 20:6의 몰비(실리란기 대 Si-H 기)로 적절한 용기에 칭량하였다. 균질한 혼합이 보장될 때까지 혼합물을 자기 교반 막대로 교반하였다. 가교결합은 불활성 가스 하에서 24시간 동안 140℃에서 발생하였다. 생성물은 백색이고 불투명하며 점착성이 없는 탄성 중합체였다. 상기 중합체는 벤젠에서 크게 팽창하며 용해되지 않는다. NMR 분광법에 의해 검출 가능한 가용성 성분이 없었다.Inert SV1 (87.5 mg, 185.6 μmol, 10.0 equiv) and silicone oil (1.03 g, 18.58 µmol, 1.0 equiv, 55.000 g/mol, (0.5-1% methylhydridosiloxane-dimethylsiloxane copolymer, TMS terminus)). Weigh into a suitable container under gas at a molar ratio of 20:6 (silirane groups to Si-H groups). The mixture was stirred with a magnetic stir bar until homogeneous mixing was ensured. Crosslinking occurred at 140° C. for 24 h under inert gas. The product was a white, opaque, non-tacky elastomeric polymer. The polymer swells greatly in benzene and does not dissolve. There were no soluble components detectable by NMR spectroscopy.

사용예 6: 2,4,6,8-테트라메틸시클로테트라실록산(TMCTS)과 Use Example 6: 2,4,6,8-tetramethylcyclotetrasiloxane (TMCTS) and SV1SV1 의 가교결합crosslinking of

Figure pct00019
Figure pct00019

SV1(100 mg, 212.3 μmol, 1.0 당량) 및 시클릭 실록산 TMCTS(23 mg, 95.53 μmol, 0.45 당량, 2,4,6,8-테트라메틸시클로테트라실록산)를 불활성 가스 하에서 1:0.9의 몰비(실리란기 대 Si-H 기)로 적절한 용기에 칭량하였다. 균질한 혼합이 보장될 때까지 혼합물을 자기 교반 막대로 교반하였다. 가교결합은 폐쇄계에서 불활성 가스 하에서 24시간 동안 140℃에서 발생하였다. 형성된 생성물은 단단하고 투명 중합체이며 점착성이 없고 약간의 탄성 특성을 갖는다. 상기 중합체는 벤젠에서 크게 팽창하며 용해되지 않는다. NMR 분광법에 의해 검출 가능한 가용성 성분이 없었다. SV1 (100 mg, 212.3 μmol, 1.0 equiv) and cyclic siloxane TMCTS (23 mg, 95.53 µmol, 0.45 equiv, 2,4,6,8-tetramethylcyclotetrasiloxane) in a molar ratio of 1:0.9 ( Silirane groups to Si-H groups) were weighed into an appropriate container. The mixture was stirred with a magnetic stir bar until homogeneous mixing was ensured. Crosslinking occurred at 140° C. for 24 h under inert gas in a closed system. The product formed is a hard, transparent polymer, non-tacky and has some elastic properties. The polymer swells greatly in benzene and does not dissolve. There were no soluble components detectable by NMR spectroscopy.

사용예 7: 단쇄 OH 말단 폴리디메틸실록산과 Use Example 7: Short-chain OH-terminated polydimethylsiloxane and SV1SV1 의 가교결합crosslinking of

Figure pct00020
Figure pct00020

SV1(50 mg, 106.2 μmol, 1.0 당량) 및 실리콘 오일(1.03 g, 106.2 μmol, 1.0 당량, 9.750 g/mol, 폴리디메틸실록산, OH 말단)을 불활성 가스 하에서 1:1의 몰비(실리란기 대 Si-OH 기)로 적절한 용기에 칭량하였다. 균질한 혼합이 보장될 때까지 혼합물을 자기 교반 막대로 교반하였다. 가교결합은 불활성 가스 하에서 24시간 동안 140℃에서 발생하였다. 형성된 중합체는 무색이고 약간 탁하며, 점착성이 없고, 탄성 특성을 나타내었다. SV1 (50 mg, 106.2 μmol, 1.0 equiv) and silicone oil (1.03 g, 106.2 µmol, 1.0 equiv, 9.750 g/mol, polydimethylsiloxane, OH terminus) were mixed under an inert gas in a molar ratio of 1:1 (silanic groups to Si-OH groups) into a suitable container. The mixture was stirred with a magnetic stir bar until homogeneous mixing was ensured. Crosslinking occurred at 140° C. for 24 h under inert gas. The polymer formed was colorless, slightly cloudy, non-tacky, and exhibited elastic properties.

사용예 8: 단쇄 OH 말단 폴리디메틸실록산과 Use Example 8: Short-chain OH-terminated polydimethylsiloxane and SV3SV3 의 가교결합crosslinking of

Figure pct00021
Figure pct00021

SV3(50 mg, 73.79 μmol, 1.0 당량) 및 실리콘 오일(721 mg, 73.79 μmol, 1.0 당량, 9.750 g/mol, 폴리디메틸실록산, OH 말단)을 불활성 가스 하에서 1:1의 몰비(실리란기 대 Si-OH 기)로 적절한 용기에 칭량하였다. 균질한 혼합이 보장될 때까지 혼합물을 자기 교반 막대로 교반하였다. 가교결합은 불활성 가스 하에서 24시간 동안 140℃에서 발생하였다. 형성된 생성물은 무색이고 약간 탁한 탄성 중합체이다. 상기 중합체는 벤젠에서 크게 팽창하며 용해되지 않는다. NMR 분광법에 의해 검출 가능한 가용성 성분이 없었다. 대안으로 유사한 절차에 따라 0.5:1(실리란 기 대 Si-OH 기) 및 2:1(실리란기 대 Si-OH 기)의 혼합 몰비를 사용하였다. 전자의 경우, 무색이고, 투명하며, 매우 부드럽고 점착성이 있는 엘라스토머가 얻어졌다. 가교제의 초화학량론적(superstoichiometric) 부가의 경우, 탄성 특성을 갖는 무색의 탁한 중합체가 얻어졌다. 얻어진 중합체는 1:1 혼합물에 비해 더 부드러웠다. SV3 (50 mg, 73.79 μmol, 1.0 equiv) and silicone oil (721 mg, 73.79 µmol, 1.0 equiv, 9.750 g/mol, polydimethylsiloxane, OH terminus) were mixed under an inert gas in a molar ratio of 1:1 (silanic groups to Si-OH groups) into a suitable container. The mixture was stirred with a magnetic stir bar until homogeneous mixing was ensured. Crosslinking occurred at 140° C. for 24 h under inert gas. The product formed is a colorless and slightly cloudy elastomeric polymer. The polymer swells greatly in benzene and does not dissolve. There were no soluble components detectable by NMR spectroscopy. Alternatively, a mixing molar ratio of 0.5:1 (silirane groups to Si-OH groups) and 2:1 (silirane groups to Si-OH groups) was used following a similar procedure. In the former case, a colorless, transparent, very soft and tacky elastomer was obtained. In the case of superstoichiometric addition of the crosslinking agent, a colorless turbid polymer with elastic properties was obtained. The resulting polymer was softer compared to the 1:1 mixture.

사용예 9: 장쇄 OH 말단 폴리디메틸실란과 Use Example 9: Long-chain OH-terminated polydimethylsilane and SV1SV1 의 가교결합crosslinking of

Figure pct00022
Figure pct00022

SV1(34 mg, 73.8 μmol, 1.0 당량) 및 실리콘 오일(67 mg, 73.8 μmol, 1.0 당량, 36.000 g/mol, 폴리디메틸실록산, OH 말단)을 불활성 가스 하에서 1:1의 몰비(실리란기 대 Si-OH 기)로 적절한 용기에 칭량하였다. 균질한 혼합이 보장될 때까지 혼합물을 자기 교반 막대로 교반하였다. 가교결합은 불활성 가스 하에서 24시간 동안 140℃에서 발생하였다. 생성물은 탁하고 부드러운 탄성 중합체였다. 사용예 7에 비해 더 긴 사슬로 인해, 중합체 네트워크는 더 유연하여, 형성된 엘라스토머의 더 낮은 강도에 대한 가능한 설명을 제공하였다. 상기 중합체는 벤젠에서 크게 팽창하며 용해되지 않는다. NMR 분광법에 의해 검출 가능한 가용성 성분이 없었다. SV1 (34 mg, 73.8 μmol, 1.0 equiv) and silicone oil (67 mg, 73.8 µmol, 1.0 equiv, 36.000 g/mol, polydimethylsiloxane, OH terminus) were mixed under an inert gas in a molar ratio of 1:1 (silirane groups to Si-OH groups) into a suitable container. The mixture was stirred with a magnetic stir bar until homogeneous mixing was ensured. Crosslinking occurred at 140° C. for 24 h under inert gas. The product was a cloudy, soft elastomeric polymer. Due to the longer chain compared to Use Example 7, the polymer network was more flexible, providing a possible explanation for the lower strength of the formed elastomer. The polymer swells greatly in benzene and does not dissolve. There were no soluble components detectable by NMR spectroscopy.

사용예 10: 장쇄 OH 말단 폴리디메틸실란과 Use Example 10: Long-chain OH-terminated polydimethylsilane and SV3SV3 의 가교결합crosslinking of

Figure pct00023
Figure pct00023

SV3(50 mg, 73.8 μmol, 1.0 당량) 및 실리콘 오일(67 mg, 73.8 μmol, 1.0 당량, 36.000 g/mol, 폴리디메틸실록산, OH 말단)을 불활성 가스 하에서 1:1의 몰비(실리란기 대 Si-OH 기)로 적절한 용기에 칭량하였다. 균질한 혼합이 보장될 때까지 혼합물을 자기 교반 막대로 교반하였다. 가교결합은 불활성 가스 하에서 24시간 동안 140℃에서 발생하였다. 형성된 중합체는 투명하고 무색이며 점착성이 없는 엘라스토머였다. 벤젠을 첨가하면 중합체가 크게 팽창하지만 중합체가 용해되지는 않는다. NMR 분광법에 의해 검출 가능한 가용성 성분이 없었다. SV3 (50 mg, 73.8 μmol, 1.0 equiv) and silicone oil (67 mg, 73.8 µmol, 1.0 equiv, 36.000 g/mol, polydimethylsiloxane, OH terminus) were mixed under an inert gas in a molar ratio of 1:1 (silirane groups to Si-OH groups) into a suitable container. The mixture was stirred with a magnetic stir bar until homogeneous mixing was ensured. Crosslinking occurred at 140° C. for 24 h under inert gas. The polymer formed was a clear, colorless, non-tacky elastomer. The addition of benzene greatly expands the polymer, but does not dissolve the polymer. There were no soluble components detectable by NMR spectroscopy.

Claims (12)

하기 화학식 (I)의 2개 이상의 실리란기가 공유 결합된 기질로 이루어진 실리란 작용화된 화합물:
Figure pct00024

상기 화학식 (I)에서 지수 n은 0 또는 1의 값을 취하고;
라디칼 R a 는 2가 C1-C20 탄화수소 라디칼이고;
라디칼 R 1
(i) C1-C20 탄화수소 라디칼,
(ii) C1-C20 히드로카르본옥시 라디칼,
(iii) 실릴 라디칼 - SiR a R b R c (여기서, 라디칼 R a , R b , R c 는 서로 독립적으로 C1-C6 탄화수소 라디칼로 이루어진 군으로부터 선택됨),
(iv) 아민 라디칼 - NR x 2 (여기서, 라디칼 R x 는 서로 독립적으로
(iv.i) 수소,
(iv.ii) C1-C20 탄화수소 라디칼, 및
(iv.iii) 실릴 라디칼 - SiR a R b R c (여기서, 라디칼 R a , R b , R c 는 서로 독립적으로 C1-C6 탄화수소 라디칼임)
로 이루어진 군으로부터 선택됨), 및
(v) 이민 라디칼 -N=CR 1 R 2 (여기서, 라디칼 R 1 , R 2 는 서로 독립적으로
(v.i) 수소,
(v.ii) C1-C20 탄화수소 라디칼 및
(v.iii) 실릴 라디칼 -SiR a R b R c (여기서, 라디칼 R a , R b , R c 는 서로 독립적으로 C1-C6 탄화수소 라디칼임)
로 이루어진 군으로부터 선택됨)
로 이루어진 군으로부터 선택되고;
라디칼 R 2 , R 3 , R 4 , R 5 는 서로 독립적으로 (i) 수소, (ii) 할로겐, 및 (iii) C1-C20 탄화수소 라디칼로 이루어진 군으로부터 선택되며, 라디칼 R 2 R 4 는 시클릭 라디칼의 일부일 수도 있다.
Silirane functionalized compounds consisting of a substrate to which two or more silirane groups of formula ( I ) are covalently bonded:
Figure pct00024

the index n in the above formula ( I ) takes a value of 0 or 1;
the radical R a is a divalent C 1 -C 20 hydrocarbon radical;
The radical R 1 is
(i) a C 1 -C 20 hydrocarbon radical,
(ii) a C 1 -C 20 hydrocarbonoxy radical,
(iii) a silyl radical - SiR a R b R c , wherein the radicals R a , R b , R c are independently of each other selected from the group consisting of C 1 -C 6 hydrocarbon radicals;
(iv) amine radicals - NR x 2 , wherein the radicals R x are independently of one another
(iv.i) hydrogen,
(iv.ii) a C 1 -C 20 hydrocarbon radical, and
(iv.iii) silyl radicals - SiR a R b R c , wherein the radicals R a , R b , R c independently of one another are C 1 -C 6 hydrocarbon radicals.
selected from the group consisting of), and
(v) imine radicals -N=CR 1 R 2 , wherein the radicals R 1 , R 2 are independently of each other
(vi) hydrogen;
(v.ii) a C 1 -C 20 hydrocarbon radical and
(v.iii) silyl radicals —SiR a R b R c , wherein the radicals R a , R b , R c independently of one another are C 1 -C 6 hydrocarbon radicals
selected from the group consisting of)
is selected from the group consisting of;
The radicals R 2 , R 3 , R 4 , R 5 are independently of each other selected from the group consisting of (i) hydrogen, (ii) halogen, and (iii) C 1 -C 20 hydrocarbon radicals, the radicals R 2 and R 4 may be part of a cyclic radical.
제1항에 있어서, 기질은 유기규소 화합물, 탄화수소, 실리카, 유리, 샌드, 스톤, 금속, 반금속, 금속 산화물, 혼합 금속 산화물, 및 탄소계 올리고머 및 중합체로 이루어진 군으로부터 선택되는 것을 특징으로 하는 실리란 작용화된 화합물.The substrate of claim 1 , wherein the substrate is selected from the group consisting of organosilicon compounds, hydrocarbons, silica, glass, sand, stone, metal, semimetal, metal oxide, mixed metal oxide, and carbon-based oligomers and polymers. Silirane Functionalized Compounds. 제2항에 있어서, 기질은 실란, 실록산, 침강 실리카, 흄드 실리카, 유리, 탄화수소, 폴리올레핀, 아크릴레이트, 폴리아크릴레이트, 폴리비닐 아세테이트, 폴리우레탄 및 산화프로필렌 및/또는 산화에틸렌 단위로 구성된 폴리에테르로 이루어진 군으로부터 선택되는 것을 특징으로 하는 실리란 작용화된 화합물.3. A polyether according to claim 2, wherein the substrate is composed of silane, siloxane, precipitated silica, fumed silica, glass, hydrocarbon, polyolefin, acrylate, polyacrylate, polyvinyl acetate, polyurethane and propylene oxide and/or ethylene oxide units. Silirane functionalized compound, characterized in that selected from the group consisting of. 제1항에 있어서, 하기 일반식 (II)의 화합물로 이루어진 군으로부터 선택되는 실리란 작용화된 유기규소 화합물인 것을 특징으로 하는 실리란 작용화된 화합물:
(SiO 4/2 ) a (R x SiO 3/2 ) b (R'SiO 3/2 ) b' (R x 2 SiO 2/2 ) c (R x R'SiO 2/2 ) c'
(R' 2 SiO 2/2 ) c'' (R x 3 SiO 1/2 ) d (R'R x 2 SiO 1/2 ) d' (R' 2 R x SiO 1/2 ) d''
(R' 3 SiO 1/2 ) d''' (II),
상기 일반식에서 라디칼 R x 는 서로 독립적으로 (i) 수소, (ii) 할로겐, (iii) 치환되지 않거나 치환된 C1-C20 탄화수소 라디칼 및 (iv) 치환되지 않거나 치환된 C1-C20 히드로카르본옥시 라디칼로 이루어진 군으로부터 선택되고;
지수 a, b, b', c, c', c'', d, d', d'', d'''는 화합물의 각 실록산 단위의 수를 나타내고 서로 독립적으로 0 내지 100,000 범위의 정수이며, 단, a, b, b', c, c', c'', d, d', d'', d'''의 합은 2 이상의 값을 취하고 지수 b', c', d' 중 하나 이상은 2 이상이거나 지수 c'', d'' 또는 d''' 중 하나 이상은 0이 아니고;
라디칼 R'는 하기 화학식 (IIa)의 실리란기이다:
Figure pct00025

상기 화학식에서 지수 n은 0 또는 1의 값을 취하고;
라디칼 R a 는 2가 C1-C20 탄화수소 라디칼이고;
라디칼 R 1
(i) C1-C20 탄화수소 라디칼,
(ii) C1-C20 히드로카르본옥시 라디칼,
(iii) 실릴 라디칼 - SiR a R b R c (여기서, 라디칼 R a , R b , R c 는 서로 독립적으로 C1-C6 탄화수소 라디칼임),
(iv) 아민 라디칼 - NR x 2 (여기서, 라디칼 R x 는 서로 독립적으로
(iv.i) 수소,
(iv.ii) C1-C20 탄화수소 라디칼, 및
(iv.iii) 실릴 라디칼 - SiR a R b R c (여기서, 라디칼 R a , R b , R c 는 서로 독립적으로 C1-C6 탄화수소 라디칼임)
로 이루어진 군으로부터 선택됨), 및
(v) 이민 라디칼 -N=CR 1 R 2 (여기서, 라디칼 R 1 , R 2 는 서로 독립적으로
(v.i) 수소,
(v.ii) C1-C20 탄화수소 라디칼 및
(v.iii) 실릴 라디칼 - SiR a R b R c (여기서, 라디칼 R a , R b , R c 는 서로 독립적으로 C1-C6 탄화수소 라디칼임)
로 이루어진 군으로부터 선택됨)
로 이루어진 군으로부터 선택되고;
라디칼 R 2 , R 3 , R 4 , R 5 는 서로 독립적으로 (i) 수소, (ii) 할로겐, 및 (iii) C1-C20 탄화수소 라디칼로 이루어진 군으로부터 선택되며, 라디칼 R 2 R 4 는 시클릭 라디칼의 일부일 수도 있다.
According to claim 1, wherein the general formula (II) Silirane functionalized compound, characterized in that it is a silanic functionalized organosilicon compound selected from the group consisting of:
(SiO 4/2 ) a (R x SiO 3/2 ) b (R'SiO 3/2 ) b' (R x 2 SiO 2/2 ) c (R x R'SiO 2/2 ) c'
(R' 2 SiO 2/2 ) c'' (R x 3 SiO 1/2 ) d (R'R x 2 SiO 1/2 ) d' (R' 2 R x SiO 1/2 ) d''
(R' 3 SiO 1/2 ) d''' (II);
radicals in the above general formulaR x are independently of each other (i) hydrogen, (ii) halogen, (iii) unsubstituted or substituted COne-C20 hydrocarbon radicals and (iv) unsubstituted or substituted COne-C20 is selected from the group consisting of a hydrocarbonoxy radical;
Indicesa,b,b',c, c', c'', d, d', d'', d'''represents the number of each siloxane unit in the compound and independently of each other is an integer ranging from 0 to 100,000, provided thata, b, b', c, c', c'', d, d', d'', d'''The sum of takes a value greater than or equal to 2 and the exponentb',c', dat least one of ' is greater than or equal to 2 or an exponentc'', d'' ord''' at least one of them is non-zero;
radicalR'is the formula (IIa) is the siliran group of:
Figure pct00025

exponent in the above formulantakes a value of 0 or 1;
radicalR a is the divalent COne-C20 hydrocarbon radicals;
radicalR One silver
(i) COne-C20 hydrocarbon radicals,
(ii) COne-C20 hydrocarbonoxy radical,
(iii) silyl radicals- SiR a R b R c (here, radicalR a ,R b ,R c are independent of each other COne-C6 hydrocarbon radicals),
(iv) amine radicals- NR x 2 (here, radicalR x are independent of each other
(iv.i) hydrogen,
(iv.ii) COne-C20 hydrocarbon radicals, and
(iv.iii) silyl radicals- SiR a R b R c (here, radicalR a ,R b ,R c are independent of each other COne-C6 hydrocarbon radicals)
selected from the group consisting of), and
(v) imine radicals-N=CR One R 2 (here, radicalR One ,R 2 are independent of each other
(v.i) hydrogen,
(v.ii) COne-C20 hydrocarbon radicals and
(v.iii) silyl radicals- SiR a R b R c (here, radicalR a ,R b ,R c are independent of each other COne-C6 hydrocarbon radicals)
selected from the group consisting of)
is selected from the group consisting of;
radicalR 2 , R 3 , R 4 , R 5 are independently of each other (i) hydrogen, (ii) halogen, and (iii) COne-C20 selected from the group consisting of hydrocarbon radicals,R 2 andR 4 may be part of a cyclic radical.
제4항에 있어서, 화학식 (II)에서 지수 a, b, b', c, c', c'', d, d''d'''는 0의 값을 취하고 지수 d'는 2의 값을 취하며; 화학식 (IIa)에서 지수 n은 1의 값을 취하고, 라디칼 R a 는 C1-C3 알케닐 라디칼이고, 라디칼 R 1 은 (i) C1-C6 탄화수소 라디칼 및 (ii) 아민 라디칼 - N(SiR a R b R c ) 2 (여기서, 라디칼 R a , R b , R c 는 서로 독립적으로 C1-C6 탄화수소 라디칼임)로 이루어진 군으로부터 선택되고, 라디칼 R 2 , R 3 , R 4 , R 5 는 서로 독립적으로 (i) 수소 및 (ii) C1-C6 알킬 라디칼로 이루어진 군으로부터 선택되며, 라디칼 R 2 R 4 는 시클릭 라디칼의 일부일 수도 있는 것인 실리란 작용화된 화합물.5. The method according to claim 4, wherein in formula ( II ) the indices a , b , b' , c, c', c'', d, d'' and d''' take the value 0 and the exponent d' of 2 takes a value; In the formula ( IIa ) the index n assumes a value of 1, the radical R a is a C 1 -C 3 alkenyl radical, the radical R 1 is (i) a C 1 -C 6 hydrocarbon radical and (ii) an amine radical - N (SiR a R b R c ) 2 , wherein the radicals R a , R b , R c independently of one another are C 1 -C 6 hydrocarbon radicals, the radicals R 2 , R 3 , R 4 , R 5 are independently of each other selected from the group consisting of (i) hydrogen and (ii) C 1 -C 6 alkyl radicals, wherein the radicals R 2 and R 4 may be part of a cyclic radical. compound. 제5항에 있어서, 화학식 (IIa)에서 라디칼 R a 는 에틸렌 라디칼이고; 라디칼 R 1 은 (i) C1-C6 알킬 라디칼 및 (ii) - N(SiMe 3 ) 2 로 이루어진 군으로부터 선택되고; 라디칼 R 2 , R 3 , R 4 , R 5 는 서로 독립적으로 (i) 수소 및 (ii) C1-C6 알킬 라디칼로 이루어진 군으로부터 선택되며, 라디칼 R 2 R 4 는 헥세닐 라디칼의 일부일 수도 있는 것인 실리란 작용화된 화합물.6. A compound according to claim 5, wherein the radical R a in formula ( IIa ) is an ethylene radical; the radical R 1 is selected from the group consisting of (i) a C 1 -C 6 alkyl radical and (ii) - N(SiMe 3 ) 2 ; The radicals R 2 , R 3 , R 4 , R 5 are independently of each other selected from the group consisting of (i) hydrogen and (ii) C 1 -C 6 alkyl radicals, wherein the radicals R 2 and R 4 are part of a hexenyl radical silanic functionalized compounds. 제4항 내지 제6항 중 어느 한 항에 있어서, 하기 화합물 SV1, SV2SV3으로부터 선택되는 실리란 작용화된 화합물:
Figure pct00026
.
7. A silirane functionalized compound according to any one of claims 4 to 6 selected from the following compounds SV1 , SV2 and SV3 :
Figure pct00026
.
a) 제1항 내지 제7항 중 어느 한 항에 청구된 1종 이상의 실리란 작용화된 화합물; 및
b) 각 경우에 2개 이상의 라디칼 R'를 갖는 1종 이상의 화합물 A
를 포함하고, 상기 라디칼 R'는 서로 독립적으로
(i) -Si-H,
(ii) -OH,
(iii) -C x H 2x -OH(여기서, x는 1 내지 20 범위의 정수임),
(iv) -C x H 2x -NH 2 (여기서, x는 1 내지 20 범위의 정수임),
(v) - SH, 및
(vi) - R a n -CR=CR 2 (여기서, R a 는 2가 C1-C20 탄화수소 라디칼이고 지수 n은 0 또는 1의 값을 취하며 라디칼 R은 서로 독립적으로 (vi.i) 수소 및 (vi.ii) C1-C6 탄화수소 라디칼로 이루어진 군으로부터 선택됨)
로 이루어진 군으로부터 선택되는 것인 혼합물.
a) at least one silirane functionalized compound as claimed in any one of claims 1 to 7; and
b) at least one compound A having in each case at least two radicals R'
Including, wherein the radicals R' are independently of each other
(i) -Si-H ,
(ii) -OH ,
(iii) -C x H 2x -OH , wherein x is an integer ranging from 1 to 20;
(iv) -C x H 2x -NH 2 , wherein x is an integer ranging from 1 to 20;
(v) - SH , and
(vi) - R a n -CR=CR 2 , wherein R a is a divalent C 1 -C 20 hydrocarbon radical and the index n takes on the value 0 or 1 and the radicals R independently of one another (vi.i) hydrogen and (vi.ii) selected from the group consisting of C 1 -C 6 hydrocarbon radicals)
A mixture that is selected from the group consisting of.
제8항에 있어서, 화합물 A가 하기 일반식 (III)의 작용화된 실록산으로부터 선택되는 것인 혼합물:
(SiO 4/2 ) a (R x SiO 3/2 ) b (R'SiO 3/2 ) b' (R x 2 SiO 2/2 ) c (R x R'SiO 2/2 ) c'
(R' 2 SiO 2/2 ) c'' (R x 3 SiO 1/2 ) d (R'R x 2 SiO 1/2 ) d' (R' 2 R x SiO 1/2 ) d''
(R' 3 SiO 1/2 ) d''' (III),
상기 일반식에서 라디칼 R x 는 서로 독립적으로 (i) 할로겐, 및 (ii) 치환되지 않거나 치환된 C1-C20 탄화수소 라디칼로 이루어진 군으로부터 선택되고;
라디칼 R'는 서로 독립적으로
(i) 수소,
(ii) -OH,
(iii) -C x H 2x -OH(여기서, x는 1 내지 20 범위의 정수임),
(iv) -C x H 2x -NH 2 (여기서, x는 1 내지 20 범위의 정수임),
(v) - SH, 및
(vi) - R a n -CR=CR 2 (여기서, R a 는 2가 C1-C20 탄화수소 라디칼이고 지수 n은 0 또는 1의 값을 취하며 라디칼 R은 서로 독립적으로 (vi.i) 수소 및 (vi.ii) C1-C6 탄화수소 라디칼로 이루어진 군으로부터 선택됨)
로 이루어진 군으로부터 선택되고;
지수 a, b, b', c, c', c'', d, d', d'', d'''는 화합물의 각 실록산 단위의 수를 나타내고 서로 독립적으로 0 내지 100,000 범위의 정수이며, 단, a, b, b', c, c', c'', d, d', d'', d'''의 합은 2 이상의 값을 취하고 지수 b', c', d' 중 하나 이상은 2 이상이거나 지수 c'', d'' 또는 d''' 중 하나 이상은 0이 아니다.
9. The compound of claim 8Ato the general formula (III) of the functionalized siloxanes of:
(SiO 4/2 ) a (R x SiO 3/2 ) b (R'SiO 3/2 ) b' (R x 2 SiO 2/2 ) c (R x R'SiO 2/2 ) c'
(R' 2 SiO 2/2 ) c'' (R x 3 SiO 1/2 ) d (R'R x 2 SiO 1/2 ) d' (R' 2 R x SiO 1/2 ) d''
(R' 3 SiO 1/2 ) d''' (III),
radicals in the above general formulaR x are independently of each other (i) halogen, and (ii) unsubstituted or substituted COne-C20 selected from the group consisting of hydrocarbon radicals;
radicalR'are independent of each other
(i) hydrogen;
(ii)-OH,
(iii)-C x H 2x -OH(here,xis an integer ranging from 1 to 20),
(iv)-C x H 2x -NH 2 (here,xis an integer ranging from 1 to 20),
(v)- SH, and
(vi)- R a n -CR=CR 2 (here,R a is the divalent COne-C20 Hydrocarbon radical and exponentntakes the value 0 or 1 and is a radicalRare independently of each other (vi.i) hydrogen and (vi.ii) COne-C6 selected from the group consisting of hydrocarbon radicals)
is selected from the group consisting of;
Indicesa,b,b',c, c', c'', d, d', d'', d'''represents the number of each siloxane unit in the compound and independently of each other is an integer ranging from 0 to 100,000, provided thata, b, b', c, c', c'', d, d', d'', d'''The sum of takes a value greater than or equal to 2 and the exponentb',c', dat least one of ' is greater than or equal to 2 or an exponentc'', d'' ord''' at least one of them is non-zero.
(i) 제9항에 청구된 혼합물을 제공하는 단계, 및
(ii) 열적 활성화, 광화학적 활성화 또는 촉매 활성화에 의해 혼합물을 반응시키는 단계
를 포함하는 실록산의 제조 방법.
(i) providing the mixture as claimed in claim 9, and
(ii) reacting the mixture by thermal activation, photochemical activation or catalytic activation;
A method for producing a siloxane comprising a.
제10항에 있어서, 활성화는 열적으로 발생하며 온도는 60℃ 내지 200℃ 범위인 제조 방법.The method of claim 10 , wherein the activation occurs thermally and the temperature ranges from 60° C. to 200° C. 11 . 제10항 또는 제11항에 있어서, 실록산 중 실리란기:작용기의 몰비는 4:1 내지 1:4 범위인 제조 방법.12. The process according to claim 10 or 11, wherein the molar ratio of silirane groups to functional groups in the siloxane ranges from 4:1 to 1:4.
KR1020227022576A 2019-12-04 2019-12-04 Silirane functionalized compounds, especially organosilicon compounds for the preparation of siloxanes Ceased KR20220112277A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2019/083744 WO2021110265A1 (en) 2019-12-04 2019-12-04 Silirane compounds as stable silylene precursors and their use in the catalyst-free preparation of siloxanes

Publications (1)

Publication Number Publication Date
KR20220112277A true KR20220112277A (en) 2022-08-10

Family

ID=68808368

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227022576A Ceased KR20220112277A (en) 2019-12-04 2019-12-04 Silirane functionalized compounds, especially organosilicon compounds for the preparation of siloxanes

Country Status (6)

Country Link
US (1) US20230057557A1 (en)
EP (1) EP4069704A1 (en)
JP (1) JP2023505497A (en)
KR (1) KR20220112277A (en)
CN (1) CN114746429A (en)
WO (1) WO2021110265A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024002470A1 (en) 2022-06-28 2024-01-04 Wacker Chemie Ag Monofunctional silirene entity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001294811A1 (en) 2000-10-05 2002-04-15 Wisconsin Alumni Research Foundation. Silylene catalyst for olefin polymerization
US9177783B2 (en) 2013-12-10 2015-11-03 Applied Materials, Inc. Substituted silacyclopropane precursors and their use for the deposition of silicon-containing films
DE102015216951A1 (en) * 2015-09-04 2017-03-09 Wacker Chemie Ag (Meth) acrylate group-containing organosilicon compounds and a process for their preparation

Also Published As

Publication number Publication date
EP4069704A1 (en) 2022-10-12
CN114746429A (en) 2022-07-12
WO2021110265A1 (en) 2021-06-10
US20230057557A1 (en) 2023-02-23
JP2023505497A (en) 2023-02-09

Similar Documents

Publication Publication Date Title
US5939576A (en) Method of functionalizing polycyclic silicones and the compounds so formed
US5942638A (en) Method of functionalizing polycyclic silicones and the resulting compounds
US5034490A (en) Curable norbornenyl functional silicone formulations
JP3020981B2 (en) Functional norbornene compounds, organosiloxane polymers and methods for their preparation
EP3824017B1 (en) Polysiloxane resin - polyolefin copolymer and methods for the preparation and use thereof
JP2979145B1 (en) New silsesquioxane-containing polymer and method for producing the same
JPH06172535A (en) Preparation of cluster azasilacycloalkyl- functional polysiloxane
JP2003517072A (en) Process for producing polyorganosiloxanes by polymerization catalyzed by a catalyst system based on triflic acid or a triflic acid derivative
KR20220112277A (en) Silirane functionalized compounds, especially organosilicon compounds for the preparation of siloxanes
KR100332466B1 (en) Multi-reactive polysiloxane compound having halogen substituents and synthetic method thereof
Allcock et al. Hybrid phosphazene-organosilicon polymers: II. High-polymer and materials synthesis and properties
KR101037417B1 (en) Process for preparing high molecular weight organopolysiloxane
WO2017094392A1 (en) Linear organopolysiloxane having different functional groups at both terminals, and method for producing same
KR20220111311A (en) Silirane-functionalized compounds for preparing siloxanes, especially organosilicon compounds
JP2769840B2 (en) Siloxane compounds having hydroxyl-containing substituents
JP3047877B2 (en) Epoxy resin modifier and resin composition for semiconductor encapsulation
JP2001181398A (en) Silicon-containing polymer and manufacturing method
JP2627769B2 (en) Method for producing chain polyorganosiloxane
JP2006282820A (en) Method for producing organically modified silicone
JP4603634B2 (en) Process for producing organosiloxane from trihalosilane
US20080051525A1 (en) Process for preparing substituted polysiloxane coatings
JP3020164B1 (en) New silsesquioxane-containing polymer and its production method
JPH05209055A (en) Process for producing aminosilyl group-containing organopolysiloxane
HK1004278B (en) Curable norbornenyl functional silicone formulations
JPH01240530A (en) Production of chain polyorganosiloxane

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20220701

Patent event code: PA01051R01D

Comment text: International Patent Application

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20240904

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20241108

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D