KR20220023894A - Catalysts for organic matter degradation treatment of high salinity wastewater and wastewater treatment methods including them - Google Patents
Catalysts for organic matter degradation treatment of high salinity wastewater and wastewater treatment methods including them Download PDFInfo
- Publication number
- KR20220023894A KR20220023894A KR1020200105198A KR20200105198A KR20220023894A KR 20220023894 A KR20220023894 A KR 20220023894A KR 1020200105198 A KR1020200105198 A KR 1020200105198A KR 20200105198 A KR20200105198 A KR 20200105198A KR 20220023894 A KR20220023894 A KR 20220023894A
- Authority
- KR
- South Korea
- Prior art keywords
- wastewater
- catalyst
- organic matter
- high salinity
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/053—Sulfates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/722—Oxidation by peroxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
- C02F2103/36—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
- C02F2103/38—Polymers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
본 발명은 고염도 폐수의 유기물 분해를 위한 촉매 합성 및 이를 활용한 폐수 처리 방법에 관한 것으로써, 다공성 담지체에 철(II)이온 또는 구리(II)이온을 포함하는 2가 상태와 3가 상태를 제공할 수 있는 금속염을 담지한 후, 소성하여 합성된 촉매를 고염도 폐수 처리에 활용하고, 사용된 촉매를 여과 회수하여 재사용함으로써, 유기물 분해능이 우수하여 폐수의 오염도를 줄일 수 있으면서 재사용이 가능한 촉매와 이를 이용한 고염도 폐수의 처리 방법에 관한 것이다.The present invention relates to a catalyst synthesis for decomposition of organic matter in high salinity wastewater and a wastewater treatment method using the same, wherein the porous support contains iron (II) ions or copper (II) ions in a divalent state and a trivalent state After carrying a metal salt that can provide It relates to a catalyst and a method for treating high salinity wastewater using the same.
Description
본 발명은 폐수의 유기물 분해 처리를 위한 촉매 및 이를 활용한 폐수 처리 방법에 관한 것으로서, 더욱 상세하게는 다공성 담지체에 2가 상태와 3가 상태를 제공할 수 있는 금속염을 담지하여 폐수 처리용 촉매를 합성하며, 이를 활용하여 고염도 폐수의 유기물을 분해 처리하는 고염도 폐수의 유기물 분해 처리용 촉매 및 이를 포함하는 폐수 처리 방법에 관한 것이다.The present invention relates to a catalyst for decomposing organic matter in wastewater and a wastewater treatment method using the same, and more particularly, to a catalyst for wastewater treatment by supporting a metal salt capable of providing a divalent state and a trivalent state on a porous support. It relates to a catalyst for decomposing organic matter in high salinity wastewater and a wastewater treatment method including the same, which synthesizes and utilizes the same to decompose organic matter in high salinity wastewater.
일반적인 에폭시 수지 제품을 생산하는 공정에서 발생하는 폐수는 약 15중량% 이상의 염화나트륨(NaCl)을 함유하고 있는 고염도 폐수이다. 이는 에폭시 수지의 원료인 에피클로로히드린(Epichlorohydrin)에 의하여 발생하는 염소이온과 공정 중 촉매로 사용되는 수산화나트륨(NaOH)의 반응에 의해 염분인 염화나트륨(NaCl)이 필수적으로 발생하기 때문이다. 폐수 내 염화나트륨은 폐수의 오염도를 증가시킬 뿐 아니라 폐수처리 공정의 효율을 감소시키는 문제점을 가지고 있다.Wastewater generated in the process of producing general epoxy resin products is high-salinity wastewater containing about 15% by weight or more of sodium chloride (NaCl). This is because sodium chloride (NaCl), a salt, is essentially generated by the reaction of chlorine ions generated by epichlorohydrin, a raw material of epoxy resin, and sodium hydroxide (NaOH) used as a catalyst during the process. Sodium chloride in wastewater has a problem in that it not only increases the pollution degree of wastewater but also reduces the efficiency of the wastewater treatment process.
또한, 에폭시 수지의 원료와, 생산 공정의 온도 및 압력 조건으로 인해, 특정할 수 없는 유기물 및 고분자 화합물 등이 발생하는데 이는 폐수의 오염도를 증가시키는 원인이 된다. 이 폐수 내 오염물질을 원활하게 처리하기 위해 통상적인 에폭시 수지 제품 생산 공정에서 발생하는 폐수는 유기물 분해 처리 과정을 거쳐야 하며, 이는 폐수 처리 비용의 대부분을 차지한다.In addition, due to the raw material of the epoxy resin and the temperature and pressure conditions of the production process, organic substances and high molecular compounds that cannot be specified are generated, which causes an increase in the pollution degree of wastewater. In order to smoothly treat the contaminants in the wastewater, wastewater generated in a typical epoxy resin product production process must go through an organic matter decomposition treatment process, which accounts for most of the wastewater treatment cost.
폐수 내 유기물로 인한 오염도는 BOD(생물학적 산소 요구량), COD(화학적 산소 요구량)를 지표로 하는데, 폐수처리 공정 전, 후의 폐수 내 BOD, COD 수치가 폐수 처리의 비교 척도가 된다. 통상적으로 국내 에폭시 수지 제조업체에선 생산 공정에서 발생하는 고염도 폐수의 BOD, COD를 저감하기 위해 희석용 공업용수를 활용하여 희석단계를 거친 뒤, 활성슬러지법을 통하여 폐수 내 유기물을 분해하는 방법을 채택하고 있다. 이러한 처리법은 유기물의 분해 미생물의 활성이 감소되고, 처리효율의 급감, 사상균 발생 등의 문제점을 야기한다. 따라서 유기물을 과량 포함하고 있는 난분해성 폐수를 활성슬러지법으로 처리하는 것에는 한계가 있으며, 이를 해결하기 위해 종래의 폐수 처리 방법으로 펜톤 산화법이 사용되고 있다.The degree of pollution caused by organic matter in wastewater is measured by BOD (Biological Oxygen Demand) and COD (Chemical Oxygen Demand). In general, domestic epoxy resin manufacturers use industrial water for dilution to reduce the BOD and COD of high-salinity wastewater generated in the production process, go through a dilution step, and then use the activated sludge method to decompose organic matter in wastewater. are doing This treatment method reduces the activity of microorganisms decomposing organic matter, and causes problems such as a sharp decrease in treatment efficiency and the generation of filamentous fungi. Therefore, there is a limit to treating the recalcitrant wastewater containing an excessive amount of organic matter by the activated sludge method, and in order to solve this problem, the Fenton oxidation method is used as a conventional wastewater treatment method.
이 펜톤 산화법은 펜톤 시약(Fenton Reagent)을 사용하여 수산화라디칼(Hydroxyl radical, .OH)을 발생시키고, 이 수산화라디칼이 유기물을 산화시켜 제거할 수 있는 방법이다. 펜톤 시약은 과산화수소(H2O2)와 2가 철염이 사용된다. This Fenton oxidation method is a method in which a hydroxyl radical (.OH) is generated using a Fenton reagent, and the hydroxyl radical is oxidized to remove organic matter. Fenton's reagent is hydrogen peroxide (H 2 O 2 ) and a divalent iron salt is used.
여기서 도 1은 기존의 펜톤 산화법을 이용한 유기물 분해의 메커니즘을 보인 것으로, 도시한 바와 같이 과산화수소와 2가 철염 간의 전자이동을 통해 수산화라디칼을 형성하고, 이 수산화라디칼이 유기물과 반응하여 이산화탄소와 물을 발생한다.1 shows the mechanism of decomposition of organic matter using the conventional Fenton oxidation method. As shown, a hydroxyl radical is formed through electron transfer between hydrogen peroxide and a divalent iron salt, and the hydroxyl radical reacts with an organic material to produce carbon dioxide and water. Occurs.
이 펜톤 시약을 통해 형성된 수산화라디칼은 강력한 산화력을 가지고 있어, 생물학적으로 난분해성 폐수에 함유된 유기물을 분해 제거하는데 효율적이지만 반응 조건이 까다롭고 철 슬러지 발생량이 많다는 문제점이 있다. The hydroxyl radical formed through this Fenton reagent has a strong oxidizing power and is efficient in decomposing and removing organic substances contained in biologically difficult-to-decompose wastewater, but there are problems in that the reaction conditions are difficult and the amount of iron sludge is large.
또한, 펜톤 산화법을 도입하기 위해선 초기 반응물의 pH 범위가 3.5 근처에서 펜톤 시약의 산화효과가 가장 강력하여 강산성이어야 하기 때문에 pH조정을 위해 산성 물질을 과다 투입해야 하고, 유기물 분해 반응 이후 산성인 pH를 다시 염기성 물질로 조절해주어야 하기 때문에 유기물 분해 반응 전, 후로 투입되는 산성 물질과 염기성 물질의 필요량이 많아 이에 따른 폐수 처리 약품 비용이 많이 드는 문제점이 있다. In addition, in order to introduce the Fenton oxidation method, since the oxidation effect of the Fenton reagent is strongest in the pH range of the initial reactant near 3.5 and must be strongly acidic, an excessive amount of acidic material must be added to adjust the pH, and the acidic pH after the organic matter decomposition reaction There is a problem that the cost of wastewater treatment chemicals is high due to the large amount of acid and basic substances that are input before and after the organic decomposition reaction because basic substances must be adjusted again.
현재 국내외의 화학물 제조업체에서는 폐수의 BOD, COD를 저감하기 위한 연구개발을 진행하고 있다. 폐수의 오염도는 폐수 처리를 위한 비용적 측면뿐만 아니라 환경오염과 직결되는 문제이기 때문에 업체에서 발생하는 오염도를 낮추는 것은 중요한 환경 요인으로 여겨지고 있다.Currently, domestic and foreign chemical manufacturers are conducting R&D to reduce BOD and COD in wastewater. Since the pollution level of wastewater is a problem directly related to environmental pollution as well as the cost aspect for wastewater treatment, it is considered an important environmental factor to lower the pollution level generated by the company.
따라서 고염도 폐수 내에 존재하는 생물학적으로 난분해성 유기물을 효과적으로 분해 제거하여 폐수의 COD를 낮추어 에폭시 수지 제품을 생산하는 공정에서 발생하는 폐수의 처리를 위해 요구되는 희석용 공업용수의 필요량을 감소시켜 처리 비용을 줄일 수 있고, 펜톤 산화법의 문제점인 철 슬러지 발생량이 많은 문제점을 해결할 수 있으며, pH조정을 위한 산성 물질과 염기성 물질의 필요량이 많아 폐수 처리 약품 비용이 많이 드는 문제점을 해결할 수 있는 고염도 폐수의 유기물 분해 처리용 촉매 및 이를 활용한 폐수 처리 방법에 대한 개발이 절실히 필요한 실정이다.Therefore, it effectively decomposes and removes the biologically difficult-to-decompose organic matter present in the high salinity wastewater to lower the COD of the wastewater, thereby reducing the required amount of industrial water for dilution required for the treatment of wastewater generated in the process of producing epoxy resin products, thereby reducing the treatment cost high-salinity wastewater, which can reduce the amount of iron sludge generated, which is a problem with the Fenton oxidation method, and solve the problem of high cost of wastewater treatment chemicals due to the large amount of acidic and basic substances required for pH adjustment. There is an urgent need to develop a catalyst for decomposing organic matter and a wastewater treatment method using the same.
전술한 문제점을 해결하기 위하여 본 발명은, 고염도 폐수 내의 염분 농도에 관계없이 폐수 내에 존재하는 생물학적으로 난분해성 유기물을 효과적으로 분해할 수 있는 촉매를 합성하고, 이 합성된 촉매를 활용하여 고염도 폐수 자체의 오염도를 저감시키는 폐수 처리 방법을 제공함에 그 목적이 있다.In order to solve the above problems, the present invention synthesizes a catalyst capable of effectively decomposing biologically difficult-to-decompose organic matter present in wastewater regardless of the salt concentration in the high salinity wastewater, and utilizes the synthesized catalyst to provide high-salinity wastewater An object of the present invention is to provide a wastewater treatment method that reduces its own pollution level.
또한, 본 발명의 다른 목적은 합성된 촉매를 활용하여 고염도 폐수의 유기물 분해 처리를 한 후에 여과 과정을 통해 촉매를 회수하고 재사용하여 슬러지 발생량을 저감하는 것을 그 목적으로 한다.Another object of the present invention is to reduce the amount of sludge generated by recovering and reusing the catalyst through a filtration process after decomposing organic matter in high-salinity wastewater using the synthesized catalyst.
또한, 본 발명의 또 다른 목적은 합성된 촉매를 활용한 고염도 폐수 처리 방법에서 pH조정을 위한 산성 물질과 염기성 물질의 투입량을 낮추는 것을 그 목적으로 한다. In addition, another object of the present invention is to lower the input amount of an acidic substance and a basic substance for pH adjustment in a method for treating high salinity wastewater using a synthesized catalyst.
본 발명은 고염도 폐수 내의 염분 농도에 관계 없이 폐수 내에 존재하는 생물학적으로 난분해성 유기물을 효과적으로 분해할 수 있는 촉매를 합성하고, 이 합성된 촉매를 활용하여 고염도 폐수 자체의 오염도를 저감시키며, 고염도 폐수의 유기물 분해 처리를 한 후에 여과 과정을 통해 촉매를 회수하고 재사용하여 슬러지 발생량을 저감하는 본 발명의 목적을 달성하는 수단으로서, 펜톤 산화법을 기반으로 하되 펜톤 시약 중 하나인 2가 철염을 합성 촉매로 대체하는 것을 특징으로 한다.The present invention synthesizes a catalyst capable of effectively decomposing biologically difficult-to-decompose organic matter present in wastewater regardless of the salt concentration in the high-salinity wastewater, and reduces the contamination of the high-salinity wastewater itself by using the synthesized catalyst, As a means to achieve the object of the present invention of reducing the amount of sludge by recovering and reusing the catalyst through a filtration process after decomposing organic matter in the wastewater, it is based on the Fenton oxidation method, but synthesizes a divalent iron salt, which is one of the Fenton reagents. It is characterized in that it is replaced with a catalyst.
본 발명의 일 측면으로, Si, O를 골격으로 하는 규산염(silicate) 물질인 다공성 담지체에 철(II)이온 또는 구리(II)이온을 포함하는 2가 상태와 3가 상태를 제공할 수 있는 금속염을 촉매 총량 기준 0.005 내지 2중량%로 담지한 후, 500 내지 700℃의 온도에서 소성하여 합성하고, 합성된 촉매가 과산화수소수와 함께 사용되었을 때 고염도 폐수 내 유기물을 분해할 수 있는 것을 특징으로 하는 고염도 폐수의 유기물 분해 처리용 촉매를 특징으로 한다. In one aspect of the present invention, it is possible to provide a divalent state and a trivalent state including iron (II) ions or copper (II) ions to a porous support, which is a silicate material having Si and O as a skeleton. After supporting the metal salt in an amount of 0.005 to 2% by weight based on the total amount of the catalyst, it is synthesized by calcining at a temperature of 500 to 700° C. It features a catalyst for decomposing organic matter in high salinity wastewater.
본 발명의 촉매는 또한, 상기 합성된 촉매 중에 금속염은 촉매 총량 기준 0.01 내지 1중량%로 담지한 것을 특징으로 한다.The catalyst of the present invention is also characterized in that the metal salt is supported in an amount of 0.01 to 1 wt% based on the total amount of the catalyst in the synthesized catalyst.
본 발명의 촉매는 또한, 상기 금속염이 황산철(FeSO4) 또는 황산구리(CuSO4)를 포함하는 것을 특징으로 한다. The catalyst of the present invention is also characterized in that the metal salt comprises iron sulfate (FeSO 4 ) or copper sulfate (CuSO 4 ).
본 발명의 촉매는 또한, 상기 다공성 담지체 내 기공의 직경이 2~50nm인 다공성 담지체를 이용한 것을 특징으로 한다.The catalyst of the present invention is also characterized by using a porous support having a pore diameter of 2 to 50 nm in the porous support.
본 발명의 촉매는 또한, 상기 다공성 담지체는 실리카, 활성탄, 제올라이트로 이루어진 군으로부터 선택된 것을 특징으로 한다.The catalyst of the present invention is also characterized in that the porous support is selected from the group consisting of silica, activated carbon, and zeolite.
본 발명의 다른 일 측면은 9,000mg/L~16,000mg/L의 COD를 가지며, 염화나트륨의 농도가 8중량% 이상인 폐수 100중량부에 본 발명에 따른 촉매를 0.04 내지 1.2중량부로 가한 다음 혼합하여 혼합물을 형성하는 단계; 상기 혼합물에 농도가 10 내지 50중량%인 과산화수소수를 투입하는 단계; 폐수 내 유기물의 분해를 위해 상기 혼합물과 과산화수소수의 반응을 진행하는 단계를 포함하는 고염도 폐수 처리 방법이다.Another aspect of the present invention has a COD of 9,000 mg/L to 16,000 mg/L, and 0.04 to 1.2 parts by weight of the catalyst according to the present invention is added to 100 parts by weight of wastewater having a sodium chloride concentration of 8% by weight or more, and then mixed to a mixture forming a; adding hydrogen peroxide solution having a concentration of 10 to 50 wt % to the mixture; It is a high salinity wastewater treatment method comprising the step of performing a reaction between the mixture and hydrogen peroxide for decomposition of organic matter in the wastewater.
본 발명의 폐수 처리 방법은 또한, 상기 혼합물에 과산화수소수를 투입하는 단계 이전에 폐수 내 유기물의 분해 시 반응 온도를 50~80℃로 설정하기 위해 혼합물의 온도를 승온하는 단계를 부가하는 것을 특징으로 한다.The wastewater treatment method of the present invention also adds a step of increasing the temperature of the mixture to set the reaction temperature to 50 ~ 80 ℃ when decomposing organic matter in the wastewater before the step of adding hydrogen peroxide solution to the mixture do.
본 발명의 폐수 처리 방법은 또한, 에피클로로히드린(Epichlorohydrin) 유도체인 글리세린(Glycerin)을 포함하는 폐수를 처리 대상으로 하는 것을 특징으로 한다.The wastewater treatment method of the present invention is also characterized in that wastewater containing glycerin, an epichlorohydrin derivative, is treated as an object.
본 발명의 폐수 처리 방법은 또한, 폐수에 합성된 촉매를 가한 다음 혼합하여 혼합물을 형성하는 단계 이전에 pH = 4~7로 산처리(Acid Treatment)하는 것을 특징으로 한다.The wastewater treatment method of the present invention is also characterized in that, before the step of adding the synthesized catalyst to wastewater and then mixing to form a mixture, acid treatment is performed at pH = 4 to 7 (Acid Treatment).
본 발명의 폐수 처리 방법은 또한, 폐수가 pH = 10 이상을 가지는 강염기성인 경우, 폐수에 촉매를 가한 다음 혼합하여 혼합물을 형성하는 단계 이전에 pH = 5~6으로 산처리(Acid Treatment)하는 것을 특징으로 한다.In the wastewater treatment method of the present invention, when the wastewater is strongly basic having a pH of 10 or more, acid treatment is performed to pH = 5 to 6 before adding a catalyst to the wastewater and then mixing to form a mixture characterized.
본 발명의 폐수 처리 방법은 또한, 폐수 내 유기물의 분해 후 여과과정을 통해 분리된 촉매를 회수하여 재사용하는 것을 특징으로 한다.The wastewater treatment method of the present invention is also characterized in that the catalyst separated through the filtration process after decomposition of organic matter in the wastewater is recovered and reused.
이에 따라, 본 발명은 고염도 폐수 내에 존재하는 난분해성 유기물을 효과적으로 분해, 제거하여 폐수의 COD가 크게 저감되며, 상기 합성된 촉매는 재사용이 가능하며, 수차례 재사용할 경우에도 촉매 활성의 감소가 미미하여 반영구적으로 사용이 가능하다.Accordingly, the present invention effectively decomposes and removes the difficult-to-decompose organic matter present in the high-salinity wastewater, thereby greatly reducing the COD of the wastewater, and the synthesized catalyst can be reused, and the reduction in catalytic activity is possible even when reused several times. It is insignificant and can be used semi-permanently.
또한, 종래 펜톤 산화법이 초기 pH가 강산성인 것에 비하여 본 발명은 pH 범위가 더 높아 사용되는 산성 물질의 사용량이 적고, 유기물 분해반응 이후 산성인 pH를 염기성으로 조절해 주기 위한 염기성 물질의 사용량도 적어 유기물 분해반응 전, 후로 투입되는 산성 물질과 염기성 물질의 필요량이 종래 펜톤 산화법에 비하여 상대적으로 더 적다.In addition, compared to the conventional Fenton oxidation method in which the initial pH is strongly acidic, the present invention has a higher pH range, so the amount of acidic material used is small, and the amount of basic material used to adjust the acidic pH to basicity after the organic matter decomposition reaction is also small. The required amount of acidic substances and basic substances to be added before and after the organic decomposition reaction is relatively smaller than that of the conventional Fenton oxidation method.
본 발명에 의해 합성된 촉매 및 이를 활용한 고염도 폐수 처리 방법은 다음과 같은 현저한 효과가 있다.The catalyst synthesized by the present invention and the method for treating high salinity wastewater using the same have the following remarkable effects.
고염도 폐수 내에 존재하는 생물학적으로 난분해성 유기물을 효과적으로 분해, 제거하여 폐수의 COD가 크게 저감되며, 저감된 폐수의 COD 수준에 따라 기존의 에폭시 수지 제품 생산 공정에서 발생하는 고염도 폐수 처리에 요구되었던 희석용 공업용수의 필요량이 줄어들 수 있는 효과가 있다.The COD of wastewater is greatly reduced by effectively decomposing and removing the biologically difficult-to-decompose organic matter present in the high-salinity wastewater. There is an effect that the required amount of industrial water for dilution can be reduced.
또한, 본 발명에 의해 합성된 촉매는 폐수 내 유기물 분해 처리 이후에도 재사용이 가능하기 때문에 펜톤 시약인 과산화수소수와 2가 철염을 폐수 처리에 사용 후 그대로 배출되는 종래 펜톤 산화법의 문제점 중 하나인 철 슬러지 발생 문제를 해결할 수 있으며, 재사용에 따른 비용 절감 또한 가능한 특유의 효과가 있다.In addition, since the catalyst synthesized according to the present invention can be reused even after decomposition of organic matter in wastewater, iron sludge is generated, one of the problems of the conventional Fenton oxidation method, in which hydrogen peroxide and bivalent iron salt, which are Fenton reagents, are used for wastewater treatment and then discharged as they are. It can solve the problem, and there is a unique effect that the cost reduction due to reuse is also possible.
더구나, 본 발명에 의해 합성된 촉매는 종래 펜톤 산화법의 문제점 중 하나인 강산성을 유지하기 위해 산성 물질을 과다 투입하고, 유기물 분해 반응 이후 산성인 pH를 다시 염기성으로 조절해주기 위한 염기성 물질의 필요에 따른 폐수 처리 약품 비용의 절감 또한 가능한 효과가 있다.Moreover, in the catalyst synthesized by the present invention, an excessive amount of an acidic material is added to maintain strong acidity, which is one of the problems of the conventional Fenton oxidation method, and a basic material is required to adjust the acidic pH to basic again after the organic matter decomposition reaction. Reducing the cost of wastewater treatment chemicals is also possible.
도 1은 종래의 보편적인 펜톤 산화법을 이용한 유기물 분해의 메커니즘을 나타낸 모식도이다.
도 2는 본 발명에 따른 폐수 처리 방법의 일 실시예를 나타낸 구성도이다.
도 3은 본 발명에 적용된 다공성 담지체의 투과주사현미경(TEM) 분석 결과를 나타낸 사진이다.1 is a schematic diagram showing the mechanism of organic matter decomposition using the conventional general Fenton oxidation method.
2 is a block diagram showing an embodiment of a wastewater treatment method according to the present invention.
3 is a photograph showing the results of transmission scanning microscopy (TEM) analysis of the porous carrier applied to the present invention.
이하, 본 발명에 대하여 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail.
이에 앞서, 본 발명의 설명 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, the terms or words used in the description and claims of the present invention should not be construed as being limited to conventional or dictionary meanings, and the inventors have used the concept of terms to describe their invention in the best way. Based on the principle that it can be appropriately defined, it should be interpreted as meaning and concept consistent with the technical idea of the present invention.
본 발명은 다공성 담지체에 금속염을 담지해 합성한 촉매를 제공한다.The present invention provides a catalyst synthesized by supporting a metal salt on a porous support.
이때, 상기 금속염은 2가 상태와 3가 상태를 제공할 수 있는 금속염으로써 철(II)이온 또는 구리(II)이온을 포함하는 금속염일 수 있으며, 바람직하게는 황산철(FeSO4) 또는 황산구리(CuSO4)를 포함할 수 있다.In this case, the metal salt is a metal salt capable of providing a divalent state and a trivalent state, and may be a metal salt containing iron (II) ions or copper (II) ions, preferably iron sulfate (FeSO 4 ) or copper sulfate ( CuSO 4 ) may be included.
여기서, 2가 상태 없이 3가 상태만을 제공할 수 있는 금속염은, 2가 상태와 3가 상태를 오가면서 전자를 주고받을 수 없기 때문에 펜톤 산화법에 사용할 수 없다.Here, a metal salt capable of providing only a trivalent state without a divalent state cannot be used in the Fenton oxidation method because electrons cannot be exchanged between a divalent state and a trivalent state.
본 발명에 의해 합성된 촉매 중의 금속염은 촉매의 총 중량 기준으로 0.005 내지 2중량%의 범위이고, 바람직하게는 0.01 내지 1중량% 이다. 만약 0.005중량% 미만의 금속염을 함유할 경우 다공성 담지체에 대한 금속염의 함유량이 충분하지 못하여 다공성 담지체에 대한 금속염의 함유량이 일정하지 못하다는 문제점이 발생할 수 있고, 2중량%를 초과하는 양을 다공성 담지체에 담지하기가 어렵다. The metal salt in the catalyst synthesized by the present invention is in the range of 0.005 to 2% by weight, preferably 0.01 to 1% by weight, based on the total weight of the catalyst. If the content of the metal salt is less than 0.005% by weight, the content of the metal salt in the porous support is not sufficient, so the problem that the content of the metal salt in the porous support is not constant may occur, and an amount exceeding 2% by weight may occur. It is difficult to support on a porous support.
본 발명에서 상기 다공성 담지체는 Si, O를 골격으로 하는 규산염(Silicate) 물질을 다공성 담지체로 할 수 있다.In the present invention, the porous carrier may be a porous carrier made of a silicate material having Si and O as a skeleton.
본 발명에서 또한, 상기 다공성 담지체내 기공의 직경이 2~50nm일 수 있다.In the present invention, the diameter of the pores in the porous carrier may be 2 to 50 nm.
또한, 상기 다공성 담지체는 실리카, 활성탄, 제올라이트로 이루어진 군으로부터 선택될 수 있다.In addition, the porous carrier may be selected from the group consisting of silica, activated carbon, and zeolite.
도 3은 본 발명에 적용된 다공성 담지체의 투과주사현미경(TEM) 분석 결과를 보인다.3 shows the results of transmission scanning microscopy (TEM) analysis of the porous carrier applied to the present invention.
본 발명에 의해 합성된 촉매는 다공성 담지체에 2가 상태와 3가 상태를 제공할 수 있는 금속염을 담지한 후 소성 온도는 500 내지 700℃ 일 수 있다. 본 발명에 의해 합성된 촉매의 크기는 무관하나 폐수처리 후 재사용하기 위해 여과가 용이한 수준의 크기로 제조할 수 있다.In the catalyst synthesized by the present invention, a metal salt capable of providing a divalent state and a trivalent state is supported on a porous support, and the calcination temperature may be 500 to 700°C. Although the size of the catalyst synthesized by the present invention is irrelevant, it can be prepared to a size that is easy to filter for reuse after wastewater treatment.
본 발명의 고염도 폐수 처리 방법은 펜톤 산화법을 기반으로 하되, ‘펜톤 대체 시약으로 과산화수소수와 본 발명에 의해 합성된 촉매’를 활용한다. 본 발명에서 대상으로 하는 폐수는 9,000mg/L~16,000mg/L의 COD를 가질 수 있다.The high salinity wastewater treatment method of the present invention is based on the Fenton oxidation method, but uses 'hydrogen peroxide water and the catalyst synthesized by the present invention as a Fenton replacement reagent'. Wastewater targeted in the present invention may have a COD of 9,000 mg/L to 16,000 mg/L.
만약, COD가 9,000mg/L미만일 경우는 본 발명의 고염도 폐수 처리 방법에서 펜톤 산화법에 기반하는 폐수 처리 대상인 유기물을 과량 포함하고 있는 생물학적으로 난분해성 폐수의 오염도로는 적절하지 않으며, COD가 16,000mg/L를 초과할 경우는 고분자 화합물 및 고형 슬러지가 많은 폐수에서 폐수의 성상이 깨끗하지 못하고 과도한 부유물로 인해 재사용을 위한 촉매의 회수가 어려울 뿐만 아니라, 부산물이 촉매를 뒤덮는 등의 문제가 발생함으로 인해 촉매의 활성이 감소하여 촉매 재사용 시 활성이 초기 수준까지 복귀되지 않는 문제가 있다.If the COD is less than 9,000 mg/L, the contamination level of the biologically difficult-to-decompose wastewater containing an excessive amount of organic matter, which is a wastewater treatment target based on the Fenton oxidation method in the high-salinity wastewater treatment method of the present invention, is not appropriate, and the COD is 16,000. If it exceeds mg/L, the properties of the wastewater are not clean in wastewater with a lot of polymer compounds and solid sludge, and it is difficult to recover the catalyst for reuse due to excessive suspended matter, as well as problems such as by-products covering the catalyst. Due to the decrease in the activity of the catalyst, there is a problem that the activity does not return to the initial level when the catalyst is reused.
본 발명은 또한, 본 발명에서 대상으로 하는 폐수는 농도 8중량% 이상의 염화나트륨을 함유하는 것일 수 있고, 또한 상기 폐수는 60℃ 이상의 온도를 가질 수 있다. In the present invention, the wastewater targeted in the present invention may contain sodium chloride in a concentration of 8% by weight or more, and the wastewater may have a temperature of 60°C or more.
또한, 본 발명에서 에피클로로히드린(Epichlorohydrin) 유도체인 글리세린(Glycerin)을 포함하는 폐수를 처리 대상으로 할 수 있다.In addition, in the present invention, wastewater containing glycerin, which is an epichlorohydrin derivative, may be treated as a target.
본 발명의 폐수 처리 방법은 원폐수 성상에 따라 촉매의 손상 없이 유기물 분해가 가능하도록 폐수에 합성된 촉매를 가한 다음 혼합하여 혼합물을 형성하는 단계 이전에 pH = 4~7로 산처리(Acid Treatment)하는 것을 특징으로 한다.According to the wastewater treatment method of the present invention, the synthesized catalyst is added to wastewater so that organic matter can be decomposed without damage to the catalyst according to the properties of the raw wastewater, and then mixed to form a mixture before the step of acid treatment (Acid Treatment) characterized in that
또한, 상기 폐수가 pH = 10 이상을 가지는 강염기성인 경우, pH = 5~6 수준으로 중화한 뒤 처리 대상 폐수로 사용할 수 있다.In addition, when the wastewater is strongly basic having a pH of 10 or more, it may be used as a wastewater to be treated after neutralization to a pH of 5 to 6 levels.
본 발명에 따른 폐수 처리 방법에서 합성된 촉매의 투입량은 폐수의 총량에 따르며, 폐수 100중량부 기준으로 0.04 내지 1.2중량부로 하되, 바람직하게는 0.1 내지 1중량부로 할 수 있다.The amount of the catalyst synthesized in the wastewater treatment method according to the present invention depends on the total amount of wastewater, and may be 0.04 to 1.2 parts by weight, preferably 0.1 to 1 parts by weight, based on 100 parts by weight of wastewater.
여기서, 0.04 내지 1.2중량부의 값을 가지는 합성된 촉매를 투입하였을 때 모두 COD 저감 효과가 뚜렷하였기 때문으로, 해당 범위 내의 어떤 양을 투입하던 COD 저감 효과를 뚜렷하게 볼 수 있으며, 만약, 합성된 촉매의 투입량이 0.04중량부 미만일 경우는 COD 처리 효율이 낮으며, 1.2중량부를 초과할 경우는 촉매 투입량에 비하여 COD 처리 효율 증가가 낮아 경제적이지 않다.Here, since the COD reduction effect was evident when the synthesized catalyst having a value of 0.04 to 1.2 parts by weight was added, the COD reduction effect can be clearly seen no matter what amount is added within the corresponding range, and if the synthesized catalyst is When the input amount is less than 0.04 parts by weight, the COD treatment efficiency is low, and when it exceeds 1.2 parts by weight, the COD treatment efficiency increase is low compared to the catalyst input amount, which is not economical.
본 발명에서 도입된 과산화수소수와 합성된 촉매로 이루어진 펜톤 대체 시약은 폐수 내 유기물 농도 및 금속염의 종류에 따라 혼합비율을 다르게 할 수 있으며, 펜톤 대체 시약 중 과산화수소수의 농도가 10 내지 50중량%인 것을 사용할 수 있다.The Fenton replacement reagent consisting of the hydrogen peroxide solution and the synthesized catalyst introduced in the present invention can have different mixing ratios depending on the concentration of organic matter in the wastewater and the type of metal salt, and the concentration of the hydrogen peroxide solution among the Fenton replacement reagents is 10 to 50% by weight. that can be used
따라서 본 발명에 따른 폐수 처리 방법은 (1)9,000mg/L~16,000mg/L의 COD를 가지며, 염화나트륨의 농도가 8중량% 이상인 폐수 100중량부에 본 발명에 따라 합성된 촉매를 0.04 내지 1.2중량부로 가한 다음 혼합하여 혼합물을 형성하는 단계; (2)상기 혼합물에 농도가 10 내지 50중량%인 과산화수소수를 투입하는 단계; (3)폐수 내 유기물의 분해를 위해 상기 혼합물과 과산화수소수의 반응을 진행하는 단계를 포함한다.Therefore, the wastewater treatment method according to the present invention (1) has a COD of 9,000 mg/L to 16,000 mg/L, and 0.04 to 1.2 of the catalyst synthesized according to the present invention in 100 parts by weight of wastewater having a sodium chloride concentration of 8% by weight or more adding parts by weight and then mixing to form a mixture; (2) adding hydrogen peroxide solution having a concentration of 10 to 50 wt% to the mixture; (3) performing a reaction between the mixture and hydrogen peroxide for decomposition of organic matter in wastewater.
여기서, 상기 혼합물에 과산화수소수를 투입하는 단계 이전에 폐수 내 유기물의 분해 시 반응 온도를 50~80℃로 설정하기 위해 혼합물의 온도를 승온하는 단계를 부가할 수 있다.Here, a step of increasing the temperature of the mixture may be added to set the reaction temperature to 50 to 80° C. when decomposing organic matter in wastewater before the step of adding hydrogen peroxide to the mixture.
다만, 폐수의 자체 온도가 60℃ 이상의 온도를 가질 경우 바람직하게는 (2)단계에서의 승온 없이 폐수 자체의 온도에서 처리과정을 진행할 수 있다.However, when the temperature of the wastewater itself has a temperature of 60° C. or higher, the treatment process may be performed at the temperature of the wastewater itself, preferably without raising the temperature in step (2).
또한, 도 2는 본 발명에 따른 폐수 처리 방법의 일 실시예를 예시적으로 나타낸 것으로서, 폐수가 pH = 10 이상을 가지는 강염기성인 경우, 미리 pH를 조정한 뒤 촉매를 투입하여야 촉매의 손상 없이 유기물 반응의 효율을 극대화시킬 수 있으므로, 고염도 폐수를 유기물 분해 전 황산(H2SO4)으로 중화처리하여 pH를 5~6 수준으로 조정할 수 있다.In addition, FIG. 2 exemplarily shows an embodiment of a wastewater treatment method according to the present invention. When the wastewater is strongly basic having a pH of 10 or more, the catalyst must be added after adjusting the pH in advance without damaging the catalyst. Since the efficiency of the reaction can be maximized, the pH can be adjusted to a level of 5-6 by neutralizing the high-salinity wastewater with sulfuric acid (H 2 SO 4 ) before decomposing organic matter.
또한, 본 발명에 따른 폐수 처리 방법에서 유기물 분해 후 처리수에 포함된 촉매를 단순 여과하여 회수한 후 재사용한다.In addition, in the wastewater treatment method according to the present invention, the catalyst contained in the treated water after decomposition of organic matter is recovered by simple filtration and reused.
이는 특히 본 발명에 의해 합성된 촉매가 Si, O를 골격으로 하는 규산염(Silicate) 물질인 다공성 담지체에 철(II)이온 또는 구리(II)이온을 포함하는 2가 상태와 3가 상태를 제공할 수 있는 금속염이 담지되어 있어 가능한 것으로서, 합성된 촉매의 크기는 고염도 폐수 내 유기물 처리 후 재사용하기 위해 여과가 용이한 수준의 크기로 할 수 있다.In particular, the catalyst synthesized by the present invention provides a divalent state and a trivalent state including iron (II) ions or copper (II) ions on a porous support, which is a silicate material having Si and O as a skeleton. This is possible because a metal salt that can do this is supported, and the size of the synthesized catalyst can be made to a size that is easy to filter for reuse after treatment of organic matter in high-salinity wastewater.
즉, 본 발명에서 도입된 과산화수소수와 합성된 촉매인 펜톤 대체 시약으로 폐수 내 유기물을 분해한 후 사용한 촉매는 단순 여과를 통하여 회수를 하고 이송되는 처리수와 분리하여 재사용할 수 있다.That is, the catalyst used after decomposing the organic matter in the wastewater with the hydrogen peroxide solution introduced in the present invention and the Fenton replacement reagent, which is the synthesized catalyst, can be recovered through simple filtration and separated from the transferred treated water for reuse.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 사람에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not to be construed as being limited by these examples.
[실시예][Example]
[실시예 1] 다공성 담지체 제조 [Example 1] Preparation of porous support
약 60℃에서 1L 미만의 암모니아수에 브로민화 세트리모늄(Cetrimonium bromide) 22g을 분산시킨 후 테트라에틸 규산염광물(Tetraethyl Orthosilicate)을 100g 투입한다. 약 6시간의 반응시간을 거친 후 생성물을 여과 분리하여 80℃에서 12시간 동안 건조시킨 후 600℃에서 5시간동안 소성하여 일정한 공극률을 가지는 다공성 담지체를 제조한다.After dispersing 22 g of Cetrimonium bromide in ammonia water of less than 1 L at about 60° C., 100 g of Tetraethyl Orthosilicate is added. After a reaction time of about 6 hours, the product is separated by filtration, dried at 80° C. for 12 hours, and calcined at 600° C. for 5 hours to prepare a porous support having a constant porosity.
[실시예 2] 철(II)이온 담지촉매 합성[Example 2] Synthesis of iron (II) ion-supported catalyst
증류수에 녹인 황산철(FeSO4)을 다공성 담지체 100중량부(예, 10g)에 대하여 200중량부(예, 20g) 만큼 다공성 담지체에 투입한다. Iron sulfate (FeSO4) dissolved in distilled water is added to the porous support in an amount of 200 parts by weight (eg, 20 g) based on 100 parts by weight (eg, 10 g) of the porous support.
이후 담지되는 황산철의 양은 2중량%이며, 남은 황산철은 촉매 합성 과정에서 제거되므로, 황산철 2중량%의 확실한 담지를 위하여 과량의 황산철을 투입하는 것이다.The amount of iron sulfate to be supported thereafter is 2% by weight, and since the remaining iron sulfate is removed in the catalyst synthesis process, an excess of iron sulfate is added in order to reliably support 2% by weight of iron sulfate.
이를 6시간 동안 혼합한 후 여과 분리하여 80℃에서 12시간동안 건조시킨 후 600℃에서 5시간 동안 소성하여 철(II)이온 담지촉매를 합성하였다.This was mixed for 6 hours, separated by filtration, dried at 80° C. for 12 hours, and calcined at 600° C. for 5 hours to synthesize an iron (II) ion-supported catalyst.
[실시예 3] 구리(II)이온 담지촉매 합성[Example 3] Synthesis of copper (II) ion supported catalyst
실시예 2와 동일한 방법으로 황산철(FeSO4) 대신 황산구리(CuSO4)를 사용하여 구리(II)이온 담지촉매를 합성하였다.In the same manner as in Example 2, copper(II) ion-supported catalyst was synthesized using copper sulfate (CuSO4) instead of iron sulfate (FeSO4).
본 발명의 성능 평가를 위해서 합성된 촉매에 대하여 다음과 같이 실험을 실시하였다.For the performance evaluation of the present invention, the synthesized catalyst was tested as follows.
이하는 실시예 1 내지 3에 의해 합성된 촉매를 활용한 적정 폐수 처리 조건을 실험적으로 나타낸다.The appropriate wastewater treatment conditions using the catalysts synthesized in Examples 1 to 3 are experimentally shown below.
[실험예 1][Experimental Example 1]
12,000mg/L의 COD를 가지며, 15중량%의 염화나트륨이 함유되어 있고, pH가 12 수준으로 강염기인 원폐수 50g(100중량부)을 황산(H2SO4)으로 중화처리하여 pH를 6으로 조정한 후, 실시예 2에서 합성된 철(II)이온 담지촉매를 0.55g(1.1중량부) 투입하고 농도 40중량%의 과산화수소수를 0.41~11.8mol/L의 범위 내에서 0.41mol/L(단위환산으로 원폐수 대비 2중량%) 간격으로 주입하여 50℃의 온도에서 반응시킨 결과, 폐수의 COD가 약 10% 감소하였다. 특히 철(II)이온 담지촉매는 폐수의 유기물 분해 처리 후 여과하여 회수하고, 재사용 시에 촉매의 활성이 그대로 유지되었다.50 g (100 parts by weight) of raw wastewater having a COD of 12,000 mg/L, containing 15% by weight of sodium chloride, and having a pH of 12 and a strong base was neutralized with sulfuric acid (H 2 SO 4 ) to bring the pH to 6 After adjustment, 0.55 g (1.1 parts by weight) of the iron (II) ion-supported catalyst synthesized in Example 2 was added, and hydrogen peroxide solution having a concentration of 40% by weight was added within the range of 0.41 to 11.8 mol/L (0.41 mol/L ( As a result of injecting at intervals of 2% by weight compared to raw wastewater in unit conversion) and reacting at a temperature of 50℃, the COD of wastewater was reduced by about 10%. In particular, the iron (II) ion-supported catalyst was recovered by filtration after decomposition of organic matter in wastewater, and the catalyst activity was maintained when reused.
[실험예 2][Experimental Example 2]
실험예 1과 동일한 방법으로 철(II)이온 담지촉매 대신 구리(II)이온 담지촉매를 0.02g(0.04중량부) 투입하여 반응시킨 결과, 폐수의 COD가 약 37% 감소하였다.In the same manner as in Experimental Example 1, 0.02 g (0.04 parts by weight) of a copper (II) ion-supported catalyst was added instead of the iron (II) ion-supported catalyst to react. As a result, the COD of the wastewater was reduced by about 37%.
[실험예 3][Experimental Example 3]
실험예 1과 동일한 방법으로 철(II)이온 담지촉매 대신 구리(II)이온 담지촉매를 0.05g(0.1중량부) 투입하여 반응시킨 결과, 폐수의 COD가 약 40% 감소하였다.In the same manner as in Experimental Example 1, 0.05 g (0.1 parts by weight) of a copper (II) ion-supported catalyst was added instead of an iron (II) ion-supported catalyst to react. As a result, the COD of wastewater was reduced by about 40%.
[실험예 4][Experimental Example 4]
실험예 1과 동일한 방법으로 철(II)이온 담지촉매 대신 구리(II)이온 담지촉매를 0.1g(0.2중량부) 투입하여 반응시킨 결과, 폐수의 COD가 약 48% 감소하였다.In the same manner as in Experimental Example 1, 0.1 g (0.2 parts by weight) of a copper (II) ion-supported catalyst was added instead of an iron (II) ion-supported catalyst to react. As a result, the COD of wastewater was reduced by about 48%.
[실험예 5][Experimental Example 5]
실험예 1과 동일한 방법으로 철(II)이온 담지촉매 대신 구리(II)이온 담지촉매를 0.3g(0.6중량부) 투입하여 반응시킨 결과, 폐수의 COD가 약 49% 감소하였다.In the same manner as in Experimental Example 1, 0.3 g (0.6 parts by weight) of a copper (II) ion-supported catalyst was added instead of an iron (II) ion-supported catalyst to react. As a result, the COD of wastewater was reduced by about 49%.
[실험예 6][Experimental Example 6]
실험예 1과 동일한 방법으로 철(II)이온 담지촉매 대신 구리(II)이온 담지촉매를 0.4g(0.8중량부) 투입하여 반응시킨 결과, 폐수의 COD가 약 57% 감소하였다.In the same manner as in Experimental Example 1, 0.4 g (0.8 parts by weight) of a copper (II) ion-supported catalyst was added instead of an iron (II) ion-supported catalyst to react. As a result, the COD of wastewater was reduced by about 57%.
[실험예 7][Experimental Example 7]
실험예 1과 동일한 방법으로 철(II)이온 담지촉매 대신 구리(II)이온 담지촉매를 0.5g(1.0중량부) 투입하여 반응시킨 결과, 폐수의 COD가 약 62% 감소하였다.In the same manner as in Experimental Example 1, 0.5 g (1.0 parts by weight) of a copper (II) ion-supported catalyst was added instead of an iron (II) ion-supported catalyst to react. As a result, the COD of wastewater was reduced by about 62%.
[실험예 8][Experimental Example 8]
실험예 1과 동일한 방법으로 철(II)이온 담지촉매 대신 구리(II)이온 담지촉매를 0.6g(1.2중량부) 투입하여 반응시킨 결과, 폐수의 COD가 약 49% 감소하였다.In the same manner as in Experimental Example 1, 0.6 g (1.2 parts by weight) of a copper (II) ion-supported catalyst was added instead of the iron (II) ion-supported catalyst and reacted. As a result, the COD of wastewater was reduced by about 49%.
[비교예 1][Comparative Example 1]
폐수의 COD가 16,000mg/L 수준으로 유기물 함유량이 보다 많으면서 고분자 화합물 및 고형 슬러지가 많은 폐수에 실험예 7과 동일한 방법으로 반응시킨 결과, 폐수의 COD가 약 90% 감소하였다. The COD of the wastewater was 16,000mg/L, and as a result of reacting the wastewater with a higher organic matter content and a lot of polymer compounds and solid sludge in the same manner as in Experimental Example 7, the COD of the wastewater was reduced by about 90%.
하지만, 초기 폐수의 COD가 높을수록 본 발명에 따른 합성된 촉매를 사용한 유기물 분해과정에서의 COD 저감율이 높지만 고형 슬러지로 인해 재사용을 위한 합성된 촉매의 회수가 어렵고, 촉매의 활성이 감소하여 촉매 재사용 시 활성이 초기 수준까지 복귀되지 않는 문제점이 발생하였다.However, the higher the COD of the initial wastewater, the higher the COD reduction rate in the organic matter decomposition process using the synthesized catalyst according to the present invention. There was a problem that the activity did not return to the initial level.
[비교예 2][Comparative Example 2]
원폐수의 pH가 12 수준으로 강염기인 폐수를 별도의 중화처리 없이 실험예 7과 동일한 방법으로 반응시킨 결과, 폐수의 COD가 약 5% 감소하였다.As a result of reacting the wastewater having a strong base with a pH of 12 in the raw wastewater in the same manner as in Experimental Example 7 without a separate neutralization treatment, the COD of the wastewater was reduced by about 5%.
본 발명의 실험예 1 내지 8의 성능 평가 결과 철(II)이온 담지촉매는 고염도 폐수의 COD 감소효율이 구리(II)이온 담지촉매보다 상대적으로 낮았으나, 특히 폐수의 유기물 분해 처리 후 여과 회수하여 여러 번 재사용할 수 있는 점은 동일하였다. 폐수에 구리(II)이온 담지촉매를 0.04중량부 투입 시 COD 감소효율이 약 37%이고, 점차 투입량을 증가함에 따라 1중량부 투입 시 COD 감소효율이 약 62%이었다가 1.2중량부 투입 시 COD 감소효율이 49%로 다시 줄어들었다.As a result of the performance evaluation of Experimental Examples 1 to 8 of the present invention, the iron (II) ion-supported catalyst exhibited relatively lower COD reduction efficiency than the copper (II) ion-supported catalyst in high-salinity wastewater, but in particular, filtration recovery after decomposing organic matter in wastewater Therefore, the point that it can be reused several times is the same. When 0.04 parts by weight of the copper (II) ion-supported catalyst is added to wastewater, the COD reduction efficiency is about 37%, and as the input amount is gradually increased, the COD reduction efficiency is about 62% when 1 part by weight is added, but when 1.2 parts by weight is added, COD The reduction efficiency was reduced again to 49%.
한편, 비교예 1에서 고분자 화합물 및 고형 슬러지가 많은 폐수에 구리(II)이온 담지촉매를 1.0중량부 투입 시 COD 감소효율이 약 90%로 우수하였으나, 고형 슬러지로 인해 촉매 회수율이 낮고 촉매의 활성이 감소하여 촉매 재사용 시 활성이 우수하지 못하여 초기 수준까지 복귀되지 않은 문제가 있고, 비교예 2와 같이 원폐수의 pH가 12 수준으로 강염기인 폐수를 별도의 중화처리 없이 반응시킨 경우 촉매의 활성 손상으로 폐수의 COD 감소효율이 약 5%로 급격히 감소하였다.On the other hand, in Comparative Example 1, when 1.0 parts by weight of the copper (II) ion-supported catalyst was added to wastewater with a lot of polymer compounds and solid sludge, the COD reduction efficiency was excellent at about 90%, but the catalyst recovery rate was low due to the solid sludge and the catalyst activity This decreases, so the activity is not excellent when reusing the catalyst, so there is a problem that it does not return to the initial level, and as in Comparative Example 2, when the raw wastewater has a pH of 12 and the strongly basic wastewater is reacted without a separate neutralization treatment, the activity of the catalyst is impaired As a result, the COD reduction efficiency of wastewater rapidly decreased to about 5%.
따라서 고염도 폐수 100중량부당 합성된 촉매의 사용량은 0.04 내지 1.2중량부일 수 있으며, 바람직하게는 0.1 내지 1중량부일 수 있다.Therefore, the amount of the synthesized catalyst per 100 parts by weight of high-salinity wastewater may be 0.04 to 1.2 parts by weight, preferably 0.1 to 1 parts by weight.
아울러, 원폐수의 성상이나 오염도에 따라 사전에 고형 슬러지를 줄이는 공정이나, 원폐수를 황산(H2SO4) 등으로 중화 처리하는 공정이 부가될 수 있다.In addition, a process of reducing solid sludge in advance or a process of neutralizing raw wastewater with sulfuric acid (H 2 SO 4 ) or the like may be added according to the properties or contamination level of the raw wastewater.
Claims (11)
A metal salt capable of providing a divalent state and a trivalent state containing iron (II) ions or copper (II) ions to a porous support, which is a silicate material having Si and O as a skeleton, is added based on the total amount of catalyst from 0.005 to After supporting at 2 wt%, it is synthesized by calcining at a temperature of 500 to 700 ° C., and when the synthesized catalyst is used together with hydrogen peroxide, organic matter in high salinity wastewater, characterized in that it can decompose organic matter in high salinity wastewater Catalyst for decomposition treatment.
상기 합성된 촉매 중에 금속염은 촉매 총량 기준 0.01 내지 1중량%로 담지한 것을 특징으로 하는 고염도 폐수의 유기물 분해 처리용 촉매.
According to claim 1,
A catalyst for decomposing organic matter in high salinity wastewater, characterized in that the metal salt is supported in an amount of 0.01 to 1% by weight based on the total amount of the catalyst in the synthesized catalyst.
상기 금속염이 황산철(FeSO4) 또는 황산구리(CuSO4)를 포함하는 것을 특징으로 하는 고염도 폐수의 유기물 분해 처리용 촉매.
According to claim 1,
The metal salt is iron sulfate (FeSO 4 ) or copper sulfate (CuSO 4 ) Catalyst for organic matter decomposition treatment of high salinity wastewater, characterized in that it contains.
상기 다공성 담지체 내 기공의 직경이 2~50nm인 다공성 담지체를 이용한 것을 특징으로 하는 고염도 폐수의 유기물 분해 처리용 촉매.
According to claim 1,
A catalyst for decomposing organic matter in high salinity wastewater, characterized in that the porous support having a pore diameter of 2 to 50 nm in the porous support is used.
상기 다공성 담지체는 실리카, 활성탄, 제올라이트로 이루어진 군으로부터 선택된 것을 특징으로 하는 고염도 폐수의 유기물 분해 처리용 촉매.
According to claim 1,
The porous support is a catalyst for decomposing organic matter in high salinity wastewater, characterized in that it is selected from the group consisting of silica, activated carbon, and zeolite.
0.04 to 1.2 parts by weight of the catalyst of any one of claims 1 to 5 to 100 parts by weight of wastewater having a COD of 9,000 mg/L to 16,000 mg/L and having a sodium chloride concentration of 8% by weight or more, and then mixing forming a mixture; adding hydrogen peroxide solution having a concentration of 10 to 50 wt % to the mixture; A method for treating high salinity wastewater, comprising the step of reacting the mixture with hydrogen peroxide for decomposition of organic matter in the wastewater.
상기 혼합물에 과산화수소수를 투입하는 단계 이전에 폐수 내 유기물의 분해 시 반응 온도를 50~80℃로 설정하기 위해 혼합물의 온도를 승온하는 단계를 부가하는 것을 특징으로 하는 고염도 폐수 처리 방법.
7. The method of claim 6,
High salinity wastewater treatment method, characterized in that adding the temperature of the mixture to set the reaction temperature to 50 ~ 80 ℃ when decomposing the organic matter in the wastewater before the step of adding the hydrogen peroxide solution to the mixture.
에피클로로히드린(Epichlorohydrin) 유도체인 글리세린(Glycerin)을 포함하는 폐수를 처리 대상으로 하는 것을 특징으로 하는 고염도 폐수 처리 방법.
7. The method of claim 6,
A method for treating high salinity wastewater, characterized in that the wastewater containing glycerin, a derivative of epichlorohydrin, is treated.
폐수에 촉매를 가한 다음 혼합하여 혼합물을 형성하는 단계 이전에 pH = 4~7로 산처리(Acid Treatment)하는 것을 특징으로 하는 고염도 폐수 처리 방법.
7. The method of claim 6,
A method for treating high salinity wastewater, characterized in that after adding a catalyst to wastewater and then mixing it to form a mixture, it is subjected to acid treatment at pH = 4-7.
폐수가 pH = 10 이상을 가지는 강염기성인 경우, 폐수에 촉매를 가한 다음 혼합하여 혼합물을 형성하는 단계 이전에 pH = 5~6으로 산처리(Acid Treatment)하는 것을 특징으로 하는 폐수 처리 방법.
7. The method of claim 6,
When the wastewater is strongly basic having a pH of 10 or more, the wastewater treatment method, characterized in that before adding a catalyst to the wastewater and mixing to form a mixture, acid treatment is performed to pH=5-6.
폐수 내 유기물의 분해 후 여과과정을 통해 분리된 촉매를 회수하여 재사용하는 것을 특징으로 하는 고염도 폐수 처리 방법.7. The method of claim 6,
A method for treating high salinity wastewater, characterized in that after decomposition of organic matter in wastewater, the catalyst separated through a filtration process is recovered and reused.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200105198A KR102409477B1 (en) | 2020-08-21 | 2020-08-21 | Catalysts for organic matter degradation treatment of high salinity wastewater and wastewater treatment methods including them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200105198A KR102409477B1 (en) | 2020-08-21 | 2020-08-21 | Catalysts for organic matter degradation treatment of high salinity wastewater and wastewater treatment methods including them |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220023894A true KR20220023894A (en) | 2022-03-03 |
KR102409477B1 KR102409477B1 (en) | 2022-06-16 |
Family
ID=80818579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200105198A Active KR102409477B1 (en) | 2020-08-21 | 2020-08-21 | Catalysts for organic matter degradation treatment of high salinity wastewater and wastewater treatment methods including them |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102409477B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115893636A (en) * | 2022-11-28 | 2023-04-04 | 珠海保税区丽珠合成制药有限公司 | Treatment method of N,N-dimethylacetamide wastewater |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0146502B1 (en) * | 1995-08-01 | 1998-08-17 | 강박광 | Phenolic Wastewater Treatment Agent |
JPH10314762A (en) * | 1997-05-15 | 1998-12-02 | Noritsu Koki Co Ltd | Waste liquid treatment method |
KR20100068246A (en) * | 2007-08-23 | 2010-06-22 | 다우 글로벌 테크놀로지스 인크. | Brine purification |
JP2013208562A (en) * | 2012-03-30 | 2013-10-10 | Kurita Water Ind Ltd | Method for treating hardly biodegradable organic matter-containing water |
KR101373486B1 (en) | 2011-12-31 | 2014-03-14 | 전주대학교 산학협력단 | Treating and reusing method of high salinity waste water |
KR101510416B1 (en) | 2014-04-01 | 2015-04-10 | 주식회사 한독이엔지 | Apparatus And Method For Treating High Concentrated Organic or high salinity waste water |
KR20200080527A (en) * | 2018-12-27 | 2020-07-07 | 고려대학교 산학협력단 | Catalyst for treating waste water, method for preparing the same and process of waste water treatment using the same |
-
2020
- 2020-08-21 KR KR1020200105198A patent/KR102409477B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0146502B1 (en) * | 1995-08-01 | 1998-08-17 | 강박광 | Phenolic Wastewater Treatment Agent |
JPH10314762A (en) * | 1997-05-15 | 1998-12-02 | Noritsu Koki Co Ltd | Waste liquid treatment method |
KR20100068246A (en) * | 2007-08-23 | 2010-06-22 | 다우 글로벌 테크놀로지스 인크. | Brine purification |
KR101373486B1 (en) | 2011-12-31 | 2014-03-14 | 전주대학교 산학협력단 | Treating and reusing method of high salinity waste water |
JP2013208562A (en) * | 2012-03-30 | 2013-10-10 | Kurita Water Ind Ltd | Method for treating hardly biodegradable organic matter-containing water |
KR101510416B1 (en) | 2014-04-01 | 2015-04-10 | 주식회사 한독이엔지 | Apparatus And Method For Treating High Concentrated Organic or high salinity waste water |
KR20200080527A (en) * | 2018-12-27 | 2020-07-07 | 고려대학교 산학협력단 | Catalyst for treating waste water, method for preparing the same and process of waste water treatment using the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115893636A (en) * | 2022-11-28 | 2023-04-04 | 珠海保税区丽珠合成制药有限公司 | Treatment method of N,N-dimethylacetamide wastewater |
Also Published As
Publication number | Publication date |
---|---|
KR102409477B1 (en) | 2022-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5445741A (en) | Process for treating waste water | |
US11377374B2 (en) | System and process for treating water | |
Li et al. | Pretreatment of acrylic fiber manufacturing wastewater by the Fenton process | |
CN110117115A (en) | A kind of processing method and equipment of industrial waste salt recycling | |
CN101601998A (en) | A preparation method of a catalyst for catalytic oxidation treatment of high-concentration organic wastewater | |
CN110799461A (en) | Wastewater treatment method for removing chemical oxygen demand | |
CN105923737A (en) | A method for treating waste water using advanced oxidation technology | |
CN108178283A (en) | The method for removing organic matter in high-chloride wastewater | |
KR102409477B1 (en) | Catalysts for organic matter degradation treatment of high salinity wastewater and wastewater treatment methods including them | |
CN115925084A (en) | A method for treating saline organic wastewater | |
JP2014198288A (en) | Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof | |
JP5526640B2 (en) | Method and apparatus for treating water containing biologically indegradable organic matter | |
CN1654353A (en) | Comprehensive treatment method for wastewater containing organic matter and heavy metals | |
JPS6211634B2 (en) | ||
JP4639309B2 (en) | Treatment method of wastewater containing cyanide | |
CN114906919B (en) | Environment-friendly method for removing ammonia nitrogen in wastewater | |
UA125671C2 (en) | Method for the treatment of wastewaters | |
JP4531958B2 (en) | Treatment method of waste water containing hydrazine | |
CN112239264B (en) | Method for treating carbon-containing organic matters in waste brine | |
JPH05169071A (en) | Treatment of cyanide containing waste water | |
CN113184972A (en) | Method for removing organic pollutants in wastewater through sequencing batch reaction | |
CN112978996A (en) | Method for deeply treating organic matters and ammonia nitrogen in titanium dioxide production wastewater | |
JP2001259688A (en) | Waste liquid treatment method | |
JP4862234B2 (en) | Method for treating waste water containing hydrazine and chelating organic compound | |
CN111233225B (en) | UV-FENTON wastewater treatment process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20200821 |
|
PA0201 | Request for examination | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20211202 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20220607 |
|
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20220610 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20220610 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20250610 Start annual number: 4 End annual number: 4 |