[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20220095952A - Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method - Google Patents

Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method Download PDF

Info

Publication number
KR20220095952A
KR20220095952A KR1020200187994A KR20200187994A KR20220095952A KR 20220095952 A KR20220095952 A KR 20220095952A KR 1020200187994 A KR1020200187994 A KR 1020200187994A KR 20200187994 A KR20200187994 A KR 20200187994A KR 20220095952 A KR20220095952 A KR 20220095952A
Authority
KR
South Korea
Prior art keywords
tungsten oxide
visible light
oxide
titanium
photocatalyst
Prior art date
Application number
KR1020200187994A
Other languages
Korean (ko)
Inventor
이재섭
Original Assignee
주식회사 비엔큐브
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 비엔큐브 filed Critical 주식회사 비엔큐브
Priority to KR1020200187994A priority Critical patent/KR20220095952A/en
Publication of KR20220095952A publication Critical patent/KR20220095952A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • B01J35/004
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • A61L9/205Ultraviolet radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a method for manufacturing a visible light-responsive photocatalyst containing tungsten copper oxide colloid, and a visible light-responsive photocatalyst using the same. The visible light-responsive photocatalyst is composed of a mixture which includes 50 to 95 wt% of titanium oxide and 50 to 5 wt% of tungsten oxide (or copper tungsten oxide). The method for manufacturing a visible light-responsive photocatalyst comprises: a mixing step of mixing titanium hydroxide gel or crystallized titanium oxide as a titanium oxide material with tungsten oxide colloid as a tungsten oxide material in a set ratio, wherein the tungsten oxide colloid is made by passing, through a cation exchange resin, sodium tungstate obtained by inputting and heating an aqueous sodium hydroxide solution in tungsten oxide obtained by oxidizing cemented sludge; and a heat treatment step of heat-treating the mixture at 400 to 600℃. The present invention has an excellent photocatalytic effect for decomposing pollution materials.

Description

구리산화텅스텐 콜로이드를 포함하는 가시광 응답형 광촉매의 제조방법 및 이를 이용한 가시광 응답형 광촉매{Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method}Manufacturing method of a visible light responsive photocatalyst containing copper tungsten oxide colloid and a visible light responsive photocatalyst using the same

본 발명은, 광촉매 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 구리산화텅스텐 콜로이드(CuWO3 colloidal suspension)를 이용하여 가시광 응답형 광촉매를 제조하는 제조방법 및 이를 이용한 가시광 응답형 광촉매에 관한 것이다.The present invention relates to a photocatalyst and a method for manufacturing the same, and more particularly, to a manufacturing method for manufacturing a visible light responsive photocatalyst using CuWO 3 colloidal suspension, and to a visible light responsive photocatalyst using the same.

최근 세계적으로 문제가 심각한 환경오염을 해결하기 위해서 오염물질을 태양광이나 실내 광을 이용하여 분해하거나 정화하기 위한 광촉매에 대한 연구가 활발히 진행되고 있다.Recently, in order to solve a serious environmental pollution problem worldwide, research on photocatalysts for decomposing or purifying pollutants using sunlight or indoor light is being actively conducted.

광촉매는 밴드 갭(band gap) 이상의 빛에너지(Energy)를 흡수하여, 전자(electron)와 정공(hole)를 생성하고 이들이 광촉매 입자 표면으로 확산한 후, 각각 산화/환원 반응에 참여해서, 주위의 화학물질을 산화 또는 환원시킬 수 있는 물질을 의미한다.The photocatalyst absorbs light energy above the band gap, creates electrons and holes, diffuses to the surface of the photocatalyst particle, and participates in oxidation/reduction reactions, respectively. It refers to a substance that can oxidize or reduce a chemical.

이러한 광촉매 반응에 의해 생성된 전자와 정공을 이용한 수중이나 대기중의 농약이나 악취 물질 등의 유기물의 분해하지만, 대부분은 이산화티탄(TiO2)을 이용한 것이다. 이산화티탄은 밴드 갭이 32 eV 이기 때문에 400nm 보다 짧은 자외선의 조사하에서만 활성을 나타낸다. 그 때문에 현재의 응용예로서는 옥외, 혹은 자외선 램프(lamp)에만 한정되어 있다.Organic substances such as pesticides and odor substances in water or air using electrons and holes generated by such a photocatalytic reaction are decomposed, but most of them use titanium dioxide (TiO 2 ). Since titanium dioxide has a band gap of 32 eV, it is active only under irradiation with ultraviolet rays shorter than 400 nm. Therefore, the current application is limited to outdoor or ultraviolet lamps.

따라서 태양광의 46%를 이루고 있는 가시광에 감응하는 광촉매를 개발할 경우 태양광 하에서 고효율 광촉매를 만들 수 있을 뿐만 아니라 태양광이 미치지 못하는 실내에서의 형광등에도 감응할 수 있게 되어 실외뿐만 아니라 실내에서도 광촉매를 이용할 수 있게 된다.Therefore, when developing a photocatalyst that responds to visible light, which accounts for 46% of sunlight, not only can a high-efficiency photocatalyst be made under sunlight, but it can also respond to fluorescent lamps indoors where sunlight cannot reach. be able to

즉, 유해물질을 제거하는 방법 중 깨끗하고 무한한 태양광 에너지를 이용한 광촉매가 주목받고 있고, 지금까지가장 효과적이라고 알려진 이산화티탄의 경우 태양광중 파장이 짧은 자외선만을 흡수하기 때문에, 태양광 중에서 가시광선을 흡수할 수 있는 가시광 응답형 광촉매 조성물 개발이 절실히 필요하다.That is, among the methods of removing harmful substances, a photocatalyst using clean and infinite solar energy is attracting attention, and in the case of titanium dioxide, which is known to be the most effective so far, it absorbs only ultraviolet rays with a short wavelength. There is an urgent need to develop a visible light responsive photocatalyst composition that can be absorbed.

이에 따라 산화티탄 이외의 광촉매 재료에 대한 광촉매 효과의 연구가 진행되고 있는데 그 중의 하나가 산화텅스텐의 광촉매 효과이다. 산화텅스텐은 산화티탄에 비해 에너지 밴드 갭이 작기 때문에 가시광을 흡수하는 것이 가능하다. 그러나 현재까지의 연구 결과에 따르면 산화텅스텐을 단독으로 사용할 때 광촉매 활성은 크기 않은 것으로 알려져 있다. Accordingly, studies on the photocatalytic effect on photocatalytic materials other than titanium oxide are being conducted, and one of them is the photocatalytic effect of tungsten oxide. Since tungsten oxide has a smaller energy band gap compared to titanium oxide, it is possible to absorb visible light. However, according to the results of studies to date, it is known that the photocatalytic activity is not great when tungsten oxide is used alone.

즉 산화텅스텐의 전도대는 산소의 산화환원 준위보다 낮기 때문에 전자가 산소의 환원반응에 기여하지 못하고 역으로 정공과 재결합하기 때문에 산화텅스텐 단독으로는 높은 광촉매 활성을 얻을 수 없는 것이다. 따라서 산화텅스텐 입자 표면에 전자 흡수성 물질(예, 조촉매)을 형성시킴으로써 광조사에 의해 전도대에 여기된 전자와 가전자대에서 생성된 정공과의 재결합을 억제하여 산화텅스텐 입자의 광촉매 활성을 높이는 것이다. 이러한 조촉매로서 구리 또는 구리산화물을 사용하는 경우가 많이 있다.In other words, since the conduction band of tungsten oxide is lower than the oxidation-reduction level of oxygen, electrons do not contribute to the reduction reaction of oxygen and recombine with holes. Therefore, by forming an electron-absorbing material (eg, a co-catalyst) on the surface of the tungsten oxide particles, the recombination of electrons excited in the conduction band by light irradiation with holes generated in the valence band is suppressed, thereby enhancing the photocatalytic activity of the tungsten oxide particles. Copper or copper oxide is often used as such a co-catalyst.

구리 단체 또는 구리이온에는 항균성이 있다는 것도 예로부터 알려졌으며, 표적세균의 효소저해, 막단백 변성, 세포소기관의 구성 단백 변성에 의해서 정균, 살균에 이르는 저서가 최근까지 연구되고 있다. 그리고 이러한 효과를 기대하여 제조되는 구리 함유 촉매는 구리산화물을 미립자 상으로 담지하여 제조되고(특허문헌1, 특허문헌2, 특허문헌3), 다양한 위생용품으로 사용되고 있다.It has been known for a long time that copper alone or copper ions have antibacterial properties, and books on bacteriostasis and sterilization by enzyme inhibition of target bacteria, membrane protein denaturation, and cell organelle protein denaturation have been studied until recently. And the copper-containing catalyst produced in anticipation of this effect is prepared by supporting copper oxide in the form of fine particles (Patent Document 1, Patent Document 2, Patent Document 3), and is used as various hygiene products.

그러나 구리함유 금속산화물은 광이나 열, 수분 등 주위 환경에 의해 구리 조성이 변하기 쉽기 때문에 초기에는 높은 촉매 효과와 항균 효과가 있으나 시간이 지나면 열화되어 효과를 기대하기 어렵다.However, copper-containing metal oxide has a high catalytic and antibacterial effect in the beginning because the composition of copper is easily changed by the surrounding environment such as light, heat, and moisture, but it deteriorates over time, so it is difficult to expect the effect.

광촉매용 산화티탄 미립자의 항균효과를 높이기 위해 구리 화합물과 조합하여 사용되는 경우가 있는데 특허문헌 4에 개시되어 있다. 그리고 실내 공간에서도 충분한 광촉매 효과를 얻기 위해서는 가시광 응답형 광촉매를 사용하여야 하는데, 가시광 응답형 광촉매로는 산화텅스텐 광촉매가 있으며(특허문헌 5), 또한 구리 화합물을 표면에 담지한 산화텅스텐 광촉매도 있다(특허문헌 6).In some cases, it is used in combination with a copper compound in order to enhance the antibacterial effect of the titanium oxide fine particles for a photocatalyst, which is disclosed in Patent Document 4. In addition, in order to obtain a sufficient photocatalytic effect in an indoor space, a visible light responsive photocatalyst must be used. As a visible light responsive photocatalyst, there is a tungsten oxide photocatalyst (Patent Document 5), and there is also a tungsten oxide photocatalyst in which a copper compound is supported on the surface ( Patent Document 6).

그리고 산화티탄을 코어입자로 산화텅스텐 또는 동을 함유한 산화텅스텐을 조촉매로 하고 전체 표면을 다시 피복한 촉매재에 대해서는 특허문헌 6에 개시되어 있다. 또한, 나노 단위의 이산화티탄과 산화텅스텐을 졸겔법으로 분사하여 복합화하여 복합화된 가시광 공촉매에 대하여는 특허문헌 7에 개시되어 있다. 또한, 산화텅스텐에 Pt를 첨가하여 Pt 첨가 산화텅스텐 광촉매 코팅제에 대하여는 특허문헌 8에 개시되어 있다. 또한, 구리성분이 고용된 산화티탄에 산화텅스텐 복합 광촉매를 제조하여 가시광 응답형 광촉매에 대하여는 특허문헌 9에 개시되어 있다.In addition, Patent Document 6 discloses a catalyst material in which titanium oxide is used as a core particle and tungsten oxide or copper-containing tungsten oxide is used as a co-catalyst and the entire surface is re-coated. In addition, Patent Document 7 discloses a visible light co-catalyst in which nano-scale titanium dioxide and tungsten oxide are sprayed and complexed by a sol-gel method. In addition, Pt is added to tungsten oxide, and patent document 8 discloses a Pt-added tungsten oxide photocatalyst coating agent. In addition, Patent Document 9 discloses a visible light responsive photocatalyst by preparing a tungsten oxide composite photocatalyst in titanium oxide in which a copper component is dissolved.

그러나 선행기술로 제시된 특허문헌을 보면, 산화티타늄 미립자에 구리나 Pt 등을 조촉매로 하여 광촉매 특성을 내는 촉매제를 제시하고 있으나 산화티타늄을 촉매로 사용한 경우에는 광촉매 효과가 UV에서만 있다는 단점이 있고, 텅스텐 산화물을 중심으로 가시광에서 촉매 효과를 내고자 하는 것은 금속 텅스텐으로부터 산화물 텅스텐을 제조하여야 한다거나 텅스텐산화물과 미분화한 구리를 이용하여 산화구리 텅스텐화합물을 제조하여야 하는 등 제조상의 어려움이 있고 장시간에 걸친 기계적 혼합을 하여야 하는 등의 어려움이 있었다.However, looking at the patent literature presented as a prior art, it is suggested that a catalyst that produces photocatalytic properties by using copper or Pt as a co-catalyst in titanium oxide fine particles is presented, but when titanium oxide is used as a catalyst, the photocatalytic effect is only in UV. To achieve a catalytic effect in visible light, centering on tungsten oxide, there are difficulties in manufacturing, such as manufacturing tungsten oxide from metal tungsten, or manufacturing a copper oxide tungsten compound using tungsten oxide and pulverized copper, and mechanical mixing over a long period of time There were difficulties such as having to

더욱이 산화텅스텐을 광촉매로 사용하는 경우에는 염기성 분위기에서 산화텅스텐의 부식 등의 문제뿐 아니라 가시광에서 흡착은 잘되지만 분해가 잘 일어나지 않가 광촉매제로서의 성능에 문제가 있었다.In addition, when tungsten oxide is used as a photocatalyst, there is a problem in performance as a photocatalyst because it adsorbs well in visible light but does not decompose well in a basic atmosphere, such as corrosion of tungsten oxide.

이러한 점을 개선하기 위해서 본 발명자는 산화티타늄에 조촉매제로 여러 가지 금속 또는 산화물을 첨가할 때 합성을 잘하기 위한 다양한 방법과 조촉매제로 어떤 물질을 혼합할 것인가에 대한 연구를 수행한 결과 본 발명의 가시광 응답형 광촉매 재료 및 이를 이용한 가시광 응답형 광촉매 제조방법을 발명하게 되었다. In order to improve this point, the present inventors conducted research on various methods for good synthesis when various metals or oxides are added as a co-catalyst to titanium oxide and which materials to mix as a co-catalyst. As a result, the present invention A visible light responsive photocatalyst material and a method for manufacturing a visible light responsive photocatalyst using the same were invented.

특허문헌 1 : 일본 특개 평06-065012호 공보:Patent Document 1: Japanese Patent Laid-Open No. 06-065012: 특허문헌 2 : 일본 특개 평11-349423호 공보Patent Document 2: Japanese Patent Laid-Open No. 11-349423 특허문헌 3 : 특개 2007- 31551호 공보Patent Document 3: Japanese Patent Application Laid-Open No. 2007-31551 특허문헌 4 : 일본 특개 평08-067835호 공보Patent Document 4: Japanese Patent Laid-Open No. Hei 08-067835 특허문헌 5 : 일본 특개 2009-148700호 공보Patent Document 5: Japanese Patent Laid-Open No. 2009-148700 특허문헌 6 : (일본 특개 2009-226299호 공보Patent Document 6: (Japanese Patent Laid-Open No. 2009-226299) 특허문헌 7 : JP 2019-181469(2019.10.24.)Patent Document 7: JP 2019-181469 (2019.10.24.) 특허문헌 8 : KR 10-0578044(2006.05.11.)Patent Document 8: KR 10-0578044 (2006.05.11.) 특허문헌 9 : KR 10-1527592(2015.06.10.)Patent Document 9: KR 10-1527592 (2015.06.10.) 특허문헌 10: KR 10-0945035(2010.02.23.)Patent Document 10: KR 10-0945035 (2010.02.23.)

본 발명은 종래 기술의 문제점을 해결하기 위한 것으로서, 본 발명의 주된 목적은 가시광에서 VOC 및 바이러스 및 박테리아를 흡착 및 분해할 수 있는 가시광 응답형 광촉매를 제공하고자 한다.The present invention is to solve the problems of the prior art, and the main object of the present invention is to provide a visible light responsive photocatalyst capable of adsorbing and decomposing VOCs, viruses and bacteria in visible light.

또한, 본 발명은 백색광(400~800nm)만으로도 광촉매 활성을 발현하고, 높은 항균 성능을 나타내며, 열이나 자외선 폭로에 대해 구리의 배위 상태가 안정되어 쉽게 변성되지 않고 내구성이 높은 광촉매 박막을 간편하게 제작할 수 있는 산화티탄 미립자를 포함하는 산화티탄 구리 함유 산화텅스텐 복합 광촉매 미립자에 조촉매제로 백금 금속을 분산시킨 촉매제 및 그 제조 방법과 이 분산액을 사용하여 형성되는 광촉매를 제공하는 것을 목적으로 한다.In addition, the present invention expresses photocatalytic activity only with white light (400 to 800 nm), exhibits high antibacterial performance, and the copper coordination state is stable against heat or ultraviolet exposure, so it is not easily denatured and a durable photocatalytic thin film can be easily manufactured. An object of the present invention is to provide a catalyst in which platinum metal is dispersed as a co-catalyst in titanium oxide copper-containing tungsten oxide composite photocatalyst fine particles containing titanium oxide fine particles, a method for producing the same, and a photocatalyst formed using the dispersion.

본 발명의 목적을 달성하기 위한 수단으로서, 본 발명에 따른 가시광 응답형 광촉매는, 산화티타늄 50 내지 95중량%와 산화텅스텐(또는 구리텅스텐산화물) 50 내지 5중량%을 포함하는 혼합물로 이루어진 것을 특징으로 한다.As a means for achieving the object of the present invention, the visible light responsive photocatalyst according to the present invention consists of a mixture containing 50 to 95 wt% of titanium oxide and 50 to 5 wt% of tungsten oxide (or copper tungsten oxide) do it with

또한 본 발명의 다른 실시 예는, 산화티타늄 50 내지 95중량%와 산화텅스텐(또는 구리텅스텐산화물) 50 내지 5중량% 및 백금 0.001 내지 0.1중량%을 포함하는 혼합물로 이루어진다. In addition, another embodiment of the present invention consists of a mixture containing 50 to 95% by weight of titanium oxide, 50 to 5% by weight of tungsten oxide (or copper tungsten oxide), and 0.001 to 0.1% by weight of platinum.

본 발명에 따른 가시광 응답형 광촉매의 제조방법은, 산화티타늄 재료로서, 수산화티탄 겔이나 결정화된 산화티타늄과, 산화텅스텐 재료로서, 초경슬러지를 산화시킨 산화텅스텐에 수산화나트륨 수용액을 넣고 가열하여 얻은 나트륨텅스테이트를 양이온교환수지를 통과시켜 만들어진 산화텅스텐 콜로이드를 일정 비율로 혼합하는 혼합단계와; 이 혼합물을 400~600℃로 열처리하는 열처리 단계를 포함하는 것을 특징으로 한다. In the method for producing a visible light responsive photocatalyst according to the present invention, as a titanium oxide material, titanium hydroxide gel or crystallized titanium oxide, and as a tungsten oxide material, sodium hydroxide solution is added to tungsten oxide obtained by oxidizing cemented carbide, and sodium obtained by heating. A mixing step of mixing tungsten oxide colloid made by passing tungstate through a cation exchange resin in a certain ratio; It is characterized in that it comprises a heat treatment step of heat-treating the mixture at 400 ~ 600 ℃.

상기한 수산화티탄 겔은, 티타늄금속염액을 용매로 분산시킨 후 60~100℃의 온도에서 열가수분해한 후 물 또는 알콜로 세정한 후 분리 여과하는 단계를 통해 만들어진다. The above-described titanium hydroxide gel is made by dispersing a titanium metal salt solution in a solvent, thermally hydrolyzing it at a temperature of 60 to 100° C., washing with water or alcohol, and then separating and filtering.

상기한 결정화된 산화티타늄은, 상기 단계에서 만들어진 수산화티탄 겔을 다시 물에 재산분시킨 후 압력용기에 넣고 100~300℃에서 100시간 열처리하는 단계를 통해 만들어진다.The crystallized titanium oxide is made through the step of re-dispersing the titanium hydroxide gel made in the above step again in water and then putting it in a pressure vessel and heat-treating it at 100-300° C. for 100 hours.

상기한 산화텅스텐 콜로이드는, 초경슬러지를 600~800℃의 온도에서 산화시켜 불순물을 함유한 산화텅스텐 슬러지를 제조한 후 상기 불순물 함유 산화텅스텐을 수산화나트륨 수용액을 100℃로 가열한 용액에 넣고 가열하면서 교반하여 나트륨텅스테이트를 생성한 다음, 제조된 나트륨텅스테이트를 양이온교환수지를 통과시켜서 만들어진다. The above-described tungsten oxide colloid is prepared by oxidizing cemented carbide sludge at a temperature of 600 to 800 ° C. After stirring to produce sodium tungstate, the prepared sodium tungstate is passed through a cation exchange resin.

또한, 구리산화텅스텐은, 상기한 단계에서 제조된 산화텅스텐 콜로이드에 무수상태의 CuCl2를 반응시켜 만들어진다. In addition, tungsten copper oxide is made by reacting CuCl 2 in anhydrous state with the tungsten oxide colloid prepared in the above step.

또한, 조촉매로서 백금은 산화티타늄 졸이나 산화텅스텐 콜로이드 중 어느 쪽에 첨가할 수 있다. In addition, as a promoter, platinum can be added to either a titanium oxide sol or a tungsten oxide colloid.

또한, 본 발명의 가시광 응답형 광촉매의 제조방법은, 상기 단계에서 혼합된 Pt, CuWO4가 도핑된 Ti(OH)4를 100℃에서 20시간 건조한 후, 다시 400℃에서 2시간 열처리하여 Pt, CuWO4가 도핑된 TiO2를 제조하는 열처리 단계를 포함한다. In addition, in the method for producing a visible light responsive photocatalyst of the present invention, Ti(OH) 4 doped with Pt and CuWO 4 mixed in the above step is dried at 100° C. for 20 hours, and then heat-treated at 400° C. for 2 hours to obtain Pt, and a heat treatment step of preparing CuWO 4 doped TiO 2 .

또한, 본 발명의 가시광 응답형 광촉매의 제조방법은, 상기 단계에서 제조된 Pt, CuWO4가 도핑된 TiO2를 나노단위 미세분말로 제조하기 위해 밀링하여 50nm 미만의 분말로 제조하는 단계를 포함한다. In addition, the manufacturing method of the visible light responsive photocatalyst of the present invention includes the step of milling the TiO 2 doped with Pt and CuWO 4 prepared in the above step to prepare a nano-unit fine powder to produce a powder having a size of less than 50 nm. .

본 발명에 따라 제조된 가시광 응답형 광촉매는 형광등을 포함한 일반 조명등, LED 및 OLED 조명 등의 가시광 영역에서 활성화되므로 오염물질을 분해하는 광촉매 효과가 우수하다. Since the visible light responsive photocatalyst prepared according to the present invention is activated in the visible light region such as general lighting including fluorescent lamps, LED and OLED lighting, the photocatalytic effect of decomposing contaminants is excellent.

본 발명의 가시광 응답형 광촉매는, 산화텅스텐(또는 구리텅스텐산화물)과 산화티타늄을 일정 비율로 혼합하여 나노 광촉매를 제조함으로써 TiO2와 WO3를 각각 단독으로 사용하는 광촉매보다 가시광에서 우수한 광촉매 효과가 있다.The visible light responsive photocatalyst of the present invention has a superior photocatalytic effect in visible light than a photocatalyst using TiO 2 and WO 3 alone by preparing a nano photocatalyst by mixing tungsten oxide (or copper tungsten oxide) and titanium oxide in a certain ratio. have.

또한, 본 발명에 따른 가시광 응답형 광촉매의 제조방법은, 산화티타늄 분말과 산화텅스텐 분말을 혼합하는 대신에 티타늄금속염액을 가수분해한 수산화티탄 겔을 산화티타늄 재료로 사용하고 초경슬러지를 산화시켜 만들어진 산화텅스텐에 수산화나트륨 수용액을 넣고 가열하여 얻은 나트륨텅스테이트를 양이온교환수지를 통과시켜서 만든 산화텅스텐 콜로이드를 산화텅스텐 재료로 사용함으로써 금속 텅스텐으로부터 산화물텅스텐을 제조하여야 제조상의 어려움과 장시간에 걸친 기계적 혼합이 요구되는 등의 문제를 해결할 수 있는 효과가 있다. In addition, the method for producing a visible light responsive photocatalyst according to the present invention is made by using a titanium hydroxide gel obtained by hydrolyzing a titanium metal salt solution as a titanium oxide material and oxidizing cemented carbide instead of mixing titanium oxide powder and tungsten oxide powder. Tungsten oxide must be prepared from metallic tungsten by using a tungsten oxide colloid made by passing sodium tungstate obtained by heating aqueous sodium hydroxide solution in tungsten oxide through a cation exchange resin as a tungsten oxide material. There is an effect that can solve problems such as required.

도 1은 본 발명에 따라 만들어진 가시광 응답형 광촉매 필터의 사진이고
도 2는 본 발명에 따라 만들어진 가시광 응답형 광촉매 필터의 유해가스 제거율을 측정하기 위한 시험장치를 보여주는 사진다.
1 is a photograph of a visible light responsive photocatalytic filter made according to the present invention.
2 is a photograph showing a test apparatus for measuring the removal rate of harmful gases of the visible light responsive photocatalytic filter made according to the present invention.

광촉매 재료로는 TiO2 이외에 WO3, SrTiO3, Fe2O3, SnO2, ZnO 등의 화합물이 사용될 수 있다. 광화학 반응에 의해서 기저 상태의 분자가 빛의 파장별 영역에 따라 여기 상태를 거치고, 이들은 다시 에너지 준위가 낮은 새로운 성분의 분자로 변형되므로 광화학은 태양광 에너지의 이용영역으로 인식되고 있다. As the photocatalyst material, in addition to TiO 2 , compounds such as WO 3 , SrTiO 3 , Fe 2 O 3 , SnO 2 , ZnO may be used. By a photochemical reaction, the molecules in the ground state go through an excited state according to the region of each wavelength of light, and these are transformed into molecules of a new component with a low energy level.

본 발명에 따른 가시광 응답형 광촉매는, 산화티타늄 50 내지 95중량%와 산화텅스텐(또는 구리텅스텐산화물) 50 내지 5중량%을 포함하는 혼합물로 이루어진다. The visible light responsive photocatalyst according to the present invention is composed of a mixture containing 50 to 95 wt% of titanium oxide and 50 to 5 wt% of tungsten oxide (or copper tungsten oxide).

또한, 본 발명의 가시광 응답형 광촉매는, 산화티타늄 50 내지 95중량%와 산화텅스텐(또는 구리텅스텐산화물) 50 내지 5중량% 및 백금 0.001 내지 0.1중량%을 포함하는 혼합물을 이루어진다. In addition, the visible light responsive photocatalyst of the present invention comprises a mixture comprising 50 to 95 wt% of titanium oxide, 50 to 5 wt% of tungsten oxide (or copper tungsten oxide), and 0.001 to 0.1 wt% of platinum.

구체적으로, 본 발명의 가시광 응답형 광촉매는 광촉매 재료로서 TiO2와 WO3를 사용한다. TiO2는 자외선 영역에서 광촉매 효과가 우수한 것으로 확인되었으나 가시광 영역에서는 광촉매 효과를 미미하다는 단점이 있다. 즉, 태양광에서 자외광은 약 4%에 지나지 않기 때문에 자외광이 거의 없는 실내에서는 광촉매 효율이 크게 떨어진다. 반면에 WO3은 가시광 영역에서 광촉매 효과가 있으나 산화텅스텐을 단독으로 사용하는 광촉매의 경우 특정 파장에서만 효과가 있고 전반적으로 가시광에서 광촉매 효과가 적은 것으로 알려졌다.Specifically, the visible light responsive photocatalyst of the present invention uses TiO 2 and WO 3 as photocatalyst materials. TiO 2 was confirmed to have an excellent photocatalytic effect in the ultraviolet region, but has a disadvantage in that the photocatalytic effect is insignificant in the visible region. That is, since ultraviolet light accounts for only about 4% of sunlight, photocatalytic efficiency is greatly reduced in an indoor environment where there is little ultraviolet light. On the other hand, WO 3 has a photocatalytic effect in the visible region, but in the case of a photocatalyst using tungsten oxide alone, it is effective only at a specific wavelength, and it is known that the photocatalytic effect is generally small in visible light.

본 발명은 이러한 점을 고려하여, TiO2와 WO3의 광촉매 활성도를 높이기 위해서 TiO2와 WO3을 일정 비율로 혼합한 혼합물을 열처리하여 광촉매를 제조하는 것이다. 이렇게 TiO2와 WO3 혼합물을 열처리하여 제조된 광촉매는 TiO2와 WO3를 각각 단독으로 사용하는 경우보다 가시광 영역에서 광촉매 효과가 우수하다.In consideration of this point, the present invention prepares a photocatalyst by heat-treating a mixture of TiO 2 and WO 3 in a predetermined ratio in order to increase the photocatalytic activity of TiO 2 and WO 3 . In this way, the photocatalyst prepared by heat-treating a mixture of TiO 2 and WO 3 has better photocatalytic effect in the visible light region than when TiO 2 and WO 3 are used alone.

또한, 본 발명에 따른 제조방법은, TiO2와 WO3을 일정 비율로 혼합한 혼합물을 열처리하여 광촉매로 제조하되, 금속 텅스텐으로부터 산화물텅스텐을 제조하거나 텅스텐산화물과 미분화한 구리를 이용하여 산화구리 텅스텐화합물을 제조하는 종래 기술에서의 제조상의 어려움과 장시간에 걸친 기계적 혼합이 요구되는 등의 문제점을 해결하기 위한 것이다. In addition, in the manufacturing method according to the present invention, a mixture of TiO 2 and WO 3 is heat-treated in a predetermined ratio to prepare a photocatalyst, tungsten oxide is prepared from metal tungsten, or copper oxide tungsten using tungsten oxide and pulverized copper This is to solve problems such as difficulties in manufacturing in the prior art for preparing compounds and mechanical mixing over a long period of time is required.

이를 위해서 본 발명은 TiO2와 WO3을 일정 비율로 혼합한 혼합물을 제조하되, 산화티타늄은 티타늄금속염액을 가수분해한 수산화티탄 겔이나 수화화티탄 겔을 열처리하여 결정화된 산화티타늄을 사용한다. To this end, the present invention prepares a mixture in which TiO 2 and WO 3 are mixed in a certain ratio, but for the titanium oxide, a titanium hydroxide gel obtained by hydrolyzing a titanium metal salt solution or a titanium oxide crystallized by heat treatment of a hydrated titanium gel is used.

그리고 산화텅스텐은 초경슬러지를 산화시킨 산화텅스텐에 수산화나트륨 수용액을 넣고 가열하여 얻은 나트륨텅스테이트를 양이온교환수지를 통과시켜 만들어진 산화텅스텐 콜로이드를 사용한다. And tungsten oxide uses a tungsten oxide colloid made by heating sodium tungstate obtained by adding an aqueous sodium hydroxide solution to tungsten oxide oxidized from cemented carbide sludge and passing it through a cation exchange resin.

여기서 콜로이드 서스펜션(colloidal suspension) 또는 콜로이드는, 용매와 용질이 완전히 혼합되어 단일상을 이루는 용액과 달리, 크기가 1~1000nm이고 불용성인 물질이 분산된 상태로 다른 물질과 섞여 있는 혼합물이다. 따라서 산화텅스텐 콜로이드는 산화텅스텐 미립자가 분사된 상태로 다른 물질과 섞여 있는 것이다. 이러한 산화텅스텐 콜로이드는 수산화티탄 겔이나 산화티타늄과 혼합될 때 장시간의 기계적 혼합이 요구되지 않을 뿐만 아니라 산화티타늄과의 결합이 쉽게 이루어진다. Here, the colloidal suspension or colloid is a mixture in which a solvent and a solute are completely mixed to form a single phase, and an insoluble substance is dispersed and mixed with other substances with a size of 1 to 1000 nm, unlike a solution. Therefore, the tungsten oxide colloid is mixed with other materials in a state in which tungsten oxide fine particles are sprayed. When these tungsten oxide colloids are mixed with titanium hydroxide gel or titanium oxide, mechanical mixing for a long time is not required, and bonding with titanium oxide is easily achieved.

구체적으로, 산화티타늄(TiO2)의 재료는 티타늄금속염액을 용매로 분산시킨 후 열가수분해 공정에 따라 가수분해시킨다. 이때 열가수분해의 온도는 60~100℃이다. 이와 같이 열가수분해 하면 비정질의 수산화티탄 겔이 얻어진다. 수산화티탄의 정량적인 화학식은 Ti(OH)4이지만 보통 비정질 상태에서는 Ti-OH 결합과 Ti-O 결합이 혼재하므로 정량화학식으로 표기하지는 않는다.Specifically, the titanium oxide (TiO 2 ) material is hydrolyzed according to the thermal hydrolysis process after dispersing the titanium metal salt solution in the solvent. At this time, the temperature of the thermal hydrolysis is 60 ~ 100 ℃. By performing the thermal hydrolysis in this way, an amorphous titanium hydroxide gel is obtained. Although the quantitative chemical formula of titanium hydroxide is Ti(OH) 4 , it is not usually expressed as a quantitative chemical formula because Ti-OH bonds and Ti-O bonds are mixed in an amorphous state.

그리고 수산화티탄 겔을 물 또는 알콜로 세정한 후 분리 여과하여 광촉매 재료로 사용하거나 세정한 수산화티탄 겔을 다시 물에 재산분시킨 후 압력용기에 넣고 열처리 예를 들어, 100~300℃에서 100시간 열처리하여, 결정화된 산화티타늄을 제조하여 광촉매 재료로 사용할 수 있다.Then, after washing the titanium hydroxide gel with water or alcohol, it is separated and filtered to be used as a photocatalyst material, or the washed titanium hydroxide gel is re-dispersed in water and then placed in a pressure vessel for heat treatment, for example, heat treatment at 100~300℃ for 100 hours Thus, crystallized titanium oxide can be prepared and used as a photocatalyst material.

이어 산화텅스텐(WO3)의 재료는 국내에서 구입하기 어렵고 산화텅스텐 분말을 콜로이드(colloidal) 상태로 제조하는 것은 매우 어렵기 때문에 초경슬러지로부터 산화텅스텐 콜로이드를 제조하여 사용한다. Next, since the material of tungsten oxide (WO 3 ) is difficult to purchase in Korea and it is very difficult to produce tungsten oxide powder in a colloidal state, tungsten oxide colloid is manufactured from cemented carbide sludge and used.

즉, 초경슬러지로부터 산화텅스텐 콜로이드 상태로 제조하기 위해서는, 먼저 초경슬러지에서 산화텅스텐과 나머지 불순물을 분리하는 공정이 필요한데, 이를 위해서 초경슬러지를 600~800℃의 높은 온도에서 산화시켜 불순물을 함유한 산화텅스텐 슬러지를 제조한다. 그리고 제조된 불순물 함유 산화텅스텐을 수산화나트륨 수용액을 100℃로 가열한 용액에 넣고 가열하면서 교반하여 나트륨텅스테이트가 되도록 하여 불순물과 분리하는 공정을 수행한다. That is, in order to produce colloidal tungsten oxide from cemented carbide sludge, a process of separating tungsten oxide and remaining impurities from cemented carbide sludge is required. Tungsten sludge is produced. Then, the prepared impurity-containing tungsten oxide is put into a solution of sodium hydroxide solution heated to 100° C. and stirred while heating to form sodium tungstate, thereby performing a process of separating it from impurities.

이어 제조된 나트륨텅스테이트(sodium tungstat; 텅스텐산나트륨, 나트륨텅스텐산염)는 양이온교환수지를 통과시켜 산화텅스텐 콜로이드로 제조한다. 양이온교환수지는 수용액 속의 양이온과 자신의 양이온을 교환하는 합성수지로서, 양이온교화수지에 나트륨텅스테이트를 통과시키면 양이온이 교환되어 산화텅스텐 콜로이드로 된다. Then, the prepared sodium tungstat (sodium tungstate, sodium tungstate) is passed through a cation exchange resin to prepare a tungsten oxide colloid. A cation exchange resin is a synthetic resin that exchanges its own cations with cations in an aqueous solution. When sodium tungstate is passed through the cation exchange resin, the cations are exchanged to form tungsten oxide colloids.

한편, 산화텅스텐(WO3)의 재료는 구리 등의 제2 원소가 첨가될 수 있다. 예를 들어 구리는 콜로이드 상태의 산화텅스텐에 무수상태의 CuCl2를 반응시켜 제조한다. 즉, 구리의 첨가는 산화텅스텐 콜로이드와의 반응으로 제조한다. Meanwhile, a second element such as copper may be added to the material of tungsten oxide (WO 3 ). For example, copper is prepared by reacting anhydrous CuCl 2 with colloidal tungsten oxide. That is, the addition of copper is prepared by reaction with a colloid of tungsten oxide.

이와 같은 방법으로 제조된 이산화티탄 겔과 산화텅스텐 콜로이드(또는 제2 원소가 첨가된 산화텅스텐 콜로이드)를 적정 비율로 혼합하여 광촉매 재료로 사용한다. The titanium dioxide gel prepared in this way and the tungsten oxide colloid (or the tungsten oxide colloid to which the second element is added) are mixed in an appropriate ratio and used as a photocatalyst material.

바람직하게, 산화티타늄과 산화텅스텐의 혼합비율은 산화티타늄 50 내지 95 중량%과 산화텅스텐(또는 구리텅스텐산화물) 5 내지 50 중량%로 혼합한다. Preferably, the mixing ratio of titanium oxide and tungsten oxide is 50 to 95 wt% of titanium oxide and 5 to 50 wt% of tungsten oxide (or copper tungsten oxide).

또한, 조촉매로서 백금을 더 첨가할 수 있다. 백금(Pt)은 산화티타늄 졸이나 산화텅스텐 콜로이드 중 어느 쪽에 첨가하여도 좋으나, 반드시 티타늄산화물과 산화텅스텐 콜로이드를 합성하기 이전에 첨가해야 한다. 이때 백금은 전체 중량에 대해 0.001 내지 0.1 중량%가 되도록 첨가한다.In addition, platinum may be further added as a co-catalyst. Platinum (Pt) may be added to either titanium oxide sol or tungsten oxide colloid, but must be added before synthesizing titanium oxide and tungsten oxide colloid. At this time, platinum is added so as to be 0.001 to 0.1 wt% based on the total weight.

이와 같이 제조된 백금 및 산화텅스텐(또는 구리텅스텐산화물) 첨가 티타늄산화물을 열처리하여 가시광 응답형 광촉매를 제조한다. 이때, 열처리는 티타늄산화물의 조직이 아나타제(이산화티타늄)의 비율이 70% 이상되도록 400~600℃의 범위에서 열처리하여 가시광 응답형 광촉매로 제조한다.Platinum and tungsten oxide (or copper tungsten oxide) added titanium oxide prepared as described above are heat treated to prepare a visible light responsive photocatalyst. At this time, the heat treatment is carried out in the range of 400 to 600° C. so that the ratio of anatase (titanium dioxide) is 70% or more in the structure of titanium oxide to prepare a visible light responsive photocatalyst.

이하, 본 발명의 실시예로 더욱 상세히 설명하나, 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.Hereinafter, examples of the present invention will be described in more detail, but the scope of the present invention is not limited to these examples.

<실시예 1-1><Example 1-1>

<산화티타늄 준비><Preparation of titanium oxide>

산화티타늄 졸은 TiCl4를 처리하여 얻은 Ti(OH)4(Titanium Hudroxide, 수산화티타늄)을 시중에서 구입하여 원료로 사용하였다.As the titanium oxide sol, Ti(OH) 4 (Titanium Hudroxide, titanium hydroxide) obtained by treating TiCl 4 was purchased from the market and used as a raw material.

<산화텅스텐 제조><Manufacture of tungsten oxide>

시중에서 폐슬러지로 나오는 초경슬러지를 구입하여, 700℃의 로타리 킬른 로(Rotary Kiln furnace)에 넣고 2시간 가열하여, 탄화텅스텐(텅스텐카바이드)을 산화시켜 텅스텐산화물(WO3) 분말을 얻었다. Cemented carbide sludge produced as waste sludge was purchased from the market, put in a rotary kiln furnace at 700° C., and heated for 2 hours to oxidize tungsten carbide (tungsten carbide) to obtain tungsten oxide (WO 3 ) powder.

이 텅스텐산화물 분말에는 철, 니켈 등의 불순물이 함께 포함된다. 따라서 불순물이 포함된 산화텅스텐 분말에서 불순물을 제거하여 고순도의 산화텅스텐을 얻기 위해서 먼저, 불순물 함유 산화텅스텐 분말을 수산화나트륨 20%인 수용액에 넣고 100℃로 가열하면서 교반하여 산화텅스텐 분말만 반응시켜서 수용액 상태인 나트륨텅스테이트를 제조한다. 이때 불순물이 0.1% 미만으로 된다. This tungsten oxide powder contains impurities such as iron and nickel. Therefore, in order to obtain high-purity tungsten oxide by removing impurities from the tungsten oxide powder containing impurities, first, the impurity-containing tungsten oxide powder is placed in an aqueous solution of 20% sodium hydroxide and heated to 100°C while stirring to react only the tungsten oxide powder in an aqueous solution Sodium tungstate is prepared. At this time, the impurity becomes less than 0.1%.

그리고 수용액 상태의 나트륨텅스테이트의 함량이 0.5mol이 되게 조정한 후 양이온교환수지를 통과시켜 고순도의 산화텅스텐 콜로이드로 제조하였다.Then, the content of sodium tungstate in aqueous solution was adjusted to 0.5 mol and passed through a cation exchange resin to prepare a high-purity tungsten oxide colloid.

<구리 첨가><Added Copper>

고순도 산화텅스텐 콜로이드에 2 염화구리(CuCl2)를 0.5mol 기준으로 5℃로 유지시킨 2중 재킷에서 반응시켜 구리텅스텐산화물(CuWO4)을 제조하였다. Copper tungsten oxide (CuWO 4 ) was prepared by reacting copper dichloride (CuCl 2 ) with high purity tungsten oxide colloid in a double jacket maintained at 5° C. based on 0.5 mol.

<혼합><mixed>

위에서 얻은 Ti(OH)4 수용액에 CuWO4를 Ti 기준으로 5중량% 되게 혼합하여 합성한다. 이때, 조촉매로서 백금을 전체 중량을 기준으로 0.1중량% 되게 투입한다.The Ti(OH) 4 aqueous solution obtained above is synthesized by mixing CuWO 4 in an amount of 5 wt% based on Ti. At this time, platinum as a co-catalyst is added in an amount of 0.1% by weight based on the total weight.

<건조> <dry>

이렇게 합성된 Pt, CuWO4가 도핑된 Ti(OH)4를 100℃에서 20시간 건조한 후, 다시 400℃에서 2시간 열처리하여 Pt, CuWO4가 도핑된 TiO2를 제조하였다. The thus synthesized Pt, Ti(OH) 4 doped with CuWO 4 was dried at 100° C. for 20 hours, and then heat-treated at 400° C. for 2 hours to prepare TiO 2 doped with Pt and CuWO 4 .

<분쇄><Crushing>

이렇게 제조된 Pt, CuWO4가 도핑된 TiO2는 나노단위 미세분말로 제조하기 위하여 밀링하여 50nm 미만의 분말로 제조하였다.The thus prepared Pt, CuWO 4 doped TiO 2 was milled to prepare a nano-scale fine powder, and was prepared as a powder having a size of less than 50 nm.

<광촉매 수용액> <Photocatalyst Aqueous Solution>

이렇게 제조된 나노 광촉매와 증류수 비율을 9:1로 혼합한 후 분산을 위하여 수용액의 50중량% 비율로 에탄올을 혼합한 후 400rpm으로 상온에서 2시간 이상 교반하였다.After mixing the thus-prepared nano photocatalyst and distilled water in a ratio of 9:1, ethanol was mixed at a ratio of 50% by weight of the aqueous solution for dispersion, followed by stirring at 400 rpm at room temperature for 2 hours or more.

<바인더 수용액 제조><Preparation of binder solution>

베이스 기재에 나노 광촉매를 부착하기 위해서 바인더 수용액을 제조한다. 이때, 베이스 바인더는 영일화성의 SMC-374-1 Si 기반의 재료로 사용하였다. 해당 바인더와 증류수 비율을 1:9로 혼합하여 상온에서 400rpm 이상으로 2시간 이상 교반하여 바인더 수용액을 제조하였다. In order to attach the nano photocatalyst to the base substrate, an aqueous binder solution is prepared. At this time, the base binder was used as a material based on SMC-374-1 Si of Yeongil Hwaseong. A binder aqueous solution was prepared by mixing the binder and distilled water in a ratio of 1:9 and stirring at room temperature at 400 rpm or more for 2 hours or more.

<광촉매 필터 제조><Manufacture of photocatalyst filter>

이렇게 제조된 바인더 수용액과 나노 광촉매 수용액을 9:1로 혼합하여 400 rpm으로 2시간 이상 교반하여 나노촉매 바인더 수용액을 제조하고 15cm×15cm, 4T의 니켈 합금 매쉬를 침지시킨 후 건조로에서 250℃이상 1시간 이상 건조하여 도 1에 도시된 바와 같은 촉매 필터를 제조하였다.The thus prepared binder aqueous solution and the nano photocatalyst aqueous solution were mixed at a ratio of 9: 1 and stirred at 400 rpm for 2 hours or more to prepare a nano-catalyst binder aqueous solution, and after immersing a nickel alloy mesh of 15 cm × 15 cm, 4T, in a drying furnace at 250 ° C. or higher 1 A catalyst filter as shown in FIG. 1 was prepared by drying for more than an hour.

<광원 준비><Preparation of light source>

LED 광원은 도 2에서 보는 바와 같이, 삼성전자의 LH502C를 30개 배열하여 광원부를 제작한다. LED 광원은 400~800nm의 백색광을 방사한다. 이때 광촉매 필터에 측정되는 조도는 10,000lux 이상으로 설정하였다.As shown in FIG. 2, the LED light source is manufactured by arranging 30 LH502Cs of Samsung Electronics. The LED light source emits white light of 400 to 800 nm. At this time, the illuminance measured on the photocatalytic filter was set to 10,000 lux or more.

<광촉매 효과 실험><Photocatalytic Effect Experiment>

제작된 광촉매 필터와 LED 광원을 이용하여 가스백 시험법을 이용하여 검지관으로 유해가스 제거율을 시험한다. 이때 유해가스는 아세트알데하이드를 이용하고, 초기 농도는 100ppm으로 설정하였다.Using the manufactured photocatalyst filter and LED light source, the gas bag test method is used to test the removal rate of harmful gases with a detection tube. At this time, acetaldehyde was used as the harmful gas, and the initial concentration was set to 100 ppm.

<실시예 1-2><Example 1-2>

실시예 1-1의 조건 중에서 Pt를 제외하고 나노 광촉매를 제조하였다.A nano photocatalyst was prepared except for Pt under the conditions of Example 1-1.

<실시예 1-3><Example 1-3>

실시예 1-1의 조건 중에서 Cu를 제외하고 나노 광촉매를 제조하였다.A nano photocatalyst was prepared except for Cu under the conditions of Example 1-1.

<실시예 2-1><Example 2-1>

실시예 1-1의 Pt, CuWO4의 열처리 온도를 450℃에서 실시하였다.The heat treatment temperature of Pt and CuWO 4 of Example 1-1 was performed at 450°C.

<실시예 2-2><Example 2-2>

실시예 2-1의 조건에서 Pt를 제외하고 나노 광촉매를 제조하였다.A nano photocatalyst was prepared except for Pt under the conditions of Example 2-1.

<실시예 2-3><Example 2-3>

실시예 2-1의 조건에서 Cu를 제외하고 나노 광촉매를 제조하였다.Under the conditions of Example 2-1, a nano photocatalyst was prepared except for Cu.

<실시예 3-1> <Example 3-1>

실시예 1-1의 Pt, CuWO4의 열처리 온도를 550℃에서 실시하였다.The heat treatment temperature of Pt and CuWO 4 of Example 1-1 was performed at 550°C.

<실시예 3-2><Example 3-2>

실시예 3-1의 조건에서 Pt를 제외하고 나노 광촉매를 제조하였다.A nano photocatalyst was prepared except for Pt under the conditions of Example 3-1.

<실시예 3-3><Example 3-3>

실시예 3-1의 조건에서 Cu를 제외하고 나노 광촉매를 제조하였다. A nano photocatalyst was prepared except for Cu under the conditions of Example 3-1.

<실시예 4-1><Example 4-1>

실시예 1-1의 Pt, CuWO4의 열처리 온도를 600℃에서 실시하였다. The heat treatment temperature of Pt and CuWO 4 of Example 1-1 was performed at 600°C.

<실시예 4-2><Example 4-2>

실시예 4-1의 조건에서 Pt를 제외하고 나노 광촉매를 제조하였다.A nano photocatalyst was prepared except for Pt under the conditions of Example 4-1.

<실시예 4-3><Example 4-3>

실시예 4-1의 조건에서 Cu를 제외하고 나노 광촉매를 제조하였다. A nano photocatalyst was prepared except for Cu under the conditions of Example 4-1.

<실시예 5-1><Example 5-1>

실시예 1-1의 Pt, CuWO4의 열처리 온도를 700℃에서 실시하였다.The heat treatment temperature of Pt and CuWO 4 of Example 1-1 was performed at 700°C.

<실시예 5-2><Example 5-2>

실시예 5-1의 조건에서 Pt를 제외하고 나노 광촉매를 제조하였다. A nano photocatalyst was prepared except for Pt under the conditions of Example 5-1.

<실시 5-3><Execution 5-3>

실시예 5-1의 조건에서 Cu를 제외하고 나노 광촉매를 제조하였다. A nano photocatalyst was prepared except for Cu under the conditions of Example 5-1.

<실시예 6-1><Example 6-1>

실시예 1-1의 Pt, CuWO4의 열처리 온도를 800℃에서 실시하였다.The heat treatment temperature of Pt and CuWO 4 of Example 1-1 was performed at 800°C.

<실시예 6-2><Example 6-2>

실시예 6-1의 조건에서 Pt를 제외하고 나노 광촉매를 제조하였다. A nano photocatalyst was prepared except for Pt under the conditions of Example 6-1.

<실시 6-3><Execution 6-3>

실시예 6-1의 조건에서 Cu를 제외하고 나노 광촉매를 제조하였다. A nano photocatalyst was prepared except for Cu under the conditions of Example 6-1.

열처리온도 400℃Heat treatment temperature 400℃ 실시예Example 조성비composition ratio 초기농도initial concentration 광조사 후 농도Concentration after light irradiation 제거량removal amount 제거율removal rate 실시예 1-1Example 1-1 Ti(OH) 95wt% +PtCuWO4 5wt%Ti(OH) 95wt% +PtCuWO 4 5wt% 100100 4343 5757 57%57% 실시예 1-2Example 1-2 Ti(OH) 95wt% + CuWO4 5wt%Ti(OH) 95wt% + CuWO 4 5wt% 100100 4949 5151 51%51% 실시예 1-3Examples 1-3 Ti(OH) 95wt% + PtWO4 5wt%Ti(OH) 95wt% + PtWO 4 5wt% 100100 5252 4848 48%48%

열처리온도 450℃Heat treatment temperature 450℃ 실시예Example 조성비composition ratio 초기농도initial concentration 광조사 후 농도Concentration after light irradiation 제거량removal amount 제거율removal rate 실시예 2-1Example 2-1 Ti(OH) 95wt% +PtCuWO4 5wt%Ti(OH) 95wt% +PtCuWO 4 5wt% 100100 3131 6969 69%69% 실시예 2-2Example 2-2 Ti(OH) 95wt% + CuWO4 5wt%Ti(OH) 95wt% + CuWO 4 5wt% 100100 3232 6868 68%68% 실시예 2-3Example 2-3 Ti(OH) 95wt% + PtWO4 5wt%Ti(OH) 95wt% + PtWO 4 5wt% 100100 3737 6363 63%63%

열처리온도 550℃Heat treatment temperature 550℃ 실시예Example 조성비composition ratio 초기농도initial concentration 광조사 후 농도Concentration after light irradiation 제거량removal amount 제거율removal rate 실시예 3-1Example 3-1 Ti(OH) 95wt% +PtCuWO4 5wt%Ti(OH) 95wt% +PtCuWO 4 5wt% 100100 3333 6767 67%67% 실시예 3-2Example 3-2 Ti(OH) 95wt% + CuWO4 5wt%Ti(OH) 95wt% + CuWO 4 5wt% 100100 3535 6565 65%65% 실시예 3-3Example 3-3 Ti(OH) 95wt% + PtWO4 5wt%Ti(OH) 95wt% + PtWO 4 5wt% 100100 4040 6060 60%60%

열처리온도 600℃Heat treatment temperature 600℃ 실시예Example 조성비composition ratio 초기농도initial concentration 광조사 후 농도Concentration after light irradiation 제거량removal amount 제거율removal rate 실시예 4-1Example 4-1 Ti(OH) 95wt% +PtCuWO4 5wt%Ti(OH) 95wt% +PtCuWO 4 5wt% 100100 4141 5959 59%59% 실시예 4-2Example 4-2 Ti(OH) 95wt% + CuWO4 5wt%Ti(OH) 95wt% + CuWO 4 5wt% 100100 4343 5757 57%57% 실시예 4-3Example 4-3 Ti(OH) 95wt% + PtWO4 5wt%Ti(OH) 95wt% + PtWO 4 5wt% 100100 5555 4545 45%45%

열처리온도 700℃Heat treatment temperature 700℃ 실시예Example 조성비composition ratio 초기농도initial concentration 광조사 후 농도Concentration after light irradiation 제거량removal amount 제거율removal rate 실시예 5-1Example 5-1 Ti(OH) 95wt% +PtCuWO4 5wt%Ti(OH) 95wt% +PtCuWO 4 5wt% 100100 7575 2525 25%25% 실시예 5-2Example 5-2 Ti(OH) 95wt% + CuWO4 5wt%Ti(OH) 95wt% + CuWO 4 5wt% 100100 7979 2121 21%21% 실시예 5-3Example 5-3 Ti(OH) 95wt% + PtWO4 5wt%Ti(OH) 95wt% + PtWO 4 5wt% 100100 8181 1919 19%19%

열처리온도 800℃Heat treatment temperature 800℃ 실시예Example 조성비composition ratio 초기농도initial concentration 광조사 후 농도Concentration after light irradiation 제거량removal amount 제거율removal rate 실시예 6-1Example 6-1 Ti(OH) 95wt% +PtCuWO4 5wt%Ti(OH) 95wt% +PtCuWO 4 5wt% 100100 9292 88 8%8% 실시예 6-2Example 6-2 Ti(OH) 95wt% + CuWO4 5wt%Ti(OH) 95wt% + CuWO 4 5wt% 100100 9595 55 5%5% 실시예 6-3Example 6-3 Ti(OH) 95wt% + PtWO4 5wt%Ti(OH) 95wt% + PtWO 4 5wt% 100100 9595 55 5%5%

위 표에서 보는 바와 같이, Ti(OH)4 수용액에 CuWO4를 Ti기준으로 5중량% 되게 혼합하고, 400℃로 열처리한 경우는 유해가스 제거율이 57%이고, 450℃로 열처리한 경우는 유해가스 제거율이 69%이며, 550℃로 열처리한 경우는 유해가스 제거율이 67%이고, 600℃로 열처리한 경우는 유해가스 제거율이 59%이며, 700℃로 열처리한 경우에는 유해가스 제거율이 25%이고, 800℃로 열처리한 경우에는 유해가스 제거율이 8%로 나타났다. As shown in the table above, when CuWO 4 is mixed in Ti(OH) 4 aqueous solution to 5% by weight based on Ti and heat treated at 400°C, the harmful gas removal rate is 57%, and when heat treated at 450°C, harmful gas removal rate is The gas removal rate is 69%, when the heat treatment at 550°C, the harmful gas removal rate is 67%, when the heat treatment at 600°C, the harmful gas removal rate is 59%, and when the heat treatment at 700°C, the harmful gas removal rate is 25% In the case of heat treatment at 800°C, the harmful gas removal rate was 8%.

따라서 Ti(OH)4 수용액과 CuWO4 콜로이드 혼합물의 열처리 온도는 400~600℃가 바람직한 것으로 나타났다. 또한, 백금을 제외한 경우 1~6% 정도 제거율이 떨어졌고, 구리를 제외한 경우에는 9~15%까지 제거율이 떨어지는 것으로 나타났다. 즉, 백금보다 구리를 첨가하는 것이 유리한 것으로 나타났다. Therefore, it was found that the heat treatment temperature of the Ti(OH) 4 aqueous solution and the CuWO 4 colloidal mixture was preferably 400 to 600°C. In addition, in the case of excluding platinum, the removal rate fell by about 1 to 6%, and in the case of excluding copper, it was found that the removal rate fell to 9 to 15%. That is, it has been shown to be advantageous to add copper rather than platinum.

<실시예 7><Example 7>

실시예 2-1에서 PtCuWO4의 중량%를 10중량%로 혼합하여 나노 광촉매를 제조하였다.In Example 2-1, a nanophotocatalyst was prepared by mixing 10% by weight of PtCuWO 4 by weight.

<실시예 8><Example 8>

실시예 2-1에서 PtCuWO4의 중량%를 30중량%로 나노 광촉매를 제조하였다.In Example 2-1, a nano photocatalyst was prepared in an amount of 30% by weight of PtCuWO 4 by weight.

<실시예 9><Example 9>

실시예 2-1에서 PtCuWO4의 중량%를 50중량%로 나노 광촉매를 제조하였다.In Example 2-1, a nano photocatalyst was prepared in an amount of 50 wt% of PtCuWO 4 by weight.

<실시예 10><Example 10>

실시예 2-1에서 PtCuWO4의 중량%를 70중량%로 나노 광촉매를 제조하였다.In Example 2-1, a nano photocatalyst was prepared in an amount of PtCuWO 4 in an amount of 70 wt%.

열처리온도 450℃Heat treatment temperature 450℃ 실시예Example 조성비composition ratio 초기농도initial concentration 광조사 후 농도Concentration after light irradiation 제거량removal amount 제거율removal rate 실시예7Example 7 Ti(OH) 90wt% +PtCuWO4 10wt%Ti(OH) 90wt% +PtCuWO 4 10wt% 100100 3333 6767 67%67% 실시예8Example 8 Ti(OH) 70wt% +PtCuWO4 30wt%Ti(OH) 70wt% +PtCuWO 4 30wt% 100100 3838 6262 62%62% 실시예9Example 9 Ti(OH) 50wt% +PtCuWO4 50wt%Ti(OH) 50wt% +PtCuWO 4 50wt% 100100 4646 5454 54%54% 실시예10Example 10 Ti(OH) 30wt% +PtCuWO4 70wt%Ti(OH) 30wt% +PtCuWO 4 70wt% 100100 4343 4747 47%47%

위 표에서 보는 바와 같이, Ti(OH)4 수용액에 CuWO4를 Ti기준으로 5중량% 되게 혼합한 경우 유해가스 제거율은 69%이고, 10중량% 되게 합성한 경우에는 유해가스 제거율이 67%, 30중량% 되게 합성한 경우에는 유해가스 제거율이 62%, 50중량% 되게 합성한 경우에는 유해가스 제거율이 54%, 70중량% 되게 혼합한 경우에는 유해가스 제거율이 52%로 나타났다. 즉, WO4는 혼합비율은 5중량% 내지 50중량%로 하는 경우에 유해가스 제거율이 가장 높았으나 WO4의 혼합비율을 70중량%로 높여도 유해가스 제거율은 크게 떨어지지 않는다.As shown in the table above, when CuWO 4 is mixed in Ti(OH) 4 aqueous solution to 5% by weight based on Ti, the harmful gas removal rate is 69%, and when synthesized to be 10% by weight, the harmful gas removal rate is 67%, When synthesized to be 30% by weight, the removal rate of harmful gas was 62%, when synthesized to be 50% by weight, the removal rate of harmful gas was 54%, and when mixed to 70% by weight, the removal rate of harmful gas was 52%. That is, WO 4 had the highest removal rate of harmful gases when the mixing ratio was 5 to 50% by weight, but the removal rate of harmful gases was not significantly reduced even when the mixing ratio of WO 4 was increased to 70% by weight.

<비교예 1><Comparative Example 1>

TiO2 단독으로 이루어진 나노 광총매를 실시예 1과 같은 방법으로 유해가스 제거율을 시험하였다.The removal rate of harmful gas was tested in the same manner as in Example 1 for the nano photochemical solvent made of TiO 2 alone.

<비교예 2><Comparative Example 2>

CuWO4 단독으로 이루어진 나노 광총매를 실시예 1과 같은 방법으로 유해가스 제거율을 시험하였다.The removal rate of harmful gas was tested in the same manner as in Example 1 for a nano-photovoltaic medium composed of CuWO 4 alone.

열처리온도 400℃Heat treatment temperature 400℃ 비교액comparative amount 조성비composition ratio 초기농도initial concentration 광조사 후 농도Concentration after light irradiation 제거량removal amount 제거율removal rate 비교예 1 Comparative Example 1 TiO2 TiO 2 100100 9090 1010 10%10% 비교예 2Comparative Example 2 CuWO4 CuWO 4 100100 7575 2525 25%25%

위 표에서 보는 바와 같이, TiO2 단독으로 이루어진 나노 광총매의 경우에는 유해가스 제거율이 10%이고, CuWO4 단독으로 이루어진 나노 광총매의 경우에는 유해가스 제거율이 25%인 것으로 나타났다. 반면에 실시예 1에 따른 산화텅스텐(또는 구리텅스텐산화물)과 산화티나늄을 혼합하여 제조된 나노 광촉매는 유해가스 제거율이 57%이므로 본 발명에 따른 나노 광촉매가 가시광 영역에서의 광촉매 효과가 우수한 것으로 나타났다.As shown in the table above, in the case of the nano photo gunner made of TiO 2 alone, the harmful gas removal rate was 10%, and in the case of the nano photo gunner made of CuWO 4 alone, the harmful gas removal rate was 25%. On the other hand, since the nano photocatalyst prepared by mixing tungsten oxide (or copper tungsten oxide) and titanium oxide according to Example 1 has a harmful gas removal rate of 57%, the nano photocatalyst according to the present invention has excellent photocatalytic effect in the visible region. appear.

이와 같이, 본 발명은 산화텅스텐(또는 구리텅스텐산화물)과 산화티타늄을 일정 비율로 혼합하여 나노 광촉매를 제조함으로써 TiO2와 WO3를 각각 단독으로 사용하는 광촉매보다 가시광에서 우수한 광촉매 효과를 보인다.As described above, in the present invention, by preparing a nano photocatalyst by mixing tungsten oxide (or copper tungsten oxide) and titanium oxide in a certain ratio, a photocatalytic effect superior to that of a photocatalyst using TiO 2 and WO 3 alone is shown in visible light.

또한, 본 발명은 산화티타늄 분말과 산화텅스텐 분말을 혼합하는 대신에 티타늄금속염액을 가수분해한 수산화티탄 겔을 산화티타늄 재료로 사용하고 초경슬러지를 산화시켜 만들어진 산화텅스텐에 수산화나트륨 수용액을 넣고 가열하여 얻은 나트륨텅스테이트를 양이온교환수지를 통과시켜서 만든 산화텅스텐 콜로이드를 산화텅스텐 재료로 사용함으로써 금속 텅스텐으로부터 산화물텅스텐을 제조하여야 제조상의 어려움과 장시간에 걸친 기계적 혼합이 요구되는 등의 문제를 해결하는 효과가 있다. In addition, the present invention uses a titanium hydroxide gel hydrolyzed by a titanium metal salt solution as a titanium oxide material instead of mixing titanium oxide powder and tungsten oxide powder, and puts sodium hydroxide aqueous solution into tungsten oxide made by oxidizing cemented carbide sludge and heating it. By using the tungsten oxide colloid made by passing the obtained sodium tungstate through a cation exchange resin as a tungsten oxide material, tungsten oxide must be produced from metallic tungsten to solve problems such as manufacturing difficulties and long-term mechanical mixing. have.

이상에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention within the scope without departing from the spirit and scope of the present invention described in the claims below. You will understand that it can be done.

Claims (10)

산화티타늄 50 내지 95중량%와 산화텅스텐(또는 구리텅스텐산화물) 50 내지 5중량%을 포함하는 혼합물로 이루어진 것을 특징으로 하는 가시광 응답형 광촉매.
A visible light responsive photocatalyst comprising 50 to 95 wt% of titanium oxide and 50 to 5 wt% of tungsten oxide (or copper tungsten oxide).
산화티타늄 50 내지 95중량%와 산화텅스텐(또는 구리텅스텐산화물) 50 내지 5중량% 및 백금 0.001 내지 0.1중량%을 포함하는 혼합물로 이루어진 것을 특징으로 하는 가시광 응답형 광촉매.
A visible light responsive photocatalyst comprising 50 to 95 wt% of titanium oxide, 50 to 5 wt% of tungsten oxide (or copper tungsten oxide), and 0.001 to 0.1 wt% of platinum.
산화티타늄 재료로서, 수산화티탄 겔이나 결정화된 산화티타늄과, 산화텅스텐 재료로서, 초경슬러지를 산화시킨 산화텅스텐에 수산화나트륨 수용액을 넣고 가열하여 얻은 나트륨텅스테이트를 양이온교환수지를 통과시켜 만들어진 산화텅스텐 콜로이드를 일정 비율로 혼합하는 혼합단계와;
이 혼합물을 400~600℃로 열처리하는 열처리 단계를 포함하는 것을 특징으로 하는 가시광 응답형 광촉매의 제조방법.
As a titanium oxide material, titanium hydroxide gel or crystallized titanium oxide, and, as a tungsten oxide material, a tungsten oxide colloid made by passing sodium tungstate obtained by heating an aqueous solution of sodium hydroxide into tungsten oxide oxidized from cemented carbide sludge through a cation exchange resin. A mixing step of mixing in a certain ratio;
A method for producing a visible light responsive photocatalyst, comprising a heat treatment step of heat-treating the mixture at 400 to 600°C.
제3 항에 있어서,
상기한 수산화티탄 겔은, 티타늄금속염액을 용매로 분산시킨 후 60~100℃의 온도에서 열가수분해한 후 물 또는 알콜로 세정한 후 분리 여과하는 단계를 통해 만드는 것을 특징으로 하는 가시광 응답형 광촉매의 제조방법.
4. The method of claim 3,
The above-described titanium hydroxide gel is a visible light responsive photocatalyst, characterized in that it is made by dispersing a titanium metal salt solution in a solvent, thermally hydrolyzing it at a temperature of 60 to 100° C., washing with water or alcohol, and then separating and filtering. manufacturing method.
제3 항에 있어서,
상기한 결정화된 산화티타늄은, 상기 단계에서 만들어진 수산화티탄 겔을 다시 물에 재산분시킨 후 압력용기에 넣고 100~300℃에서 100시간 열처리하는 단계를 통해 만드는 것을 특징으로 하는 가시광 응답형 광촉매의 제조방법.
4. The method of claim 3,
The crystallized titanium oxide is produced by re-dispersing the titanium hydroxide gel made in the above step in water, putting it in a pressure vessel, and heat-treating it at 100 to 300° C. for 100 hours. Preparation of a visible light responsive photocatalyst Way.
제3 항에 있어서,
상기한 산화텅스텐 콜로이드는, 초경슬러지를 600~800℃의 온도에서 산화시켜 불순물을 함유한 산화텅스텐 슬러지를 제조한 후 상기 불순물 함유 산화텅스텐을 수산화나트륨 수용액을 100℃로 가열한 용액에 넣고 가열하면서 교반하여 나트륨텅스테이트를 생성한 다음, 제조된 나트륨텅스테이트를 양이온교환수지를 통과시켜서 만드는 것을 특징으로 하는 가시광 응답형 광촉매의 제조방법.
4. The method of claim 3,
The above-described tungsten oxide colloid is prepared by oxidizing cemented carbide sludge at a temperature of 600 to 800 ° C. A method for producing a visible light responsive photocatalyst, characterized in that the sodium tungstate is produced by stirring, and then the prepared sodium tungstate is passed through a cation exchange resin.
제3 항에 있어서,
상기한 산화티타늄 재료로서, 구리산화텅스텐을 사용하되 상기 구리산화텅스텐은 상기한 단계에서 제조된 산화텅스텐 콜로이드에 무수상태의 CuCl2를 반응시켜 만들어지는 것을 특징으로 하는 가시광 응답형 광촉매의 제조방법.
4. The method of claim 3,
As the titanium oxide material, tungsten copper oxide is used, but the copper oxide is produced by reacting CuCl 2 in anhydrous state with the tungsten oxide colloid prepared in the above step.
제7 항에 있어서
조촉매제로서 백금을 더 첨가하되, 상기 백금은 산화티타늄 졸이나 산화텅스텐 콜로이드 중 어느 쪽에 첨가하는 것을 특징으로 하는 가시광 응답형 광촉매의 제조방법.
8. The method of claim 7
A method for producing a visible light responsive photocatalyst, wherein platinum is further added as a co-catalyst, and the platinum is added to either a titanium oxide sol or a tungsten oxide colloid.
제8 항에 있어서,
상기 단계에서 혼합된 Pt, CuWO4가 도핑된 Ti(OH)4를 100℃에서 20시간 건조한 후, 다시 400~600℃에서 2시간 열처리하여 Pt, CuWO4가 도핑된 TiO2를 제조하는 열처리 단계를 포함하는 것을 특징으로 하는 가시광 응답형 광촉매의 제조방법.
9. The method of claim 8,
After drying the Ti(OH) 4 doped with Pt and CuWO 4 mixed in the above step at 100° C. for 20 hours, heat treatment again at 400 to 600° C. for 2 hours to prepare Pt, CuWO 4 doped TiO 2 A heat treatment step A method for producing a visible light responsive photocatalyst, comprising:
제9 항에 있어서,
상기 단계에서 제조된 Pt, CuWO4가 도핑된 TiO2를 나노단위 미세분말로 제조하기 위해 밀링하여 50nm 미만의 분말로 제조하는 단계를 포함하는 것을 특징으로 하는 가시광 응답형 광촉매의 제조방법.
10. The method of claim 9,
A method for producing a visible light responsive photocatalyst, comprising: milling the TiO 2 doped with Pt and CuWO 4 prepared in the above step to prepare a nano-unit fine powder to a powder of less than 50 nm.
KR1020200187994A 2020-12-30 2020-12-30 Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method KR20220095952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200187994A KR20220095952A (en) 2020-12-30 2020-12-30 Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200187994A KR20220095952A (en) 2020-12-30 2020-12-30 Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method

Publications (1)

Publication Number Publication Date
KR20220095952A true KR20220095952A (en) 2022-07-07

Family

ID=82397979

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200187994A KR20220095952A (en) 2020-12-30 2020-12-30 Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method

Country Status (1)

Country Link
KR (1) KR20220095952A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102523753B1 (en) * 2022-10-04 2023-04-21 주식회사 다람이엔지 Photocatalytic HEPA filter and manufacturing method of the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665012A (en) 1992-08-19 1994-03-08 Agency Of Ind Science & Technol Antibacterial and antifungal ceramics and their production
JPH0867835A (en) 1994-08-31 1996-03-12 Matsushita Electric Works Ltd Antimicrobial inorganic coating
JPH11349423A (en) 1998-02-19 1999-12-21 Daido Steel Co Ltd Antibacterial and deodorant material and its production
KR100578044B1 (en) 2005-07-08 2006-05-11 (주)켐웰텍 A method for fabrication of the visible-range photocatalyst with junction of titanium dioxide and tungsten oxide
JP2007031551A (en) 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2009148700A (en) 2007-12-20 2009-07-09 Sumitomo Chemical Co Ltd Method for producing tungsten oxide photocatalyst
JP2009226299A (en) 2008-03-21 2009-10-08 Univ Of Tokyo Photocatalytic material, method for decomposing organic material, interior component, air cleaner, oxidizing agent manufacturing apparatus
KR100945035B1 (en) 2008-01-29 2010-03-05 재단법인서울대학교산학협력재단 Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
KR101527592B1 (en) 2014-12-04 2015-06-10 (주)네스텍 Tungsten oxide photocatalyst and coating material composition, method preparing the same and photocatalyst-coated body using the same
JP2019181469A (en) 2014-01-28 2019-10-24 シャープ株式会社 Photocatalytic material and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665012A (en) 1992-08-19 1994-03-08 Agency Of Ind Science & Technol Antibacterial and antifungal ceramics and their production
JPH0867835A (en) 1994-08-31 1996-03-12 Matsushita Electric Works Ltd Antimicrobial inorganic coating
JPH11349423A (en) 1998-02-19 1999-12-21 Daido Steel Co Ltd Antibacterial and deodorant material and its production
KR100578044B1 (en) 2005-07-08 2006-05-11 (주)켐웰텍 A method for fabrication of the visible-range photocatalyst with junction of titanium dioxide and tungsten oxide
JP2007031551A (en) 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2009148700A (en) 2007-12-20 2009-07-09 Sumitomo Chemical Co Ltd Method for producing tungsten oxide photocatalyst
KR100945035B1 (en) 2008-01-29 2010-03-05 재단법인서울대학교산학협력재단 Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
JP2009226299A (en) 2008-03-21 2009-10-08 Univ Of Tokyo Photocatalytic material, method for decomposing organic material, interior component, air cleaner, oxidizing agent manufacturing apparatus
JP2019181469A (en) 2014-01-28 2019-10-24 シャープ株式会社 Photocatalytic material and method for producing the same
KR101527592B1 (en) 2014-12-04 2015-06-10 (주)네스텍 Tungsten oxide photocatalyst and coating material composition, method preparing the same and photocatalyst-coated body using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102523753B1 (en) * 2022-10-04 2023-04-21 주식회사 다람이엔지 Photocatalytic HEPA filter and manufacturing method of the same

Similar Documents

Publication Publication Date Title
Aram et al. Metronidazole and Cephalexin degradation by using of Urea/TiO2/ZnFe2O4/Clinoptiloite catalyst under visible-light irradiation and ozone injection
Zaleska Doped-TiO2: a review
Jitta et al. Defect pyrochlore oxides: as photocatalyst materials for environmental and energy applications‐a review
KR100945035B1 (en) Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
Ananpattarachai et al. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO 2, N-doped TiO 2, and C, N Co-doped TiO 2 under visible light
Abdelsalam et al. Photocatalytic oxidation of nitrogen oxides (NO x) using Ag-and Pt-doped TiO 2 nanoparticles under visible light irradiation
Vadivel et al. Facile synthesis of broom stick like FeOCl/g-C3N5 nanocomposite as novel Z-scheme photocatalysts for rapid degradation of pollutants
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
Puga et al. Features of coupled AgBr/WO3 materials as potential photocatalysts
CN109174075A (en) A kind of rare-earth element modified titanium dioxide nano photocatalysis material and preparation method thereof for photocatalytic degradation VOCs
Ullah et al. Visible light photocatalytic degradation of organics on nanoparticles of bi-metallic oxides
Sane et al. Enhancing solar photocatalytic activity of Bi5O7I photocatalyst with activated carbon heterojunction
Malik et al. Novel approach towards ternary magnetic g-C3N4/ZnO-W/Snx nanocomposite: photodegradation of nicotine under visible light irradiation
Razani et al. Sol-gel synthesis of Fe2O3-doped TiO2 photocatalyst for optimized photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid
Sawunyama et al. Photocatalytic degradation of tetracycline using surface defective black TiO2–ZnO heterojunction photocatalyst under visible light
JP4878141B2 (en) Composite photocatalyst
Alhaddad et al. Fabrication of novel neodymium oxide coupled mesoporous titania for effective visible light-induced photocatalyst for decomposition of Ciprofloxacin
JP4150712B2 (en) Visible light-activated photocatalyst and process for producing the same
Nair et al. Photocatalytic degradation of levofloxacin by GO-TiO2 under visible light
JP2003019437A (en) Photocatalyst, method for producing hydrogen using the photocatalyst, and method for decomposing harmful matter
KR20220095952A (en) Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method
JP2003190811A (en) Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
WO2005087371A1 (en) Photocatalyst based on composite oxide responsive to visible light and method for decomposition and removal of harmful chemical material using the same
KR102562523B1 (en) Complex Photocatalyst for Decomposition of Pollutants and Manufacturing Method thereof
JP2003340289A (en) Photocatalyst composition

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application