KR20220024308A - 컬러 안정성 유기 발광 다이오드 스택 - Google Patents
컬러 안정성 유기 발광 다이오드 스택 Download PDFInfo
- Publication number
- KR20220024308A KR20220024308A KR1020220016369A KR20220016369A KR20220024308A KR 20220024308 A KR20220024308 A KR 20220024308A KR 1020220016369 A KR1020220016369 A KR 1020220016369A KR 20220016369 A KR20220016369 A KR 20220016369A KR 20220024308 A KR20220024308 A KR 20220024308A
- Authority
- KR
- South Korea
- Prior art keywords
- emissive
- layer
- stack
- light
- light emitting
- Prior art date
Links
- 239000002019 doping agent Substances 0.000 claims description 70
- 239000000463 material Substances 0.000 claims description 43
- 230000008859 change Effects 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- 239000010410 layer Substances 0.000 description 325
- 230000006798 recombination Effects 0.000 description 16
- 238000005215 recombination Methods 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 14
- 230000032683 aging Effects 0.000 description 13
- 150000003384 small molecules Chemical class 0.000 description 12
- 239000000758 substrate Substances 0.000 description 10
- 230000004888 barrier function Effects 0.000 description 8
- 239000003086 colorant Substances 0.000 description 8
- 238000004770 highest occupied molecular orbital Methods 0.000 description 8
- 239000012044 organic layer Substances 0.000 description 8
- 230000000903 blocking effect Effects 0.000 description 7
- 230000005525 hole transport Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- 239000011368 organic material Substances 0.000 description 6
- 239000000412 dendrimer Substances 0.000 description 5
- 229920000736 dendritic polymer Polymers 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000005693 optoelectronics Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000002207 thermal evaporation Methods 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001194 electroluminescence spectrum Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- UEEXRMUCXBPYOV-UHFFFAOYSA-N iridium;2-phenylpyridine Chemical group [Ir].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 UEEXRMUCXBPYOV-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000007261 regionalization Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000010129 solution processing Methods 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical group C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 1
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical group CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 1
- 240000007241 Agrostis stolonifera Species 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical group [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- 238000010397 one-hybrid screening Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000013086 organic photovoltaic Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
- H10K50/13—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
-
- H01L51/504—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H01L51/5024—
-
- H01L51/5278—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/12—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/19—Tandem OLEDs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/27—Combination of fluorescent and phosphorescent emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/32—Stacked devices having two or more layers, each emitting at different wavelengths
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
본 발명은 대칭 발광층 구조물을 포함하는 OLED 소자 및 OLED 소자용 스택에 관한 것이다. 일구체예에서, 본 발명은 3개 층을 갖는 발광성 스택으로서, 상부 및 하부 층은 동일 또는 유사한 컬러 영역에서 발광하는 반면, 중간 층은 다른 2개 층과는 상이한 컬러 영역에서 발광하는 발광성 스택에 관한 것이다. 이러한 구체예에서, 3개 층은 다른 층을 사이에 끼우지 않고 서로 접촉되어 있다. 본 발명의 대칭 발광층 구조물은 OLED 소자의 컬러 안정성의 개선에 사용될 수 있다.
Description
관련 출원에 대한 상호 참조
본 출원은 각각의 전체 내용을 본 명세서에서 참고로 인용하는, 2014년 12월 17일 출원된 미국 특허 출원 제62/093,104호의 우선권을 주장한다.
공동 연구 계약에 대한 당사자
당해 발명은 합동 산학 연구 협약에 따라 리전츠 오브 더 유니버시티 오브 미시간, 프린스턴 유니버시티, 더 유니버시티 오브 서던 캘리포니아 및 더 유니버셜 디스플레이 코포레이션 당사자 중 하나 이상에 의하여, 이를 대신하여 및/또는 이와 관련하여 완성되었다. 협약은 청구된 발명이 이루어진 일자에 그리고 일자 이전에 발효되었으며, 당해 발명은 협약서의 범주내에서 수행된 활동의 결과로서 완성되었다.
발명의 분야
본 발명은 유기 발광 다이오드용 발광층 스택 및 이를 포함하는 소자에 관한 것이다.
유기 물질을 사용하는 광전자 소자는 여러 이유로 인하여 점차로 중요해지고 있다. 이와 같은 소자를 제조하는데 사용되는 다수의 물질은 비교적 저렴하여 유기 광전자 소자는 무기 소자에 비하여 경제적 잇점면에서 잠재성을 갖는다. 또한, 유기 물질의 고유한 성질, 예컨대 이의 가요성은 가요성 기판상에서의 제조와 같은 특정 적용예에 매우 적합하게 될 수 있다. 유기 광전자 소자의 예로는 유기 발광 소자(OLED), 유기 광트랜지스터, 유기 광전지 및 유기 광검출기를 들 수 있다. OLED의 경우, 유기 물질은 통상의 물질에 비하여 성능면에서의 잇점을 가질 수 있다. 예를 들면, 유기 발광층이 광을 방출하는 파장은 일반적으로 적절한 도펀트로 용이하게 조절될 수 있다.
OLED는 소자를 가로질러 전압을 인가시 광을 방출하는 유기 박막을 사용하게 한다. OLED는 평판 패널 디스플레이, 조명 및 역광과 같은 적용예에 사용하기 위한 점차로 중요해지는 기술이다. 여러가지의 OLED 물질 및 형상은 미국 특허 제5,844,363호, 제6,303,238호 및 제5,707,745호에 기재되어 있으며, 이들 특허 문헌은 그 전문이 본원에 참고로 포함된다.
인광 발광 분자에 대한 하나의 적용예는 총 천연색 디스플레이이다. 이러한 디스플레이에 대한 산업적 기준은 "포화" 색상으로서 지칭하는 특정 색상을 방출하도록 조정된 픽셀을 필요로 한다. 특히, 이러한 기준은 포화 적색, 녹색 및 청색 픽셀을 필요로 한다. 색상은 당업계에 공지된 CIE 좌표를 사용하여 측정될 수 있다.
녹색 발광 분자의 일례로는 하기 화학식을 갖는 Ir(ppy)3으로 나타낸 트리스(2-페닐피리딘) 이리듐이다:
본원에서의 이와 같은 화학식 및 하기의 화학식에서, 본 출원인은 질소로부터 금속(여기에서는 Ir)으로의 배위 결합을 직선으로 도시한다.
본원에서, 용어 "유기"라는 것은 유기 광전자 소자를 제조하는데 사용될 수 있는 중합체 물질뿐 아니라, 소분자 유기 물질을 포함한다. "소분자"는 중합체가 아닌 임의의 유기 물질을 지칭하며, "소분자"는 실제로 꽤 클 수도 있다. 소분자는 일부의 상황에서는 반복 단위를 포함할 수 있다. 예를 들면, 치환기로서 장쇄 알킬 기를 사용하는 것은 "소분자" 유형으로부터 분자를 제거하지 않는다. 소분자는 또한 예를 들면 중합체 주쇄상에서의 측쇄기로서 또는 주쇄의 일부로서 중합체에 투입될 수 있다. 소분자는 또한 코어 부분상에 생성된 일련의 화학적 셸로 이루어진 덴드리머의 코어 부분으로서 작용할 수 있다. 덴드리머의 코어 부분은 형광 또는 인광 소분자 이미터일 수 있다. 덴드리머는 "소분자"일 수 있으며, OLED 분야에서 통상적으로 사용되는 모든 덴드리머는 소분자인 것으로 밝혀졌다.
본원에서 사용한 바와 같이, "상부"는 기판으로부터 가장 멀리 떨어졌다는 것을 의미하며, "하부"는 기판에 가장 근접하다는 것을 의미한다. 제1층이 제2층"의 상부에 위치하는" 것으로 기재될 경우, 제1층은 기판으로부터 멀리 떨어져 배치된다. 제1층이 제2층과 "접촉되어 있거나" 또는 제2층에 "인접되어 있는" 것으로 명시되지 않는다면 제1층과 제2층 사이에는 다른 층이 존재할 수 있다. 예를 들면, 캐소드와 애노드의 사이에 다양한 유기층이 존재할 수 있을지라도, 캐소드는 애노드"의 상부에 위치하는" 것으로 기재될 수 있다.
본원에서 사용한 바와 같이, "용액 가공성"은 용액 또는 현탁액 형태로 액체 매체에 용해, 분산 또는 수송될 수 있거나 및/또는 액체 매체로부터 증착될 수 있다는 것을 의미한다.
리간드가 발광 물질의 광활성 성질에 직접적으로 기여하는 것으로 밝혀질 경우, 리간드는 "광활성"으로서 지칭될 수 있다. 보조적 리간드가 광활성 리간드의 성질을 변경시킬 수 있을지라도, 리간드가 발광 물질의 광활성 성질에 기여하지 않는 것으로 밝혀질 경우, 리간드는 "보조적"인 것으로 지칭될 수 있다.
본원에서 사용한 바와 같이 그리고 일반적으로 당업자가 이해하고 있는 바와 같이, 제1의 "최고 점유 분자 궤도"(HOMO) 또는 "최저 비점유 분자 궤도"(LUMO) 에너지 레벨이 진공 에너지 레벨에 근접할 경우, 제1의 에너지 레벨은 제2의 HOMO 또는 LUMO보다 "더 크거나" 또는 "더 높다". 이온화 전위(IP)가 진공 레벨에 대하여 음의 에너지로서 측정되므로, 더 높은 HOMO 에너지 레벨은 더 작은 절대값을 갖는 IP에 해당한다(IP는 음의 값이 더 작다). 유사하게, 더 높은 LUMO 에너지 레벨은 절대값이 더 작은 전자 친화도(EA)에 해당한다(EA의 음의 값이 더 작다). 상부에서의 진공 레벨을 갖는 통상의 에너지 레벨 다이아그램에서, 물질의 LUMO 에너지 레벨은 동일한 물질의 HOMO 에너지 레벨보다 더 높다. "더 높은" HOMO 또는 LUMO 에너지 레벨은 "더 낮은" HOMO 또는 LUMO 에너지 레벨보다 상기 다이아그램의 상부에 더 근접한다는 것을 나타낸다.
본원에서 사용한 바와 같이 그리고 일반적으로 당업자가 이해하는 바와 같이, 제1의 일 함수의 절대값이 더 클 경우, 제1의 일 함수는 제2의 일 함수보다 "더 크거나" 또는 "더 높다". 일 함수는 일반적으로 진공 레벨에 대하여 음의 수로서 측정되므로, 이는 "더 높은" 일 함수의 음의 값이 더 크다는 것을 의미한다. 상부에서 진공 레벨을 갖는 통상의 에너지 레벨 다이아그램에서, "더 높은" 일 함수는 진공 레벨로부터 아래 방향으로 더 먼 것으로서 도시된다. 그래서, HOMO 및 LUMO 에너지 레벨의 정의는 일 함수와는 상이한 조약을 따른다.
OLED에 대한 세부사항 및 전술한 정의는 미국 특허 제7,279,704호에서 찾아볼 수 있으며, 이 특허 문헌의 개시내용은 그 전문이 본원에 참고로 포함된다.
본 명세서에서 사용된 바의 "적색" 층, 재료, 영역 또는 소자는 약 580-700 nm 범위에서 발광하는 것을 지칭하고; "녹색" 층, 재료, 영역 또는 소자는 약 500-600 nm 범위의 피크 파장을 갖는 발광 스펙트럼을 갖는 것을 지칭하며; "청색" 층, 재료 또는 소자는 약 400-500 nm 범위의 피크 파장을 갖는 발광 스펙트럼을 갖는 것을 지칭하며; "황색" 층, 재료, 영역 또는 소자는 약 540-600 nm 범위의 피크 파장을 갖는 발광 스펙트럼을 갖는 것을 지칭한다. 일부 배열에서, 개별 층, 재료, 영역 및 소자는 개별 "심청색(deep blue)" 및 "연청색(light blue)" 광 성분을 제공할 수 있다. 개별 "연청색" 및 "심청색" 광 성분을 제공하는 배열에 있어서 본 명세서에서 사용된 바의 "심청색" 성분은 "연청색" 성분의 피크 발광 파장보다 적어도 약 4 nm 적은 피크 발광 파장을 갖는 것을 지칭한다. 통상적으로, "연청색" 성분은 약 465-500 nm 범위에서 피크 발광 파장을 가지며, "심청색" 성분은 약 400-470 nm 범위에서 피크 발광 파장을 갖지만, 이들 범위는 일부 구체예에 대해 변경될 수 있다.
당업계에 공지된 다수의 OLED는 다수의 발광층을 포함한다. 예컨대, 백색 OLED는 2~3개의 발광층을 포함할 수 있다. 이러한 소자는 다양한 구동 조건에서 컬러 안정성을 달성하기 위한 시도를 하기 위해 발광층의 계면에서 재조합 구역을 피닝 다운(pinning down)함으로써 최적화할 수 있다. 그러나, 최적화된 구조에서도, 다층 OLED 소자는 여전히 상이한 구동 전류로 변경되는 컬러를 나타낼 수 있다. 이는 소자의 컬러 안정성이 개선을 필요로 함을 예시한다.
따라서, 개선된 컬러 안정성을 갖는 다수의 발광층을 갖는 OLED 소자에 대한 수요가 당업계에 존재한다. 본 발명은 당업계에서의 이러한 요구를 다룬다.
개시된 주제의 측면에 따르면, 제1 전극; 제1 전극 위에 배치된 제1 발광성 스택; 및 제1 발광성 스택 위에 배치된 제2 전극을 포함하는 유기 발광 소자로서, 제1 발광성 스택은 제1 전극측으로부터 접촉하여 차례대로 있는 N개의 발광층으로 이루어지고; 여기서, N은 3 이상의 정수이고; 제1 전극에 가장 가까운 제1 발광성 스택 내 제1 발광층 및 제2 전극에 가장 가까운 제1 발광성 스택 내 제N 발광층은 동일한 컬러 영역에서 발광하고, 제1 발광층 및 제N 발광층 외의 제1 발광성 스택 내 1 이상의 발광층은 제1 발광층 및 제N 발광층과는 상이한 컬러 영역에서 발광하는 유기 발광 소자가 제공된다. 일구체예에서, 제1 발광층의 발광 피크와 제N 발광층의 발광 피크의 차이가 약 10 nm 미만이다. 일구체예에서, 제1 발광층 ?? 재N 발광층의 발광 피크, 및 임의의 다른 발광층의 발광 피크의 차이가 약 10 nm 초과이다. 일구체예에서, 제1 발광층 및 제N 발광층은 적색 발광층이다. 일구체예에서, 제1 발광층 및 제N 발광층 외의 제1 발광성 스택 내 1 이상의 발광층은 녹색 발광층이다. 일구체예에서, 제1 발광층 및 제N 발광층은 녹색 발광층이다. 이러한 일구체예에서, 제1 발광층 및 제N 발광층 외의 제1 발광성 스택 내 1 이상의 발광층은 적색 발광층이다. 일구체예에서, 제1 발광층 및 제N 발광층은 황색 발광층이다. 이러한 일구체예에서, 제1 발광층 및 제N 발광층 외의 제1 발광성 스택 내 1 이상의 발광층은 청색 발광층이다. 일구체예에서, 제1 발광층 및 제N 발광층은 청색 발광층이다. 이러한 일구체예에서, 제1 발광층 및 제N 발광층 외의 제1 발광성 스택 내 1 이상의 발광층은 황색 발광층이다.
일구체예에서, 소자는 백색 광을 방출한다. 일구체예에서, 제1 발광성 스택 내 각각의 발광층이 1 이상의 호스트 재료 및 1 이상의 발광성 도펀트를 포함한다. 일구체예에서, 제1 발광층 내 1 이상의 발광성 도펀트의 조성은 제N 발광층 내 1 이상의 발광성 도펀트와 동일하다. 일구체예에서, 제1 발광층 내 1 이상의 발광성 도펀트의 조성 및 도핑 농도는 제N 발광층 내 1 이상의 발광성 도펀트와 동일하다. 일구체예에서, 제1 발광층 및 제N 발광층의 조성, 도핑 농도 및 두께는 동일하다. 일구체예에서, 제1 발광성 스택 내 각각의 발광층 내 1 이상의 발광성 도펀트는 인광성 발광성 도펀트이다. 일구체예에서, 인광성 도펀트는 이리듐 착물이다. 일구체예에서, 제1 발광성 스택 내 1 이상의 발광층은 인광성 도펀트를 포함하며, 제1 발광성 스택 내 1 이상의 발광층은 형광성 도펀트를 포함한다. 일구체예에서, 1 이상의 발광층은 황색 발광층이고 1 이상의 발광층은 청색 발광층일 경우, 1 이상의 황색 발광층은 인광성 도펀트를 포함하고 1 이상의 청색 발광층은 인광성 도펀트를 포함한다. 일구체예에서, 1 이상의 발광층은 황색 발광층이고 1 이상의 발광층은 청색 발광층일 경우, 1 이상의 황색 발광층은 인광성 도펀트를 포함하고 1 이상의 청색 발광층은 형광성 도펀트를 포함한다. 일구체예에서, N은 3 또는 4이다. 일구체예에서, 제1 발광성 스택으로부터 방출된 광의 각각의 1931 CIE (x, y) 색 좌표에서의 변화는 약 2 mA/㎠ 내지 80 mA/㎠ 범위 내의 전류 밀도의 임의의 변화에 대해 0.02 이하이다. 일구체예에서, 제1 발광성 스택으로부터 방출된 광의 각각의 1931 CIE (x, y) 색 좌표에서의 변화는 약 800 cd/㎡ 내지 30,000 cd/㎡ 범위 내의 휘도의 임의의 변화에 대해 0.02 이하이다. 일구체예에서, 소자를 이의 초기 휘도의 70%(LT70)로 에이징시킬 때, 제1 발광성 스택으로부터 방출된 광의 Duv 값은 0.02 미만이다. 일구체예에서, 소자는 또한 제1 전극과 제2 전극 사이에 제2 발광성 스택을 포함하며, 여기서 제2 발광성 스택은 제1 발광성 스택과 접촉되어 있지 않다. 일구체예에서, 제2 발광성 스택은 제1 전극측으로부터 접촉하여 차례대로 있는 M개의 발광층을 가지며; M은 3 이상의 정수이고; 제1 전극에 가장 가까운 제2 발광성 스택의 제1 발광층 및 제2 전극에 가장 가까운 제2 발광성 스택 내 제M 발광층은 동일한 컬러 영역에서 발광하고, 제1 및 제M 발광성 스택 층 외의 제2 발광성 스택 내 1 이상의 발광층은 제2 발광성 스택 내 제1 및 제M 층과 상이한 컬러 영역에서 발광한다. 일구체예에서, 소자는 제1 발광성 스택과 제2 발광성 스택 사이에 배치된 전하 생성층(CGL)을 더 포함한다. 일구체예에서, 제2 발광성 스택 내 제1 및 제M 층은 제1 발광성 스택 내 제1 및 제N 층과 동일한 컬러 영역에서 발광한다. 일구체예에서, 제1 발광성 스택 내 제1 및 제N 층 및 제2 발광성 스택 내 제1 및 제M 층은 청색 발광층이다. 일구체예에서, 제1 발광성 스택의 제1 및 제N 층 및 제2 발광성 스택의 제1 및 제M 층은 황색 발광층이다. 일구체예에서, 제1 발광성 스택의 제1 및 제N 층 및 제2 발광성 스택의 제1 및 제M 층은 적색 발광층이다. 일구체예에서, 제1 발광성 스택의 제1 및 제N 층 및 제2 발광성 스택의 제1 및 제M 층은 녹색 발광층이다. 일구체예에서, 소자는 제1 전극과 제2 전극의 사이에 제1 발광성 스택과 접촉되어 있지 않는 1 이상의 발광층을 포함하며, 상기 층은 형광성 청색 도펀트를 포함한다. 일구체예에서, 제2 발광성 스택으로부터 방출된 광의 각각의 1931 CIE (x, y) 색 좌표에서의 변화는 약 2 mA/㎠ 내지 80 mA/㎠ 범위 내의 전류 밀도의 임의의 변화에 대해 0.02 이하이다. 일구체예에서, 제2 발광성 스택으로부터 방출된 광의 각각의 1931 CIE (x, y) 색 좌표에서의 변화는 약 800 cd/㎡ 내지 30,000 cd/㎡ 범위 내의 휘도의 임의의 변화에 대해 0.02 이하이다. 일구체예에서, 스택을 이의 초기 휘도의 70%(LT70)로 에이징시킬 때, 제2 발광성 스택으로부터 방출된 광의 Duv 값은 0.02 미만이다.
개시된 주제의 측면에 따르면, 제1 전극; 제2 전극; 및 제1 전극과 제2 전극 사이에 배치된 1 이상의 발광층 스택을 포함하는 유기 발광 소자로서, 1 이상의 발광층 스택은 접촉하여 차례대로 있는 상부 발광층, R개의 중간 발광층 및 하부 발광층을 가지며; 여기서, R은 1 이상의 정수이고; 각각의 발광층은 1 이상의 호스트 재료 및 1 이상의 발광 도펀트를 포함하며; 상부 발광층 및 하부 발광층 내 1 이상의 발광 도펀트는 동일한 유기 발광 소자의 다른 구체예가 제공된다. 일구체예에서, R개의 중간 발광층 중 1 이상 내 1 이상의 발광 도펀트는 상부 및 하부 발광층 모두 내 1 이상의 발광 도펀트와 상이하다. 일구체예에서, R은 1이다. 일구체예에서, 상부 발광층 및 하부 발광층 내 1 이상의 발광 도펀트는 적색 발광 도펀트이다. 일구체예에서, R개의 중간 발광층 중 1 이상 내 1 이상의 발광 도펀트는 녹색 발광 도펀트이다. 일구체예에서, 상부 발광층 및 하부 발광층 내 1 이상의 발광 도펀트는 녹색 발광 도펀트이다. 일구체예에서, R개의 중간 발광층 중 1 이상 내 1 이상의 발광 도펀트는 적색 발광 도펀트이다. 일구체예에서, 상부 발광층 및 하부 발광층 내 1 이상의 발광 도펀트는 황색 발광 도펀트이다. 일구체예에서, R개의 중간 발광층 중 1 이상 내 1 이상의 발광 도펀트는 청색 발광 도펀트이다. 일구체예에서, 상부 발광층 및 하부 발광층 내 1 이상의 발광 도펀트는 청색 발광 도펀트이다. 일구체예에서, R개의 중간 발광층 중 1 이상 내 1 이상의 발광 도펀트는 황색 발광 도펀트이다.
개시된 주제의 측면에 따르면, 상부 발광층; 하부 발광층; 및 S개의 중간 발광층을 포함하는 유기 발광 소자용 발광 스택으로서, 여기서, S는 1 이상의 정수이고; 상부 발광층, S개의 중간 발광층 및 하부 발광층은 접촉하여 차례대로 있으며; 상부 발광층 및 하부 발광층은 동일한 컬러 영역에서 발광하고, S개의 중간 발광층 중 1 이상의 층은 상부 발광층 및 하부 발광층과는 상이한 컬러 영역에서 발광하는 유기 발광 소자용 발광 스택이 제공된다. 일구체예에서, 각각의 발광층은 1 이상의 호스트 재료 및 1 이상의 발광성 도펀트를 포함한다. 일구체예에서, 상부 발광층 및 하부 발광층 내 1 이상의 발광 도펀트는 적색 발광 도펀트이다. 일구체예에서, S개의 중간 발광층 중 1 이상 내 1 이상의 발광 도펀트 녹색 발광 도펀트이다. 일구체예에서, 상부 발광층 및 하부 발광층 내 1 이상의 발광 도펀트는 녹색 발광 도펀트이다. 일구체예에서, S개의 중간 발광층 중 1 이상 내 1 이상의 발광 도펀트는 적색 발광 도펀트이다. 일구체예에서, 상부 발광층 및 하부 발광층 내 1 이상의 발광 도펀트는 황색 발광 도펀트이다. 일구체예에서, S개의 중간 발광층 중 1 이상 내 1 이상의 발광 도펀트는 청색 발광 도펀트이다. 일구체예에서, 상부 발광층 및 하부 발광층 내 1 이상의 발광 도펀트는 청색 발광 도펀트이다. 일구체예에서, S개의 중간 발광층 중 1 이상 내 1 이상의 발광 도펀트는 황색 발광 도펀트이다. 일구체예에서, 소자는 소비자 제품, 유기 발광 소자 및/또는 조명 패널일 수 있다. 일구체예에서, 소자는 제품에 포함될 수 있으며, 제품은 하기로 이루어진 군에서 선택된다: 터치스크린, 플랫 패널 디스플레이, 컴퓨터 모니터, 의료용 모니터, 텔레비젼, 광고 게시판, 일반 조명 장치, 신호기, 헤드업 디스플레이, 완전 투명 디스플레이, 플렉서블 디스플레이, 레이저 프린터, 전화, 휴대 전화, 개인 휴대 정보 단말기(PDA), 랩탑 컴퓨터, 디지털 카메라, 캠코더, 뷰파인더, 마이크로디스플레이, 운송 수단, 대면적 벽, 영화관, 경기장 스크린 및 표지.
도 1은 유기 발광 소자를 도시한다.
도 2는 별도의 전자 수송층을 갖지 않는 역전된 유기 발광 소자를 도시한다.
도 3A 내지 3D를 포함하는 도 3은 일련의 4개의 OLED 소자를 도시한다. 도 3A: 2개의 발광층(EML)(즉, 적색 하부 EML 및 녹색 상부 EML)을 갖는 기준 OLED 소자). 도 3B: 2개의 발광층(즉, 녹색 하부 EML 및 적색 상부 EML)을 갖는 기준 OLED 소자. 도 3C: 우수한 컬러 안정성을 위한 3개의 발광층 스택(즉, 적색 하부 EML 후 녹색 EML 다음 상부에 다른 유사한 적색 EML)을 갖는 본 발명의 구체예에 따른 소자. 도 3D: 우수한 컬러 안정성을 위한 3개의 발광층 스택을 갖는 본 발명의 구체예에 따른 일반적인 구조물(architecture). 일구체예에서, EML #1 및 EML #2는 컬러가 상이하고, EML #1 및 EML #3은 컬러가 유사하고, 발광 피크의 차이가 < 10 nm이다. 예컨대, 3개의 EML 스택은 전반적인 황색 발광을 위해 적색-녹색-적색 스택일 수 있거나, 또는 이는 백색 OLED(WOELD)를 위해 황색-청색-황색 스택일 수 있다.
도 4는 하부 EML A, 상부 EML A' 및 그 사이의 2 이상의 중간 발광층(EML B 내지 EML X)을 갖는 발광층 스택을 도시한다. EML A 및 EML A'는 동일한 컬러 영역에서 발광한다. 중간 발광층 중 1 이상은 EML A 및 A'와는 상이한 컬러 영역에서 발광한다.
도 5A 내지 5D를 포함하는 도 5는 본 발명의 구체예에 따른 몇 가지 색 안정성 백색 OLED 구조물을 도시한다. 도 5A: B-Y-B 또는 Y-B-Y EML 스택을 갖는 단일 스택 백색 OLED. Y는 또한 R 및 G EML로 대체될 수 있다. 도 5B: 탠덤형 구조물은 B-Y-B 또는 Y-B-Y EML 스택을 갖는 2 이상의 백색 OLED 스택을 가질 수 있다. Y EML은 또한 R/G EML일 수 있다. 도 5C 및 5D: 1 이상의 하이브리드 청색 스택 및 1 이상의 인광성 RG 스택을 포함하는 탠덤형 구조물. 인광성 RG 스택은 R-G-R 또는 G-R-G EML 스택을 가질 수 있다.
도 6A 내지 6C를 포함하는 도 6은, 전류 밀도가 RG 스택을 갖는 기준 OLED 소자에 대해 1 mA/㎠ 내지 80 mA/㎠로 변동될 때, 에이징되지 않은 소자의 정규화된 EL 스펙트럼 데이터(도 6A); GR 스택을 갖는 기준 소자(도 6B); 및 RGR 스택을 갖는 본 발명의 구체예에 따른 OLED 소자(도 6C)를 도시한다.
도 7A 내지 7C를 포함하는 도 7은, 전류 밀도가 RG 스택을 갖는 기준 OLED 소자에 대해 1 mA/㎠ 내지 80 mA/㎠로 변동될 때, 에이징된 소자의 정규화된 EL 스펙트럼 데이터(도 7A); GR 스택을 갖는 기준 소자(도 7B); 및 RGR 스택을 갖는 본 발명의 구체예에 따른 OLED 소자(도 7C)를 도시한다.
도 2는 별도의 전자 수송층을 갖지 않는 역전된 유기 발광 소자를 도시한다.
도 3A 내지 3D를 포함하는 도 3은 일련의 4개의 OLED 소자를 도시한다. 도 3A: 2개의 발광층(EML)(즉, 적색 하부 EML 및 녹색 상부 EML)을 갖는 기준 OLED 소자). 도 3B: 2개의 발광층(즉, 녹색 하부 EML 및 적색 상부 EML)을 갖는 기준 OLED 소자. 도 3C: 우수한 컬러 안정성을 위한 3개의 발광층 스택(즉, 적색 하부 EML 후 녹색 EML 다음 상부에 다른 유사한 적색 EML)을 갖는 본 발명의 구체예에 따른 소자. 도 3D: 우수한 컬러 안정성을 위한 3개의 발광층 스택을 갖는 본 발명의 구체예에 따른 일반적인 구조물(architecture). 일구체예에서, EML #1 및 EML #2는 컬러가 상이하고, EML #1 및 EML #3은 컬러가 유사하고, 발광 피크의 차이가 < 10 nm이다. 예컨대, 3개의 EML 스택은 전반적인 황색 발광을 위해 적색-녹색-적색 스택일 수 있거나, 또는 이는 백색 OLED(WOELD)를 위해 황색-청색-황색 스택일 수 있다.
도 4는 하부 EML A, 상부 EML A' 및 그 사이의 2 이상의 중간 발광층(EML B 내지 EML X)을 갖는 발광층 스택을 도시한다. EML A 및 EML A'는 동일한 컬러 영역에서 발광한다. 중간 발광층 중 1 이상은 EML A 및 A'와는 상이한 컬러 영역에서 발광한다.
도 5A 내지 5D를 포함하는 도 5는 본 발명의 구체예에 따른 몇 가지 색 안정성 백색 OLED 구조물을 도시한다. 도 5A: B-Y-B 또는 Y-B-Y EML 스택을 갖는 단일 스택 백색 OLED. Y는 또한 R 및 G EML로 대체될 수 있다. 도 5B: 탠덤형 구조물은 B-Y-B 또는 Y-B-Y EML 스택을 갖는 2 이상의 백색 OLED 스택을 가질 수 있다. Y EML은 또한 R/G EML일 수 있다. 도 5C 및 5D: 1 이상의 하이브리드 청색 스택 및 1 이상의 인광성 RG 스택을 포함하는 탠덤형 구조물. 인광성 RG 스택은 R-G-R 또는 G-R-G EML 스택을 가질 수 있다.
도 6A 내지 6C를 포함하는 도 6은, 전류 밀도가 RG 스택을 갖는 기준 OLED 소자에 대해 1 mA/㎠ 내지 80 mA/㎠로 변동될 때, 에이징되지 않은 소자의 정규화된 EL 스펙트럼 데이터(도 6A); GR 스택을 갖는 기준 소자(도 6B); 및 RGR 스택을 갖는 본 발명의 구체예에 따른 OLED 소자(도 6C)를 도시한다.
도 7A 내지 7C를 포함하는 도 7은, 전류 밀도가 RG 스택을 갖는 기준 OLED 소자에 대해 1 mA/㎠ 내지 80 mA/㎠로 변동될 때, 에이징된 소자의 정규화된 EL 스펙트럼 데이터(도 7A); GR 스택을 갖는 기준 소자(도 7B); 및 RGR 스택을 갖는 본 발명의 구체예에 따른 OLED 소자(도 7C)를 도시한다.
일반적으로, OLED는 애노드 및 캐소드 사이에 배치되어 이에 전기 접속되는 1종 이상의 유기층을 포함한다. 전류가 인가되면, 애노드는 정공을 유기층(들)에 주입하고, 캐소드는 전자를 주입한다. 주입된 정공 및 전자는 각각 반대로 하전된 전극을 향하여 이동한다. 전자 및 정공이 동일한 분자상에 편재화될 경우, 여기된 에너지 상태를 갖는 편재화된 전자-정공쌍인 "엑시톤"이 형성된다. 엑시톤이 광발광 메카니즘에 의하여 이완될 경우 광이 방출된다. 일부의 경우에서, 엑시톤은 엑시머 또는 엑시플렉스상에 편재화될 수 있다. 비-방사 메카니즘, 예컨대 열 이완도 또한 발생할 수 있으나, 일반적으로 바람직하지 않은 것으로 간주된다.
초기 OLED는 예를 들면 미국 특허 제 4,769,292호에 개시된 바와 같은 단일항 상태로부터 광("형광")을 방출하는 발광 분자를 사용하였으며, 상기 특허 문헌은 그 전문이 본원에 참고로 포함된다. 형광 방출은 일반적으로 10 나노초 미만의 시간 기간으로 발생한다.
보다 최근에는, 삼중항 상태로부터의 광("인광")을 방출하는 발광 물질을 갖는 OLED가 예시되어 있다. 문헌[Baldo et al., "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices," Nature, vol. 395, 151-154, 1998 ("Baldo-I")] 및 [Baldo et al., "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) ("Baldo-II")]을 참조하며, 이들 문헌은 그 전문이 본원에 참고로 포함된다. 인광은 참고로 포함되는 미국 특허 제7,279,704호에 보다 구체적으로 기재되어 있다.
도 1은 유기 발광 소자(100)를 도시한다. 도면은 반드시 축척에 의하여 도시하지는 않았다. 소자(100)는 기판(110), 애노드(115), 정공 주입층(120), 정공 수송층(125), 전자 차단층(130), 발광층(135), 정공 차단층(140), 전자 수송층(145), 전자 주입층(150), 보호층(155), 캐소드(160) 및 차단층(170)을 포함할 수 있다. 캐소드(160)는 제1의 전도층(162) 및 제2의 전도층(164)을 갖는 화합물 캐소드이다. 소자(100)는 기재된 순서로 층을 증착시켜 제조될 수 있다. 이들 다양한 층뿐 아니라, 예시의 물질의 성질 및 기능은 참고로 포함되는 미국 특허 제7,279,704호에 보다 구체적으로 기재되어 있다.
이들 각각의 층에 대한 더 많은 예도 이용 가능하다. 예를 들면 가요성 및 투명한 기판-애노드 조합은 미국 특허 제 5,844,363호에 개시되어 있으며, 이 특허 문헌은 그 전문이 본원에 참고로 포함된다. p-도핑된 정공 수송층의 예는 미국 특허 출원 공개 공보 제2003/0230980호에 개시된 바와 같이, 50:1의 몰비로 F4-TCNQ로 도핑된 m-MTDATA이며, 이 특허 문헌은 그 전문이 본원에 참고로 포함된다. 발광 및 호스트 물질의 예는 미국 특허 제6,303,238호(Thompson et al.)에 개시되어 있으며, 이 특허 문헌은 그 전문이 본원에 참고로 포함된다. n-도핑된 전자 수송층의 예는 미국 특허 출원 공개 공보 제2003/0230980호에 개시된 바와 같이, 1:1의 몰비로 Li로 도핑된 BPhen이고, 이 특허 문헌은 그 전문이 본원에 참고로 포함된다. 그 전문이 본원에 참고로 포함되는 미국 특허 제5,703,436호 및 제5,707,745호에는 적층된 투명, 전기전도성 스퍼터-증착된 ITO 층을 갖는 Mg:Ag와 같은 금속의 박층을 갖는 화합물 캐소드를 비롯한 캐소드의 예가 개시되어 있다. 차단층의 이론 및 용도는 미국 특허 제 6,097,147호 및 미국 특허 출원 공개 공보 제2003/0230980호에 보다 구체적으로 기재되어 있으며, 이들 특허 문헌은 그 전문이 본원에 참고로 포함된다. 주입층의 예는 미국 특허 출원 공개 공보 제2004/0174116호에 제공되어 있으며, 이 특허 문헌은 그 전문이 본원에 참고로 포함된다. 보호층의 설명은 미국 특허 출원 공개 공보 제2004/0174116호에서 찾아볼 수 있으며, 이들 특허 문헌은 그 전문이 본원에 참고로 포함된다.
도 2는 역전된 OLED(200)를 도시한다. 소자는 기판(210), 캐소드(215), 발광층(220), 정공 수송층(225) 및 애노드(230)를 포함한다. 소자(200)는 기재된 순서로 층을 적층시켜 제조될 수 있다. 가장 흔한 OLED 구조는 애노드의 위에 캐소드가 배치되어 있고 소자(200)가 애노드(230)의 아래에 캐소드(215)가 배치되어 있으므로, 소자(200)는 "역전된" OLED로 지칭될 수 있다. 소자(100)에 관하여 기재된 것과 유사한 물질이 소자(200)의 해당 층에 사용될 수 있다. 도 2는 소자(100)의 구조로부터 일부 층이 얼마나 생략될 수 있는지의 일례를 제공한다.
도 1 및 도 2에 도시된 단순 적층된 구조는 비제한적인 예로서 제공하며, 본 발명의 실시양태는 다양한 기타의 구조와 관련하여 사용될 수 있는 것으로 이해하여야 한다. 기재된 특정한 물질 및 구조는 사실상 예시를 위한 것이며, 기타의 물질 및 구조도 사용될 수 있다. 작용성 OLED는 기재된 다양한 층을 상이한 방식으로 조합하여 달성될 수 있거나 또는 층은 디자인, 성능 및 비용 요인에 기초하여 전적으로 생략할 수 있다. 구체적으로 기재되지 않은 기타의 층도 또한 포함될 수 있다. 이들 구체적으로 기재된 층을 제외한 물질을 사용할 수 있다. 본원에 제공된 다수의 예가 단일 물질을 포함하는 것으로서 다양한 층을 기재하기는 하나, 물질, 예컨대 호스트 및 도펀트의 혼합물 또는 보다 일반적으로 혼합물을 사용할 수 있다. 또한, 층은 다수의 하부층을 가질 수 있다. 본원에서 다양한 층에 제시된 명칭은 엄격하게 제한하고자 하는 것은 아니다. 예를 들면, 소자(200)에서 정공 수송층(225)은 정공을 수송하며, 정공을 발광층(220)에 주입하며, 정공 수송층 또는 정공 주입층으로서 기재될 수 있다. 하나의 실시양태에서, OLED는 캐소드와 애노드 사이에 배치된 "유기층"을 갖는 것으로 기재될 수 있다. 이러한 유기층은 단일층을 포함할 수 있거나 또는 예를 들면 도 1 및 도 2와 관련하여 기재된 바와 같은 상이한 유기 물질의 복수의 층을 더 포함할 수 있다.
구체적으로 기재하지 않은 구조 및 물질, 예컨대 미국 특허 제 5,247,190호(Friend et al.)에 기재된 바와 같은 중합체 물질(PLED)을 포함하는 OLED를 사용할 수 있으며, 이 특허 문헌은 그 전문이 본원에 참고로 포함된다. 추가의 예로서, 단일 유기층을 갖는 OLED를 사용할 수 있다. OLED는 예를 들면 미국 특허 제 5,707,745호(Forrest et al.)에 기재된 바와 같이 적층될 수 있으며, 이 특허 문헌은 그 전문이 본원에 참고로 포함된다. OLED 구조는 도 1 및 도 2에 도시된 단순 적층된 구조로부터 벗어날 수 있다. 예를 들면, 기판은 미국 특허 제 6,091,195호(Forrest et al.)에 기재된 바와 같은 메사형(mesa) 구조 및/또는 미국 특허 제 5,834,893호(Bulovic et al.)에 기재된 피트형(pit) 구조와 같은 아웃-커플링(out-coupling)을 개선시키기 위한 각진 반사면을 포함할 수 있으며, 이들 특허 문헌은 그 전문이 본원에 참고로 포함된다.
반대의 의미로 명시하지 않는 한, 다양한 실시양태의 임의의 층은 임의의 적절한 방법에 의하여 적층될 수 있다. 유기층의 경우, 바람직한 방법으로는 미국 특허 제6,013,982호 및 제6,087,196호(이 특허 문헌은 그 전문이 본원에 참고로 포함됨)에 기재된 바와 같은 열 증발, 잉크-제트, 미국 특허 제 6,337,102호(Forrest et al.)(이 특허 문헌은 그 전문이 본원에 참고로 포함됨)에 기재된 바와 같은 유기 증기상 증착(OVPD), 미국 특허 출원 제10/233,470호(이 특허 문헌은 그 전문이 본원에 참고로 포함됨)에 기재된 바와 같은 유기 증기 제트 프린팅(OVJP)에 의한 증착을 들 수 있다. 기타의 적절한 증착 방법은 스핀 코팅 및 기타의 용액계 공정을 포함한다. 용액계 공정은 질소 또는 불활성 분위기 중에서 실시되는 것이 바람직하다. 기타의 층의 경우, 바람직한 방법은 열 증발을 포함한다. 바람직한 패턴 형성 방법은 마스크를 통한 증착, 미국 특허 제6,294,398호 및 제6,468,819호(이 특허 문헌은 그 전문이 본원에 참고로 포함됨)에 기재된 바와 같은 냉간 용접 및, 잉크-제트 및 OVJD와 같은 일부 증착 방법과 관련된 패턴 형성을 포함한다. 증착시키고자 하는 물질은 특정한 증착 방법과 상용성을 갖도록 변형될 수 있다. 예를 들면, 분지형 또는 비분지형, 바람직하게는 3개 이상의 탄소를 포함하는 알킬 및 아릴 기와 같은 치환기는 이의 용액 가공의 처리 능력을 향상시키기 위하여 소분자에 사용될 수 있다. 20개 이상의 탄소를 갖는 치환기를 사용할 수 있으며, 3 내지 20개의 탄소가 바람직한 범위이다. 비대칭 구조를 갖는 물질은 대칭 구조를 갖는 것보다 더 우수한 용액 가공성을 가질 수 있는데, 비대칭 물질은 재결정화되는 경향이 낮을 수 있기 때문이다. 덴드리머 치환기는 용액 가공을 처리하는 소분자의 능력을 향상시키기 위하여 사용될 수 있다.
본 발명의 실시양태에 의하여 제조된 소자는 차단층을 추가로 임의로 포함할 수 있다. 차단층의 하나의 목적은 전극 및 유기층이 수분, 증기 및/또는 기체 등을 포함하는 환경에서 유해한 종에 대한 노출로 인하여 손상되지 않도록 한다. 차단층은 기판의 위에서, 기판의 아래에서 또는 기판의 옆에서, 전극 또는, 엣지를 포함하는 소자의 임의의 기타 부분의 위에서 증착될 수 있다. 차단층은 단일층 또는 다중층을 포함할 수 있다. 차단층은 각종 공지의 화학적 증착 기법에 의하여 형성될 수 있으며 복수의 상을 갖는 조성물뿐 아니라 단일 상을 갖는 조성물을 포함할 수 있다. 임의의 적절한 물질 또는 물질의 조합을 차단층에 사용할 수 있다. 차단층은 무기 또는 유기 화합물 또는 둘다를 혼입할 수 있다. 바람직한 차단층은 미국 특허 제7,968,146호, PCT 특허 출원 번호 PCT/US2007/023098 및 PCT/US2009/042829에 기재된 바와 같은 중합체 물질 및 비-중합체 물질의 혼합물을 포함하며, 이들 문헌의 개시내용은 본원에 그 전문이 참고로 포함된다. "혼합물"을 고려하면, 차단층을 포함하는 전술한 중합체 및 비-중합체 물질은 동일한 반응 조건하에서 및/또는 동일한 시간에서 증착되어야만 한다. 중합체 대 비-중합체 물질의 중량비는 95:5 내지 5:95 범위내일 수 있다. 중합체 및 비-중합체 물질은 동일한 전구체 물질로부터 생성될 수 있다. 한 예에서, 중합체 및 비-중합체 물질의 혼합물은 본질적으로 중합체 규소 및 무기 규소로 이루어진다.
본 발명의 실시양태에 따라 제조된 소자는 다양한 전자 제품 또는 중간 컴포넌트에 도입될 수 있는 광범위한 전자 부품 모듈 (또는 유닛)에 도입될 수 있다. 이러한 전자 제품 또는 중간 컴포넌트의 예는 최종 제품 제조자에 의해 이용될 수 있는 디스플레이 스크린, 조명 소자 예컨대 개별 광원 소자 또는 조명 패널, 등을 포함한다. 이러한 전자 부품 모듈은 경우에 따라 구동 전자장치 및/또는 전원(들)을 포함할 수 있다. 본 발명의 실시양태에 따라 제조된 소자는 그 속에 하나 이상의 전자 부품 모듈 (또는 유닛)이 도입되어 포함되는 광범위한 소비재에 도입될 수 있다. 이러한 소비재는 하나 이상의 광원(들) 및/또는 몇몇 종류의 시청 디스플레이 중 하나 이상을 포함하는 임의 종류의 제품을 포함한다. 이러한 소비재의 일부 예로는 평판 패널 디스플레이, 컴퓨터 모니터, 의료용 모니터, 텔레비젼, 광고판, 실내 또는 옥외 조명 및/또는 시그날링을 위한 라이트, 헤드업 디스플레이, 완전 또는 부분 투명 디스플레이, 플렉시블 디스플레이, 레이저 프린터, 전화기, 휴대폰, 타블렛, 파블렛, 개인용 정보 단말기(PDA), 랩탑 컴퓨터, 디지털 카메라, 캠코더, 뷰파인더, 마이크로디스플레이, 3-D 디스플레이, 비히클, 대형벽, 극장 또는 스타디움 스크린, 또는 간판을 포함한다. 패시브 매트릭스 및 액티브 매트릭스를 비롯한 다양한 제어 메카니즘을 사용하여 본 발명에 의한 소자를 제어할 수 있다. 다수의 소자는 사람에게 안락감을 주는 온도 범위, 예컨대 18℃ 내지 30℃, 더욱 바람직하게는 실온(20℃ 내지 25℃)에서 사용하도록 의도되지만, 이러한 온도 범위를 벗어나서, 예를 들면 -40℃ 내지 +80℃에서 사용될 수 있다.
당업계에 공지된 다수의 유기 발광 다이오드(OLED)는 다수의 발광층을 포함한다. 예컨대, 백색 OLED는 2~3개의 발광층을 포함할 수 있거나, 또는 하이브리드 백색 OLED의 황색 스택은 2 또는 3 개의 적색 및 녹색 발광층을 포함할 수 있다. 따라서, 이러한 소자의 최적화는 통상적으로 전하 균형 및 발광층의 계면에서의 재조합 영역의 "피닝 다운" 또는 한정을 필요로 한다. 그러나, 최적화된 구조에서도, 소자가 다양한 전류에서 구동될 때, 컬러는 여전히 변동될 수 있다. 이는 소자의 컬러 안정성이 개선을 필요로 함을 예시한다.
본 명세서에는, 3개의 발광층 사이에 임의의 다른 층이 없이 서로 인접되어 있는 3개의 발광층을 포함하는 발광 스택이 설명된다. 일구체예에서, 하부 발광층 및 상부 발광층은 2개의 동일 또는 실질적으로 유사한 컬러를 발광하는 반면, 중간 발광층은 하부 및 상부 층과는 상이한 컬러를 발광한다. 이러한 구체예에서, 구동 조건의 변화 동안 최소 컬러 이동을 달성할 수 있다.
본 명세서에서 고려되는 바와 같이, 발광 스택의 대칭 설계는 OLED의 컬러 안정성에 상당히 이익을 줄 수 있다. 이 상당히 개선된 구조는 발광층의 계면에서 피닝 다운된 재조합 구역을 갖는다. 구조의 대칭성으로 인해, 구동 조건에서의 변화로 인한 재조합 구조의 약한 이동은 소자의 발광 특성을 변경하지 않는다. 따라서, 발광 스택은 하부 방출, 하부 방출 미세 공동 및 상부 방출 미세 공동 구조에 사용될 수 있는 매우 색 안정적인 다층 구조이다. 스택은 또한 색 안정성 OLED 소자를 제조하기 위해 OLED에서 1 이상의 다른 발광성 스택과 함께 단일 성분(예컨대 황색 성분)으로서 사용될 수 있다(예컨대, 탠덤형 또는 적층형 백색 OLED에서 청색 스택과 함께 사용되는 황색 스택). 이제 도 3을 참조하면, 일련의 OLED 소자 구조물이 도시되어 있다. 일구체예에서, 도 3C 및 3D에 도시된 소자(300)는 상부 발광층(310), 중간 발광층(320) 및 하부 발광층(330)을 포함하는 발광층 스택을 포함한다. 상부 발광층(310)은 하부 발광층(330)과 동일 또는 유사한 컬러를 발광(즉, 도 3에서 적색 광(R))하는 반면, 중간 발광층(320)은 발광층(310 및 330)과는 상이한 컬러를 발광한다(즉, 도 3C에서 녹색 광(G)). 또한, 발광층(310, 320 및 330)은 서로 인접하거나 서로 접촉되어 있고, 발광층(310, 320 및 330) 사이에 다른 층은 없다. 따라서, 재조합 구역은 대칭 층 구조물로 인해 한정된다. 역으로, 도 3A 및 3B에 도시된 종래 기술의 비교 소자는 2개의 발광층만을 가지며, 2개의 발광층은 서로 상이한 컬러를 방출한다. 이러한 종래 기술의 소자 구조물에서, 재조합 구역은 발광성 스택의 한쪽에서 다른 쪽으로 이동할 수 있으며, 이로써 본 발명의 대칭 스택 구조물에 비해 전류가 변동시 더 높은 컬러 이동이 생길 수 있다. 그러나, 소자(300)에 도시된 구조물은 이러한 종래 기술의 구조물에 비해 예상치 못 한 상당한 개선을 나타낸다.
본 개시 전체에서, 본 발명의 발광성 스택의 상부 발광층 및 하부 발광층은 동일 또는 유사한 컬러를 가지며 동일한 컬러를 발광하며 동일한 컬러 영역에서 발광하는 것 등으로 지칭된다. 이들 용어 또는 표현은 본 명세서에서 상호 교환적으로 사용되며, 이는 일반적으로 동일하거나 또는 실질적으로 유사한 발광 피크로 발광하는 층을 지칭한다. 예컨대, 일구체예에서, 2개의 발광층은 10 nm 미만의 2개 층의 발광 피크의 차이가 있을 경우, 동일한 컬러를 방출하는 것으로 고려된다. 다른 구체예에서, 2개의 발광층은 2개 층의 발광 피크의 차이가 5 nm, 8 nm, 11 nm, 12 nm, 13 nm, 14 nm, 15 nm, 20 nm, 25 nm, 30 nm, 40 nm 또는 50 nm 미만일 경우, 동일한 컬러를 방출하는 것으로 고려된다. 그러나, 본 명세서에 기재된 발광층은 상기 열거된 특정 발광 피크 기준 값에 한정되지 않으며, 2개 층의 발광 피크의 차이는 당업자가 동일 또는 유사한 컬러를 발광하는 층을 나타낸다고 고려할 수 있는 임의의 차이일 수 있다. 또한, 층이 동일 또는 상이한 컬러를 갖는지를 정량하는 임의의 방법 또는 기술이 사용될 수 있으며, 3개 발광층의 광 출력은 이러한 측정법에 따라 유도될 수 있음이 본 명세서에서 고려된다. 따라서, 본 명세서에 기재된 발광층 스택은 동일 또는 유사한 컬러를 갖는 것으로 층을 분류하는 데에 발광 피크를 사용하는 것에 한정되지 않으며, 당업자가 이해하는 바와 같이, 임의의 다른 방법 또는 측정법을 발광층으로부터 방출된 컬러를 정량하는 데에 사용할 수 있다.
예컨대, 각각 단일 발광층으로 성장된 2개 소자의 1931 CIE (x, y) 색 좌표를 비교함으로써, 동일 또는 유사한 컬러를 한정할 수 있다. 2개 소자는, 하나의 소자가 상부 발광층에 상당하는 발광층을 갖는 것(즉, 본 명세서에 기재된 구조물을 갖는 OLED 소자에 사용되는 상부 발광층과 동일한 조성 및 두께를 가짐) 및 다른 소자가 하부 발광층에 상당하는 발광층을 갖는 것 외에는, 동일한 구조를 갖도록 제조된다. 이들 2개 소자가 서로 0.05 이내, 바람직하게는 0.03 이내 또는 더욱 바람직하게는 0.01 이내의 차이로 1931 CIE x 및 1931 CIE y 좌표를 갖는 광을 방출할 경우, 발광 스택에 기재된 상부 발광층 및 하부 발광층은 본 개시를 목적으로 동일한 컬러 영역에서 발광한다.
이전에 기재된 바와 같이, 본 발명은 3개 층 사이의 계면에 재조합 구역을 한정하는 대칭 구조물을 갖는 3층 발광성 스택에 관한 것이다. 3개 층 각각은 임의의 컬러의 것일 수 있거나 또는 임의의 발광 피크를 가질 수 있으며, 단, 상기 층을 OLED 소자로 제작시, 상부 및 하부 층의 컬러는 적절하게는 서로 유사하지만, 소자가 이 대칭 구조물이 없는 다른 소자에 비해 컬러 안정성의 개선을 나타내도록, 중간층의 컬러가 충분히 상이하다. 따라서, 3개 층의 특성 또는 조성은 본 명세서에 개시된 특정 구체예와 상이할 수 있다.
또한, 임의의 컬러의 발광층을 스택에 사용할 수 있으며, 컬러는 본 명세서에 개시된 임의의 특정 컬러에 한정되지 않는다. 예컨대, 도 3C 및 3D에 도시된 스택은 적색-녹색-적색, 녹색-적색-녹색, 청색-황색-청색, 황색-청색-황색, 녹색-황색-녹색, 황색-녹색-황색, 심청색-연청색-심청색, 연청색-심청색-연청색, 황색-적색-황색, 또는 적색-황색-적색의 컬러 구성을 갖는 상부-중간-하부 층을 포함할 수 있지만, 당업자가 이해하는 바와 같이 임의의 다른 컬러를 사용할 수 있다. 유사하게, 본 발명의 발광성 스택을 포함하는 OLED 소자로부터 방출된 광의 컬러는 하기를 포함하나 이에 한정되지 않는 임의의 컬러일 수 있다: 백색 광, 적색 광, 녹색 광, 황색 광, 또는 청색 광. 따라서, 임의의 구성의 컬러를 OLED 소자에 요구되는 대로 스택에 사용할 수 있다.
도 4를 참조하면, 일구체예에서, 스택(400)은 중간 발광층(321 및 322)과 같은 2 이상의 중간 발광층을 포함하는 중간 발광층 영역(320)을 포함할 수 있다. 중간 발광층(321, 322) 및 다른 것은 각각 중간 발광층 영역(320) 내 다른 층에 비해 상이한 컬러 영역에서 또는 동일한 컬러 영역에서 발광할 수 있다. 예컨대, 중간 발광층(321)은 적색 광을 방출할 수 있는 반면, 중간 발광층(322)은 녹색 광을 방출한다. 그러나, 중간 발광층 영역(320) 내 1 이상의 중간 발광층은 상부(또는 제1) 발광층(310) 및 하부(또는 제N) 발광층(320)과는 상이한 컬러 영역에서 발광할 것이다. 따라서, 중간 발광층 영역(320)은 그 전체로 통상적으로 상부 발광층(310) 및 하부 발광층(330)과는 상이한 컬러의 광을 방출할 것으로 고려된다. 또한, 발광층만이 스택(400)에 포함된다. 즉, 비발광층은 발광층(310, 320 및 330) 사이에 또는 각각의 중간 발광층(321, 322) 사이에 포함되지 않는다. 중간 발광층 영역(320)은 임의의 수의 중간 발광층을 포함할 수 있다. 일구체예에서, 중간 발광층 영역은 2개의 중간 발광층을 갖는다. 다른 구체예에서, 중간 발광층 영역은 3, 4, 5, 6, 7, 8, 9, 10 개 이상의 중간 발광층을 가질 수 있다. 스택(400)은 당업자가 이해하는 바와 같이 OLED 소자의 임의의 구체예에 사용될 수 있다. 일구체예에서, 스택(400)은 OLED 소자 내 제1 전극과 제2 전극 사이에 배치된 N개의 발광층을 갖는 발광성 스택이며, 여기서 제1(상부) 발광층은 제1 전극에 가장 가까운 발광층이며, 제N(하부) 발광층은 제2 전극에 가장 가까운 발광층이며, 스택은 제1 발광층과 제N 발광층 사이에 1 이상의 중간 발광층을 갖는다.
이제 도 5를 참조하면, 일련의 OLED 구조물이 도시되어 있다. 도 5A의 OLED는 단일 대칭 발광성 스택을 포함하는 반면, 도 5B, 5C 및 5D의 OLED는 2개의 발광성 스택을 포함한다. 즉, 이는 탠덤형 소자이다. 도 5B의 OLED는 2개의 대칭 발광성 스택을 포함한다. 도 5C 및 5D의 OLED는 1개의 대칭 발광성 스택, 및 하이브리드 청색 발광성 스택(FI-B EML)인 제2 스택을 포함한다. 본 명세서에 지칭된 바의 하이브리드 청색 발광성 스택 또는 층은 형광성 및 인광성 모두의 청색 도펀트를 포함하는 발광성 스택 또는 층이다. 본 명세서에서 고려되는 소자는 단일 대칭 발광성 스택을 갖는 것에 한정되지 않으며, 2 이상의 대칭 발광성 스택을 갖는 소자를 포함할 수 있다. 또한, 다중 스택 소자는 본 명세서에 기재된 바의 대칭 구조물을 갖는 1 이상의 스택을 포함할 수 있는 반면, 또한 1 이상의 다른 유형의 스택 또는 발광층, 즉 당업계에 공지된 다른 스택 또는 발광층을 포함할 수 있다. 환언하면, 본 발명은 본 명세에 기재된 대칭형 발광성 스택만을 포함하는 소자에 한정되지 않는다. 일구체예에서, 도 5B 내지 5D에 도시된 바와 같이, 2 이상의 스택을 갖는 소자는 2개의 스택 사이에 전하 생성층(CGL)을 포함할 수 있다. 일구체예에서, CGL 층은 2개 스택 중 하나 또는 둘다와 접촉되어 있을 수 있다.
이전에 언급된 바와 같이, 이들 대칭 발광성 스택은 당업계에 공지된 다른 유형의 스택에 비해 상당히 개선된 컬러 안정성을 나타낸다. 본 개시의 목적을 위해, 용어 "컬러 안정성"은, 사용 기간 후에 또는 스택이 특정 조건에 노출된 후, 발광성 스택이 스택으로부터 방출된 광의 컬러의 변화를 나타내지 않는 경우를 일반적으로 지칭한다. 일구체예에서, 스택은 스택을 포함하는 소자의 구동 전류가 변경될 때, 즉 증가 또는 감소될 때, 다른 공지된 스택에 비해 양호한 컬러 안정성을 나타낸다. 일구체예에서, 스택의 컬러는 약 2 mA/㎠ 내지 약 80 mA/㎠의 구동 전류 밀도 범위 내에서, 또는 800 cd/㎡ 내지 30,000 cd/㎡의 휘도 변화 내에서 안정하다. 스택의 1931 CIE x 및 1931 CIE y 좌표는 각각 이 전류 밀도 또는 휘도 범위에서, 0.02 미만, 바람직하게는 0.01 미만 변화하고, Duv = √(Δu' 2 + Δv' 2 )는 0.02 미만, 바람직하게는 0.01 미만, 더욱 바람직하게는 0.007 미만일 경우, 이는 다양한 전류 밀도 또는 휘도에서 컬러 안정한 스택으로서 정의된다. 또는, 전류 밀도가 10 mA/㎠ 내지 50 mA/㎠로 변화하거나, 또는 휘도가 4,000 cd/㎡ 내지 20,000 cd/㎡로 변화할 때, 1931 CIE x 및 1931 CIE y 좌표가 각각 0.02 미만, 바람직하게는 0.01 미만, 더욱 바람직하게는 0.007 미만 변화하고, Duv가 0.02 미만, 바람직하게는 0.01 미만, 더욱 바람직하게는 0.007 미만일 경우, 이를 다양한 전류 밀도 또는 휘도에서 색 안정한 스택이라고 정의한다. 또는, 전류 밀도가 10 mA/㎠ 내지 20 mA/㎠로 변화하거나, 또는 휘도가 4,000 cd/㎡ 내지 10,000 cd/㎡로 변화할 때, 1931 CIE x 및 1931 CIE y 좌표가 각각 0.02 미만, 바람직하게는 0.01 미만, 더욱 바람직하게는 0.007 미만 변화하고, Duv가 0.02 미만, 바람직하게는 0.01 미만, 더욱 바람직하게는 0.007 미만일 경우, 이를 다양한 전류 밀도 또는 휘도에서 색 안정한 스택이라고 정의한다. 본 명세서에서 지칭되는 바의 Duv는 흑체 곡선으로부터의 조명 소자 색도의 CIE 1976 (L*, u*, v*) 컬러 공간 색도 도해에서의 최소 거리를 지칭한다. 즉, Duv는 등가 상호 관련 컬러 온도의 조명 소자와 흑체 방사체 사이의 색도의 차이의 기준이다. 이는 Duv = √(Δu'2+Δv'2) = √((u1'-u2')2 + (v1'-v2')2)를 기준으로 정량될 수 있으며, 여기서 (u1', v1')는 조명 소자의 좌표이고, (u2', v2')는 CIE 1976 (L*, u*, v*) 컬러 공각 색도 도해에서 조명 소자로부터의 최소 거리에서의 흑체 곡선의 좌표이다.
다른 구체예에서, 스택은 에이징 후, 예컨대 스택을 포함하는 소자를 소정 기간 동안 가열 및/또는 노광한 후, 개선된 컬러 안정성을 나타낸다. 예컨대, 스택을 이의 초기 휘도의 70%(LT70)로 에이징시키고, Duv가 0.007 미만일 때, 이는 에이징 공정 동안 색 안정적이다. 또는, 스택을 이의 초기 휘도의 90%(LT90)로 에이징시키고, Duv가 0.007 미만, 바람직하게는 0.005 미만, 더욱 바람직하게는 0.003 미만일 때, 이는 에이징 공정 동안 색 안정적이다. 또는, 스택을 이의 초기 휘도의 95%(LT95)로 에이징시키고, Duv가 0.007 미만, 바람직하게는 0.005 미만, 더욱 바람직하게는 0.003 미만일 때, 이는 에이징 공정 동안 색 안정적이다. 당업자가 이해하는 바와 같이, 소자 또는 스택으로부터 방출된 광의 컬러가 소정 기간에 걸쳐 컬러 특성의 통계적으로 유의적인 변화가 없을 경우, 이는 안정적인 것으로 고려될 수 있다.
이전에 기재된 바와 같이, 일구체예에서, OLED 소자는 본 명세서에 기재된 대칭 발광성 스택 외의 유형의 추가의 발광성 스택을 포함할 수 있다. 이러한 구체예에서, 1 이상의 대칭 발광성 스택은 본 명세서에 기재된 구조물의 컬러 안정화 효과를 나타낼 것인 반면, 다른 스택 유형은 더 낮은 컬러 안정성을 나타낼 수도 있음이 고려된다. 따라서, 이러한 소자를 단독으로 취할 경우, 다른 스택 유형에서의 컬러 안정성의 잠재적인 부족으로 인해 본 명세서에 정의된 바의 "컬러 안정적"이지 않을 수도 있다.
스택 내 각각의 발광층은 1 이상의 발광성 도펀트 및 1 이상의 호스트 재료를 포함하는 것으로 고려된다. 일구체예에서, 2개 층이 동일한 컬러를 발광하도록, 동일한 도펀트를 제1(상부) 및 제3(하부) 발광층에 사용할 수 있다. 그러나, 다른 구체예에서, 상부 및 하부 층은 상이한 도펀트를 이들 층에 사용하는 경우라도 동일한 컬러 영역에서 발광할 수 있으며, 스택은 본 명세서에 기재된 구조물로 인해 당업계의 다른 스택에 비해 우수한 컬러 안정성을 여전히 나타낼 수 있다.
실험
제1 실시예에서, 사이에 임의의 다른 층이 없이 서로 인접한 3개 발광층을 포함하는 OLED 소자를 제작하였다. 하부 발광층 및 상부 발광층은 2개의 유사한 컬러를 포함하였다. 이러한 경우, 발광층의 계면에서 피닝 다운된 재조합 구역 및 전하 균형을 달성하여 소자를 최적화할 때, 구동 조건의 변화 동안 최소 컬러 이동을 달성할 수 있다.
2개의 나중의 스택 구조물을 갖는 OLED 소자와 본 발명의 실시예 소자의 컬러 안정성을 비교하기 위해, 적색 및 녹색 발광층을 스택에 도포하고, 하기 3개 구조를 성장시켰다: RGR 스택, RG 스택 및 GR 스택. RGR 스택, RG 스택 및 GR 스택 소자는 표 1에 나타낸 바와 같이 거의 동일한 1931 CIE 색 좌표를 가졌다. 이들 소자는 또한 도 3에 도시된 바와 같이 유사한 구조물을 가졌지만, 층 두께 및 도핑 농도가 약간 변동되었다. RGR 스택은 도 3C의 3층 대칭 스택과 유사하였다. 다른 2개 스택은 도 3A 및 3B의 개략도에 유사한 기준 스택이었다.
[표 1] 구동 전류 밀도를 2 mA/㎠ 내지 80 mA/㎠로 변동시의, RG 스택, GR 스택 및 RGR 스택에서의 에이징되지 않은 소자의 컬러 변동 데이터
모든 소자는 열 증발에 의해 고진공(> 10-7 토르)에서 제작하였다. 애노드 전극은 ~800 Å의 인듐산화주석(ITO)이었다. 캐소드는 전자 주입층(EIL)으로서의 10 Å의 Liq 다음 1000 Å의 Al로 이루어져 있었다. 모든 소자를 제작 직후 질소 글로브 박스(<1 ppm의 H2O 및 O2)에서 에폭시 수지로 밀봉된 유리 뚜껑으로 캡슐화하고, 습기 겟터를 패키지 내부에 삽입하였다. RGR 스택 소자 실시예는 ITO 표면으로부터 순차적으로, 정공 주입층(HIL)으로서의 100 Å의 LG101(LG Chem으로부터 구입), 정공 수송층(HTL)으로서의 550 Å의 화합물 A, 정공 차단층(EBL)으로서의 50 Å의 화합물 B, 3개의 발광층(EML), 그 다음 정공 차단층으로서의 75 Å의 화합물 C, 및 전자 수송층(ETL)으로서의 350 Å의 공층착 Liq:LG201(LG Chem으로부터 구입)으로 이루어진 유기 스택을 가졌다. RGR 스택은 호스트로서의 화합물 C 및 공호스트로서의 24% 화합물 D 및 적색 에미터로서의 1% 화합물 E를 갖는 25 Å의 적색 발광층(EML), 호스트로서의 화합물 F 및 녹색 에미터로서의 15% 화합물 G를 갖는 250 Å의 녹색 EML, 및 호스트로서의 화합물 C 및 공호스트로서의 24% 화합물 D 및 적색 에미터로서의 1% 화합물 E를 갖는 제3의 25 Å의 적색 EML을 포함하였다. RGR 스택으로서 RG 및 GR 스택에서의 실질적으로 동일한 컬러를 얻기 위해, 두께 및 도핑 농도를 약간 변화시켜 RG 스택 및 GR 스택을 제작하였다. RG 스택은 호스트로서의 화합물 C 및 공호스트로서의 24% 화합물 D 및 적색 에미터로서의 2% 화합물 E를 갖는 25 Å의 적색 발광층(EML), 및 호스트로서의 화합물 F 및 녹색 에미터로서의 10% 화합물 G를 갖는 250 Å의 녹색 EML을 포함하였다. GR 스택은 호스트로서의 화합물 F 및 녹색 에미터로서의 26% 화합물 G를 갖는 250 Å의 녹색 EML, 및 호스트로서의 화합물 C 및 공호스트로서의 24% 화합물 D 및 적색 에미터로서의 2% 화합물 E를 갖는 제3의 25 Å의 적색 EML이었다. 소자 제작에 사용된 화합물은 하기 구조를 가졌다:
이들 3개 소자의 컬러 안정성을 평가하기 위해, 다양한 전류 입력에서 EL 스펙트럼을 측정하였다. 도 6은 전류 밀도를 2 mA/㎠ 내지 80 mA/㎠로 변동시의, EL 스펙트럼 데이터를 도시한다. 각각의 전류 밀도/휘도에서의 1931 CIE 좌표를 표 1에 열거한다. 넓은 범위의 휘도에 걸친 1931 CIE (x, y) 좌표의 변화를 산출하였다. CIE 1976 (u', v') 상에서의 80 mA/㎠ 내지 1 mA/㎠에서의 Duv = √(Δu'2+Δv'2) 컬러 차이도 산출하였다.
그 다음, 모든 3개의 소자를 실온에서 80 mA/㎠의 일정 전류에서 에이징시키고, 다양한 전류 입력에서 재차 EL 스펙트럼을 측정하였다. 도 7은 전류 밀도를 2 mA/㎠ 내지 80 mA/㎠로 변동시의 EL 스펙트럼 데이터를 도시한다. 하기 표 2는 에이징된 소자의 각각의 전류 밀도/휘도에서의 1931 CIE 좌표를 나타낸다.
[표 2] 구동 전류 밀도를 2 mA/㎠ 내지 80 mA/㎠로 변동시의, RG 스택, GR 스택 및 RGR 스택에서의 에이징된 소자의 컬러 변동 데이터
소자에 대한 에이징 동안의 컬러 이동도 비교하였다. RG, GR 및 RGR 소자의 에이징된 소자 데이터와 비교한 에이징되지 않은 소자 데이터를 하기 표 3에 나타낸다.
[표 3] 구동 전류 밀도가 10 mA/㎠일 때의, RG 스택, GR 스택 및 RGR 스택의 에이징 동안의 컬러 이동 데이터
입력 전류 밀도를 2 mA/㎠ 내지 80 mA/㎠로 변동시킬 경우, 이들 3개 구조의 CIE (x, y)의 1931 좌표는 이에 따라 변화하였다. 그러나, 소자가 에이징된 소자이던 에이징되지 않은 소자이던 간에, RGR 스택의 1931 CIE 좌표의 변동은 2개의 기준 스택에 비해 최소였다. 1976 색 좌표로 전환시, 1 mA/㎠ 내지 80 mA/㎠의 컬러 차이를 정량하는 RGR 스택의 duv 값도 3개의 소자 구조물 중 최소였다. RGR 스택의 에이징 동안의 컬러 안정성도 2개의 기준 구조보다 우수하였다.
이론에 의해 구속시키려는 것은 아니지만, 다양한 휘도 수준에서의 실시예 소자의 이 우수한 컬러 안정성은 3층 스택 구조물에서의 발광층의 대칭 소자 구조물로 인한 것이다. 구동 전류/전기장이 작을 경우, 재조합 구역은 정공 수송 호스트 환경으로 인해 ETL측에 더 가깝다. 전류/장을 증가시킬 경우, 추가의 전자가 HTL측으로 이송되어, 재조합 구역이 넓어지고, HTL측으로 이동한다. 구체적으로, RG 스택에 대해, 더 높은 구동 전류에서 컬러가 적색 이동된 반면, GR 스택에 대해 더 높은 전류에서 컬러가 녹색 이동되었다. RGR 스택에 대해, 전류/장이 증가될 때, 재조합 구역은 GR 계면으로부터 RG 계면을 향해 이동되었다. 2개의 적색 EML은 유사한 방출을 가지므로, RGR 스택의 전반적인 방출은 다양한 구동 전류/인가장에서 꽤 안정하게 유지되었다. 더욱 전자 지배적인 호스트 시스템으로 소자를 설계시, 전류/장이 증가될 때, 재조합 구역 이동은 반대 방향을 향할 수 있다. 그러나, RGR의 컬러 안정성은 대칭 설계로 인해 이 실험에서 분석된 모든 구조물 중에서 여전히 최고일 것 같다. 유사한 기전을 백색 스택을 위한 BYB와 같은 X-Y-X 스택에 적용할 수 있다.
한편, 녹색 및 적색 EML은 서로 인접해 있기 때문에, 다양한 구동 전류 동안 그리고 에이징 공정 동안 양쪽 컬러 안정성에 영향을 미치는 G EML로부터 R EML로의 에너지 전달이 있을 것이다. RG 스택에서, 예컨대, 재조합 구역은 낮은 구동 전류에서 ETL측에 가깝다. 전류가 증가될 때, 재조합 구역은 더 넓어져서, HTL측으로 이동하여 RG 계면에 더 가까워지고, 이에 따라 녹색에서 적색으로의 에너지 전달을 강화시킨다. 따라서, RG 및 GR 스택에서 에너지 전달이 더욱 유의적으로 영향을 받는다. RGR 스택에서, 재조합 구역은 하나의 계면에서 다른 계면으로 이동하여, 다양한 구동 조건에서의 에너지 전달은 유사하고, 이것이 더 양호한 컬러 안정성을 가져온다. 이는 에이징 동안의 컬러 안정성에도 적용될 수 있다. 에이징 공정 동안 재조합 구역이 이동할 수 있다. RGR 스택에서는, 동일한 속도로의 녹색 및 적색 에이징을 가져오는 대칭 구조물로 인해, 전체 에이징 공정을 통해 더 양호한 에너지 전달을 가질 가능성이 더 높아진다. 따라서, RGR 스택의 에이징 동안의 컬러 안정성도 RG 스택 및 GR 스택보다 더 양호하다. 동일한 기전이 다른 X-Y-X 대칭 구조물에도 적용될 수 있다.
당업자라면 본원에 기술된 다양한 구체예는 단지 예시이며, 본 발명의 범위를 제한하려는 것이 아님을 이해할 것이다. 예를 들면, 본원에 기술된 많은 재료 및 구조는 본 발명의 취지에서 벗어나는 일 없이 다른 재료 및 구조로 대체될 수 있다. 따라서, 청구된 본 발명은 당업자가 알 수 있는 바와 같이 본원에 기술된 특정예 및 바람직한 구체예로부터의 변형을 포함할 수 있다. 당업자라면 본 발명에 적용된 다양한 이론은 한정하고자 하는 것이 아님을 이해할 것이다.
Claims (20)
- 제1 전극;
제1 전극 위에 배치된 제1 발광성 스택(emissive stack); 및
제1 발광성 스택 위에 배치된 제2 전극
을 포함하는 유기 발광 소자로서,
제1 발광성 스택은 제1 전극측에 접촉되어 있고 제1 전극측으로부터 차례차례로 있는 N개의 발광층으로 이루어지고;
여기서, N은 3 이상의 정수이고;
제1 전극에 가장 가까운 제1 발광성 스택 내 제1 발광층 및 제2 전극에 가장 가까운 제1 발광성 스택 내 제N 발광층은 동일한 컬러 영역에서 발광하고,
제1 발광층 및 제N 발광층 외의 제1 발광성 스택 내 1 이상의 발광층은 제1 발광층 및 제N 발광층과는 상이한 컬러 영역에서 발광하는 유기 발광 소자. - 제1항에 있어서, 제1 발광층의 발광 피크와 제N 발광층의 발광 피크의 차이가 약 10 nm 미만인 소자.
- 제1항에 있어서, 제1 발광층 및 제N 발광층의 발광 피크와, 임의의 다른 발광층의 발광 피크의 차이가 약 10 nm 초과인 소자.
- 제1항에 있어서, 제1 발광층 및 제N 발광층은 적색 발광층이며, 제1 발광층 및 제N 발광층 외의 제1 발광성 스택 내 1 이상의 발광층은 녹색 발광층인 소자.
- 제1항에 있어서, 제1 발광층 및 제N 발광층은 녹색 발광층이며, 제1 발광층 및 제N 발광층 외의 제1 발광성 스택 내 1 이상의 발광층은 적색 발광층인 소자.
- 제1항에 있어서, 제1 발광층 및 제N 발광층은 황색 발광층이며, 제1 발광층 및 제N 발광층 외의 제1 발광성 스택 내 1 이상의 발광층은 청색 발광층인 소자.
- 제1항에 있어서, 제1 발광층 및 제N 발광층은 청색 발광층이며, 제1 발광층 및 제N 발광층 외의 제1 발광성 스택 내 1 이상의 발광층은 황색 발광층인 소자.
- 제1항에 있어서, 제1 발광성 스택 내 각각의 발광층이 1 이상의 호스트 재료 및 1 이상의 발광성 도펀트를 포함하며, 제1 발광층 내 1 이상의 발광성 도펀트의 조성은 제N 발광층 내 1 이상의 발광성 도펀트의 조성과 동일한 소자.
- 제8항에 있어서, 제1 발광성 스택 내 각각의 발광층 내 1 이상의 발광성 도펀트가 인광성 발광성 도펀트인 소자.
- 제8항에 있어서, 제1 발광성 스택 내 1 이상의 발광층은 인광성 도펀트를 포함하며, 제1 발광성 스택 내 1 이상의 발광층은 형광성 도펀트를 포함하는 소자.
- 제1항에 있어서, N은 3인 소자.
- 제1항에 있어서, 제1 발광성 스택으로부터 방출된 광의 각각의 1931 CIE (x, y) 색 좌표에서의 변화가 약 2 mA/㎠ 내지 80 mA/㎠ 범위 내의 전류 밀도의 임의의 변화에 대해 0.02 이하인 소자.
- 제1항에 있어서, 제1 발광성 스택으로부터 방출된 광의 각각의 1931 CIE (x, y) 색 좌표에서의 변화가 약 800 cd/㎡ 내지 30,000 cd/㎡ 범위 내의 휘도의 임의의 변화에 대해 0.02 이하인 소자.
- 제1항에 있어서, 소자를 이의 초기 휘도의 70%(LT70)로 에이징(aging)시킬 때, 제1 발광성 스택으로부터 방출된 광의 Duv 값이 0.02 미만인 소자.
- 제1항에 있어서, 제1 전극과 제2 전극 사이에 제2 발광성 스택을 더 포함하며, 여기서 제2 발광성 스택은 제1 발광성 스택과 접촉되어 있지 않고,
제2 발광성 스택은 제1 전극측에 접촉되어 있고 제1 전극측으로부터 차례차례로 있는 M개의 발광층을 가지며;
여기서, M은 3 이상의 정수이고;
제1 전극에 가장 가까운 제2 발광성 스택의 제1 발광층 및 제2 전극에 가장 가까운 제2 발광성 스택 내 제M 발광층은 동일한 컬러 영역에서 발광하고,
제1 발광층 및 제M 발광층 외의 제2 발광성 스택 내 1 이상의 발광층은 제2 발광성 스택 내 제1 발광층 및 제M 발광층과는 상이한 컬러 영역에서 발광하는 소자. - 제15항에 있어서, 제1 발광성 스택과 제2 발광성 스택 사이에 배치된 전하 생성층(CGL)을 더 포함하는 소자.
- 제1항에 있어서, 제1 전극과 제2 전극 사이에 그리고 제1 발광성 스택과 접촉되어 있지 않은 1 이상의 발광층을 더 포함하며, 상기 층은 형광성 청색 도펀트를 포함하는 소자.
- 제1 전극;
제2 전극; 및
제1 전극과 제2 전극 사이에 배치된 1 이상의 발광층 스택
을 포함하는 유기 발광 소자로서,
1 이상의 발광층 스택은 접촉되어 있고 차례차례로 있는 상부(top) 발광층, R개의 중간 발광층 및 하부(bottom) 발광층을 가지며;
여기서, R은 1 이상의 정수이고;
각각의 발광층은 1 이상의 호스트 재료 및 1 이상의 발광 도펀트를 포함하며;
상부 발광층 및 하부 발광층 내 1 이상의 발광 도펀트는 동일하고;
R개의 중간 발광층 중 1 이상 내 1 이상의 발광 도펀트는 상부 발광층 및 하부 발광층 모두 내 1 이상의 발광 도펀트와는 상이한 유기 발광 소자. - 상부 발광층;
하부 발광층; 및
S개의 중간 발광층
을 포함하는 유기 발광 소자용 발광 스택(light emitting stack)으로서,
여기서, S는 1 이상의 정수이고;
상부 발광층, S개의 중간 발광층 및 하부 발광층은 접촉되어 있고 차례차례로 있으며;
상부 발광층 및 하부 발광층은 동일한 컬러 영역에서 발광하고, S개의 중간 발광층 중 1 이상의 층은 상부 발광층 및 하부 발광층과는 상이한 컬러 영역에서 발광하는 유기 발광 소자용 발광 스택. - 제1항의 소자를 포함하는 제품으로서, 터치스크린, 플랫 패널 디스플레이, 컴퓨터 모니터, 의료용 모니터, 텔레비젼, 광고 게시판, 일반 조명 장치, 신호기(signal), 헤드업 디스플레이, 완전 투명 디스플레이, 플렉서블 디스플레이, 레이저 프린터, 전화, 휴대 전화, 개인 휴대 정보 단말기(PDA), 랩탑 컴퓨터, 디지털 카메라, 캠코더, 뷰파인더(viewfinder), 마이크로디스플레이(microdisplay), 운송 수단, 대면적 벽(large area wall), 영화관, 경기장 스크린 및 표지(sign)로 이루어진 군에서 선택되는 제품.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230104114A KR20230121708A (ko) | 2014-12-17 | 2023-08-09 | 컬러 안정성 유기 발광 다이오드 스택 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462093104P | 2014-12-17 | 2014-12-17 | |
US62/093,104 | 2014-12-17 | ||
US14/612,361 | 2015-02-03 | ||
US14/612,361 US10510973B2 (en) | 2014-12-17 | 2015-02-03 | Color-stable organic light emitting diode stack |
KR1020150150758A KR20160073906A (ko) | 2014-12-17 | 2015-10-29 | 컬러 안정성 유기 발광 다이오드 스택 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150150758A Division KR20160073906A (ko) | 2014-12-17 | 2015-10-29 | 컬러 안정성 유기 발광 다이오드 스택 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230104114A Division KR20230121708A (ko) | 2014-12-17 | 2023-08-09 | 컬러 안정성 유기 발광 다이오드 스택 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220024308A true KR20220024308A (ko) | 2022-03-03 |
KR102567127B1 KR102567127B1 (ko) | 2023-08-14 |
Family
ID=56130482
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150150758A KR20160073906A (ko) | 2014-12-17 | 2015-10-29 | 컬러 안정성 유기 발광 다이오드 스택 |
KR1020220016369A KR102567127B1 (ko) | 2014-12-17 | 2022-02-08 | 컬러 안정성 유기 발광 다이오드 스택 |
KR1020230104114A KR20230121708A (ko) | 2014-12-17 | 2023-08-09 | 컬러 안정성 유기 발광 다이오드 스택 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150150758A KR20160073906A (ko) | 2014-12-17 | 2015-10-29 | 컬러 안정성 유기 발광 다이오드 스택 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230104114A KR20230121708A (ko) | 2014-12-17 | 2023-08-09 | 컬러 안정성 유기 발광 다이오드 스택 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10510973B2 (ko) |
KR (3) | KR20160073906A (ko) |
CN (1) | CN105720201A (ko) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11145837B2 (en) | 2014-12-17 | 2021-10-12 | Universal Display Corporation | Color stable organic light emitting diode stack |
KR102350510B1 (ko) * | 2015-11-12 | 2022-01-12 | 삼성디스플레이 주식회사 | 유기 발광 소자 및 이를 포함하는 유기 발광 표시 장치 |
US10522776B2 (en) | 2016-05-23 | 2019-12-31 | Universal Display Corporation | OLED device structures |
JP6142070B1 (ja) * | 2016-12-27 | 2017-06-07 | Lumiotec株式会社 | 有機エレクトロルミネッセント素子および照明装置 |
JP6151847B1 (ja) * | 2016-12-27 | 2017-06-21 | Lumiotec株式会社 | 有機エレクトロルミネッセント素子および照明装置 |
CN107086271B (zh) * | 2017-04-25 | 2019-03-19 | 太原理工大学 | 一种荧光/磷光混合白光oled |
KR102241445B1 (ko) * | 2017-08-31 | 2021-04-16 | 엘지디스플레이 주식회사 | 백색 유기 발광 소자 및 이를 이용한 유기 발광 표시 장치 |
TW202046382A (zh) * | 2017-11-27 | 2020-12-16 | 日商尼康股份有限公司 | 發光元件與顯示裝置及其製造方法 |
US10770673B2 (en) | 2017-11-28 | 2020-09-08 | The Regents Of The University Of Michigan | Highly reliable stacked white organic light emitting device |
CN108198945B (zh) * | 2017-12-04 | 2019-10-15 | 武汉华星光电半导体显示技术有限公司 | 一种叠层oled器件及其制作方法 |
KR102470004B1 (ko) | 2018-01-23 | 2022-11-24 | 삼성전자주식회사 | 픽셀과 적어도 일부가 겹치도록 배치된 적외선 소자가 구비된 디스플레이 및 이를 포함하는 전자 장치 |
CN108922906A (zh) * | 2018-07-20 | 2018-11-30 | 深圳市华星光电半导体显示技术有限公司 | Oled显示器 |
US10692941B2 (en) | 2018-07-20 | 2020-06-23 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Organic light emitting diode display |
KR102645607B1 (ko) * | 2018-08-06 | 2024-03-07 | 엘지디스플레이 주식회사 | 발광다이오드 및 전계발광 표시장치 |
US20210036065A1 (en) * | 2019-07-29 | 2021-02-04 | Universal Display Corporation | Color stable multicolor OLED device structures |
US11031577B1 (en) | 2019-11-26 | 2021-06-08 | OLEDWorks LLC | Multimodal microcavity OLED with multiple blue emitting layers |
KR20210075282A (ko) * | 2019-12-12 | 2021-06-23 | 삼성디스플레이 주식회사 | 발광 소자 |
WO2021154690A1 (en) * | 2020-01-28 | 2021-08-05 | OLEDWorks LLC | Stacked oled microdisplay with low-voltage silicon backplane |
EP4012794A1 (en) * | 2020-12-11 | 2022-06-15 | Julius-Maximilians-Universität Würzburg | Emission of electromagnetic radiation and control of properties of the emitted electromagnetic radiation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070035240A1 (en) * | 2005-08-09 | 2007-02-15 | Au Optronics Corporation | White organic light-emitting diode |
KR20070060196A (ko) * | 2005-12-08 | 2007-06-13 | 한국전자통신연구원 | 백색 유기 전계 발광 소자 및 그 제조방법 |
JP2008270190A (ja) * | 2007-03-29 | 2008-11-06 | Konica Minolta Holdings Inc | 白色発光有機エレクトロルミネッセンス素子及び照明装置 |
KR20120041460A (ko) * | 2010-10-21 | 2012-05-02 | 엘지디스플레이 주식회사 | 유기전계발광소자 |
JP2012212575A (ja) * | 2011-03-31 | 2012-11-01 | Rohm Co Ltd | 有機el装置 |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4769292A (en) | 1987-03-02 | 1988-09-06 | Eastman Kodak Company | Electroluminescent device with modified thin film luminescent zone |
GB8909011D0 (en) | 1989-04-20 | 1989-06-07 | Friend Richard H | Electroluminescent devices |
US5707745A (en) | 1994-12-13 | 1998-01-13 | The Trustees Of Princeton University | Multicolor organic light emitting devices |
US5703436A (en) | 1994-12-13 | 1997-12-30 | The Trustees Of Princeton University | Transparent contacts for organic devices |
US5844363A (en) | 1997-01-23 | 1998-12-01 | The Trustees Of Princeton Univ. | Vacuum deposited, non-polymeric flexible organic light emitting devices |
US5834893A (en) | 1996-12-23 | 1998-11-10 | The Trustees Of Princeton University | High efficiency organic light emitting devices with light directing structures |
US6091195A (en) | 1997-02-03 | 2000-07-18 | The Trustees Of Princeton University | Displays having mesa pixel configuration |
US6013982A (en) | 1996-12-23 | 2000-01-11 | The Trustees Of Princeton University | Multicolor display devices |
US6303238B1 (en) | 1997-12-01 | 2001-10-16 | The Trustees Of Princeton University | OLEDs doped with phosphorescent compounds |
US6337102B1 (en) | 1997-11-17 | 2002-01-08 | The Trustees Of Princeton University | Low pressure vapor phase deposition of organic thin films |
US6087196A (en) | 1998-01-30 | 2000-07-11 | The Trustees Of Princeton University | Fabrication of organic semiconductor devices using ink jet printing |
US6097147A (en) | 1998-09-14 | 2000-08-01 | The Trustees Of Princeton University | Structure for high efficiency electroluminescent device |
US6294398B1 (en) | 1999-11-23 | 2001-09-25 | The Trustees Of Princeton University | Method for patterning devices |
JP4307000B2 (ja) | 2001-03-08 | 2009-08-05 | キヤノン株式会社 | 金属配位化合物、電界発光素子及び表示装置 |
US7071615B2 (en) | 2001-08-20 | 2006-07-04 | Universal Display Corporation | Transparent electrodes |
US7431968B1 (en) | 2001-09-04 | 2008-10-07 | The Trustees Of Princeton University | Process and apparatus for organic vapor jet deposition |
US20030230980A1 (en) | 2002-06-18 | 2003-12-18 | Forrest Stephen R | Very low voltage, high efficiency phosphorescent oled in a p-i-n structure |
TW200504175A (en) | 2003-06-09 | 2005-02-01 | Hitachi Chemical Co Ltd | Metal coordination compound, polymer composition and organic electroluminescence element using the same |
US20050242712A1 (en) * | 2004-04-29 | 2005-11-03 | Chao-Chin Sung | Multicolor electroluminescent display |
US7279704B2 (en) | 2004-05-18 | 2007-10-09 | The University Of Southern California | Complexes with tridentate ligands |
US7474048B2 (en) * | 2005-06-01 | 2009-01-06 | The Trustees Of Princeton University | Fluorescent filtered electrophosphorescence |
TWI471058B (zh) * | 2005-06-01 | 2015-01-21 | Univ Princeton | 螢光之經過濾電磷光作用 |
JP5099013B2 (ja) | 2006-10-13 | 2012-12-12 | コニカミノルタホールディングス株式会社 | 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置 |
US7968146B2 (en) | 2006-11-01 | 2011-06-28 | The Trustees Of Princeton University | Hybrid layers for use in coatings on electronic devices or other articles |
US20080102223A1 (en) | 2006-11-01 | 2008-05-01 | Sigurd Wagner | Hybrid layers for use in coatings on electronic devices or other articles |
US9023490B2 (en) * | 2007-06-15 | 2015-05-05 | Versitech Limited | Extended pi-conjugated platinum (II) complexes |
US7994174B2 (en) * | 2007-09-19 | 2011-08-09 | Vertex Pharmaceuticals Incorporated | Pyridyl sulfonamides as modulators of ion channels |
US8877350B2 (en) * | 2007-12-11 | 2014-11-04 | Global Oled Technology Llc | White OLED with two blue light-emitting layers |
JP2011520041A (ja) | 2008-05-07 | 2011-07-14 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | 電子デバイス又は他の物品上のコーティングに使用するハイブリッド層 |
US8138505B2 (en) * | 2008-06-02 | 2012-03-20 | Seiko Epson Corporation | Light-emitting device, display apparatus, and electronic system |
KR101352290B1 (ko) * | 2008-09-30 | 2014-01-16 | 엘지디스플레이 주식회사 | 유기발광다이오드 표시소자 |
JP5707665B2 (ja) | 2008-12-03 | 2015-04-30 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置 |
US8722205B2 (en) | 2009-03-23 | 2014-05-13 | Universal Display Corporation | Heteroleptic iridium complex |
US8709615B2 (en) | 2011-07-28 | 2014-04-29 | Universal Display Corporation | Heteroleptic iridium complexes as dopants |
TWI467824B (zh) * | 2009-06-11 | 2015-01-01 | Ind Tech Res Inst | 白光有機發光元件 |
US9193745B2 (en) | 2011-11-15 | 2015-11-24 | Universal Display Corporation | Heteroleptic iridium complex |
US9577221B2 (en) | 2012-09-26 | 2017-02-21 | Universal Display Corporation | Three stack hybrid white OLED for enhanced efficiency and lifetime |
US9130182B2 (en) * | 2013-06-28 | 2015-09-08 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, lighting device, light-emitting device, and electronic device |
US10074781B2 (en) * | 2013-08-29 | 2018-09-11 | Cree, Inc. | Semiconductor light emitting devices including multiple red phosphors that exhibit good color rendering properties with increased brightness |
TWI729686B (zh) * | 2013-10-16 | 2021-06-01 | 日商半導體能源研究所股份有限公司 | 發光元件、發光裝置、電子裝置及照明裝置 |
KR102089271B1 (ko) * | 2013-12-31 | 2020-03-16 | 엘지디스플레이 주식회사 | 유기 발광 장치 |
KR102149685B1 (ko) * | 2014-03-28 | 2020-09-01 | 엘지디스플레이 주식회사 | 유기 발광 소자 |
-
2015
- 2015-02-03 US US14/612,361 patent/US10510973B2/en active Active
- 2015-10-12 CN CN201510654498.8A patent/CN105720201A/zh active Pending
- 2015-10-29 KR KR1020150150758A patent/KR20160073906A/ko not_active Application Discontinuation
-
2022
- 2022-02-08 KR KR1020220016369A patent/KR102567127B1/ko active IP Right Grant
-
2023
- 2023-08-09 KR KR1020230104114A patent/KR20230121708A/ko not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070035240A1 (en) * | 2005-08-09 | 2007-02-15 | Au Optronics Corporation | White organic light-emitting diode |
KR20070060196A (ko) * | 2005-12-08 | 2007-06-13 | 한국전자통신연구원 | 백색 유기 전계 발광 소자 및 그 제조방법 |
JP2008270190A (ja) * | 2007-03-29 | 2008-11-06 | Konica Minolta Holdings Inc | 白色発光有機エレクトロルミネッセンス素子及び照明装置 |
KR20120041460A (ko) * | 2010-10-21 | 2012-05-02 | 엘지디스플레이 주식회사 | 유기전계발광소자 |
JP2012212575A (ja) * | 2011-03-31 | 2012-11-01 | Rohm Co Ltd | 有機el装置 |
Also Published As
Publication number | Publication date |
---|---|
KR102567127B1 (ko) | 2023-08-14 |
US20160181560A1 (en) | 2016-06-23 |
US10510973B2 (en) | 2019-12-17 |
KR20160073906A (ko) | 2016-06-27 |
CN105720201A (zh) | 2016-06-29 |
KR20230121708A (ko) | 2023-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102567127B1 (ko) | 컬러 안정성 유기 발광 다이오드 스택 | |
US12035551B2 (en) | Three stack hybrid white OLED for enhanced efficiency and lifetime | |
US20240188320A1 (en) | Organic electroluminescent devices | |
US9655199B2 (en) | Four component phosphorescent OLED for cool white lighting application | |
JP5886945B2 (ja) | 多成分発光層を有するoled | |
US9331299B2 (en) | Efficient white organic light emitting diodes with high color quality | |
WO2010045327A2 (en) | Emissive layer patterning for oled | |
US11839124B2 (en) | Energy efficient OLED TV | |
US20220020945A1 (en) | Color stable organic light emitting diode stack | |
EP3742494B1 (en) | Oled display panel with unpatterned emissive stack | |
EP3772118A1 (en) | Color stable multicolor oled device structures | |
US20170104172A1 (en) | Organic Light Emitting Diode Having a Mixed Blocking Layer | |
US10600981B2 (en) | Exciplex-sensitized fluorescence light emitting system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |