KR20220077874A - Synthesis method of IrRuOx/ATO catalyst for proton exchange membrane water electrolysis - Google Patents
Synthesis method of IrRuOx/ATO catalyst for proton exchange membrane water electrolysis Download PDFInfo
- Publication number
- KR20220077874A KR20220077874A KR1020210163256A KR20210163256A KR20220077874A KR 20220077874 A KR20220077874 A KR 20220077874A KR 1020210163256 A KR1020210163256 A KR 1020210163256A KR 20210163256 A KR20210163256 A KR 20210163256A KR 20220077874 A KR20220077874 A KR 20220077874A
- Authority
- KR
- South Korea
- Prior art keywords
- catalyst
- water electrolysis
- preparing
- ato
- irruox
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 60
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 32
- 239000012528 membrane Substances 0.000 title description 5
- 238000001308 synthesis method Methods 0.000 title 1
- CRBDXVOOZKQRFW-UHFFFAOYSA-N [Ru].[Ir]=O Chemical compound [Ru].[Ir]=O CRBDXVOOZKQRFW-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 12
- 229920000867 polyelectrolyte Polymers 0.000 claims abstract description 6
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 claims description 22
- 238000002156 mixing Methods 0.000 claims description 4
- 229910001887 tin oxide Inorganic materials 0.000 abstract description 13
- 238000003764 ultrasonic spray pyrolysis Methods 0.000 abstract description 13
- 229910052787 antimony Inorganic materials 0.000 abstract description 11
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 abstract description 11
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 abstract description 11
- 238000002360 preparation method Methods 0.000 description 13
- 229910000510 noble metal Inorganic materials 0.000 description 9
- 239000005518 polymer electrolyte Substances 0.000 description 8
- 239000002243 precursor Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/462—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/468—Iridium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
- C25B11/081—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
본 발명은 고효율의 고분자전해질 수전해용 촉매의 제조방법에 관한 것으로, 초음파 분무 열분해법으로 다공성 이리듐-루테늄 산화물(IrRuOx)을 제조하는 단계; 초음파 분무 열분해법으로 안티주석산화물(antimony doped tin oxide) 지지체를 제조하는 단계; 및 상기 이리듐-루테늄 산화물(IrRuOx) 촉매를 유성형 볼밀을 이용하여 안티주석산화물(antimony doped tin oxide) 지지체에 담지하여 촉매를 제조하는 단계;를 포함하여, 귀금속 촉매 사용량을 줄일 수 있는 방법을 제공한다. The present invention relates to a method for preparing a high-efficiency polyelectrolyte water electrolysis catalyst, comprising the steps of: preparing porous iridium-ruthenium oxide (IrRuOx) by ultrasonic spray pyrolysis; Preparing an anti-tin oxide (antimony doped tin oxide) support by ultrasonic spray pyrolysis; and preparing the catalyst by supporting the iridium-ruthenium oxide (IrRuOx) catalyst on an antimony doped tin oxide support using a planetary ball mill; .
Description
본 발명은 고분자전해질(PEM, Proton Exchange Membrane) 수전해 시스템에 관한 것으로써, 산소발생전극에 귀금속촉매 사용량을 줄이기 위한 촉매의 제조방법에 관한 것이다.The present invention relates to a polymer electrolyte (PEM, Proton Exchange Membrane) water electrolysis system, and to a method for preparing a catalyst for reducing the amount of a noble metal catalyst used in an oxygen generating electrode.
수전해는 크게 알칼리 전해질을 사용하는 알칼리 수전해와 산성 전해질막을 사용하는 고분자 전해질 수전해가 있다. 고분자 전해질 수전해는 고가의 귀금속 촉매[양극(anode) : IrOx, 음극(cathode) : Pt/C]를 이용하여 물을 전기분해 하는 시스템이다. Water electrolysis is largely divided into alkaline water electrolysis using an alkaline electrolyte and polymer electrolyte water electrolysis using an acidic electrolyte membrane. Polyelectrolyte water electrolysis is a system that electrolyzes water using expensive noble metal catalysts [anode: IrO x , cathode: Pt/C].
종래에 귀금속 촉매의 제조는 Adam's Fusion 방법을 주로 사용하였으며, 일반 열처리 도가니에서 열처리하여 합성했기 때문에 입자의 크기가 크고 비표면적이 50 m2 이하였다. 또한, 안정한 촉매 담지체가 많지 않아 촉매의 비율을 70% 이하로 낮추기가 어렵고, 대부분의 상용 수전해에는 담지체가 사용되고 있지 못하며, 이로 인해 귀금속 촉매의 사용량이 2~4 mg/cm2 수준이다. 이에, 촉매의 사용량을 줄이기 위해서는 담지체와 고효율 촉매 개발이 필요한 실정이다.Conventionally, Adam's Fusion method was mainly used for the production of noble metal catalysts, and since they were synthesized by heat treatment in a general heat treatment crucible, the particle size was large and the specific surface area was 50 m 2 or less. In addition, since there are not many stable catalyst supports, it is difficult to lower the catalyst ratio to 70% or less, and the support is not used in most commercial water electrolysis. Accordingly, in order to reduce the amount of catalyst used, it is necessary to develop a support and a high-efficiency catalyst.
고분자 전해질 수전해는 알칼리 수전해보다 전류밀도가 5 내지 10배 정도 높은 장점이 있으나, 고가의 촉매 사용으로 인해 초기 비용이 50% 정도 더 높고, 시스템 단가가 높아 상용화가 어려운 단점이 있다. 특히, 양극에는 4 mg/cm2 정도의 많은 촉매 사용량을 필요로 하는 바, 이를 줄여야 경제성을 확보할 수 있다. 또한, 고분자 전해질 수전해의 양극은 높은 산성 조건과 높은 전압으로 인해 적절한 지지체 확보가 어려운 단점이 있다. 이에, 고분자 전해질 수전해에 적절한 지지체의 사용은 귀금속 촉매의 사용량을 감소시킬 수 있으며, 소재의 단가를 낮추어야 고분자 전해질 수전해의 상업화가 가능하다. Polyelectrolyte water electrolysis has the advantage that the current density is 5 to 10 times higher than that of alkaline water electrolysis, but the initial cost is 50% higher due to the use of an expensive catalyst, and the system cost is high, making it difficult to commercialize. In particular, the positive electrode requires a large amount of catalyst of about 4 mg/cm 2 , and economic efficiency can be secured only by reducing this amount. In addition, the positive electrode of the polymer electrolyte water electrolysis has a disadvantage in that it is difficult to secure an appropriate support due to high acidic conditions and high voltage. Accordingly, the use of a support suitable for water electrolysis of a polymer electrolyte can reduce the amount of a noble metal catalyst, and the commercialization of water electrolysis of a polymer electrolyte is possible only by lowering the cost of the material.
따라서 귀금속 촉매의 사용량을 줄여 수전해 단위전지의 효율을 높일 수 있는 귀금속 촉매 및 지지체의 제조 및 이의 제조방법에 대한 연구가 필요한 실정이다.Therefore, there is a need for research on the preparation of a noble metal catalyst and a support capable of increasing the efficiency of a water electrolysis unit cell by reducing the amount of the noble metal catalyst, and a method for preparing the same.
본 발명은 기존의 고분자전해질 수전해 시스템과 비교하여 귀금속 사용량을 줄인 고분자전해질 수전해용 촉매를 제조하는 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for preparing a catalyst for polyelectrolyte water electrolysis, which reduces the amount of precious metal used compared to the existing polyelectrolyte water electrolysis system.
상기 목적을 달성하기 위하여, 본 발명의 고분자전해질 수전해용 촉매는 초음파 분무 열분해 방법을 이용하여 고효율 이리듐-루테늄 산화물(IrRuO4)를 제조하였다. 또한, IrRuOx 촉매와 안티몬주석산화물(Antimony doped Tin Oxide; ATO) 지지체를 일정 질량비율로 혼합 후 볼밀을 이용하여 혼합하여 고효율 IrRuOx/ATO 촉매를 제조하였으며, 이를 통해 귀금속 사용량을 줄이고자 하였다.In order to achieve the above object, a high-efficiency iridium-ruthenium oxide (IrRuO 4 ) was prepared using the ultrasonic spray pyrolysis method for the water electrolysis catalyst of the present invention. In addition, a high-efficiency IrRuOx/ATO catalyst was prepared by mixing an IrRuOx catalyst and an antimony doped tin oxide (ATO) support at a certain mass ratio and then mixing using a ball mill, thereby reducing the amount of precious metal used.
본 발명에서는 초음파 분무 열분해법을 이용하여 수전해 촉매를 제조하였으며, 초음파 발생기를 이용하여 분무 입자의 크기를 줄여(기존 25 μm -> 5 μm) 촉매의 크기를 감소시켰다.In the present invention, a water electrolysis catalyst was prepared using ultrasonic spray pyrolysis, and the size of the atomized particles was reduced using an ultrasonic generator (existing 25 μm -> 5 μm) to reduce the size of the catalyst.
또한, 본 발명은 전도성 산화물 지지체인 안티몬주석산화물(antimony doped tin oxide; ATO)에 IrRuOx(iridium Ruthenium oxide) 촉매를 담지하여 귀금속 촉매의 사용량을 줄이고도 높은 전류밀도의 단위전지 성능을 얻을 수 있다.In addition, according to the present invention, an iridium ruthenium oxide (IrRuOx) catalyst is supported on antimony doped tin oxide (ATO), which is a conductive oxide support, thereby reducing the amount of noble metal catalyst used, and high current density unit cell performance can be obtained.
또한, 본 발명의 고효율 고분자 전해질 수전해용 촉매는 귀금속 촉매의 사용량을 감소시켜 단위 전지의 효율을 높일 수 있어 경제적이다.In addition, the high-efficiency polymer electrolyte water electrolysis catalyst of the present invention is economical because it is possible to increase the efficiency of the unit cell by reducing the amount of the noble metal catalyst.
도 1은 이리듐-루테늄 산화물(IrRuOx) 촉매와 안티몬주석산화물(ATO) 지지체를 7:3의 질량비로 합성한 후, 수전해 단위전지 성능을 평가한 결과를 나타낸 것이다.1 is an iridium-ruthenium oxide (IrRuO x ) catalyst and an antimony tin oxide (ATO) support after synthesizing in a mass ratio of 7:3, and then showing the results of evaluating the performance of the electrolytic unit cell.
이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 발명자들은 고분자 전해질 양극에 사용할 수 있는 촉매의 제조방법으로 초음파 분무 열분해법을 이용하여 고비표면적의 이리듐-루테늄 산화물(IrRuOx)과 전도성 산화물인 ATO 지지체를 합성하여 수전해용 IrRuOx/ATO 촉매를 제조하였으며, 상기 IrRuOx/ATO 촉매는 촉매 사용량을 줄이고도 높은 전류밀도의 단위전지 성능을 나타내어 수전해 전지에 유용하게 활용될 수 있음을 밝혀내어 본 발명을 완성하였다.The inventors of the present invention synthesized a high specific surface area iridium-ruthenium oxide (IrRuO x ) and an ATO support, which is a conductive oxide, using ultrasonic spray pyrolysis as a method for preparing a catalyst that can be used for a polymer electrolyte anode, and IrRuO x /ATO for water electrolysis A catalyst was prepared, and the present invention was completed by revealing that the IrRuO x /ATO catalyst exhibits high current density unit cell performance even with reduced catalyst usage and can be usefully used in water electrolysis batteries.
본 발명은 초음파 분무 열분해법으로 다공성 이리듐-루테늄 산화물(IrRuOx)을 제조하는 단계; 초음파 분무 열분해법으로 안티주석산화물(antimony doped tin oxide) 지지체를 제조하는 단계; 및 상기 이리듐-루테늄 산화물(IrRuOx)을 안티주석산화물(antimony doped tin oxide) 지지체에 담지하여 촉매를 제조하는 단계;를 포함하며, 상기 이리듐-루테늄 산화물(IrRuOx)의 x는 2이하인 것을 특징으로 하는 수전해용 촉매의 제조방법을 제공한다.The present invention comprises the steps of preparing porous iridium-ruthenium oxide (IrRuOx) by ultrasonic spray pyrolysis; Preparing an anti-tin oxide (antimony doped tin oxide) support by ultrasonic spray pyrolysis; and preparing a catalyst by supporting the iridium-ruthenium oxide (IrRuO x ) on an antimony doped tin oxide support, wherein x of the iridium-ruthenium oxide (IrRuO x ) is 2 or less It provides a method for producing a catalyst for water electrolysis.
이때, 상기 초음파 분무 열분해법은 전구체를 용매에 용해시켜 전구체 용액을 제조하는 단계; 상기 전구체 용액을 초음파 발생기가 장착된 용액조에 주입하여 1 내지 5㎛ 크기의 입자로 분무하는 단계; 상기 형성된 입자를 열분해 후 건조하는 단계; 를 포함할 수 있으며, 상기 입자는 메쉬 초음파를 이용하여 1 내지 30kHz의 초음파 범위에서 형성되고, 상기 열분해는 300 내지 600℃의 온도에서 수행될 수 있다.In this case, the ultrasonic spray pyrolysis method comprises the steps of dissolving a precursor in a solvent to prepare a precursor solution; injecting the precursor solution into a solution tank equipped with an ultrasonic generator and spraying the precursor solution into particles having a size of 1 to 5 μm; drying the formed particles after thermal decomposition; may include, wherein the particles are formed in an ultrasonic range of 1 to 30 kHz using mesh ultrasonic waves, and the thermal decomposition may be performed at a temperature of 300 to 600 °C.
상기와 같이 초음파 분무 열분해법으로 생성된 다공성 이리듐-루테늄 산화물(IrRuOx)의 평균 기공 크기는 1 내지 5nm 이며, BET 표면적은 200 내지 300 m2/g 일 수 있다.The average pore size of the porous iridium-ruthenium oxide (IrRuO x ) produced by the ultrasonic spray pyrolysis method as described above is 1 to 5 nm, and the BET surface area may be 200 to 300 m 2 /g.
또한, 상기 촉매를 제조하는 단계는 다공성 이리듐-루테늄 산화물(IrRuOx) 촉매 및 안티주석산화물(antimony doped tin oxide) 지지체를 7~3:3~7 또는 7~5:3~5의 질량비율로 유성형 볼밀을 이용하여 혼합할 수 있다.In addition, the step of preparing the catalyst is a porous iridium-ruthenium oxide (IrRuO x ) catalyst and an antimony doped tin oxide support in a mass ratio of 7 to 3:3 to 7 or 7 to 5:3 to 5. It can be mixed using a planetary ball mill.
구체적으로, 상기 촉매를 제조하는 단계는 다공성 이리듐-루테늄 산화물(IrRuOx) 촉매와 안티주석산화물(antimony doped tin oxide) 지지체를 유성형 볼밀을 이용하여 200 내지 700 rpm 조건에서 2시간 내지 8시간 동안 혼합하여 수행할 수 있다.Specifically, the step of preparing the catalyst includes mixing a porous iridium-ruthenium oxide (IrRuO x ) catalyst and an antimony doped tin oxide support using a planetary ball mill at 200 to 700 rpm conditions for 2 to 8 hours. can be done by
상기 촉매를 제조하는 단계를 통해 제조된 촉매의 안티몬주석 산화물 지지체는 전체 촉매를 기준으로 30 내지 70 중량% 또는 30 내지 50 중량%으로 포함될 수 있다.The antimony tin oxide support of the catalyst prepared through the step of preparing the catalyst may be included in an amount of 30 to 70% by weight or 30 to 50% by weight based on the total catalyst.
상기 초음파 분무 열분해법으로 형성된 이리듐-루테늄 산화물(IrRuOx)은 열처리에 의해 다공성 구조를 가지게 되어 표면적이 증가됨으로써 산소 발생 활성을 더욱 증가시킬 수 있으며, 상기 안티주석산화물(antimony doped tin oxide) 지지체를 사용할 경우, 상기 다공성 이리듐-루테늄 산화물(IrRuOx)끼리 뭉치는 현상을 방지할 수 있고 전도도를 증가시킬 수 있어, 상기 안티주석산화물(antimony doped tin oxide) 지지체를 사용하지 않을 경우에 비해 수전해용 단위전지의 성능 및 효율이 더 뛰어날 수 있다.The iridium-ruthenium oxide (IrRuO x ) formed by the ultrasonic spray pyrolysis method has a porous structure by heat treatment, so that the surface area is increased to further increase the oxygen generating activity, and the antimony doped tin oxide support When used, the porous iridium-ruthenium oxide (IrRuO x ) can prevent aggregation and increase the conductivity, so that the antimony doped tin oxide support is not used as a unit for water electrolysis. The performance and efficiency of the battery may be better.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이며 본 발명의 내용을 예시하는 것일 뿐이므로 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, to help the understanding of the present invention, examples will be described in detail. However, the following examples are provided to more completely explain the present invention to those with average knowledge in the art, and are only illustrative of the contents of the present invention, so that the scope of the present invention is limited to the following examples not.
< 제조예 1> IrRuOx (iridium Ruthenium oxide)/ ATO (antimony doped tin oxide) 수전해 촉매의 제조 < Preparation Example 1> Preparation of I rRuOx (iridium ruthenium oxide)/ ATO (antimony doped tin oxide) water electrolysis catalyst
1-1. IrRuOx(iridium Ruthenium oxide) 촉매의 제조1-1. Preparation of IrRuO x (iridium ruthenium oxide) catalyst
촉매 전구체 용액(전구체 용액 제조방법)을 메쉬 초음파 발생기를 이용한 초음파 분무 열분해(ultrasonic spray pyrolysis)방법을 이용하여 24 kHz의 초음파 하에서 5㎛의 입자로 분무하고, 300℃의 공기와 혼합한 후 500℃의 전기로에 주입해 순간적으로 열처리하여 IrRuOx 촉매를 제조하였다.The catalyst precursor solution (precursor solution preparation method) is sprayed into 5㎛ particles under 24 kHz ultrasonic wave using an ultrasonic spray pyrolysis method using a mesh ultrasonic generator, mixed with air at 300°C, and mixed with air at 500°C IrRuO x catalyst was prepared by injecting it into an electric furnace and instantaneously heat-treating it.
1-2. ATO 지지체의 제조1-2. Preparation of ATO Supports
지지체 전구체 용액 (전구체용액 제조방법)을 이용한 것을 제외하고는, 상기 제조예 1과 동일한 조건으로 전도성 산화물 ATO 지지체를 제조하였다.A conductive oxide ATO support was prepared under the same conditions as in Preparation Example 1, except that the support precursor solution (precursor solution preparation method) was used.
1-3. IrRuOx/ATO 수전해 촉매의 제조1-3. Preparation of IrRuO x /ATO water electrolysis catalyst
상기 제조예 1-1에서 제조한 IrRuOx 촉매 1g을 제조예 1-2에서 제조한 ATO 지지체에 질량비가 7:3의 비율이 되도록 담지하여 수전해 촉매(이하 'IrRuOx/ATO (7:3) 를 제조하였다. 제조시 유성형 볼밀(Planetary ball mill)을 이용하였으며, 400rpm 조건에서 4시간 동안 혼합하였다.1 g of the IrRuO x catalyst prepared in Preparation Example 1-1 was supported on the ATO support prepared in Preparation Example 1-2 so that the mass ratio was 7:3, and a water electrolysis catalyst (hereinafter 'IrRuO x /ATO (7:3) ) was prepared.A planetary ball mill was used for manufacturing, and the mixture was mixed at 400 rpm for 4 hours.
<실시예 1> IrRuO<Example 1> IrRuO xx /ATO 수전해 촉매의 단위전지 측정/ATO water electrolysis catalyst unit cell measurement
상기 제조예 1에서 제조한 수전해 촉매 IrRuOx/ATO (7:3)를 이용하여 수전해 단위전지를 제조하고, 성능을 측정하였다.A water electrolysis unit cell was prepared using the water electrolysis catalyst IrRuO x /ATO (7:3) prepared in Preparation Example 1, and performance was measured.
단위전지는 활성면적 5cm2으로 제조하였으며, 전해질막은 Dupont사의 Nafion 212를 이용하였고, 음극(Cathode, 수소전극)은 GDL(Gas diffution layer)에 상용 Pt/C 촉매를 코팅하여 제조하였다. 양극(Anode, 산소극)에는 GDL(Gas diffution layer)에 상기 제조예 1에서 제조한 IrRuOx/ATO(7:3) 촉매를 0.51 mg/cm2 으로 담지한 후, 음극, 전해질막, 양극의 순으로 단위전지를 조립하였으며, 80 oC 조건에서 전압-전류 분석을 수행하였다.The unit cell was manufactured with an active area of 5 cm 2 , the electrolyte membrane was Nafion 212 manufactured by Dupont, and the negative electrode (cathode, hydrogen electrode) was prepared by coating a commercial Pt/C catalyst on a gas diffution layer (GDL). On the positive electrode (Anode, oxygen electrode), 0.51 mg/
이를 통해 본 발명에 따라 초음파 분무 열분해(ultrasonic spray pyrolysis) 방법과 볼밀을 이용하여 제조된 IrRuOx/ATO 촉매는 IrOx 촉매의 사용량을 0.36 mg/cm2 으로 줄이고도 기존 수전해 단위전지와 비슷한 성능을 얻을 수 있어, IrOx 촉매보다 촉매 효율이 높음을 확인하였다.Through this, the IrRuO x /ATO catalyst prepared using the ultrasonic spray pyrolysis method and the ball mill according to the present invention has similar performance to the existing water electrolysis unit cell even though the amount of IrO x catalyst is reduced to 0.36 mg/cm 2 can be obtained, and it was confirmed that the catalyst efficiency was higher than that of the IrO x catalyst.
따라서, 본 발명에서는 초음파 분무 열분해법을 이용하여 고비표면적의 IrRuOx 촉매 및 전도성 산화물인 ATO 지지체 제조하였으며, 이를 이용하여 고분자 전해질 수전해 단위전지를 평가한 결과, 귀금속 촉매(IrOx)의 담지량을 0.36 mg/cm2까지 감소시키고도 높은 전류밀도의 단위전지 성능을 얻을 수 있었다. 즉, 본 발명에서는 고가의 귀금속 촉매의 사용량을 감소시켜도 단위전지의 성능을 유지시킬 수 있어 고분자 전해질 수전해의 효율성 및 경제성을 향상시킬 수 있었다.Therefore, in the present invention, an IrRuO x catalyst having a high specific surface area and an ATO support, which is a conductive oxide, were prepared using ultrasonic spray pyrolysis. Even though it was reduced to 0.36 mg/cm 2 , it was possible to obtain unit cell performance with high current density. That is, in the present invention, even if the amount of expensive noble metal catalyst is reduced, the performance of the unit cell can be maintained, so that the efficiency and economic feasibility of water electrolysis of the polymer electrolyte can be improved.
이상으로 본 발명의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, for those of ordinary skill in the art, these specific descriptions are only preferred embodiments, and it is clear that the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention.
Claims (1)
상기 촉매를 제조하는 단계는 이리듐-루테늄 산화물 및 안티몬주석 산화물 지지체를 7~3:3~7의 질량비율로 혼합하여 수행하는 것을 특징으로 하는 고분자전해질 수전해용 촉매의 제조방법.Comprising the step of preparing a catalyst by supporting iridium-ruthenium oxide on an antimony tin oxide support,
The method for preparing the catalyst for polyelectrolyte water electrolysis, characterized in that the preparing the catalyst is performed by mixing iridium-ruthenium oxide and antimony tin oxide support in a mass ratio of 7 to 3:3 to 7.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200164586 | 2020-11-30 | ||
KR20200164586 | 2020-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220077874A true KR20220077874A (en) | 2022-06-09 |
Family
ID=81985968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210163256A KR20220077874A (en) | 2020-11-30 | 2021-11-24 | Synthesis method of IrRuOx/ATO catalyst for proton exchange membrane water electrolysis |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20220077874A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110084225A (en) | 2008-10-08 | 2011-07-21 | 메사추세츠 인스티튜트 오브 테크놀로지 | Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other electrochemical techniques |
-
2021
- 2021-11-24 KR KR1020210163256A patent/KR20220077874A/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110084225A (en) | 2008-10-08 | 2011-07-21 | 메사추세츠 인스티튜트 오브 테크놀로지 | Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other electrochemical techniques |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cruz et al. | Nanosized IrO 2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer | |
Audichon et al. | Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile | |
Mayousse et al. | Synthesis and characterization of electrocatalysts for the oxygen evolution in PEM water electrolysis | |
Cruz et al. | Nanosized Pt/IrO2 electrocatalyst prepared by modified polyol method for application as dual function oxygen electrode in unitized regenerative fuel cells | |
Siracusano et al. | Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst | |
Grigoriev et al. | Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers | |
US8946116B2 (en) | Nanometer powder catalyst and its preparation method | |
Su et al. | Study of catalyst sprayed membrane under irradiation method to prepare high performance membrane electrode assemblies for solid polymer electrolyte water electrolysis | |
Ye et al. | A novel PtRuIr nanoclusters synthesized by selectively electrodepositing Ir on PtRu as highly active bifunctional electrocatalysts for oxygen evolution and reduction | |
CA2857110A1 (en) | Precious metal oxide catalyst for water electrolysis | |
KR101726575B1 (en) | Ultra-low Loading of Pt-decorated Ni Electrocatalyst, Manufacturing Method of the Same and Anion Exchange Membrane Water Electrolyzer Using the Same | |
Siracusano et al. | Performance of a PEM water electrolyser combining an IrRu-oxide anode electrocatalyst and a short-side chain Aquivion membrane | |
US11124885B2 (en) | Anode catalyst suitable for use in an electrolyzer | |
US7955529B2 (en) | Synthesis for catalysis of bifunctional perovskite compound | |
Chen et al. | Rational design of robust iridium-ceria oxide-carbon nanofibers to boost oxygen evolution reaction in both alkaline and acidic media | |
Kim et al. | Leveraging metal alloy-hybrid support interaction to enhance oxygen evolution kinetics and stability in proton exchange membrane water electrolyzers | |
Bandapati et al. | Platinum utilization in proton exchange membrane fuel cell and direct methanol fuel cell | |
Kim et al. | Synthesis and electrochemical properties of nano-composite IrO2/TiO2 anode catalyst for SPE electrolysis cell | |
CN114164458B (en) | Preparation method of iridium-ruthenium-based oxygen evolution catalyst | |
RU2421850C1 (en) | Method of producing nano-sized platinum-nickel catalyst | |
KR20230062374A (en) | Synthesis method of high-efficiency IrRuOx/ATO catalyst for water electrolysis | |
KR102180882B1 (en) | Synthesis method of water electrolysis catalyst using ultrasonic spray pyrolysis | |
Xu et al. | Platinum activated IrO2/SnO2 nanocatalysts and their electrode structures for high performance proton exchange membrane water electrolysis | |
Escalante-Garcia et al. | Electrochemical characterization of IrO2-Pt and RuO2-Pt mixtures as bifunctional electrodes for unitized regenerative fuel cells | |
CN113802130B (en) | Electrolytic water catalyst and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal |