KR20220077496A - Message data management method of IoT gateway for improving the efficiency of processing large-capacity traffic of various devices applied to smart port configuration - Google Patents
Message data management method of IoT gateway for improving the efficiency of processing large-capacity traffic of various devices applied to smart port configuration Download PDFInfo
- Publication number
- KR20220077496A KR20220077496A KR1020200166489A KR20200166489A KR20220077496A KR 20220077496 A KR20220077496 A KR 20220077496A KR 1020200166489 A KR1020200166489 A KR 1020200166489A KR 20200166489 A KR20200166489 A KR 20200166489A KR 20220077496 A KR20220077496 A KR 20220077496A
- Authority
- KR
- South Korea
- Prior art keywords
- message data
- message
- transmission
- data
- specific
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000013523 data management Methods 0.000 title claims abstract description 12
- 230000005540 biological transmission Effects 0.000 claims abstract description 84
- 238000004422 calculation algorithm Methods 0.000 claims description 30
- 238000004891 communication Methods 0.000 claims description 28
- 238000007726 management method Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 abstract description 3
- 238000007635 classification algorithm Methods 0.000 description 12
- 238000013135 deep learning Methods 0.000 description 7
- 238000013528 artificial neural network Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000010801 machine learning Methods 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- QVFWZNCVPCJQOP-UHFFFAOYSA-N chloralodol Chemical compound CC(O)(C)CC(C)OC(O)C(Cl)(Cl)Cl QVFWZNCVPCJQOP-UHFFFAOYSA-N 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/60—Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
- H04L67/61—Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources taking into account QoS or priority requirements
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y10/00—Economic sectors
- G16Y10/40—Transportation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y30/00—IoT infrastructure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/66—Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/56—Provisioning of proxy services
- H04L67/568—Storing data temporarily at an intermediate stage, e.g. caching
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Operations Research (AREA)
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Economics (AREA)
- General Business, Economics & Management (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
본 발명은 스마트 항만 구성에 적용되는 다양한 디바이스의 대용량 트래픽 처리 효율을 개선한 IoT 게이트웨이의 메시지 데이터 관리 방법에 관한 것으로서, 더욱 상세히는 항만에 적용되는 복수의 사물 인터넷 장치로부터 수신된 메시지 데이터를 상기 사물 인터넷 장치를 관리하는 서비스 서버로 중계하는 IoT 게이트웨이에서 메시지 데이터의 전송 패턴을 학습하고, 이를 기반으로 우선 순위가 높은 메시지 데이터가 상기 서비스 서버에 우선 전송되도록 동작하여 사물 인터넷 장치를 이용한 사물 인터넷 서비스의 성능 및 품질을 높일 수 있는 스마트 항만 구성에 적용되는 다양한 디바이스의 대용량 트래픽 처리 효율을 개선한 IoT 게이트웨이의 메시지 데이터 관리 방법에 관한 것이다. 본 발명은 메시지 데이터의 호출 빈도수와 전송 용량 등의 전송 패턴을 기초로 구분한 메시지 종류에 따른 우선순위 비교를 기반으로 메시지 데이터를 서비스 서버에 전송하여 메시지 데이터의 전송 품질을 높일 수 있어, 서비스 서버의 유휴 시간을 최소화하고 서비스 서버의 메시지 데이터를 이용한 스마트 항만 관련 서비스 제공에 대한 서비스 품질을 높일 수 있음과 아울러 스마트 항만 운영에 대한 효율성 및 안전성을 높이는 효과가 있다.The present invention relates to a message data management method of an IoT gateway that improves the processing efficiency of large-capacity traffic of various devices applied to the configuration of a smart port, and more particularly, the message data received from a plurality of IoT devices applied to the port is stored in the object. It learns the transmission pattern of message data from the IoT gateway relaying to the service server that manages Internet devices, and operates to transmit message data with high priority to the service server based on this. It relates to a message data management method of an IoT gateway that improves the processing efficiency of large-capacity traffic of various devices applied to a smart port configuration that can improve performance and quality. The present invention can improve the transmission quality of message data by transmitting the message data to the service server based on the priority comparison according to the type of message divided based on the transmission pattern such as the frequency of call and transmission capacity of the message data, so that the transmission quality of the message data can be improved. It is possible to minimize the idle time of the service server and increase the service quality for smart port-related service provision using message data from the service server, and it has the effect of increasing the efficiency and safety of smart port operation.
Description
본 발명은 스마트 항만 구성에 적용되는 다양한 디바이스의 대용량 트래픽 처리 효율을 개선한 IoT 게이트웨이의 메시지 데이터 관리 방법에 관한 것으로서, 더욱 상세히는 스마트 항만을 구성하는데 적용되는 복수의 사물 인터넷 장치로부터 수신된 메시지 데이터를 상기 사물 인터넷 장치를 관리하는 서비스 서버로 중계하는 IoT 게이트웨이에서 메시지 데이터의 전송 패턴을 학습하고, 이를 기반으로 우선 순위가 높은 메시지 데이터가 상기 서비스 서버에 우선 전송되도록 동작하여 사물 인터넷 장치를 이용한 스마트 항만 관련 서비스의 성능 및 품질을 높일 수 있는 스마트 항만 구성에 적용되는 다양한 디바이스의 대용량 트래픽 처리 효율을 개선한 IoT 게이트웨이의 메시지 데이터 관리 방법에 관한 것이다.The present invention relates to a message data management method of an IoT gateway that improves the efficiency of processing large-capacity traffic of various devices applied to the configuration of a smart port, and more particularly, message data received from a plurality of IoT devices applied to configure a smart port. It learns a transmission pattern of message data from an IoT gateway that relays . It relates to a message data management method of an IoT gateway that improves the efficiency of processing large-capacity traffic of various devices applied to a smart port configuration that can improve the performance and quality of port-related services.
최근 사물 인터넷 장치(IoT(Internet of Things) 장치)가 등장하면서, 이러한 사물 인터넷 장치를 이용하여 실생활의 편의를 개선하거나 산업에서 생산성이나 효율성을 향상하는 것과 같은 다양한 서비스를 제공하는 사물 인터넷 서비스가 제공되고 있다.With the recent emergence of Internet of Things (IoT) devices, Internet of Things services that provide various services, such as improving convenience in real life or improving productivity or efficiency in industries, are provided by using such Internet of Things devices. is becoming
이러한 사물 인터넷 서비스는 일반적으로 게이트웨이에서 사물 인터넷 장치로서 동작하는 여러 종류의 레거시 장치로부터 데이터를 수집하여 사물 인터넷 장치의 데이터를 관리하는 서버에 전달하게 되며, 이러한 게이트웨이는 다양한 프로토콜로 획득되는 데이터를 통합된 방식으로 변환하고 처리하여 상기 서버에 전달한다.These Internet of Things services generally collect data from various types of legacy devices that operate as Internet of Things devices in a gateway and deliver them to a server that manages the data of IoT devices. These gateways integrate data obtained through various protocols converted, processed, and transmitted to the server.
이때, 게이트웨이에 수집되는 데이터들은 서버의 데이터 이용 패턴에 따라 시간에 민감한 데이터도 있고 비교적 시간에 둔감한 데이터도 있으며, 데이터의 사이즈가 작은 단위면서 자주 들어오는 데이터와 빈도는 작지만 데이터의 크기가 큰 데이터도 존재한다.At this time, the data collected in the gateway includes time-sensitive data and relatively time-insensitive data depending on the data usage pattern of the server. also exist
그러나, 기존의 게이트웨이는 이러한 데이터의 특징을 구분하지 않고 단일 크기의 메시지 큐를 이용하여 전송함으로 인해, 실시간성이 필요한 데이터가 실시간성을 요구하지 않는 데이터에 의해 지연 전송되어 사물 인터넷 서비스의 성능 및 품질을 저하시키는 문제가 발생되고 있다.However, because the existing gateway does not distinguish the characteristics of such data and transmits it using a single-size message queue, data requiring real-time is delayed by data that does not require real-time, so the performance and performance of the Internet of Things service and There is a problem that lowers the quality.
최근 항만에 영상 감시를 위한 카메라, 다양한 센서, 항만 운송 수단의 입차 및 출차를 제어하는 입출차 관리 장치, 항만 작업자용 단말 등과 같은 다양한 사물 인터넷 장치를 설치 및 배포하고, 이러한 다양한 사물 인터넷 장치를 통해 수신되는 정보를 종합하여 처리하는 스마트 항만을 구축하여 작업 효율 및 생산성을 높이려는 시도가 추진되고 있다.Recently, various IoT devices such as a camera for video surveillance, various sensors, an entry/exit management device for controlling entry and exit of port transportation means, and a terminal for port workers have been installed and distributed in ports, and through these various IoT devices, Attempts are being made to increase work efficiency and productivity by building a smart port that aggregates and processes received information.
그러나, 이러한 항만에 설치 및 배포되는 사물 인터넷 장치는 장치 수가 방대하므로 상술한 바와 같이 각종 사물 인터넷 장치로부터 수신되는 데이터의 특징을 구분하여 처리하지 않으면, 데이터 처리 효율이 극히 저하되며 이로 인해 스마트 항만 운영에 대한 효율성 및 안정성을 저하시키는 문제가 발생할 수 있다.However, since the number of IoT devices installed and distributed in these ports is huge, if the characteristics of data received from various IoT devices are not processed separately as described above, data processing efficiency is extremely reduced, and this results in smart port operation There may be problems that reduce the efficiency and stability of the
본 발명은 스마트 항만을 구성하는데 적용되는 복수의 사물 인터넷 장치로부터 메시지 데이터를 수신하여 서비스 서버에 중계하는 IoT 게이트웨이에서 데이터 전송 로그를 이용해 메시지 데이터의 종류별 전송 패턴을 학습하고, 학습된 패턴을 기초로 호출 빈도수와 메시지 크기를 이용해 우선순위 큐를 구분 전송함으로써, 저속 메시지로 인한 유휴 시간을 최소화하는 동시에 전송 품질을 개선함과 아울러 효율적인 데이터 전송을 통해 스마트 항만 운영시 데이터 처리 효율을 개선하여 스마트 항만과 관련된 서비스 품질을 높이면서 스마트 항만 운영에 대한 효율성 및 안정성을 높이는데 그 목적이 있다.The present invention learns a transmission pattern for each type of message data using a data transmission log in an IoT gateway that receives message data from a plurality of IoT devices applied to configure a smart port and relays it to a service server, and based on the learned pattern By dividing priority queues using call frequency and message size, idle time due to low-speed messages is minimized and transmission quality is improved, and data processing efficiency is improved during smart port operation through efficient data transmission, so that The purpose is to increase the efficiency and stability of smart port operation while increasing the related service quality.
본 발명의 실시예에 다른 항만에 위치하는 디바이스인 복수의 사물 인터넷 장치로부터 통신망을 통해 메시지 데이터를 수신하여 서버에 전송하는 스마트 항만 구성에 적용되는 다양한 디바이스의 대용량 트래픽 처리 효율을 개선한 IoT 게이트웨이의 메시지 데이터 관리 방법은, 상기 복수의 사물 인터넷 장치로부터 메시지 데이터를 수신하여 상기 서버에 상기 메시지 데이터 전송시 전송 로그를 생성하여 누적 저장하는 로그 저장 단계와, 상기 누적 저장된 전송 로그의 학습을 통해 상기 전송 로그와 관련되어 미리 설정된 하나 이상의 속성에 따른 상기 메시지 데이터의 전송 패턴을 기초로 복수의 서로 다른 메시지 종류로 클러스터링하여 메시지 데이터의 메시지 종류 식별을 위한 설정 정보를 생성하고, 상기 복수의 서로 다른 메시지 종류 상호 간 우선 순위의 결정을 위한 우선 순위의 결정 규칙을 생성한 후 메시지 분류를 위한 미리 설정된 알고리즘에 상기 설정 정보 및 결정 규칙을 설정하는 설정 단계 및 상기 복수의 사물 인터넷 장치로부터 수신되는 특정 메시지 데이터를 상기 알고리즘에 적용하여 상기 특정 메시지 데이터에 대응되는 메시지 종류를 식별하고, 상기 우선 순위의 결정 규칙에 따라 상기 특정 메시지 데이터 수신시 메시지 큐에 저장된 하나 이상의 타 메시지 데이터별 메시지 종류와 상기 특정 메시지 데이터의 메시지 종류에 따른 상기 타 메시지 데이터에 대한 상기 특정 메시지 데이터의 우선 순위를 결정하여 상기 메시지 큐에 상기 특정 메시지 데이터의 슬롯을 할당하는 자동 관리 단계를 포함할 수 있다.According to an embodiment of the present invention, an IoT gateway that improves the efficiency of processing large-capacity traffic of various devices applied to a smart port configuration that receives message data from a plurality of Internet of Things devices, which are devices located in a port, through a communication network, and transmits it to a server according to an embodiment of the present invention The message data management method includes: a log storage step of receiving message data from the plurality of IoT devices and generating and accumulatively storing a transmission log when transmitting the message data to the server; Clustering into a plurality of different message types based on a transmission pattern of the message data according to one or more properties preset in relation to a log to generate configuration information for identifying a message type of the message data, and the plurality of different message types After creating a priority determination rule for mutual priority determination, a setting step of setting the setting information and the determination rule in a preset algorithm for message classification, and specific message data received from the plurality of IoT devices The algorithm is applied to identify a message type corresponding to the specific message data, and when the specific message data is received according to the priority determination rule, the message type for each other message data stored in the message queue and the specific message data The method may include an automatic management step of allocating a slot of the specific message data to the message queue by determining the priority of the specific message data with respect to the other message data according to the message type.
본 발명과 관련된 일 예로서, 상기 로그 저장 단계는, 상기 복수의 사물 인터넷 장치로부터 메시지 데이터를 수신하여 메시지 큐에 저장하고, 상기 서버에 의한 상기 메시지 큐 호출시 상기 메시지 데이터를 상기 서버에 전송하며, 상기 메시지 데이터 전송시 전송 로그를 생성하여 누적 저장하는 단계를 포함하는 것을 특징으로 할 수 있다.As an example related to the present invention, the log storage step includes receiving message data from the plurality of IoT devices and storing the message data in a message queue, and transmitting the message data to the server when the message queue is called by the server, , generating and accumulatively storing a transmission log when the message data is transmitted.
본 발명과 관련된 일 예로서, 상기 하나 이상의 속성은 큐 호출 빈도수 및 메시지 데이터의 전송량 중 적어도 하나를 포함하는 것을 특징으로 할 수 있다.As an example related to the present invention, the one or more attributes may include at least one of a queue call frequency and a transmission amount of message data.
본 발명과 관련된 일 예로서, 상기 설정 단계는 사용자 입력에 따라 상기 메시지 종류 상호 간 상기 우선 순위의 결정 규칙을 상기 알고리즘에 설정하거나 상기 전송 로그를 학습하여 상기 전송 패턴에 따라 구분된 상기 복수의 메시지 종류별로 다른 메시지 종류와의 경합시 우선되는 메시지 종류에 대한 상기 우선 순위의 결정 규칙을 생성한 후 상기 알고리즘에 설정하는 것을 특징으로 할 수 있다.As an example related to the present invention, in the setting step, a rule for determining the priority between the message types is set in the algorithm according to a user input or the plurality of messages classified according to the transmission pattern by learning the transmission log In case of contention with other message types for each type, the priority determination rule for the message type that is prioritized may be created and then set in the algorithm.
본 발명과 관련된 일 예로서, 상기 자동 관리 단계는, 상기 특정 메시지 데이터의 우선 순위를 결정하여 상기 메시지 큐에 상기 특정 메시지 데이터의 슬롯을 할당시 상기 특정 메시지 데이터의 메시지 종류에 대응되는 전송 패턴에 따라 상기 특정 메시지 데이터의 슬롯을 할당하는 단계를 더 포함하는 것을 특징으로 할 수 있다.As an example related to the present invention, in the automatic management step, the priority of the specific message data is determined and when the slot of the specific message data is allocated to the message queue, the transmission pattern corresponding to the message type of the specific message data is applied. The method may further include allocating a slot for the specific message data accordingly.
본 발명과 관련된 일 예로서, 상기 자동 관리 단계는 상기 특정 메시지 데이터의 슬롯을 할당시 상기 특정 메시지 데이터의 메시지 종류에 대응되는 전송 패턴에 따른 메시지 전송량을 기초로 상기 특정 메시지 데이터의 슬롯을 할당하는 것을 특징으로 할 수 있다.As an example related to the present invention, the automatic management step allocates a slot of the specific message data based on a message transmission amount according to a transmission pattern corresponding to a message type of the specific message data when allocating a slot of the specific message data. can be characterized as
본 발명은 항만에 위치하여 스마트 항만을 구성하는데 이용되는 다양한 복수의 사물 인터넷 장치로부터 수신되는 메시지 데이터를 서비스 서버에 중계하는 IoT 게이트웨이에서 복수의 서로 다른 메시지 데이터를 전송 패턴의 학습에 따라 복수의 서로 다른 메시지 종류로 구분하고, 복수의 서로 다른 메시지 종류에 대해 우선순위 판단을 위한 결정 규칙을 설정하여, 수신되는 메시지 데이터별로 메시지 종류를 식별하고 해당 결정 규칙을 기초로 현재 전송 대상인 다른 메시지 데이터와의 대비를 통해 우선 순위를 판별하여 우선 순위가 높은 메시지 데이터가 서비스 서버에 우선 전송되도록 할 수 있으며, 이를 통해 메시지 데이터의 호출 빈도수와 전송 용량 등의 전송 패턴을 기초로 구분한 메시지 종류에 따른 우선순위 비교를 기반으로 메시지 데이터를 전송하여 메시지 데이터의 전송 품질을 높일 수 있어, 서비스 서버의 유휴 시간을 최소화하고 서비스 서버의 메시지 데이터를 이용한 스마트 항만 관련 서비스 제공에 대한 서비스 품질을 높일 수 있음과 아울러 스마트 항만 운영에 대한 효율성 및 안전성을 높이는 효과가 있다.The present invention is located in a port and transmits a plurality of different message data to a plurality of each other according to learning of a transmission pattern in an IoT gateway that relays message data received from a plurality of various IoT devices used to configure a smart port to a service server. By classifying different message types and setting a decision rule for priority determination for a plurality of different message types, the message type is identified for each received message data, and based on the decision rule, By determining the priority through contrast, message data with high priority can be transmitted to the service server with priority. By transmitting message data based on comparison, it is possible to increase the transmission quality of message data, thereby minimizing idle time of the service server and improving the service quality for providing smart port-related services using the message data of the service server. It has the effect of increasing the efficiency and safety of port operation.
도 1 및 도 2는 본 발명의 실시예에 따른 스마트 항만 구성에 적용되는 다양한 디바이스의 대용량 트래픽 처리 효율을 개선한 IoT 게이트웨이를 포함하는 서비스 시스템의 구성도.
도 3은 본 발명의 실시예에 따른 IoT 게이트웨이의 구성도.
도 4는 본 발명의 실시예에 따른 IoT 게이트웨이의 학습 기반 메시지 데이터 관리 방법에 대한 순서도.
도 5 및 도 6은 본 발명의 실시예에 따른 IoT 게이트웨이의 동작 예시도.1 and 2 are diagrams of a service system including an IoT gateway with improved mass traffic processing efficiency of various devices applied to a smart port configuration according to an embodiment of the present invention.
3 is a block diagram of an IoT gateway according to an embodiment of the present invention;
4 is a flowchart of a learning-based message data management method of an IoT gateway according to an embodiment of the present invention.
5 and 6 are diagrams illustrating an operation of an IoT gateway according to an embodiment of the present invention.
이하, 도면을 참고하여 본 발명의 상세 실시예를 설명한다.Hereinafter, detailed embodiments of the present invention will be described with reference to the drawings.
도 1 및 도 2는 본 발명의 실시예에 따른 스마트 항만 관련 서비스를 제공하는 서비스 시스템의 구성도로서, 도시된 바와 같이, 상기 서비스 시스템은 항만에 위치하여 스마트 항만을 구성하는데 적용되는 복수의 서로 다른 디바이스인 복수의 서로 다른 사물 인터넷 장치(IoT(Internet of Things) 장치)와, 통신망을 통해 상기 복수의 사물 인터넷 장치와 통신하는 IoT 게이트웨이(Gateway)(100) 및 상기 IoT 게이트웨이(100)(이하, 게이트웨이 장치(100))와 통신하는 서비스 서버를 포함하여 구성될 수 있다.1 and 2 are diagrams of a service system for providing smart port-related services according to an embodiment of the present invention. As shown, the service system is located in a port and is applied to a plurality of mutually A plurality of different Internet of Things (IoT) devices, which are different devices, and an
이때, 상기 복수의 사물 인터넷 장치는 항만에 위치하여 스마트 항만 관련 서비스를 제공하기 위한 각종 데이터를 전송하는 여러 종류의 레거시(legacy) 장치로 구성될 수 있으며, 상기 사물 인터넷 장치의 일례로서, 센서 장치, 카메라 장치, 항만 작업자용 웨어러블 디바이스(wearable devices), 항만 운송 장비의 입차 및 출차에 대한 관리를 위한 입출차 관리 장치, 항만 크레인에 구성된 각종 제어 장치 등과 같은 다양한 장치를 포함할 수 있다.In this case, the plurality of IoT devices may be configured as various types of legacy devices that are located in a port and transmit various types of data for providing smart harbor-related services. As an example of the IoT device, a sensor device , a camera device, wearable devices for port workers, an entry/exit management device for managing entry and exit of harbor transport equipment, various control devices configured in a harbor crane, and the like.
또한, 이러한 사물 인터넷 장치는 통신망을 통한 통신 기능을 지원할 수 있다.In addition, such an IoT device may support a communication function through a communication network.
또한, 상기 사물 인터넷 장치로 사용되는 상기 센서 장치는 견인차, 선박, 크레인 등과 같은 화물 운송 장비에 적용되거나 항만의 다양한 장소에 배치되는 다양한 종류의 센서를 포함할 수 있으며, 일례로, 디젤 엔진 분석 장치, 압력 및 레벨 측정 센서, 경사계 센서, 힘 측정 센서, 기압계 센서, 레이저 센서, 압력 스위치, 온도 조절기 및 컨트롤러, 온도 센서, 습도 센서, 플로트 스위치(float switch), 오일 및 가스 압력 센서, 인체 감지 센서 등을 포함할 수 있다.In addition, the sensor device used as the IoT device may include various types of sensors applied to freight transport equipment such as tow trucks, ships, cranes, etc. or disposed in various places in a port, for example, a diesel engine analysis device , pressure and level sensor, inclinometer sensor, force sensor, barometer sensor, laser sensor, pressure switch, thermostat and controller, temperature sensor, humidity sensor, float switch, oil and gas pressure sensor, human body sensor and the like.
또한, 본 발명에서 설명하는 통신망은 널리 알려진 다양한 유무선 통신 방식이 적용될 수 있으며, 이러한 무선 통신망의 일례로 무선랜(Wireless LAN: WLAN), DLNA(Digital Living Network Alliance), 와이브로(Wireless Broadband: Wibro), 와이맥스(World Interoperability for Microwave Access: Wimax), GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), CDMA2000(Code Division Multi Access 2000), EV-DO(Enhanced Voice-Data Optimized or Enhanced Voice-Data Only), WCDMA(Wideband CDMA), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), IEEE 802.16, 롱 텀 에볼루션(Long Term Evolution: LTE), LTE-A(Long Term Evolution-Advanced), 광대역 무선 이동 통신 서비스(Wireless Mobile Broadband Service: WMBS), 5G 이동통신 서비스, 블루투스(Bluetooth), LoRa(Long Range), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association: IrDA), UWB(Ultra Wideband), 지그비(ZigBee), 인접 자장 통신(Near Field Communication: NFC), 초음파 통신(Ultra Sound Communication: USC), 가시광 통신(Visible Light Communication: VLC), 와이 파이(Wi-Fi), 와이 파이 다이렉트(Wi-Fi Direct) 등이 포함될 수 있다. 또한, 유선 통신망으로는 유선 LAN(Local Area Network), 유선 WAN(Wide Area Network), 전력선 통신(Power Line Communication: PLC), USB 통신, 이더넷(Ethernet), 시리얼 통신(serial communication), 광/동축 케이블 등이 포함될 수 있다.In addition, the communication network described in the present invention can be applied to various well-known wired and wireless communication methods, and examples of such a wireless communication network include a wireless LAN (WLAN), a digital living network alliance (DLNA), and a wireless broadband (Wibro). , WiMAX (World Interoperability for Microwave Access: Wimax), GSM (Global System for Mobile communication), CDMA (Code Division Multi Access), CDMA2000 (Code Division Multi Access 2000), EV-DO (Enhanced Voice-Data Optimized or Enhanced Voice) -Data Only), WCDMA (Wideband CDMA), HSDPA (High Speed Downlink Packet Access), HSUPA (High Speed Uplink Packet Access), IEEE 802.16, Long Term Evolution (LTE), Long Term Evolution (LTE-A) -Advanced), Wireless Mobile Broadband Service (WMBS), 5G mobile communication service, Bluetooth (Bluetooth), LoRa (Long Range), RFID (Radio Frequency Identification), Infrared Data Association (IrDA) , UWB (Ultra Wideband), ZigBee, Near Field Communication (NFC), Ultra Sound Communication (USC), Visible Light Communication (VLC), Wi-Fi (Wi-Fi) , Wi-Fi Direct, etc. may be included. In addition, wired communication networks include wired LAN (Local Area Network), wired WAN (Wide Area Network), Power Line Communication (PLC), USB communication, Ethernet, serial communication, optical/coaxial A cable may be included.
또한, 상기 게이트웨이 장치(100)는 상기 통신망을 통해 상기 복수의 사물 인터넷 장치 각각으로부터 메시지 데이터를 수신하여 수집할 수 있으며, 해당 메시지 데이터를 서비스 서버에 전송한다.Also, the
이때, 상기 메시지 데이터는, 텍스트, 이미지, 동영상 등과 같은 다양한 종류의 데이터를 포함할 수 있다.In this case, the message data may include various types of data such as text, images, and moving pictures.
이에 따라, 서비스 서버는 복수의 서로 다른 사물 인터넷 장치로부터 수신되는 메시지 데이터를 대상으로 데이터 전처리 및 분류를 수행하고, 전처리 및 분류 과정을 거친 복수의 메시지 데이터를 이용한 빅데이터 관리 및 분석을 통해 스마트 항만 운영을 위한 스마트 항만 관련 서비스를 제공할 수 있다.Accordingly, the service server performs data pre-processing and classification on message data received from a plurality of different Internet of Things devices, and a smart port through big data management and analysis using a plurality of message data that have undergone pre-processing and classification processes. It can provide smart port-related services for operation.
이때, 상기 복수의 사물 인터넷 장치는 다양한 종류의 레거시 장치로 구성되기 때문에, 다양한 프로토콜(protocol)로 메시지 데이터를 전송한다.In this case, since the plurality of IoT devices are composed of various types of legacy devices, they transmit message data using various protocols.
이에 따라, 상기 게이트웨이 장치(100)는 다양한 프로토콜로 전송되는 메시지 데이터를 통합하여 상기 서비스 서버에 전송하게 되는데, 상기 메시지 데이터를 통합하여 상기 서비스 서버에 전송하는 과정에서 상기 메시지 데이터의 종류에 따라 어느 하나의 메시지 종류에 대응되는 메시지 데이터는 자주 호출되는 전송 패턴을 나타내고 다른 하나의 메시지 종류에 대응되는 메시지 데이터는 메시지 전송량이 다른 메시지 종류에 비해 높은 전송 패턴을 나타내는 것과 같은 다양한 전송 패턴을 나타낸다.Accordingly, the
따라서, 이러한 메시지 데이터의 호출 빈도와 메시지 전송량 고려 없이 상기 게이트웨이 장치(100)가 상기 메시지 데이터를 상기 서비스 서버에 전송하게 되면, 호출 빈도가 잦아 실시간성이 요구되는 특정 메시지 데이터가 수신되어 해당 특정 메시지 데이터에 대한 서비스 서버의 호출이 발생하였으나, 게이트웨이 장치(100)가 호출빈도가 낮으나 메시지 전송량이 높아 전송 시간이 오래 걸리는 다른 메시지 데이터의 전송으로 인해 해당 특정 메시지 데이터의 전송 지연이 발생하게 된다.Accordingly, when the
이에 따라, 게이트웨이 장치(100)에서 실시간성이 요구되는 특정 메시지 데이터의 실시간성을 보장하지 못하여 사물 인터넷 장치를 이용한 서비스의 유휴 시간이 길어지고, 이로 인해 서비스 서버에서 제공하는 스마트 항만 관련 서비스의 서비스 품질이 저하되게 된다.Accordingly, the
따라서, 본 발명의 실시예에 따른 게이트웨이 장치(100)는 상술한 기존 문제를 개선하여 다양한 복수의 사물 인터넷 장치로부터 수신되는 복수의 서로 다른 메시지 데이터를 전송 패턴의 학습에 따라 복수의 서로 다른 메시지 종류로 구분하고, 복수의 서로 다른 메시지 종류에 대해 우선순위 판단을 위한 우선 순위의 결정 규칙을 설정하여 해당 결정 규칙을 기초로 수신되는 메시지 데이터별로 메시지 종류를 식별하고 현재 전송 대상인 다른 메시지 데이터에 대비한 우선 순위를 판별하여 우선 순위가 높은 메시지 데이터가 서비스 서버에 우선 전송되도록 할 수 있는데, 이와 같은 게이트웨이 장치(100)의 동작을 이하 도면을 참고하여 상세히 설명한다.Accordingly, the
도 3은 본 발명의 실시예에 따른 게이트웨이 장치(100)의 구성도이며, 도 4는 본 발명의 실시예에 따른 게이트웨이 장치(100)의 동작 순서도이다.3 is a block diagram of the
도시된 바와 같이, 상기 게이트웨이 장치(100)는 상기 복수의 사물 인터넷 장치로부터 메시지 데이터를 수신하고, 상기 메시지 데이터를 상기 서비스 서버에 전송하는 통신부(110)와, 상기 통신부(110)와 연동하여 상기 메시지 데이터 전송시 전송 로그를 생성하여 누적 저장하는 로그 관리부(120)와, 상기 누적 저장된 전송 로그의 학습을 통해 상기 전송 로그와 관련되어 미리 설정된 하나 이상의 속성에 따른 상기 메시지 데이터의 전송 패턴을 기초로 복수의 서로 다른 메시지 종류로 클러스터링(clustering)하여 메시지 데이터의 메시지 종류 식별을 위한 설정 정보를 생성하고, 상기 복수의 서로 다른 메시지 종류 상호 간 우선 순위의 결정을 위한 우선 순위의 결정 규칙을 생성한 후 메시지 분류를 위한 미리 설정된 알고리즘에 상기 우선 순위의 결정 규칙 및 상기 설정 정보를 설정하는 설정부(130) 및 상기 복수의 사물 인터넷 장치로부터 수신되는 특정 메시지 데이터를 상기 알고리즘에 적용하여 상기 특정 메시지 데이터에 대응되는 메시지 종류를 식별하고, 상기 우선 순위의 결정 규칙에 따라 상기 특정 메시지 데이터 수신시 메시지 큐에 저장된 하나 이상의 타 메시지 데이터별 메시지 종류와 상기 특정 메시지 데이터의 메시지 종류에 따른 상기 타 메시지 데이터에 대한 상기 특정 메시지 데이터의 우선 순위를 결정하여 상기 메시지 큐에 상기 특정 메시지 데이터의 슬롯(slot)을 할당하는 제어부(140)를 포함하여 구성될 수 있다.As shown, the
이때, 상기 통신부(110), 로그 관리부(120) 및 설정부(130) 중 적어도 하나가 상기 제어부(140)에 포함되어 구성될 수도 있다. 또한, 상기 게이트웨이 장치(100)는 각종 정보를 저장하는 저장부와, 사용자 입력을 수신하는 사용자 입력부 등과 같은 다양한 구성부를 더 포함하여 구성될 수도 있다.In this case, at least one of the
또한, 상기 제어부(140)는 상기 게이트웨이 장치(100)의 저장부에 저장된 프로그램 및 데이터를 이용하여 상기 게이트웨이 장치(100)의 전반적인 제어 기능을 실행한다. 이때, 상기 제어부(140)는 RAM, ROM, CPU, GPU, 버스를 포함할 수 있으며, RAM, ROM, CPU, GPU 등은 버스를 통해 서로 연결될 수 있다.In addition, the
상술한 구성에 따른 게이트웨이의 동작 순서를 도 4를 참고하여 설명한다.An operation sequence of the gateway according to the above-described configuration will be described with reference to FIG. 4 .
우선, 상기 게이트웨이 장치(100)는 상기 복수의 사물 인터넷 장치로부터 메시지 데이터를 수신하고, 상기 서비스 서버에 상기 메시지 데이터 전송시 전송 로그를 생성하여 누적 저장할 수 있다(S1).First, the
일례로, 상기 통신부(110)는 상기 복수의 서로 다른 사물 인터넷 장치로부터 메시지 데이터를 수신하고, 상기 제어부(140)는 상기 통신부(110)를 통해 상기 메시지 데이터 수신시 해당 메시지 데이터를 미리 설정된 메시지 큐에 저장할 수 있다.For example, the
또한, 상기 제어부(140)는 상기 통신부(110)를 통해 상기 서비스 서버로부터 상기 메시지 큐 호출에 대한 호출 정보 수신시 상기 통신부(110)를 통해 상기 호출 정보에 따른 상기 메시지 큐 호출에 대응되는 메시지 큐에 저장된 메시지 데이터를 상기 서버에 전송할 수 있다.In addition, when receiving the call information for the message queue call from the service server through the
이때, 상기 로그 관리부(120)는 상기 메시지 큐 호출에 대응되어 메시지 데이터 전송시마다 전송 로그를 생성하여 상기 게이트웨이 장치(100)에 포함된 로그 DB에 누적 저장할 수 있다.In this case, the
또한, 상기 게이트웨이 장치(100)는 상기 로그 DB에 누적 저장된 전송 로그의 학습을 통해 상기 전송 로그와 관련되어 미리 설정된 하나 이상의 속성에 따른 상기 메시지 데이터의 전송 패턴(또는 메시지 데이터별 전송 패턴)을 기초로 복수의 서로 다른 메시지 종류로 클러스터링하여 메시지 데이터의 메시지 종류 식별을 위한 설정 정보를 생성하고, 상기 복수의 서로 다른 메시지 종류 상호 간 우선 순위의 결정을 위한 우선 순위의 결정 규칙을 생성한 후 메시지 분류를 위한 미리 설정된 알고리즘에 상기 설정 정보 및 결정 규칙을 설정할 수 있다.In addition, the
이러한 게이트웨이 장치(100)의 동작은 상기 설정부(130)에 의해 수행될 수 있는데, 이를 도 5를 참고하여 상세히 설명한다.The operation of the
일례로, 상기 설정부(130)는 상기 로그 DB에 누적 저장된 메시지 데이터별 전송 로그에서 상기 전송 로그와 관련되어 미리 설정된 하나 이상의 속성과 연관되는 파라미터를 추출한 후 해당 속성별 파라미터를 학습할 수 있으며(S2), 이와 같은 학습을 통해 상기 복수의 메시지 데이터를 복수의 서로 다른 전송 패턴으로 클러스터링하여 분류할 수 있다(S3).As an example, the
이때, 상기 하나 이상의 속성은 큐 호출 빈도수 및 메시지 데이터의 전송량 중 적어도 하나를 포함할 수 있으며, 상기 설정부(130)는 K-means algorithm을 기초로 상기 클러스터링을 수행할 수 있다.In this case, the one or more attributes may include at least one of a queue call frequency and a transmission amount of message data, and the
또한, 상기 설정부(130)는 클러스터링된 복수의 서로 다른 전송 패턴 각각을 메시지 종류로 설정할 수 있으며, 이를 통해 복수의 서로 다른 전송 패턴과 각각 일대일로 대응되는 복수의 서로 다른 메시지 종류를 생성할 수 있다.In addition, the
즉, 상기 설정부(130)는 상기 메시지 데이터별 전송 로그의 학습을 통해 상기 큐 호출 빈도수 및 메시지 데이터의 전송량에 따라 상기 게이트웨이 장치(100)에 수신되는 다양한 메시지 데이터와 관련하여 복수의 서로 다른 전송 패턴을 생성할 수 있으며, 상기 복수의 서로 다른 전송 패턴을 통해 상기 게이트웨이 장치(100)에 수신되는 복수의 메시지 데이터를 복수의 서로 다른 메시지 종류로 구분(분류)할 수 있다.That is, the
다시 말해, 상기 설정부(130)는 상기 메시지 데이터별 전송 로그를 학습하여 전송 패턴이 유사한 메시지 데이터끼리 분류하여 복수의 서로 다른 군집을 생성하고, 서로 상이한 전송 패턴을 가진 복수의 서로 다른 군집 각각을 메시지 종류로서 설정하여, 서로 상이한 메시지 종류 및 전송 패턴으로 설정된 복수의 서로 다른 군집을 생성할 수 있다.In other words, the
또한, 상기 설정부(130)는 상기 복수의 서로 다른 군집을 기초로 상기 통신부(110)를 통해 수신되는 메시지 데이터를 복수의 서로 다른 메시지 종류 중 어느 하나로 식별하기 위한 설정 정보를 생성할 수 있다.Also, the
일례로, 상기 설정부(130)는 상기 복수의 사물 인터넷 장치 중 제 1 사물 인터넷 장치에 의해 생성되는 온도와 관련된 메시지 데이터가 상기 복수의 군집 중 제 1 군집에 대부분이 속한(속하도록 분류된) 경우 상기 제 1 사물 인터넷 장치에서 전송하는 온도 관련 메시지 데이터를 제 1 메시지 종류로서 식별되도록 설정 정보를 생성하고, 상기 복수의 사물 인터넷 장치 중 제 2 사물 인터넷 장치에 의해 생성되는 인체 감지와 관련된 메시지 데이터가 상기 복수의 군집 중 제 2 군집에 대부분이 속한(속하도록 분류된) 경우 상기 제 2 사물 인터넷 장치에서 전송하는 인체 감지 관련 메시지 데이터를 상기 제 1 메시지 종류와 상이한 제 2 메시지 종류로서 식별되도록 상기 설정 정보를 생성할 수 있다.For example, the
또한, 상기 설정부(130)는 상기 설정 정보를 상기 설정부(130) 또는 상기 제어부(140)에 미리 설정된 알고리즘(분류 알고리즘)에 설정하거나 상기 설정 정보를 기초로 상기 알고리즘을 갱신할 수 있다(S3).In addition, the
이를 통해, 제어부(140)는 상기 통신부(110)를 통해 상기 제 1 사물 인터넷 장치로부터 수신된 온도 관련 메시지 데이터를 상기 알고리즘에 적용하여 상기 온도 관련 메시지 데이터를 제 1 메시지 종류로서 식별할 수 있으며, 상기 통신부(110)를 통해 상기 제 2 사물 인터넷 장치로부터 수신된 인체 감지 관련 메시지 데이터를 상기 알고리즘에 적용하여 상기 인체 감지 관련 메시지 데이터를 상기 제 2 메시지 종류로서 식별할 수 있다.Through this, the
이때, 상기 설정부(130)는 상기 전송 로그의 학습을 통한 상기 전송 패턴의 학습과 관련하여 특징벡터의 군집화(분류)를 위한 알고리즘 셋을 이용할 수 있는데, 이러한 알고리즘 셋으로서 기계학습 알고리즘 또는 딥러닝 알고리즘을 이용할 수 있다. In this case, the
이에 대한 일례로, 상기 설정부(130)는 상기 전송 로그를 학습하기 위한 딥러닝(deep learning) 알고리즘이 미리 설정될 수 있으며, 상기 딥러닝 알고리즘은 하나 이상의 신경망 모델로 구성될 수 있고, 상기 신경망 모델(또는 신경망)은 입력층(Input Layer), 하나 이상의 은닉층(Hidden Layers) 및 출력층(Output Layer)으로 구성될 수 있으며, 상기 신경망 모델에는 DNN(Deep Neural Network), RNN(Recurrent Neural Network), CNN(Convolutional Neural Network), SVM(Support Vector Machine) 등과 같은 다양한 종류의 신경망이 적용될 수 있다.As an example, the
또한, 상기 설정부(130)에 의해 상기 설정 정보가 설정되는(적용되는) 상기 설정부(130) 또는 상기 제어부(140)에 미리 설정된 알고리즘은 상기 기계학습 알고리즘 또는 상기 딥러닝 알고리즘에 의해(또는 상기 기계학습 알고리즘이나 상기 딥러닝 알고리즘에 의해 생성된 설정정보를 기초로) 갱신되며, 상기 메시지 데이터의 메시지 종류를 구분하여 식별하기 위한 분류 알고리즘(이하, 분류 알고리즘으로 통칭)일 수 있다.In addition, the algorithm preset in the
또한, 상기 게이트웨이 장치(100)는 각종 정보를 표시하는 표시부를 더 포함할 수 있으며, 상기 설정부(130)는 상기 복수의 서로 다른 메시지 종류와 메시지 종류별 전송 패턴에 대한 설정정보를 상기 표시부를 통해 표시할 수 있다.In addition, the
또한, 상기 설정부(130)는 상기 사용자 입력부를 통한 사용자 입력을 기초로 상기 복수의 메시지 종류 상호 간 경합시 우선되는 메시지 종류에 대한 우선 순위의 결정 규칙을 생성하여 상기 설정 정보에 설정할 수 있다.In addition, the
이때, 상기 설정부(130)는 상기 딥러닝 알고리즘을 통해 상기 전송 로그를 학습하여 상기 전송 패턴에 따라 구분된 상기 복수의 메시지 종류별로 다른 메시지 종류와의 경합시 우선되는 메시지 종류에 대한 상기 우선 순위의 결정 규칙을 상기 딥러닝 알고리즘을 통해 생성한 후 상기 분류 알고리즘에 설정할 수도 있다.At this time, the
상술한 바와 같이, 상기 설정부(130)는 상기 전송 로그의 학습을 통해 복수의 서로 다른 메시지 데이터를 복수의 서로 다른 전송 패턴으로 클러스터링하여 복수의 서로 다른 메시지 종류로 구분하고, 상기 복수의 서로 다른 메시지 종류별 전송 패턴에 따라 상기 게이트웨이 장치(100)에 수신되는 메시지 데이터의 메시지 종류를 식별할 수 있도록 설정 정보를 생성하여 상기 분류 알고리즘에 설정할 수 있다.As described above, the
또한, 상기 설정부(130)는 상기 사용자 입력이나 상기 전송 로그의 학습을 통해 복수의 서로 다른 메시지 종류 상호 간 경합시 타 메시지 종류에 우선하는 메시지 종류의 메시지 데이터가 타 메시지 종류의 메시지 데이터보다 우선 전송되도록 하기 위한 기준이 되는 우선 순위의 결정 규칙을 생성하고, 상기 우선 순위의 결정 규칙을 상기 설정 정보에 설정하여 상기 분류 알고리즘에 반영되도록 하거나 상기 분류 알고리즘에 직접 설정할 수 있다(S4).In addition, the
상술한 구성을 통해, 상기 게이트웨이 장치(100)는 상기 복수의 사물 인터넷 장치로부터 수신되는 상기 메시지 데이터에 대해 상기 우선 순위의 결정 규칙과 상기 설정정보가 설정된 분류 알고리즘을 통해 상기 메시지 데이터의 메시지 종류를 식별하고, 상기 메시지 데이터의 메시지 종류와 현재 메시지 큐에 저장된 타 메시지 데이터의 메시지 종류를 상기 우선 순위의 결정 규칙에 따라 비교하여 상기 메시지 데이터의 타 메시지 데이터에 대한 우선 순위를 결정한 후 상기 결정된 우선 순위에 따라 메시지 큐의 슬롯을 할당하여 상기 메시지 데이터를 해당 슬롯에 저장할 수 있으며, 상기 우선 순위에 따라 상기 메시지 큐에 저장된 메시지 데이터가 전송되도록 할 수 있는데, 이를 상술한 구성 및 도 6을 참고하여 상세히 설명한다.Through the above configuration, the
우선, 상기 게이트웨이 장치(100)는 상기 복수의 사물 인터넷 장치로부터 수신되는 특정 메시지 데이터를 상기 알고리즘에 적용하여 상기 특정 메시지 데이터에 대응되는 특정 메시지 종류를 식별하고, 상기 우선 순위의 결정 규칙에 따라 상기 특정 메시지 데이터 수신시 메시지 큐에 저장된 하나 이상의 타 메시지 데이터별 메시지 종류와 상기 특정 메시지 데이터의 특정 메시지 종류에 따른 상기 타 메시지 데이터에 대한 상기 특정 메시지 데이터의 우선 순위를 결정하여 상기 메시지 큐에 상기 특정 메시지 데이터의 슬롯을 할당할 수 있다.First, the
또한, 상기 게이트웨이 장치(100)는 상기 메시지 큐에 저장된 하나 이상의 메시지 데이터를 상기 우선 순위의 결정 규칙을 통해 결정된 우선 순위대로 상기 서비스 서버의 메시지 큐 호출시 상기 서비스 서버에 전송할 수 있다.Also, the
이를 수행하기 위해서, 상기 제어부(140)는 상기 설정부(130)를 통해 상기 분류 알고리즘에 대한 설정이 완료된 경우 상기 통신부(110)를 통해 상기 복수의 사물 인터넷 장치 중 어느 하나로부터 특정 메시지 데이터 수신시(S5) 상기 설정부(130)와 연동하여 상기 분류 알고리즘에 상기 특정 메시지 데이터를 적용(입력)할 수 있다.In order to do this, when the setting of the classification algorithm is completed through the
이때, 상기 설정부(130)는 상기 제어부(140)에 포함되어 구성될 수도 있다.In this case, the
또한, 상기 제어부(140)는 상기 특정 메시지 데이터가 적용된 상기 분류 알고리즘을 통해 상기 특정 메시지 데이터에 대응되는 특정 메시지 종류를 산출할 수 있으며, 이를 통해 상기 특정 메시지 데이터의 특정 메시지 종류를 식별할 수 있다(S6).Also, the
또한, 상기 제어부(140)는 상기 특정 메시지 데이터가 수신된 시점에 상기 메시지 큐에 현재 저장된 타 메시지 데이터별 메시지 종류를 식별할 수 있다.In addition, the
이때, 상기 제어부(140)는 상기 특정 메시지 데이터가 수신된 시점에 상기 메시지 큐에 저장된 타 메시지 데이터가 없는 경우 상기 특정 메시지 데이터를 메시지 큐에 저장할 수 있다.In this case, when there is no other message data stored in the message queue at the time when the specific message data is received, the
또한, 상기 제어부(140)는 상기 특정 메시지 데이터에 대해 식별된 특정 메시지 종류와 상기 타 메시지 데이터별 메시지 종류를 상기 분류 알고리즘에 설정된 상기 우선 순위의 결정 규칙에 따라 비교하여, 상기 특정 메시지 데이터의 우선 순위를 결정하고(S7), 상기 우선 순위의 결정 규칙에 따라 결정된 상기 특정 메시지 데이터의 우선 순위 및 상기 타 메시지 데이터별 우선 순위에 따라 상기 메시지 큐에서 상기 특정 메시지 데이터의 슬롯을 할당할 수 있다(S8).In addition, the
이때, 상기 제어부(140)는 상기 특정 메시지 데이터보다 우선순위가 낮은 타 메시지 데이터에 우선하여 상기 특정 메시지 데이터가 전송되도록 상기 메시지 큐에 슬롯을 가변 할당할 수 있으며, 상기 특정 메시지 데이터보다 우선 순위가 높은 타 메시지 데이터는 상기 특정 메시지 데이터에 우선하여 전송되도록 상기 메시지 큐의 슬롯을 가변하여 상기 특정 메시지 데이터에 할당할 수 있다.In this case, the
또한, 상기 제어부(140)는 도 6에 도시된 바와 같이 상기 특정 메시지 데이터의 크기에 따라 상기 슬롯의 크기를 가변하여 상기 특정 메시지 데이터에 대응되어 할당할 수 있다.Also, as shown in FIG. 6 , the
또한, 상기 제어부(140)는 상기 특정 메시지 데이터에 대응되어 할당된 메시지 큐의 슬롯에 상기 특정 메시지 데이터를 저장할 수 있다.Also, the
한편, 상기 제어부(140)는 상기 메시지 큐에 포함된 메시지 데이터들 각각에 대한 서비스 서버의 큐 호출에 따라 상기 메시지 데이터를 우선 순위에 따라 순차 전송할 수 있다.Meanwhile, the
상술한 구성에서, 상기 제어부(140)는 상기 특정 메시지 데이터의 우선 순위를 결정하여 상기 메시지 큐에 상기 특정 메시지 데이터의 슬롯을 할당시 상기 특정 메시지 데이터의 메시지 종류에 대응되는 전송 패턴에 따라 상기 특정 메시지 데이터의 슬롯을 할당할 수 있다.In the above configuration, the
일례로, 상기 제어부(140)는 상기 특정 메시지 데이터의 슬롯을 할당시 상기 특정 메시지 데이터의 메시지 종류에 대응되는 전송 패턴에 따른 메시지 전송량을 기초로 상기 특정 메시지 데이터의 슬롯을 할당할 수 있다.For example, when allocating a slot for the specific message data, the
또한, 상기 제어부(140)는 상기 특정 메시지 데이터에 대응되어 결정된 우선순위에 따라 상기 특정 메시지 데이터와 동일한 메시지 종류인 동종의 타 메시지 데이터가 메시지 큐에 존재할 때 상기 특정 메시지 데이터와 타 메시지 데이터가 메시지 큐에서 연속되도록 상기 특정 메시지 데이터가 저장될 슬롯을 할당할 수 있다.In addition, the
상술한 구성을 통해, 상기 제어부(140)는 상기 전송 패턴에 따라 구분된 복수의 서로 다른 메시지 종류를 기초로 실시간성이 요구되는 메시지 데이터가 실시간성이 요구되지 않는 메시지 데이터에 우선하여 전송되도록 메시지 큐에 슬롯을 가변하여 설정할 수 있으며, 이를 통해 실시간성이 요구되는 메시지 데이터의 전송 지연을 방지하여 서비스 서버의 유휴 시간을 최소화함과 아울러 TPS(Transaction Per Second)를 개선하여 메시지 데이터의 전송 품질을 높일 수 있다.Through the above-described configuration, the
상술한 바와 같이, 본 발명은 항만에 위치하여 스마트 항만을 구성하는데 이용되는 다양한 복수의 사물 인터넷 장치로부터 수신되는 메시지 데이터를 서비스 서버에 중계하는 IoT 게이트웨이에서 복수의 서로 다른 메시지 데이터를 전송 패턴의 학습에 따라 복수의 서로 다른 메시지 종류로 구분하고, 복수의 서로 다른 메시지 종류에 대해 우선순위 판단을 위한 결정 규칙을 설정하여, 수신되는 메시지 데이터별로 메시지 종류를 식별하고 해당 결정 규칙을 기초로 현재 전송 대상인 다른 메시지 데이터와의 대비를 통해 우선 순위를 판별하여 우선 순위가 높은 메시지 데이터가 서비스 서버에 우선 전송되도록 할 수 있으며, 이를 통해 메시지 데이터의 호출 빈도수와 전송 용량 등의 전송 패턴을 기초로 구분한 메시지 종류에 따른 우선순위 비교를 기반으로 메시지 데이터를 전송하여 메시지 데이터의 전송 품질을 높일 수 있어, 서비스 서버의 유휴 시간을 최소화하고 서비스 서버의 메시지 데이터를 이용한 스마트 항만 관련 서비스 제공에 대한 서비스 품질을 높일 수 있음과 아울러 스마트 항만 운영에 대한 효율성 및 안전성을 높이는 효과가 있다.As described above, in the present invention, a plurality of different message data transmission patterns are learned in an IoT gateway that is located in a port and relays message data received from a plurality of IoT devices used to configure a smart port to a service server. classifies the message types into a plurality of different message types according to the Message data with high priority can be transmitted to the service server first by determining the priority by comparing it with other message data. By transmitting message data based on priority comparison according to type, the transmission quality of message data can be improved, minimizing idle time of service servers and improving service quality for smart port-related services using message data from service servers. In addition, it has the effect of increasing the efficiency and safety of smart port operation.
또한, 본 발명은 스마트 항만을 구성하는데 적용되는 복수의 사물 인터넷 장치로부터 수신되는 대용량의 트래픽을 우선 순위 비교를 기반으로 효율적으로 처리할 수 있으며, 이를 통해 서비스 서버에서 제공하는 스마트 항만 관련 서비스의 품질을 높일 수 있다.In addition, the present invention can efficiently process large-capacity traffic received from a plurality of IoT devices applied to construct a smart port based on priority comparison, and through this, the quality of smart port-related services provided by the service server can increase
본 명세서에 기술된 다양한 장치 및 구성부는 하드웨어 회로(예를 들어, CMOS 기반 로직 회로), 펌웨어, 소프트웨어 또는 이들의 조합에 의해 구현될 수 있다. 예를 들어, 다양한 전기적 구조의 형태로 트랜지스터, 로직게이트 및 전자회로를 활용하여 구현될 수 있다.The various devices and components described herein may be implemented by hardware circuitry (eg, CMOS-based logic circuitry), firmware, software, or a combination thereof. For example, it may be implemented using transistors, logic gates, and electronic circuits in the form of various electrical structures.
전술된 내용은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Those of ordinary skill in the art to which the present invention pertains may modify and modify the above-described contents without departing from the essential characteristics of the present invention. Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but to explain, and the scope of the technical spirit of the present invention is not limited by these embodiments. The protection scope of the present invention should be construed by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.
100: 게이트웨이 장치
110: 통신부
120: 로그 관리부
130: 설정부
140: 제어부100: gateway device 110: communication unit
120: log management unit 130: setting unit
140: control unit
Claims (6)
상기 복수의 사물 인터넷 장치로부터 메시지 데이터를 수신하여 상기 서버에 상기 메시지 데이터 전송시 전송 로그를 생성하여 누적 저장하는 로그 저장 단계;
상기 누적 저장된 전송 로그의 학습을 통해 상기 전송 로그와 관련되어 미리 설정된 하나 이상의 속성에 따른 상기 메시지 데이터의 전송 패턴을 기초로 복수의 서로 다른 메시지 종류로 클러스터링하여 메시지 데이터의 메시지 종류 식별을 위한 설정 정보를 생성하고, 상기 복수의 서로 다른 메시지 종류 상호 간 우선 순위의 결정을 위한 우선 순위의 결정 규칙을 생성한 후 메시지 분류를 위한 미리 설정된 알고리즘에 상기 설정 정보 및 결정 규칙을 설정하는 설정 단계; 및
상기 복수의 사물 인터넷 장치로부터 수신되는 특정 메시지 데이터를 상기 알고리즘에 적용하여 상기 특정 메시지 데이터에 대응되는 메시지 종류를 식별하고, 상기 우선 순위의 결정 규칙에 따라 상기 특정 메시지 데이터 수신시 메시지 큐에 저장된 하나 이상의 타 메시지 데이터별 메시지 종류와 상기 특정 메시지 데이터의 메시지 종류에 따른 상기 타 메시지 데이터에 대한 상기 특정 메시지 데이터의 우선 순위를 결정하여 상기 메시지 큐에 상기 특정 메시지 데이터의 슬롯을 할당하는 자동 관리 단계
를 포함하는 스마트 항만 구성에 적용되는 다양한 디바이스의 대용량 트래픽 처리 효율을 개선한 IoT 게이트웨이의 메시지 데이터 관리 방법.
A method for managing message data of an IoT gateway that receives message data from a plurality of IoT devices that are devices located in a port through a communication network and transmits them to a server, the method comprising:
a log storage step of receiving message data from the plurality of IoT devices, generating a transmission log when transmitting the message data to the server, and accumulatively storing the transmission log;
Setting information for identifying a message type of message data by clustering it into a plurality of different message types based on a transmission pattern of the message data according to one or more properties preset in relation to the transmission log through learning of the accumulated and stored transmission log a setting step of generating and setting the setting information and the decision rule in a preset algorithm for message classification after generating a priority determination rule for determining the mutual priority of the plurality of different message types; and
The specific message data received from the plurality of IoT devices is applied to the algorithm to identify a message type corresponding to the specific message data, and one stored in a message queue when the specific message data is received according to the priority determination rule An automatic management step of allocating a slot of the specific message data to the message queue by determining the priority of the specific message data with respect to the other message data according to the message type for each other message data and the message type of the specific message data
A message data management method of an IoT gateway that improves the processing efficiency of large-capacity traffic of various devices applied to a smart port configuration, including
상기 로그 저장 단계는
상기 복수의 사물 인터넷 장치로부터 메시지 데이터를 수신하여 메시지 큐에 저장하고, 상기 서버에 의한 상기 메시지 큐 호출시 상기 메시지 데이터를 상기 서버에 전송하며, 상기 메시지 데이터 전송시 전송 로그를 생성하여 누적 저장하는 단계를 포함하는 것을 특징으로 하는 스마트 항만 구성에 적용되는 다양한 디바이스의 대용량 트래픽 처리 효율을 개선한 IoT 게이트웨이의 메시지 데이터 관리 방법.
The method according to claim 1,
The log storage step is
receiving message data from the plurality of IoT devices and storing it in a message queue, transmitting the message data to the server when the message queue is called by the server, and generating and cumulatively storing a transmission log when the message data is transmitted A method for managing message data of an IoT gateway that improves the processing efficiency of large-capacity traffic of various devices applied to a smart port configuration, comprising the steps of:
상기 하나 이상의 속성은 큐 호출 빈도수 및 메시지 데이터의 전송량 중 적어도 하나를 포함하는 것을 특징으로 하는 스마트 항만 구성에 적용되는 다양한 디바이스의 대용량 트래픽 처리 효율을 개선한 IoT 게이트웨이의 메시지 데이터 관리 방법.
The method according to claim 1,
The one or more properties include at least one of a queue call frequency and a transmission amount of message data. A method for managing message data of an IoT gateway with improved efficiency of processing large-capacity traffic of various devices applied to a smart port configuration.
상기 설정 단계는
사용자 입력에 따라 상기 메시지 종류 상호 간 상기 우선 순위의 결정 규칙을 상기 알고리즘에 설정하거나 상기 전송 로그를 학습하여 상기 전송 패턴에 따라 구분된 상기 복수의 메시지 종류별로 다른 메시지 종류와의 경합시 우선되는 메시지 종류에 대한 상기 우선 순위의 결정 규칙을 생성한 후 상기 알고리즘에 설정하는 것을 특징으로 하는 스마트 항만 구성에 적용되는 다양한 디바이스의 대용량 트래픽 처리 효율을 개선한 IoT 게이트웨이의 메시지 데이터 관리 방법.
The method according to claim 1,
The setting step is
According to a user input, the priority determination rule between the message types is set in the algorithm or the transmission log is learned to give priority to the plurality of message types classified according to the transmission pattern when competing with other message types. A message data management method of an IoT gateway that improves the efficiency of processing large-capacity traffic of various devices applied to a smart port configuration, characterized in that after creating the priority determination rule for the type, the rule is set in the algorithm.
상기 자동 관리 단계는
상기 특정 메시지 데이터의 우선 순위를 결정하여 상기 메시지 큐에 상기 특정 메시지 데이터의 슬롯을 할당시 상기 특정 메시지 데이터의 메시지 종류에 대응되는 전송 패턴에 따라 상기 특정 메시지 데이터의 슬롯을 할당하는 단계를 더 포함하는 것을 특징으로 하는 스마트 항만 구성에 적용되는 다양한 디바이스의 대용량 트래픽 처리 효율을 개선한 IoT 게이트웨이의 메시지 데이터 관리 방법.
The method according to claim 1,
The automatic management step is
Determining the priority of the specific message data and allocating the slot of the specific message data according to a transmission pattern corresponding to the message type of the specific message data when assigning the slot of the specific message data to the message queue A message data management method of an IoT gateway that improves the processing efficiency of large-capacity traffic of various devices applied to the smart port configuration, characterized in that
상기 자동 관리 단계는
상기 특정 메시지 데이터의 슬롯을 할당시 상기 특정 메시지 데이터의 메시지 종류에 대응되는 전송 패턴에 따른 메시지 전송량을 기초로 상기 특정 메시지 데이터의 슬롯을 할당하는 것을 특징으로 하는 스마트 항만 구성에 적용되는 다양한 디바이스의 대용량 트래픽 처리 효율을 개선한 IoT 게이트웨이의 메시지 데이터 관리 방법.6. The method of claim 5,
The automatic management step is
When allocating the slot of the specific message data, the slot of the specific message data is allocated based on the message transmission amount according to the transmission pattern corresponding to the message type of the specific message data. Message data management method of IoT gateway with improved efficiency of processing large volume of traffic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200166489A KR102413004B1 (en) | 2020-12-02 | 2020-12-02 | Message data management method of IoT gateway for improving the efficiency of processing large-capacity traffic of various devices applied to smart port configuration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200166489A KR102413004B1 (en) | 2020-12-02 | 2020-12-02 | Message data management method of IoT gateway for improving the efficiency of processing large-capacity traffic of various devices applied to smart port configuration |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220077496A true KR20220077496A (en) | 2022-06-09 |
KR102413004B1 KR102413004B1 (en) | 2022-06-24 |
Family
ID=81985694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200166489A KR102413004B1 (en) | 2020-12-02 | 2020-12-02 | Message data management method of IoT gateway for improving the efficiency of processing large-capacity traffic of various devices applied to smart port configuration |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102413004B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115988019A (en) * | 2022-11-30 | 2023-04-18 | 南京普阑尼信息技术有限公司 | A comprehensive operation and maintenance management system and method for inverters based on the Internet of Things |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070047209A (en) * | 2005-11-01 | 2007-05-04 | 인터내셔널 비지네스 머신즈 코포레이션 | Workflow Determination Management with Message Logging |
JP2018098767A (en) * | 2016-12-09 | 2018-06-21 | 富士通株式会社 | Automatic learning universal gateway |
KR20190062795A (en) * | 2017-11-29 | 2019-06-07 | 전자부품연구원 | Method for Mapping Device Data to Server Resource in IoT Environment and Gateway applying the same |
KR102137380B1 (en) | 2019-11-05 | 2020-07-24 | 에이원커뮤니케이션즈코리아(주) | Management system of smart harbor |
-
2020
- 2020-12-02 KR KR1020200166489A patent/KR102413004B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070047209A (en) * | 2005-11-01 | 2007-05-04 | 인터내셔널 비지네스 머신즈 코포레이션 | Workflow Determination Management with Message Logging |
JP2018098767A (en) * | 2016-12-09 | 2018-06-21 | 富士通株式会社 | Automatic learning universal gateway |
KR20190062795A (en) * | 2017-11-29 | 2019-06-07 | 전자부품연구원 | Method for Mapping Device Data to Server Resource in IoT Environment and Gateway applying the same |
KR102137380B1 (en) | 2019-11-05 | 2020-07-24 | 에이원커뮤니케이션즈코리아(주) | Management system of smart harbor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115988019A (en) * | 2022-11-30 | 2023-04-18 | 南京普阑尼信息技术有限公司 | A comprehensive operation and maintenance management system and method for inverters based on the Internet of Things |
CN115988019B (en) * | 2022-11-30 | 2023-09-12 | 南京普阑尼信息技术有限公司 | A comprehensive operation and maintenance management system and method for frequency converters based on the Internet of Things |
Also Published As
Publication number | Publication date |
---|---|
KR102413004B1 (en) | 2022-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3742669B1 (en) | Machine learning in radio access networks | |
US11469835B2 (en) | Method and apparatus for reporting an ID of specific BWP among the multiple BWPs in wireless communication system | |
CN109510780B (en) | Flow control method, switching chip and network equipment | |
CN112911723B (en) | A channel access method for UAV swarm ad hoc network based on interference priority | |
WO2019133199A1 (en) | Data block prioritization for internet of things payloads | |
CN109451534A (en) | A kind of dynamic control method and device for QoS flow in the management of 5G system session | |
CN112073991B (en) | A service processing method and device for an access network | |
US20220190941A1 (en) | Terminal and communication system | |
KR102413004B1 (en) | Message data management method of IoT gateway for improving the efficiency of processing large-capacity traffic of various devices applied to smart port configuration | |
CN113133087A (en) | Method and device for configuring network slice for terminal equipment | |
US20150348336A1 (en) | System and method for transmitting data of vehicle | |
CN108833471A (en) | Internet of things service processing method, things-internet gateway and Internet of Things | |
US8229450B2 (en) | Method and apparatus for controlling quality of service in mobile communication system | |
CN109525982A (en) | Access method in 5G system | |
US11122503B2 (en) | Method and apparatus for inter-RAT cell selection mechanism in NB-IOT | |
CN111226421B (en) | Extending QoS indicators to electronic devices over WLAN in heterogeneous networks | |
US11564118B2 (en) | Method and apparatus for restricting measurement based on result of a reference measurement in wireless communication system | |
KR102303552B1 (en) | Gateway device for managing message data based on learning and method for managing message data based on learning of the same | |
EP3621323B1 (en) | Method for setting up an abstracted channel representation for a communication between at least two moving communication partners, apparatus for performing a step of the method, vehicle and computer program | |
CN118170538A (en) | Task processing method, internet of things system and computer program product | |
US20240154912A1 (en) | Traffic identification using machine learning | |
US20210045035A1 (en) | Method and Radio Communication System for an Industrial Automation System | |
US20220124571A1 (en) | Method and apparatus for cell reselection in wireless communication system | |
US11419030B2 (en) | Method and apparatus for handling a frequency priority based on a service in wireless communication system | |
KR102500352B1 (en) | System and method for processing super-resolution images based on deep learning and computer program for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20201202 |
|
PA0201 | Request for examination | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20211129 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20220530 |
|
PG1501 | Laying open of application | ||
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20220621 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20220622 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |