[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20220049746A - System for determining thermal abnormalities on exterior walls of building using thermal image and real image and method thereof - Google Patents

System for determining thermal abnormalities on exterior walls of building using thermal image and real image and method thereof Download PDF

Info

Publication number
KR20220049746A
KR20220049746A KR1020200133228A KR20200133228A KR20220049746A KR 20220049746 A KR20220049746 A KR 20220049746A KR 1020200133228 A KR1020200133228 A KR 1020200133228A KR 20200133228 A KR20200133228 A KR 20200133228A KR 20220049746 A KR20220049746 A KR 20220049746A
Authority
KR
South Korea
Prior art keywords
thermal
building
image
real image
temperature distribution
Prior art date
Application number
KR1020200133228A
Other languages
Korean (ko)
Other versions
KR102399685B1 (en
Inventor
김창민
박관용
박창영
장향인
Original Assignee
(주)미래환경플랜건축사사무소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)미래환경플랜건축사사무소 filed Critical (주)미래환경플랜건축사사무소
Priority to KR1020200133228A priority Critical patent/KR102399685B1/en
Priority to PCT/KR2021/004387 priority patent/WO2022080610A1/en
Publication of KR20220049746A publication Critical patent/KR20220049746A/en
Application granted granted Critical
Publication of KR102399685B1 publication Critical patent/KR102399685B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2213/00Temperature mapping

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Alarm Systems (AREA)
  • Radiation Pyrometers (AREA)

Abstract

Disclosed are a system for determining thermal abnormalities on an external wall of a building using a thermal image and a real image and a method thereof. According to the present invention, the system for determining thermal abnormalities on the external wall of the building using the thermal image and the real image comprises: a real image camera module photographing the external wall of the building and generating the real image; a thermal image camera module photographing the external wall of the building and generating the thermal image; an external wall temperature distribution identification module using the real image generated by the real image camera module and the thermal image generated by the thermal image camera module, and identifying the external wall temperature distribution of the external wall of the building; and a thermal abnormalities extraction module using the external wall temperature distribution identified by the external wall temperature distribution identification module, and extracting the thermal abnormalities. According to the present invention, the system for determining thermal abnormalities on the external wall of the building using the thermal image and the real image and the method thereof are able to be configured to classify areas of the external wall of the building and identify the temperature distribution by using the real image and the thermal image, and precisely find the thermal abnormalities despite the existence of various components on the external wall of the building, such as windows, doors, vehicles, and outdoor units.

Description

열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 시스템과 그 방법{SYSTEM FOR DETERMINING THERMAL ABNORMALITIES ON EXTERIOR WALLS OF BUILDING USING THERMAL IMAGE AND REAL IMAGE AND METHOD THEREOF}SYSTEM FOR DETERMINING THERMAL ABNORMALITIES ON EXTERIOR WALLS OF BUILDING USING THERMAL IMAGE AND REAL IMAGE AND METHOD THEREOF

본 발명은 건물의 열적 이상 부위 판단 시스템과 그 방법에 관한 것으로서, 구체적으로는 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 시스템과 그 방법에 관한 것이다.The present invention relates to a system and method for determining a thermal anomaly of a building, and more particularly, to a system and a method for determining a thermal anomaly of an exterior wall of a building using a thermal image and a real image.

건물 외벽에 단열이 잘 안되거나 열 손실이 발생하는 경우 그 열적 이상 부위를 통해 에너지 손실과 재실 쾌적성의 저하를 유발하게 된다. In the case of poor insulation or heat loss on the outer wall of the building, energy loss and deterioration of occupancy comfort are caused through the thermal abnormality.

이러한 열적 이상 부위를 찾아내기 위해 주로 열화상 카메라를 이용하고 있으나, 건물 외벽에는 창, 문, 차량, 실외기 등의 다양한 구성들이 배치되기 때문에 정확한 열적 이상 부위를 찾는 것이 쉽지 않다.Although thermal imaging cameras are mainly used to find such thermal anomalies, it is not easy to find an exact thermal anomaly because various components such as windows, doors, vehicles, and outdoor units are arranged on the exterior wall of the building.

이러한 구성들은 동일한 환경에서도 서로 다른 온도 분포를 갖기 때문에 열적 이상 부위가 아닌 부위에 열적 이상이 발생한 것으로 판단하기도 한다.Since these components have different temperature distributions even in the same environment, it is sometimes judged that a thermal abnormality occurs in a non-thermal abnormal region.

이에, 열화상을 통해 정확한 열적 이상 부위를 찾아낼 수 있는 방안이 요구 된다.Accordingly, there is a need for a method capable of finding an accurate thermal anomaly through thermal imaging.

공개특허공보 10-2020-0101727Laid-Open Patent Publication No. 10-2020-0101727 등록특허공보 10-1238982Registered Patent Publication No. 10-1238982

본 발명의 목적은 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 시스템을 제공하는 데 있다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a system for determining a thermal abnormality of an exterior wall of a building using a thermal image and a real image.

본 발명의 다른 목적은 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 방법을 제공하는 데 있다.Another object of the present invention is to provide a method for determining a thermal abnormality of an exterior wall of a building using a thermal image and a real image.

상술한 본 발명의 목적에 따른 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 시스템은, 건물 외벽을 촬영하여 실화상을 생성하는 실화상 카메라 모듈; 상기 건물 외벽을 촬영하여 열화상을 생성하는 열화상 카메라 모듈; 상기 실화상 카메라 모듈에 의해 생성된 실화상 및 상기 열화상 카메라 모듈에 의해 생성된 열화상을 이용하여 상기 건물 외벽의 외벽 온도 분포를 파악하는 외벽 온도 분포 파악 모듈을 포함하도록 구성될 수 있다.According to an aspect of the present invention, a system for determining a portion of a thermal abnormality on an exterior wall of a building using a thermal image and a real image includes: a real image camera module for generating a real image by photographing the exterior wall of the building; a thermal imaging camera module for generating a thermal image by photographing the exterior wall of the building; It may be configured to include an exterior wall temperature distribution identification module configured to determine an exterior wall temperature distribution of the exterior wall of the building using a real image generated by the real image camera module and a thermal image generated by the thermal imaging camera module.

여기서, 상기 외벽 온도 분포 파악 모듈에 의해 파악된 외벽 온도 분포를 이용하여 열적 이상 부위를 추출하는 열적 이상 부위 추출 모듈을 더 포함하도록 구성될 수 있다.Here, it may be configured to further include a thermal abnormality region extraction module for extracting a thermal abnormality region using the external wall temperature distribution identified by the external wall temperature distribution identification module.

상술한 본 발명의 목적에 따른 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 방법은, 실화상 카메라 모듈이 건물 외벽을 촬영하여 실화상을 생성하는 단계; 열화상 카메라 모듈이 상기 건물 외벽을 촬영하여 열화상을 생성하는 단계; 외벽 온도 분포 파악 모듈이 상기 실화상 카메라 모듈에 의해 생성된 실화상 및 상기 열화상 카메라 모듈에 의해 생성된 열화상을 이용하여 상기 건물 외벽의 외벽 온도 분포를 파악하는 단계를 포함하도록 구성될 수 있다.According to the above-described object of the present invention, a method for determining a portion of a thermal abnormality of an exterior wall of a building using a thermal image and a real image includes: generating a real image by a real image camera module photographing the exterior wall of the building; generating, by a thermal imaging camera module, a thermal image by photographing the exterior wall of the building; The external wall temperature distribution identification module may be configured to include the step of acquiring the external wall temperature distribution of the exterior wall of the building using the real image generated by the real image camera module and the thermal image generated by the thermal imaging camera module. .

여기서, 열적 이상 부위 추출 모듈이 상기 외벽 온도 분포 파악 모듈에 의해 파악된 외벽 온도 분포를 이용하여 열적 이상 부위를 추출하는 단계를 더 포함하도록 구성될 수 있다.Here, the thermal anomaly extraction module may be configured to further include the step of extracting the thermal anomaly by using the outer wall temperature distribution identified by the outer wall temperature distribution determining module.

상술한 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 시스템과 그 방법에 의하면, 실화상과 열화상을 이용하여 건물 외벽의 영역을 구분하여 온도 분포를 파악하도록 구성됨으로써, 건물 외벽의 창, 문, 차량, 실외기 등의 다양한 구성들의 존재에도 불구하고 정확한 열적 이상 부위를 찾아낼 수 있는 효과가 있다.According to the system and method for determining the thermal abnormality of the outer wall of a building using the above-described thermal image and real image, it is configured to identify the temperature distribution by dividing the area of the outer wall of the building using the real image and the thermal image, thereby In spite of the existence of various components such as , doors, vehicles, outdoor units, etc., there is an effect of accurately detecting thermal abnormalities.

도 1은 본 발명에 따른 건물 외벽의 열적 이상 판단 프로세스의 모식도이다.
도 2는 본 발명의 일 실시예에 따른 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 시스템의 블록 구성도이다.
도 3은 본 발명의 일 실시예에 따른 실화상의 구분 결과의 예시도이다.
도 4는 본 발명의 일 실시예에 따른 열화상의 온도 분포 및 임계 온도 설정에 관한 그래프이다.
도 5는 본 발명의 일 실시예에 따른 건물 외벽의 열적 이상 부위를 추출한 이미지의 예시도이다.
도 6은 본 발명의 일 실시예에 따른 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 방법의 흐름도이다.
1 is a schematic diagram of a thermal abnormality determination process of an exterior wall of a building according to the present invention.
2 is a block diagram of a system for determining a thermal abnormality of an exterior wall of a building using a thermal image and a real image according to an embodiment of the present invention.
3 is an exemplary diagram of a result of classification of a real image according to an embodiment of the present invention.
4 is a graph illustrating a temperature distribution of a thermal image and setting a critical temperature according to an embodiment of the present invention.
5 is an exemplary view of an image obtained by extracting a thermal abnormality portion of an exterior wall of a building according to an embodiment of the present invention.
6 is a flowchart of a method for determining a thermal abnormality of an exterior wall of a building using a thermal image and a real image according to an embodiment of the present invention.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 발명을 실시하기 위한 구체적인 내용에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.Since the present invention can have various changes and can have various embodiments, specific embodiments are illustrated in the drawings and will be described in detail in the detailed content for carrying out the invention. However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In describing each figure, like reference numerals have been used for like elements.

제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms such as first, second, A, and B may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component. and/or includes a combination of a plurality of related listed items or any of a plurality of related listed items.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is referred to as being “connected” or “connected” to another component, it may be directly connected or connected to the other component, but it is understood that other components may exist in between. it should be On the other hand, when it is said that a certain element is "directly connected" or "directly connected" to another element, it should be understood that the other element does not exist in the middle.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It should be understood that this does not preclude the existence or addition of numbers, steps, operations, components, parts, or combinations thereof.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not

이하, 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 건물 외벽의 열적 이상 판단 프로세스의 모식도이다.1 is a schematic diagram of a thermal abnormality determination process of an exterior wall of a building according to the present invention.

도 1을 참조하면, 먼저 동일한 건물 외벽에 대해 실화상 및 열화상을 취득한다. 그리고 실화상에서 벽체, 창문, 건물 외벽을 가리는 기타 물체, 배경으로 각각 영역을 구분한다. 실화상에서 벽체로 구분된 영역에 대해 해당 열화상에 의한 온도 분포를 파악하고, 그 벽체 영역의 온도 분포로부터 하자가 있는 열적 이상 부위를 추출하도록 구성된다.Referring to FIG. 1 , first, a real image and a thermal image are acquired for the same outer wall of a building. In the real image, each area is divided by a wall, a window, other objects covering the exterior wall of the building, and the background. It is configured to grasp the temperature distribution by the thermal image for the area divided by the wall in the real image, and to extract the defective thermal abnormality from the temperature distribution of the wall area.

도 2는 본 발명의 일 실시예에 따른 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 시스템의 블록 구성도이다. 그리고 도 3은 본 발명의 일 실시예에 따른 실화상의 구분 결과의 예시도이고, 도 4는 본 발명의 일 실시예에 따른 열화상의 온도 분포 및 임계 온도 설정에 관한 그래프이고, 도 5는 본 발명의 일 실시예에 따른 건물 외벽의 열적 이상 부위를 추출한 이미지의 예시도이다.2 is a block diagram of a system for determining a thermal abnormality of an exterior wall of a building using a thermal image and a real image according to an embodiment of the present invention. And FIG. 3 is an exemplary diagram of a result of classification of a real image according to an embodiment of the present invention, FIG. 4 is a graph relating to a temperature distribution and a critical temperature setting of a thermal image according to an embodiment of the present invention, and FIG. 5 is a diagram of the present invention It is an exemplary view of an image obtained by extracting a thermal abnormality portion of an outer wall of a building according to an embodiment of the present invention.

도 2를 참조하면, 본 발명의 일 실시예에 따른 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 시스템(100)은 실화상 카메라 모듈(101), 열화상 카메라 모듈(102), 실화상 데이터베이스(103), 영역 구분 모듈(104), 영역 마스크 부여 모듈(105), 스케일링 모듈(106), 외벽 온도 분포 파악 모듈(107), 임계 온도 자동 설정 모듈(108), 열적 이상 부위 추출 모듈(109)을 포함하도록 구성될 수 있다.Referring to FIG. 2 , the system 100 for determining a thermal abnormality of an exterior wall of a building using a thermal image and a real image according to an embodiment of the present invention includes a real image camera module 101, a thermal image camera module 102, and a real image. Image database 103, region classification module 104, region mask application module 105, scaling module 106, external wall temperature distribution identification module 107, critical temperature automatic setting module 108, thermal abnormality region extraction module (109).

이하, 세부적인 구성에 대하여 설명한다.Hereinafter, a detailed configuration will be described.

실화상 카메라 모듈(101)은 건물 외벽을 촬영하여 실화상을 생성하도록 구성될 수 있다.The real image camera module 101 may be configured to generate a real image by photographing an exterior wall of a building.

열화상 카메라 모듈(102)은 건물 외벽을 촬영하여 열화상을 생성하도록 구성될 수 있다.The thermal imaging camera module 102 may be configured to generate a thermal image by photographing an exterior wall of a building.

실화상 데이터베이스(103)는 건물 외벽의 실화상이 미리 저장되도록 구성될 수 있다.The real image database 103 may be configured such that a real image of the exterior wall of the building is stored in advance.

영역 구분 모듈(104)은 실화상 카메라 모듈(101)에 의해 생성된 실화상의 영역을 벽체, 창문, 건물 외벽을 가리는 기타 물체 및 배경으로 각각 구분하도록 구성될 수 있다.The region classification module 104 may be configured to separate the region of the real image generated by the real image camera module 101 into a wall, a window, other objects covering the exterior wall of the building, and a background, respectively.

구체적으로는 영역 구분 모듈(104)이 먼저 합성곱 신경망 모델을 이용하여 실화상 데이버테이스(103)에 미리 저장된 실화상을 참조하여 영역 구분을 위한 학습을 수행하도록 구성될 수 있다.Specifically, the region classification module 104 may be configured to first perform learning for region classification with reference to a real image previously stored in the real image database 103 using a convolutional neural network model.

그리고 영역 구분 모듈(104)이 실화상 카메라 모듈(102)에 의해 생성된 실화상으로부터 건물 외벽의 영역을 벽체, 창문, 건물 외벽을 가리는 기타 물체(차량, 실외기 등) 및 배경으로 각각 구분하도록 구성될 수 있다.And the area division module 104 separates the area of the building exterior from the real image generated by the real image camera module 102 into a wall, a window, other objects (vehicles, outdoor units, etc.) covering the exterior wall of the building, and the background, respectively. can be

영역 마스크 부여 모듈(105)은 영역 구분 모듈(104)에 의해 구분된 각 영역에 대해 색인 정보를 포함하는 영역 마스크를 부여하여 표시하도록 구성될 수 있다. 색인 정보는 벽체, 창문, 건물 외벽을 가리는 기타 물체, 배경으로 각각 설정될 수 있다. 도 3은 이러한 건물 외벽을 의미론적으로 구분한 영상을 나타내고 있으며, 녹색 영역은 벽체이고, 주황색 영역은 창문 그리고 노란색 영역은 기타 영역으로 표시되어 있다.The region mask assignment module 105 may be configured to assign and display a region mask including index information to each region divided by the region classification module 104 . The index information may be set to a wall, a window, other objects covering the exterior wall of a building, and a background, respectively. FIG. 3 shows an image semantically divided into such an exterior wall of a building, in which a green area is a wall, an orange area is a window, and a yellow area is other areas.

스케일링 모듈(106)은 면적 보간 알고리즘을 적용하여 실화상 카메라 모듈(101)에 의해 생성된 실화상의 크기를 열화상 카메라 모듈(102)에 의해 생성된 열화상의 크기와 동일하게 조정하여 상호 대비하도록 구성될 수 있다.The scaling module 106 applies an area interpolation algorithm to adjust the size of the real image generated by the real image camera module 101 to be the same as the size of the thermal image generated by the thermal image camera module 102 to contrast each other can be

일반적으로 열화상의 크기가 실화상에 비해 작게 생성되기 때문에 실화상을 열화상의 크기로 축소할 때 그 오류를 최소화할 수 있도록 스케일링 모듈(106)에서 면적 보간 알고리즘을 적용한다.In general, since the size of the thermal image is generated smaller than that of the real image, the scaling module 106 applies an area interpolation algorithm to minimize the error when the real image is reduced to the size of the thermal image.

외벽 온도 분포 파악 모듈(107)은 스케일링 모듈(106)의 대비 결과 열화상에서 영역 마스크에 의해 벽체로 구분된 영역의 온도 분포를 파악하도록 구성될 수 있다.The external wall temperature distribution determining module 107 may be configured to grasp the temperature distribution of the area divided by the wall by the area mask in the contrast result thermal image of the scaling module 106 .

외벽 온도 분포 파악 모듈(107)은 열화상에서 배경의 온도 분포를 제거하고 건물 외벽의 온도 분포를 파악하도록 구성될 수 있다.The external wall temperature distribution identification module 107 may be configured to remove the background temperature distribution from the thermal image and determine the temperature distribution of the exterior wall of the building.

외벽 온도 분포 파악 모듈(107)은 열화상에서 온도 히스토그램을 생성하고, 생성된 온도 히스토그램에 대해 커널 밀도 추정 알고리즘을 적용하여 온도 분포를 추정하도록 구성될 수 있다.The external wall temperature distribution identification module 107 may be configured to generate a temperature histogram from the thermal image, and apply a kernel density estimation algorithm to the generated temperature histogram to estimate the temperature distribution.

임계 온도 자동 설정 모듈(108)은 외벽 온도 분포 파악 모듈(107)에서 파악된 온도 분포를 분석하여 정상 영역과 이상 영역을 구분하기 위한 임계 온도를 자동 설정하도록 구성될 수 있다.The automatic threshold temperature setting module 108 may be configured to automatically set a threshold temperature for classifying a normal region and an abnormal region by analyzing the temperature distribution detected by the external wall temperature distribution identification module 107 .

임계 온도 자동 설정 모듈(108)은 극대값 한계 계산부(108a), 극대점 선정부(108b) 및 하자 임계 온도 선정부(108c)를 포함하도록 구성될 수 있다. 이하, 세부적인 구성에 대하여 설명한다.The threshold temperature automatic setting module 108 may be configured to include a maximum limit calculation unit 108a, a maximum point selection unit 108b and a defect threshold temperature selection unit 108c. Hereinafter, a detailed configuration will be described.

먼저 극대값 한계 계산부(108a)는 하기 수학식 1에 따라 외벽 온도 분포 파악 모듈(107)에서 추정되는 온도 분포의 최대값

Figure pat00001
으로부터 극대값 한계
Figure pat00002
를 계산하도록 구성될 수 있다.First, the maximum value limit calculation unit 108a calculates the maximum value of the temperature distribution estimated by the outer wall temperature distribution determining module 107 according to Equation 1 below.
Figure pat00001
from the maximum limit
Figure pat00002
can be configured to calculate

Figure pat00003
Figure pat00003

여기서,

Figure pat00004
는 0.05로 설정될 수 있다.here,
Figure pat00004
may be set to 0.05.

그리고 극대점 선정부(108b)는 극대값 한계

Figure pat00005
보다 큰 온도 분포의 극대값 중에서 온도 분포의 빈도가 가장 큰 두 개의 극대점
Figure pat00006
을 선정하도록 구성될 수 있다.And the maximum point selection unit 108b is the maximum value limit
Figure pat00005
The two local maxima with the highest frequency of the temperature distribution among the local maxima of the larger temperature distribution.
Figure pat00006
may be configured to select

그리고 하자 임계 온도 선정부(108c)는 하기 수학식 2에 따라 두 개의 극대점 사이에서 온도 분포의 빈도가 가장 낮은 온도를 열적 이상 부위를 판단하기 위한 하자 임계 온도

Figure pat00007
로 선정하도록 구성될 수 있다.And, the defect critical temperature selection unit 108c is a defect critical temperature for determining a thermal abnormality at a temperature having the lowest frequency of temperature distribution between two maximum points according to Equation 2 below.
Figure pat00007
It can be configured to select

Figure pat00008
Figure pat00008

열적 이상 부위 추출 모듈(109)은 임계 온도 자동 설정 모듈(109)에서 자동 설정된 임계 온도를 이용하여 벽체 중 열적 이상 부위를 추출하도록 구성될 수 있다.The thermal anomaly extraction module 109 may be configured to extract a thermal anomaly from the wall using the threshold temperature automatically set in the automatic threshold temperature setting module 109 .

구체적으로는 열적 이상 부위 추출 모듈(109)은 극대값 한계

Figure pat00009
보다 큰 극대점이 하나만 존재하는 경우 열화상에 열적 이상 부위가 존재하지 않는 것으로 판단하며, 극대값 한계
Figure pat00010
보다 큰 극대점이 둘 이상 존재하는 경우 하자 임계 온도
Figure pat00011
이상 극대점
Figure pat00012
이하의 온도 분포를 갖는 부위를 열적 이상 부위로 판단하도록 구성될 수 있다.Specifically, the thermal anomaly extraction module 109 has a maximum limit
Figure pat00009
If there is only one larger maximal point, it is judged that there is no thermal anomaly in the thermal image, and the limit of the maximal value is
Figure pat00010
Fault critical temperature when two or more larger maxima exist
Figure pat00011
ideal maximum
Figure pat00012
It may be configured to determine a region having the following temperature distribution as a thermal abnormal region.

도 5에서는 실화상 및 열화상에서 벽 영역 1과 벽 영역 2에서 극대점을 각각 2개씩 추출하여 하자 영역을 찾아내는 것을 나타내고 있다.FIG. 5 shows that a defect region is found by extracting two maximum points from each of the wall region 1 and the wall region 2 in the real image and the thermal image.

도 6은 본 발명의 일 실시예에 따른 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 방법의 흐름도이다.6 is a flowchart of a method for determining a thermal abnormality of an exterior wall of a building using a thermal image and a real image according to an embodiment of the present invention.

도 6을 참조하면, 실화상 카메라 모듈(101)이 건물 외벽을 촬영하여 실화상을 생성한다(S101).Referring to FIG. 6 , the real image camera module 101 creates a real image by photographing the exterior wall of the building ( S101 ).

다음으로, 열화상 카메라 모듈(102)이 건물 외벽을 촬영하여 열화상을 생성한다(S102).Next, the thermal imaging camera module 102 generates a thermal image by photographing the exterior wall of the building ( S102 ).

다음으로, 외벽 온도 분포 파악 모듈(107)이 실화상 카메라 모듈(101)에 의해 생성된 실화상 및 열화상 카메라 모듈(102)에 의해 생성된 열화상을 이용하여 건물 외벽의 외벽 온도 분포를 파악한다(S103).Next, the external wall temperature distribution identification module 107 uses the real image generated by the real image camera module 101 and the thermal image generated by the thermal imaging camera module 102 to determine the external wall temperature distribution of the building exterior wall do (S103).

다음으로, 열적 이상 부위 추출 모듈(109)이 외벽 온도 분포 파악 모듈(107)에 의해 파악된 외벽 온도 분포를 이용하여 열적 이상 부위를 추출한다(S104).Next, the thermal anomaly extraction module 109 extracts a thermal anomaly using the outer wall temperature distribution identified by the outer wall temperature distribution determining module 107 ( S104 ).

이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described with reference to the above embodiments, those skilled in the art can understand that various modifications and changes can be made to the present invention without departing from the spirit and scope of the present invention as set forth in the following claims. There will be.

101: 실화상 카메라 모듈
102: 열화상 카메라 모듈
103: 실화상 데이터베이스
104: 영역 구분 모듈
105: 영역 마스크 부여 모듈
106: 스케일링 모듈
107: 외벽 온도 분포 파악 모듈
108: 임계 온도 자동 설정 모듈
109: 열적 이상 부위 추출 모듈
101: visual camera module
102: thermal imaging camera module
103: real image database
104: zone division module
105: region mask grant module
106: scaling module
107: external wall temperature distribution identification module
108: threshold temperature automatic setting module
109: thermal anomaly extraction module

Claims (4)

건물 외벽을 촬영하여 실화상을 생성하는 실화상 카메라 모듈;
상기 건물 외벽을 촬영하여 열화상을 생성하는 열화상 카메라 모듈;
상기 실화상 카메라 모듈에 의해 생성된 실화상 및 상기 열화상 카메라 모듈에 의해 생성된 열화상을 이용하여 상기 건물 외벽의 외벽 온도 분포를 파악하는 외벽 온도 분포 파악 모듈을 포함하는 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 시스템.
a real image camera module for generating a real image by photographing an exterior wall of a building;
a thermal imaging camera module for generating a thermal image by photographing the exterior wall of the building;
Thermal images and real images comprising an exterior wall temperature distribution identification module that grasps the exterior wall temperature distribution of the exterior wall of the building using the real image generated by the real image camera module and the thermal image generated by the thermal imaging camera module A system for judging the thermal abnormality of the exterior wall of a building.
제1항에 있어서,
상기 외벽 온도 분포 파악 모듈에 의해 파악된 외벽 온도 분포를 이용하여 열적 이상 부위를 추출하는 열적 이상 부위 추출 모듈을 더 포함하도록 구성되는 것을 특징으로 하는 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 시스템.
According to claim 1,
Thermal anomaly part of the exterior wall of a building using a thermal image and a real image, characterized in that it further comprises a thermal abnormality region extraction module for extracting a thermal abnormality region using the external wall temperature distribution grasped by the external wall temperature distribution identification module judgment system.
실화상 카메라 모듈이 건물 외벽을 촬영하여 실화상을 생성하는 단계;
열화상 카메라 모듈이 상기 건물 외벽을 촬영하여 열화상을 생성하는 단계;
외벽 온도 분포 파악 모듈이 상기 실화상 카메라 모듈에 의해 생성된 실화상 및 상기 열화상 카메라 모듈에 의해 생성된 열화상을 이용하여 상기 건물 외벽의 외벽 온도 분포를 파악하는 단계를 포함하는 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 방법.
generating, by a real image camera module, a real image by photographing an exterior wall of the building;
generating, by a thermal imaging camera module, a thermal image by photographing the exterior wall of the building;
Thermal image and real, comprising the step of determining, by an external wall temperature distribution identification module, the external wall temperature distribution of the exterior wall of the building using the real image generated by the real image camera module and the thermal image generated by the thermal imaging camera module A method for determining thermal anomalies of exterior walls of buildings using burns.
제3항에 있어서,
열적 이상 부위 추출 모듈이 상기 외벽 온도 분포 파악 모듈에 의해 파악된 외벽 온도 분포를 이용하여 열적 이상 부위를 추출하는 단계를 더 포함하도록 구성되는 것을 특징으로 하는 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 방법.
4. The method of claim 3,
Thermal anomaly of a building exterior wall using a thermal image and a real image, characterized in that the thermal anomaly extraction module further comprises the step of extracting the thermal anomaly using the external wall temperature distribution identified by the external wall temperature distribution identification module How to determine an abnormal area.
KR1020200133228A 2020-10-15 2020-10-15 System for determining thermal abnormalities on exterior walls of building using thermal image and real image and method thereof KR102399685B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200133228A KR102399685B1 (en) 2020-10-15 2020-10-15 System for determining thermal abnormalities on exterior walls of building using thermal image and real image and method thereof
PCT/KR2021/004387 WO2022080610A1 (en) 2020-10-15 2021-04-08 System for determining thermally abnormal part of outer wall of building by using thermal image and real image, and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200133228A KR102399685B1 (en) 2020-10-15 2020-10-15 System for determining thermal abnormalities on exterior walls of building using thermal image and real image and method thereof

Publications (2)

Publication Number Publication Date
KR20220049746A true KR20220049746A (en) 2022-04-22
KR102399685B1 KR102399685B1 (en) 2022-05-19

Family

ID=81209272

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200133228A KR102399685B1 (en) 2020-10-15 2020-10-15 System for determining thermal abnormalities on exterior walls of building using thermal image and real image and method thereof

Country Status (2)

Country Link
KR (1) KR102399685B1 (en)
WO (1) WO2022080610A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102555857B1 (en) * 2022-07-26 2023-07-13 장형석 Multi-ourlayer concrete block for city battle and war game treasure and its sencing and control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115272883B (en) * 2022-09-28 2023-02-21 北京市生态环境监测中心 Regional area source extraction method and device, computer equipment and readable storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101238982B1 (en) 2011-03-04 2013-03-04 성균관대학교산학협력단 Method for inspecting insulating performance of wall
KR20150078049A (en) * 2013-12-30 2015-07-08 (주)케이엠에스 Apparatus for sensing fire
KR101864508B1 (en) * 2016-11-30 2018-07-13 영남대학교 산학협력단 System and method for evaluation of exterior cracks of building
KR101972095B1 (en) * 2019-02-25 2019-04-24 국방과학연구소 Method and Apparatus of adding artificial object for improving performance in detecting object
KR20200016507A (en) * 2018-08-07 2020-02-17 주식회사 한컴엠디에스 Method and Apparatus for Synthesizing Image
KR20200085608A (en) * 2019-01-07 2020-07-15 주식회사 한컴엠디에스 Apparatus and method for indicating temperature based on augmented reality
KR20200101727A (en) 2019-02-20 2020-08-28 한밭대학교 산학협력단 In-situ short-term measurement method of u-value for building envelope

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4898320B2 (en) * 2006-06-28 2012-03-14 Jfeスチール株式会社 Structure defect detection method and apparatus, and cargo handling machine having defect detection function
KR101248018B1 (en) * 2010-12-23 2013-04-08 대한민국 Method of measuring heat loss, heat loss measurement apparatus using the same and system of analyzing energy consumption having the same
KR101522996B1 (en) * 2015-01-30 2015-05-27 (주)코어센스 Composite video signal output device for nondestructive inspection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101238982B1 (en) 2011-03-04 2013-03-04 성균관대학교산학협력단 Method for inspecting insulating performance of wall
KR20150078049A (en) * 2013-12-30 2015-07-08 (주)케이엠에스 Apparatus for sensing fire
KR101864508B1 (en) * 2016-11-30 2018-07-13 영남대학교 산학협력단 System and method for evaluation of exterior cracks of building
KR20200016507A (en) * 2018-08-07 2020-02-17 주식회사 한컴엠디에스 Method and Apparatus for Synthesizing Image
KR20200085608A (en) * 2019-01-07 2020-07-15 주식회사 한컴엠디에스 Apparatus and method for indicating temperature based on augmented reality
KR20200101727A (en) 2019-02-20 2020-08-28 한밭대학교 산학협력단 In-situ short-term measurement method of u-value for building envelope
KR101972095B1 (en) * 2019-02-25 2019-04-24 국방과학연구소 Method and Apparatus of adding artificial object for improving performance in detecting object

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
‘그린 리모델링을 위한 노후 상업용 건축물 불투명 외벽의 단열성능 현장 측정 및 평가’, 김성임 등, 대한건축학회 논문집, 30(7), 2014.7, 237-246* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102555857B1 (en) * 2022-07-26 2023-07-13 장형석 Multi-ourlayer concrete block for city battle and war game treasure and its sencing and control system

Also Published As

Publication number Publication date
WO2022080610A1 (en) 2022-04-21
KR102399685B1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
CN109241896B (en) Channel safety detection method and device and electronic equipment
CN115082464A (en) Method and system for identifying welding seam data in welding process of dust remover
KR20170031985A (en) Fault detection and diagnostics method of air-conditioning system
US11694320B2 (en) System for monitoring a switchgear
KR102399685B1 (en) System for determining thermal abnormalities on exterior walls of building using thermal image and real image and method thereof
US20100128938A1 (en) Method and apparatus for detecting forged face using infrared image
JP6707920B2 (en) Image processing apparatus, image processing method, and program
JP2020535658A5 (en)
CN111383168A (en) Privacy-protecting camera
KR20210094121A (en) Optical Mode Selection for Multimode Semiconductor Inspection
CN114610559A (en) Equipment operation environment evaluation method, judgment model training method and electronic equipment
KR102433598B1 (en) A System and Method for Deriving Data Boundary
KR101840944B1 (en) Apparatus and method for detecting defect based on image analysis
CN112001327A (en) Valve hall equipment fault identification method and system
CN109724993A (en) Detection method, device and the storage medium of the degree of image recognition apparatus
US11139216B2 (en) System, method and non-transitory computer readable medium for tuning sensitivities of, and determining a process window for, a modulated wafer
KR101592383B1 (en) Flame detection method based on color image using temperature distribution characteristics of flame
CN116344378B (en) Intelligent detection system for photovoltaic panel production and detection method thereof
JP6708695B2 (en) Inspection equipment
CN105956559B (en) Specific objective detection method based on UAV Video
KR101695531B1 (en) System for inspecting an object based on vision image
JP2019095932A (en) Abnormality determination method and device
Tafarroj et al. An application of principal component analysis method in wood defects identification
CN117689917B (en) Cabin safety state monitoring method based on thermal imaging and laser detection technology
CN117163790B (en) Fault alarm method, fault alarm device, elevator and readable storage medium

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant