KR20220013462A - 가속도 측정에 의한 바람 검출을 위한 장치 및 그 방법 - Google Patents
가속도 측정에 의한 바람 검출을 위한 장치 및 그 방법 Download PDFInfo
- Publication number
- KR20220013462A KR20220013462A KR1020227001923A KR20227001923A KR20220013462A KR 20220013462 A KR20220013462 A KR 20220013462A KR 1020227001923 A KR1020227001923 A KR 1020227001923A KR 20227001923 A KR20227001923 A KR 20227001923A KR 20220013462 A KR20220013462 A KR 20220013462A
- Authority
- KR
- South Korea
- Prior art keywords
- accelerometer
- wind
- microphone
- noise
- signals
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000001133 acceleration Effects 0.000 title claims description 7
- 238000001514 detection method Methods 0.000 title description 8
- 238000005259 measurement Methods 0.000 title description 8
- 210000003127 knee Anatomy 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 6
- 230000009467 reduction Effects 0.000 description 14
- 238000001228 spectrum Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000003595 spectral effect Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 210000003128 head Anatomy 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 240000004050 Pentaglottis sempervirens Species 0.000 description 1
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 210000000613 ear canal Anatomy 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 210000003454 tympanic membrane Anatomy 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P5/00—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P13/00—Indicating or recording presence, absence, or direction, of movement
- G01P13/02—Indicating direction only, e.g. by weather vane
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/18—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/10—Earpieces; Attachments therefor ; Earphones; Monophonic headphones
- H04R1/1083—Reduction of ambient noise
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/20—Arrangements for obtaining desired frequency or directional characteristics
- H04R1/22—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only
- H04R1/222—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only for microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/002—Damping circuit arrangements for transducers, e.g. motional feedback circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2410/00—Microphones
- H04R2410/07—Mechanical or electrical reduction of wind noise generated by wind passing a microphone
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Aviation & Aerospace Engineering (AREA)
- Circuit For Audible Band Transducer (AREA)
Abstract
방법은, 가속도계로부터 도출된 하나 이상의 가속도계 신호를 획득하는 단계; 및 하나 이상의 가속도계 신호에 기초하여, 가속도계에서의 하나 이상의 바람 파라미터를 결정하는 단계를 포함한다.
Description
본 개시내용의 실시예들은 바람을 검출하고, 바람 파라미터들을 추정하고, 마이크로폰 신호들에서의 바람 잡음을 감소시키기 위한 방법들, 장치, 및 시스템들에 관한 것으로, 특히, 가속도계를 사용하여 바람을 검출 및 추정하고, 바람 잡음을 감소시키기 위한 방법들, 장치, 및 시스템들에 관한 것이다.
오디오 시스템들에서의 바람 잡음은 마이크로폰 멤브레인(membrane)을 통해 마이크로폰 포트를 지나서 흐르는 기류에서의 난류로부터 생성된다. 이는 마이크로폰 멤브레인에 입사하는 음압파들로 인해 생성되는 바람-아닌 잡음(예컨대, 교통, 기차, 공사 등)과 대조적이다.
바람 잡음은 흔히, 음성과 같은 마이크로폰 신호에서의 더 가치 있는 사운드를 마스킹(mask)할 정도로 충분히 큰 진폭을 가질 수 있다. 따라서, 마이크로폰 신호의 바람-아닌 잡음 성분들이 청취 및/또는 프로세싱될 수 있게 하기 위해, 이러한 난류에 의해 생성되는 마이크로폰 신호들에서의 바람 잡음을 억제하는 것이 바람직하다.
최신 바람 잡음 감소 알고리즘들은, 몇몇 예를 들면, 바람 존재 확률, 바람 속도, 바람 방향, 단기 및 장기 스펙트럼 진폭, 단기 및 장기 스펙트럼 차단 주파수와 같은, 일반적으로 '바람 잡음 파라미터들'로 지칭되는, 마이크로폰 신호에 존재하는 바람 잡음에 관한 정보를 요구한다. 그러나, 종래의 마이크로폰들은 바람-아닌 잡음(예컨대, 교통 잡음)과 혼합된 바람 잡음과 바람 잡음 자체를 구별할 수 없기 때문에, 바람 감소 알고리즘들에 의해 사용될 바람 잡음 파라미터들을 정확하게 결정하는 것은 어려울 수 있다.
위의 것에 추가하여, 종래의 마이크로폰들은 흔히, 강한 바람의 존재 시에 포화되어 마이크로폰 출력 신호들에서 클리핑(clipping)을 초래할 것이다. 매우 강한 바람들(예컨대, 12 ms-1 초과의 속도들)은 마이크로폰 신호의 완전 포화(total saturation)를 초래할 수 있는데, 이는 완전 포화가 발생하는 속도보다 더 높은 속력들을 갖는 바람들의 특성들의 구별이 이루어질 수 없다는 것을 의미한다.
본 명세서에 포함된 문서들, 동작들, 재료들, 디바이스들, 물품들 등의 임의의 논의는, 이러한 사안들 중 임의의 것 또는 전부가 종래 기술 기반의 일부를 형성하거나, 또는 첨부 청구항들 각각의 우선일 전에 존재했던 본 개시내용과 관련된 분야에서의 통상적인 일반 지식이었음을 인정하는 것으로 간주되지 않아야 한다.
본 개시내용의 실시예들은 바람 잡음의 존재 및 특성들을 추정하기 위해 가속도계 또는 관성 측정 유닛(IMU)을 사용함으로써 이러한 문제들 중 하나 이상을 해결하거나 또는 적어도 완화하려고 한다. 본 발명자들은 이동 기류로 인해 생성되는 난류와 입사 음압파들에 의해 발생되는 진동들을 구별하기 위해 가속도계 신호들이 사용될 수 있다는 것을 확립하였다. 이는 가속도계(또는 가속도계가 위치된 인클로저(enclosure)) 주위의 공기(예컨대, 바람)의 움직임에 의해 가해지는 힘이 가속도계의 감도의 임계치를 초과하는 경향이 있는 반면, 매우 큰 음압파(예컨대, 100 dB SPL 초과)에 의해 가해지는 힘은 일반적으로 가속도계의 감도의 임계치를 초과하기에 불충분하기 때문이다.
추가적으로, 전형적인 MEMS 마이크로폰의 유효 질량은 MEMS 가속도계의 프루프 질량(proof mass)보다 수 자릿수만큼 더 작다. 따라서, 마이크로폰은 높은 속도 바람들의 존재 시에 포화되는 반면, 가속도계들 및 IMU들은 높은 속도 바람들에 의해 포화되지 않는다. 전형적인 MEMS 가속도계는 상당한 바람 속력들(예컨대, 12 ms-1 이상)에서 체적 공기 흐름들에 의해 가해지는 힘을 초과하는 +/-16 g 이상의 측정 범위들로 설계된다.
본 개시내용의 실시예들은, 바람-아닌 잡음 레벨들과 무관하게 그리고 강한 바람 조건들, 예컨대 12 ms-1을 초과하는 속력들에서, 바람 잡음을 검출하고 바람 잡음 파라미터들을 결정하기 위해, 가속도계들 및 IMU들의 위의 현상 및 특성들을 활용한다. 추가로, 본 개시내용의 실시예들은 가속도계로부터의 신호들을 사용하여 결정된 바람 잡음 파라미터들에 기초하여 마이크로폰 신호들에서의 바람 잡음을 감소시키는 것을 목표로 한다.
본 개시내용의 제1 양태에 따르면, 방법이 제공되고, 그 방법은 가속도계로부터 도출된 하나 이상의 가속도계 신호를 수신하는 단계; 및 하나 이상의 가속도계 신호에 기초하여, 하나 이상의 바람 파라미터를 결정하는 단계를 포함한다.
가속도계에서의 하나 이상의 바람 파라미터는 가속도계에서의 바람 속력 및/또는 가속도계에서의 바람 입사각을 포함할 수 있다. 하나 이상의 가속도계 신호는 상이한 가속도 축들을 나타내는 2개 이상의 가속도계 신호를 포함할 수 있다. 이 경우, 가속도계에서의 바람의 입사각을 결정하는 것은 2개 이상의 가속도계 신호를 비교하는 것을 포함할 수 있다.
가속도계에서의 하나 이상의 바람 파라미터는 가속도계에서의 바람의 존재 및/또는 가속도계에서의 바람의 존재의 확률의 표시를 포함할 수 있다.
방법은 바람-아닌 잡음을 제거하기 위해 하나 이상의 가속도계 신호 중 하나 이상을 필터링하는 단계를 더 포함할 수 있다. 하나 이상의 바람 파라미터는 필터링된 하나 이상의 가속도계 신호에 기초하여 결정될 수 있다. 필터링은 저역 통과 필터링을 포함할 수 있다. 추가적으로 또는 대안적으로, 움직임과 같은, 바람과 연관되지 않은 잡음의 고주파수 성분들을 제거하기 위해 고역 통과 필터링이 적용될 수 있다.
방법은 하나 이상의 가속도계 신호 중 하나 이상에서의 바람-아닌 잡음의 존재를 검출하는 단계를 더 포함할 수 있다. 결정은 바람-아닌 잡음이 검출되지 않을 때에만 수행될 수 있다.
방법은 가속도계 근처의 마이크로폰으로부터 마이크로폰 신호를 수신하는 단계; 및 결정된 가속도계에서의 하나 이상의 바람 파라미터에 기초하여, 마이크로폰 신호에서의 바람 잡음을 감소시키는 단계를 더 포함할 수 있다.
가속도계에서의 하나 이상의 바람 파라미터를 결정하는 것은 가속도계 신호들 중 하나 이상에서의 부대역 전력을 결정하는 것; 및 결정된 하나 이상의 가속도계 신호에서의 부대역 전력에 기초하여, 마이크로폰 신호에서의 잡음의 차단 주파수를 추정하는 것을 포함할 수 있다. 이어서, 추정된 차단 주파수를 사용하여 마이크로폰 신호에서 바람 잡음이 감소될 수 있다. 예컨대, 바람 잡음은 압축기를 사용하여 마이크로폰 신호에서 감소될 수 있고, 압축기의 니 포인트(knee point)는 추정된 차단 주파수에 따라 동적으로 조정된다.
가속도계에서의 하나 이상의 바람 파라미터를 결정하는 것은 바람 속력을 결정하는 것을 더 포함할 수 있다. 이어서, 압축기의 니 포인트는, 추정된 차단 주파수 대신에 또는 이에 추가하여, 결정된 바람 속력에 따라 결정될 수 있다.
차단 주파수를 추정하는 것은 룩업 테이블을 사용하여 부대역 전력을 차단 주파수로 변환하는 것을 포함할 수 있다.
방법은 마이크로폰 신호에 기초하여, 마이크로폰에서의 바람의 존재를 검출하거나, 또는 마이크로폰에서의 바람의 확률을 결정하는 단계를 더 포함할 수 있다.
가속도계에서의 하나 이상의 바람 파라미터를 결정하는 단계는 마이크로폰에서의 바람의 존재를 검출하는 것에 응답하여 수행될 수 있다.
본 개시내용의 다른 양태에 따르면, 장치가 제공되고, 그 장치는 메모리; 및 메모리에 커플링된 프로세서를 포함하고, 그 프로세서는 가속도계로부터 도출된 하나 이상의 가속도계 신호를 수신하고, 하나 이상의 가속도계 신호에 기초하여 가속도계에서의 하나 이상의 바람 파라미터를 결정하도록 구성된다.
가속도계에서의 하나 이상의 바람 파라미터는 가속도계에서의 바람 속력 및/또는 가속도계에서의 바람 입사각을 포함할 수 있다.
하나 이상의 가속도계 신호는 상이한 가속도 축들을 나타내는 2개 이상의 가속도계 신호를 포함할 수 있다. 가속도계에서의 바람의 입사각을 결정하는 것은 2개 이상의 가속도계 신호를 비교하는 것을 포함할 수 있다.
가속도계에서의 하나 이상의 바람 파라미터는 가속도계에서의 바람의 존재 및/또는 가속도계에서의 바람의 존재의 확률의 표시를 포함할 수 있다.
프로세서는 바람-아닌 잡음을 제거하기 위해 하나 이상의 가속도계 신호 중 하나 이상을 필터링하도록 추가로 구성될 수 있다. 하나 이상의 바람 파라미터는 필터링된 하나 이상의 가속도계 신호에 기초하여 결정될 수 있다.
프로세서는 하나 이상의 가속도계 신호 중 하나 이상에서의 바람-아닌 잡음의 존재를 검출하도록 추가로 구성될 수 있다. 결정은 바람-아닌 잡음이 검출되지 않을 때에만 수행될 수 있다.
프로세서는 가속도계 근처의 마이크로폰으로부터 도출된 마이크로폰 신호를 수신하고, 결정된 가속도계에서의 하나 이상의 바람 파라미터에 기초하여, 마이크로폰 신호에서의 바람 잡음을 감소시키도록 추가로 구성될 수 있다.
가속도계에서의 하나 이상의 바람 파라미터를 결정하는 것은 가속도계 신호들 중 하나 이상에서의 부대역 전력을 결정하는 것; 및 결정된 하나 이상의 가속도계 신호에서의 부대역 전력에 기초하여, 마이크로폰 신호에서의 잡음의 차단 주파수를 추정하는 것을 포함할 수 있다. 이어서, 추정된 차단 주파수를 사용하여 마이크로폰 신호에서 바람 잡음이 감소될 수 있다. 예컨대, 프로세서는 마이크로폰 신호에서의 바람 잡음을 감소시키기 위한 압축기를 구현하도록 구성될 수 있고, 압축기의 니 포인트는 추정된 차단 주파수에 따라 결정될 수 있다. 일부 실시예들에서, 가속도계에서의 하나 이상의 바람 파라미터를 결정하는 것은 바람 속력을 결정하는 것을 더 포함할 수 있다. 이 경우, 압축기의 니 포인트는, 추정된 차단 주파수를 사용하는 것에 추가하여 또는 그 대신에, 결정된 바람 속력에 따라 결정될 수 있다.
차단 주파수를 추정하는 것은 메모리에 저장된 룩업 테이블을 사용하여 부대역 전력을 차단 주파수로 변환하는 것을 포함할 수 있다.
프로세서는 마이크로폰 신호에 기초하여, 마이크로폰에서의 바람의 존재를 검출하거나, 또는 마이크로폰에서의 바람의 확률을 결정하도록 추가로 구성될 수 있다. 가속도계에서의 하나 이상의 바람 파라미터를 결정하는 단계는 마이크로폰에서의 바람의 존재를 검출하는 것에 응답하여 수행될 수 있다.
장치는 마이크로폰을 더 포함할 수 있다. 장치는 가속도계를 더 포함할 수 있다.
본 개시내용의 다른 양태에 따르면, 위에서 설명된 바와 같은 장치를 포함하는 전자 디바이스가 제공된다.
본 개시내용의 다른 양태에 따르면, 비일시적 머신 판독가능 매체가 제공되고, 비일시적 머신 판독가능 매체는 명령어들을 저장하고, 그 명령어들은, 프로세싱 회로부에 의해 실행될 때, 전자 장치로 하여금, 가속도계로부터 도출된 하나 이상의 가속도계 신호를 수신하게 하고, 하나 이상의 가속도계 신호에 기초하여 가속도계에서의 하나 이상의 바람 파라미터를 결정하게 한다.
본 개시내용의 다른 양태에 따르면, 마이크로폰으로부터 수신된 마이크로폰 신호에서의 바람 잡음을 감소시키는 방법이 제공되고, 그 방법은 마이크로폰 근처의 하나 이상의 가속도계로부터 하나 이상의 가속도계 신호를 수신하는 단계; 하나 이상의 가속도계 신호 중 하나 이상에서의 부대역 전력을 결정하는 단계; 결정된 부대역 전력에 기초하여, 마이크로폰 신호에서의 잡음의 차단 주파수를 추정하는 단계; 및 추정된 차단 주파수를 사용하여 마이크로폰 신호에서의 바람 잡음을 감소시키는 단계를 포함한다.
본 명세서 전체에 걸쳐, "포함하다", 또는 "포함하다" 또는 "포함하는"과 같은 변형들과 같은 단어는 명시된 요소, 정수 또는 단계, 또는 요소들, 정수들 또는 단계들의 그룹을 포함하지만, 임의의 다른 요소, 정수 또는 단계, 또는 요소들, 정수들 또는 단계들의 그룹을 배제하지 않는다는 것을 의미하는 것으로 이해될 것이다.
이제, 본 개시내용의 실시예들이 첨부 도면들을 참조하여 단지 비제한적인 예로서 설명될 것이다.
도 1a 및 도 1b는 본 개시내용의 실시예에 따른 장치의 개략도이다.
도 1c는 사용자의 귀 상에 배치된 도 1a 및 도 1b의 장치를 도시하는 평면도이다.
도 2는 다양한 잡음 조건들에 대한 도 1a 내지 도 1c에 도시된 장치의 마이크로폰 및 가속도계에 대한 주파수 대 전력의 그래프이다.
도 3a 및 도 3b는 도 1a 내지 도 1c에 도시된 장치의 내부 및 외부 마이크로폰들의 출력 신호 및 가속도계의 3개의 공간 축의 출력들에 대한 전력 상관 행렬들이다.
도 4a, 도 4b, 및 도 4c는 도 1a 내지 도 1c에 도시된 장치의 가속도계에 입사하는 각각 4 m/s, 6 m/s, 및 8 m/s의 속력들을 갖는 바람에 대한 바람의 입사각 대 500 Hz 미만의 가속도계 부대역 신호 전력의 산점도들이다.
도 5a, 도 5b, 및 도 5c는 각각 4 m/s, 6 m/s, 및 8 m/s의 속력들을 갖는 바람의 존재 시에 도 1a 내지 도 1c에 도시된 장치의 가속도계에 의해 측정된 전력 밀도를 나타내는 밀도 플롯(plot)들이다.
도 6a, 도 6b, 및 도 6c는 도 1a 내지 도 1c에 도시된 장치에서 수신된 바람의 상이한 바람 입사각들 및 바람 속력들에 대한 가속도계 부대역 전력 대 마이크로폰 부대역 전력의 산점도들이다.
도 7은 도 1a 내지 도 1c에 도시된 장치에 의해 구현된 예시적인 파라미터 추정 모듈의 블록도이다.
도 8은 도 7에 도시된 파라미터 추정 모듈에 의해 구현될 수 있는 프로세스의 흐름도이다.
도 9, 도 10, 및 도 11은 도 7의 파라미터 추정 모듈을 통합하는 바람 잡음 감소 시스템들의 블록도들이다.
도 1a 및 도 1b는 본 개시내용의 실시예에 따른 장치의 개략도이다.
도 1c는 사용자의 귀 상에 배치된 도 1a 및 도 1b의 장치를 도시하는 평면도이다.
도 2는 다양한 잡음 조건들에 대한 도 1a 내지 도 1c에 도시된 장치의 마이크로폰 및 가속도계에 대한 주파수 대 전력의 그래프이다.
도 3a 및 도 3b는 도 1a 내지 도 1c에 도시된 장치의 내부 및 외부 마이크로폰들의 출력 신호 및 가속도계의 3개의 공간 축의 출력들에 대한 전력 상관 행렬들이다.
도 4a, 도 4b, 및 도 4c는 도 1a 내지 도 1c에 도시된 장치의 가속도계에 입사하는 각각 4 m/s, 6 m/s, 및 8 m/s의 속력들을 갖는 바람에 대한 바람의 입사각 대 500 Hz 미만의 가속도계 부대역 신호 전력의 산점도들이다.
도 5a, 도 5b, 및 도 5c는 각각 4 m/s, 6 m/s, 및 8 m/s의 속력들을 갖는 바람의 존재 시에 도 1a 내지 도 1c에 도시된 장치의 가속도계에 의해 측정된 전력 밀도를 나타내는 밀도 플롯(plot)들이다.
도 6a, 도 6b, 및 도 6c는 도 1a 내지 도 1c에 도시된 장치에서 수신된 바람의 상이한 바람 입사각들 및 바람 속력들에 대한 가속도계 부대역 전력 대 마이크로폰 부대역 전력의 산점도들이다.
도 7은 도 1a 내지 도 1c에 도시된 장치에 의해 구현된 예시적인 파라미터 추정 모듈의 블록도이다.
도 8은 도 7에 도시된 파라미터 추정 모듈에 의해 구현될 수 있는 프로세스의 흐름도이다.
도 9, 도 10, 및 도 11은 도 7의 파라미터 추정 모듈을 통합하는 바람 잡음 감소 시스템들의 블록도들이다.
본 개시내용의 실시예들은 바람 잡음을 검출하고, 바람 잡음과 바람-아닌 잡음을 구별하고, 넓은 범위의 바람 조건들에 걸쳐 바람의 특성들을 결정하고, 마이크로폰 신호들에서의 바람 잡음을 감소시키기 위한 가속도계 신호들의 획득 및 사용에 관한 것이다.
MEMS 마이크로폰과 가속도계 디바이스들 둘 모두는 간단한 고조파 발진기들(질량-스프링 시스템들)로서 모델링될 수 있다. 그러나, 이러한 디바이스들의 설계는 상이한 문제들; 가속도를 측정하기 위한 하나의 문제 및 음압을 측정하기 위한 다른 문제에 대해 최적화된다. 따라서, MEMS 마이크로폰 멤브레인의 유효 질량은 가속도계 MEMS의 프루프 질량보다 수 자릿수만큼 더 작다. MEMS 마이크로폰 멤브레인의 비교적 작은 유효 질량은 이를 공간 신호들의 불량한 트랜스듀서로 만든다. 이는 또한, MEMS 마이크로폰들을 바람 잡음에 더 취약하게 만들고, 이러한 문제는 이들의 구성, 특히 이들의 포트 치수들에 의해 MEMS 마이크로폰들에서 악화된다. 포트의 크기는 불순물들의 진입을 최소화하는 것과 난류 대류 압력들을 제한하는 것 사이의 절충이다. 일반적으로, 마이크로폰의 포트 주위의 공기의 흐름은 3개의 잡음 소스; 상류 난류, 뒷전 와류 쉐딩(shedding), 및 경계 층 난류를 생성한다. 이러한 잡음 소스들의 레벨 및 스펙트럼은 입사 바람 속력, 상대 마이크로폰 배향, 및 바람 스크리닝(wind screening)과 같은 물리적 배리어들의 존재 및 특성들에 따라 결정된다.
본 발명자들은, MEMS 마이크로폰들과 대조적으로, 이동 기류로 인해 생성되는 난류와 입사 음압파들에 의해 발생되는 진동들을 구별하기 위해 MEMS 가속도계들이 사용될 수 있다는 것을 알게 되었다. 이는 공기(예컨대, 바람)의 움직임에 의해 가해지는 전형적인 힘이 전형적인 MEMS 가속도계의 감도의 임계치를 초과하는 경향이 있는 반면, 매우 큰 음압파(예컨대, 100 dB SPL 초과)에 의해 가해지는 전형적인 힘은 가속도계의 감도의 임계치를 초과하기에 불충분한 경향이 있기 때문이다. 본 개시내용의 실시예들은 마이크로폰 신호들에서의 바람 잡음 감소 및 억제와 같은 마이크로폰 사운드 프로세싱의 다양한 양태들에 위의 현상을 적용한다.
도 1a는 외부 마이크로폰(102), 내부 마이크로폰(103), 및 가속도계(104)를 포함하는 본 개시내용의 실시예에 따른 장치(100)의 개략도이다. 일부 실시예들에서, 외부 및 내부 마이크로폰들(102, 103)은 MEMS 마이크로폰들이다. 외부 및 내부 마이크로폰들(102, 103)은 각각 기준 및 에러 마이크로폰들일 수 있고, 관련 기술분야에 널리 공지된 기법들을 사용하여 잡음 제거를 위해 사용될 수 있다. 일부 실시예들에서, 가속도계(104)는 MEMS 가속도계이다. 일부 실시예들에서, 가속도계(104)는 하나 이상의 차원들에서 움직임을 측정하도록 구성될 수 있다. 예컨대, 가속도계(104)는 3차원 공간 내의 복수의 공간 차원(x 및 y, 또는 x 및 y 및 z, 또는 y 및 z)의 가속도를 나타내는 출력 신호들을 생성할 수 있다. 다음의 설명에서, 가속도계(104)는 x, y, 및 z 공간 축들을 나타내는 3개의 출력 신호를 생성하도록 구성된 것으로 설명될 것이지만, 본 개시내용의 실시예들이 3개의 축을 갖는 가속도계들로 제한되지 않는다는 것이 인식될 것이다. 장치(100)가 내부 마이크로폰(102)과 내부 마이크로폰(103) 둘 모두를 갖는 것으로 도시되지만, 실시예들이 도 1a의 마이크로폰들의 예시된 제공 및 배치로 제한되지 않는다는 것이 인식될 것이다. 예컨대, 대안적인 실시예들에서, 장치는, 장치(100) 상의 또는 장치(100) 내의 어느 곳에나 위치될 수 있는, 하나의 마이크로폰 또는 2개 초과의 마이크로폰을 포함할 수 있다.
도 1에 도시된 실시예에서, 장치(100)는 사용자(107)의 귀(106) 상에 배치하도록 구성된 헤드폰이다. 그러나, 본원에서 설명되는 기법들은 마이크로폰 및 가속도계를 포함하는 임의의 장치 상에 구현될 수 있다는 것이 인식될 것이다. 이러한 장치는 이어폰, 헤드폰, 헤드셋, 이어버드(earbud), 이어폰, 이어 디펜더(ear defender), 스마트폰, 태블릿, 또는 (능동적으로 또는 수동적으로) 고막으로 사운드를 전달하고/하거나 고막에서 사운드를 제거하기 위한 다른 장치를 포함할 수 있지만 이에 제한되지는 않는다. 임의의 이러한 장치는 귀 위에 또는 귀 상에 또는 외이도에 배치될 수 있다.
도 1b는 예시적인 구성의 장치(100)의 개략도이다. 장치(100)는 프로세서(108), 메모리(110), 및 송수신기(112)를 포함한다. 프로세서(108)는 단일 구성요소로서 또는 다수의 구성요소로서 제공될 수 있다. 마찬가지로, 메모리(110)는 단일 구성요소로서 또는 다수의 구성요소로서 제공될 수 있다. 데이터는 관련 기술분야에 공지된 임의의 방식으로 버스(114) 등을 통해 장치(100)의 요소들 사이에서 송신될 수 있다. 프로세서(108)는 장치(100)의 애플리케이션 프로세서 또는 디지털 신호 프로세서(DSP)일 수 있다. 프로세서(108)는 마이크로폰(102) 및 가속도계(104)로부터 수신된 신호들을 수신 및 프로세싱하도록 구성될 수 있다. 프로세서(108)는 마이크로폰(102) 및/또는 가속도계(104)로부터 수신된 신호들에 대해 동작들을 수행하도록 구성될 수 있다. 장치(100)는 마이크로폰(102) 및/또는 가속도계(104)로부터 수신된 신호들의 중간 프로세싱을 수행하기 위한 추가적인 프로세싱 회로부(116)를 더 포함할 수 있다. 예컨대, 프로세싱 회로부는 하나 이상의 아날로그-디지털 변환기(ADC), 하나 이상의 디지털-아날로그 변환기(DAC), 및/또는 하나 이상의 FFT 모듈을 포함할 수 있다. 간략화를 위해, 하나의 마이크로폰(102)만이 도 1b에 도시된다. 도 1a에 도시된 내부 마이크로폰(103)이 또한 버스(114) 등과 통신할 수 있다. 메모리(110)는 데이터 및/또는 프로그램 명령어들을 저장하기 위해 제공될 수 있다. 송수신기(112)는 스마트폰, 컴퓨터 등과 같은 외부 디바이스들과의 통신(유선 또는 무선)을 가능하게 하도록 구성될 수 있다. 일부 실시예들에서, 송수신기는 블루투스 연결을 확립하도록 구성될 수 있다. 장치(100)는 도 1a 및 도 1b에 도시되지 않은 추가적인 구성요소들, 이를테면, 스피커, 추가적인 마이크로폰들 등을 포함할 수 있다는 것이 인식될 것이다.
도 1c는 사용자(107)의 귀(106) 상에 위치된 장치(100)의 조감도이고, 이 경우, 귀(106)는 사용자(107)의 좌측 귀이다. 장치(100)의 다음의 설명 전체에 걸쳐, 디바이스 상의 바람의 입사각은 도 단위로 설명될 것이다. 도 1c는 이러한 각도들의 기준 프레임을 예시하고, 0°는 사용자의 얼굴의 전방에서 입사하는 바람을 나타내고, 90°는 사용자의 머리의 우측에서 입사하여 우측 귀를 향해 이동하는 바람을 나타내고, 180°는 사용자의 머리의 후방에서 입사하는 바람을 나타내고, 270°는 사용자의 머리의 좌측에서 입사하여 좌측 귀(106)를 향해 이동하는 바람을 나타낸다. 아래에서 더 상세히 설명될 바와 같이, 장치에서의 바람의 입사각에 따라, 마이크로폰들(102, 103) 및/또는 가속도계(104)에 의해 포착되는 바람 잡음의 양은 머리, 귀(106), 및 장치(100) 자체 주위의 난류뿐만 아니라, 사용자(107) 및 장치(100)의 본체에 의한 마이크로폰들(102, 103) 및/또는 가속도계(104)의 섀도잉(shadowing)에 의해 영향을 받을 수 있다는 것이 인식될 것이다. 이는 바람의 다양한 입사각들에서 가속도계(104)에서 수신되는 신호 전력과 관련된 다음의 논의들에서 더 명백하게 될 것이다.
도 2는 다양한 잡음 조건들에 대한 마이크로폰(102) 및 가속도계(104)에 대한 주파수 대 전력의 그래프이다. 라인(202)은 바람 잡음만 존재할 시의 마이크로폰(102)의 출력 신호의 전력 스펙트럼들을 나타낸다. 라인(204)은 바람 잡음 및 바람-아닌 잡음(기차 잡음)의 존재 시의 마이크로폰(102)의 출력 신호의 전력 스펙트럼들을 나타낸다. 라인(206)은 바람 잡음만 존재할 시의 가속도계(104)의 출력 신호의 전력 스펙트럼들을 나타낸다. 라인(208)은 바람 잡음 및 바람-아닌 잡음(기차 잡음)의 존재 시의 가속도계(104)의 출력 신호의 전력 스펙트럼들을 나타낸다.
바람 잡음을 갖거나 갖지 않는 마이크로폰(102)으로부터의 출력 신호들의 전력 스펙트럼들(202, 204)은 약 2.5 kHz 미만의 주파수들에 대해 매우 유사하다는 것을 알 수 있다. 그러나, 특히 2.5 kHz 초과에서, 바람-아닌 잡음의 존재 시의 마이크로폰(102)으로부터의 출력 신호의 전력 스펙트럼들에는 상당한 차이가 있다. 일부 주파수들의 경우, dB 전력 차이는 25 dB 초과이다. 대조적으로, 바람 잡음을 갖거나 갖지 않는 가속도계(104)로부터의 출력 신호의 전력 스펙트럼들(206, 208)은 최대 5 dB만큼 상이하고, 임의의 차이는 500 Hz 초과의 주파수들에서 실질적으로 주파수 독립적이다. 500 Hz 미만에서, 바람 잡음을 갖거나 갖지 않는 전력 스펙트럼들(206, 208) 사이에 차이가 없다. 따라서, 가속도계(104)의 출력 신호는 바람-아닌 잡음에 의해 실질적으로 영향을 받지 않는다는 것을 알 수 있다.
도 3a 및 도 3b는 각각 스피치(speech)(도 3a) 및 4 ms-1의 바람(도 3b)의 존재 시의 내부 및 외부 마이크로폰들(102, 103)의 출력 신호 및 가속도계(104)의 3개의 공간 축("x", "y", 및 "z")에 대한 출력 신호들에 대한 전력 상관 행렬들이다. 스피치 또는 바람의 존재 시에 임의의 공간 차원에서 가속도계(104)에 의해 기록된 공간 도메인과 마이크로폰(102)에 의해 기록된 음향 도메인 사이에 통계적으로 유의미한 상관관계가 없다는 것을 알 수 있다. 특히 바람의 존재 시에, 마이크로폰(102)에 의해 생성된 신호들과 가속도계(104)에 의해 생성된 신호들 사이에 어떠한 상관관계도 없는 것으로 보인다. 대조적으로, 가속도계(104)로부터의 x, y, 및 z 축 출력 신호들 각각 사이에 일부 상관관계가 존재한다는 것을 알 수 있다.
바람의 존재 시에, 내부 마이크로폰 신호와 외부 마이크로폰 신호 사이에 또한 매우 적은 상관관계가 있다. 이는 각각의 마이크로폰(102, 103)과 연관된 포트 개구들에서 형성되는 와류들로 인해 마이크로폰들(102, 103)의 포트들 주위에 존재하는 난류로 인한 것으로 여겨진다. 이러한 와류들은 바람 속력의 증가 및 포트 크기/직경의 감소에 따라 증가된다. 따라서, 바람 속력이 증가됨에 따라, 마이크로폰 신호들은 포트 개구 주위의 난류로 인해 포화되기 시작한다. 이러한 포화는 포트의 크기를 증가시킴으로써 어느 정도 완화될 수 있는데; 더 큰 포트들의 경우, 더 적은 쉐딩이 발생되어 결과적으로 와류들이 평균화된다. 그러나, 포트 입구에서의 잠재적인 오염 및/또는 진입으로 인해 포트들이 실제로 제조될 수 있는 크기에는 한계가 있다.
일반적으로, MEMS 마이크로폰들에서의 포화는 약 2 내지 3 m/s의 바람 속력들에서 발생하기 시작한다. MEMs 마이크로폰들은 전형적으로, 스피치에 대해 120 dB 내지 130 dBSPL의 음압 레벨(SPL) 한계를 갖는다. 바람 잡음의 파고율은 스피치의 파고율보다 더 낮고, 그에 따라, 바람에 대한 MEMs 마이크로폰들의 SPL 한계는 110 내지 120 dBSPL이다. MEMs 마이크로폰들은 또한, 35 내지 85 Hz 사이의 3 dB 차단으로 고역 통과 응답을 갖는다.
통상적으로, 바람 파라미터들은 마이크로폰들(102, 103) 중 하나 또는 둘 모두로부터 수신되는 신호들에 기초하여 추정된다. 마이크로폰 신호에서의 바람 잡음의 스펙트럼 전력은 차단 주파수 미만의 이의 주파수에 대략 반비례하고, 차단 주파수에서 이러한 관계는 단절된다. 다시 말하면, 바람 잡음은 스펙트럼 도메인에서 1/f 프로파일을 따른다. 따라서, 바람 잡음을 추정하기 위한 기존의 접근법은, 예컨대, 푸리에 분석을 사용하여 마이크로폰 신호의 부대역 전력 스펙트럼을 결정하고, 후속하여, 차단 주파수, 즉, 마이크로폰에서의 잡음의 스펙트럼 전력이 평탄화되는 주파수를 결정하는 것을 포함한다. 이어서, 이러한 결정된 차단 주파수는, 예컨대, 후속 억제 단계들의 니 포인트 및 압축 대역폭을 변화시켜서, 그러한 억제가 잡음에 의해 영향을 받는 마이크로폰 신호로부터 저주파수 성분들을 과도하게 제거하지 않게 하는 데 사용될 수 있다.
이러한 접근법에 대한 문제는 마이크로폰 신호들이 흔히, 바람 이외의 잡음 소스들, 예컨대 자동차 잡음, 자신의 음성 등, 및 난류 형태의 잡음의 비선형 성분들을 포함한다는 것이다. 이러한 타입의 비선형 잡음은 마이크로폰 신호에 존재하는 잡음의 바람 부분의 차단 주파수를 결정하는 것을 어렵게 만들 수 있다.
본 개시내용의 실시예들은, 특히, 바람 잡음과 바람-아닌 잡음 둘 모두가 존재하는 환경들에서, 바람 파라미터들을 결정하기 위해, 바람-아닌 잡음 소스들에 대한 가속도계(104)의 둔감성을 활용한다. 이러한 결정된 파라미터들은 차례로, 마이크로폰들(102, 103) 중 하나 또는 둘 모두에서 수신된 오디오 신호들의 바람 잡음 감소/억제를 위해 사용될 수 있다. 가속도계(104)에 의해 생성되는 신호들로부터 몇몇 유용한 파라미터들이 도출될 수 있다. 예컨대, 바람 세기, 속력, 및 바람 입사각의 선형 추정이 결정될 수 있다. 이러한 파라미터들은 마이크로폰(102)에서의 바람 잡음의 차단 주파수를 추정하기 위해 사용될 수 있고, 차단 주파수는 차례로 바람 잡음 감소를 위해 사용될 수 있다. 추가적으로, 부대역 전력 추정의 형태의 자신의 음성의 신뢰성 있는 추정이 가속도계(104)로부터의 신호들로부터 결정될 수 있다. 가속도계 신호들로부터 도출된 자신의 음성의 추정은 바람 속력 및 각도의 선형 추정이 정확하게 될 기간들을 결정하기 위해 사용될 수 있는데, 이는 장치(100)에서의 자신의 음성의 존재가 바람 속력 및 바람 입사각 각각과 가속도계 신호 전력 사이의 관계에 영향을 미칠 수 있기 때문이다. 유사하게, 가속도계(104)의 움직임과 연관된 바람-아닌 잡음이 가속도계로부터 출력된 신호들로부터 추정될 수 있고, 바람-아닌 잡음은 정확한 바람 파라미터 추정의 기간들을 결정하기 위해 사용될 수 있다.
도 4a, 도 4b, 및 도 4c는 가속도계(104)에 입사하는 각각 4 m/s, 6 m/s, 및 8 m/s의 속력들을 갖는 바람에 대한 바람의 입사각(x 축) 대 500 Hz 미만의 가속도계 부대역 신호 전력(y 축)의 산점도이다. 도 4a, 도 4b, 및 도 4c로부터 가속도계 부대역 전력이 바람 속력에 의존한다는 것을 알 수 있다. 바람의 모든 입사각들에서, 바람 속력이 높을수록, 가속도계 신호에서의 부대역 전력이 높아진다. 가속도계 부대역 전력이 바람 속력과 무관하게 바람 입사각에 의존한다는 것을 또한 알 수 있다. 따라서, 가속도계 부대역 전력이 가속도계(104)에 대한 바람의 입사각을 추정하기 위해 사용될 수 있다는 것을 알 수 있다. 이러한 도면들로부터, 도 1c를 참조하여 위에서 언급된 바와 같이, (도 1c에 도시된 바와 같은) 사용자(107)의 머리에 대해 0°, 45°, 및 225° 내지 315°의 각도들로 입사하는 바람의 존재 시에, 가속도계(104)에 근접한 섀도잉 및/또는 난류는 가속도계(104)에 의해 측정된 가속도계 부대역 전력의 감소로 이어질 수 있다는 것을 또한 알 수 있다. 따라서, 180°와 225° 사이에서 가속도계(104)에서 측정된 부대역 전력에서 상당한 강하가 존재하고, 이는 이어서 275° 및 315° 바람 입사각을 통해 증가된다.
도 4a, 도 4b, 및 도 4c는 도 1c에 도시된 바와 같이 장치(100)가 사용자(107)의 좌측 귀(106) 상에 위치된 상태의 가속도계(104)의 단일 축에 대한 데이터를 도시한다. 가속도계(104)의 단일 축을 사용하는 것은 각도 분해능을 각도들의 그룹화에 의해 정의되는 2개의 클래스로 제한한다. 이는 도 5a, 도 5b, 및 도 5c에 의해 예시되고, 도 5a, 도 5b, 및 도 5c는 각각, 225°, 275°, 및 315°로(좌측 곡선들) 그리고 0°, 45°, 90°, 135°, 및 180°로(우측 곡선들) 입사하는 바람의 존재 시에 가속도계(104)에 의해 측정된 전력을 나타내는 2개의 밀도 곡선을 도시한다. 도 5a, 도 5b, 및 도 5c는 각각 4 m/s, 6 m/s, 및 8 m/s의 속력들의 바람에 대한 전력 밀도 플롯들을 도시한다. 이러한 도면들로부터, 사용자(107)로부터의 섀도잉이 가속도계(104)에서의 측정된 신호 전력을 감소시킨다는 것을 알 수 있다.
가속도계(104)의 추가적인 축들을 사용함으로써, 각각의 추가적인 축의 측정된 부대역 전력이 가속도계(104)에 의한 바람 각도의 추정의 각도 분해능을 증가시키기 위해 사용될 수 있다는 것이 인식될 것이다. 예컨대, 가속도계(104)의 제2 축을 사용하면, 제2 축으로부터의 신호를 사용하여, 가속도계(104)의 하나의 축에서의 바람의 입사각에 대한 임의의 모호성이 해소될 수 있다.
도 6a, 도 6b, 및 도 6c는 조용한 환경에서의 상이한 바람 입사각들 및 바람 속력들에 대한 가속도계 부대역 전력(수평 축) 대 마이크로폰 부대역 전력(수직 축)의 산점도들이다. 조용한 환경(바람-아닌 잡음이 없음)에서, 마이크로폰 신호에서의 전력은 바람으로 인한 것이고, 마이크로폰 신호에서의 바람 잡음을 초래할 것이라는 것이 인식될 것이다. 동일한 포인트들이 도면들 각각 상에 플롯되지만, 각각의 플롯에서 컬러/명암에 의해 상이하게 그룹화된다. 도 6a는 도 1c에 도시된 바와 같은 바람의 입사각(0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°)을 컬러/명암으로 구별한다. 도 6b는 바람 속력(4 m/s, 6 m/s, 및 8 m/s)을 컬러/음영으로 구별한다. 도 6c는 입사각에 기초하여 포인트들을 2개의 그룹으로 그룹화하는데, 제1 그룹은 0°, 45°, 및 225°의 각도들의 바람의 존재 시에 이루어진 측정들을 포함하고, 제2 그룹은 90°, 135°, 180°, 270°, 및 315°의 각도들의 바람의 존재 시에 이루어진 측정들을 포함한다.
이러한 도면들은 바람 속력이 증가됨에 따라 (바람으로 인한) 마이크로폰 부대역 전력의 분산이 증가된다는 것을 나타낸다. 이는 바람 속력이 증가됨에 따라 마이크로폰 포트 주위의 난류가 증가된 것의 결과이다. 동일한 측정된 가속도계 부대역 전력에 대한 마이크로폰 부대역 전력의 차이에 의해 입증되는, 도 6c에 가장 명확하게 예시된 2개의 각도 집단이 존재한다는 것을 또한 알 수 있다. 이러한 2개의 집단은 장치(100)의 전방(전방 방향) 및 후방(후방 방향)으로부터 입사하는 바람에 대략적으로 대응한다. 선형 회귀 라인(602, 604)이 또한 도 6c에 제공된다. 제1 회귀 라인(602)은 0°, 45°, 및 225°의 각도들로부터의 바람에 응답하는 가속도계 신호와 마이크로폰 신호 사이의 부대역 전력 상관관계를 나타낸다. 제2 회귀 라인(604)은 90°, 135°, 180°, 270°, 및 315°의 각도들의 바람에 응답하는 가속도계 신호와 마이크로폰 신호 사이의 (500 Hz 미만의) 부대역 전력 상관관계를 나타낸다. 따라서, 적당한 바람 속력들의 경우, 마이크로폰 부대역 전력과 가속도계 부대역 전력 사이의 도 6a 내지 도 6c에 도시된 관계는, 가속도계(104)로부터 출력된 신호들에서의 부대역 전력에 기초하여, 마이크로폰(102)으로부터의 출력 신호에 존재하는 바람 잡음로 인한 부대역 전력을 추정하기 위해 사용될 수 있다. 예컨대, 수신된 가속도계 신호들의 하나 이상의 부대역 가속도계 전력을 바람 속력, 바람 방향, 마이크로폰 잡음 차단 주파수 중 하나 이상으로 변환하기 위해, 위의 데이터 또는 유사한 데이터에 기초하여, 모델 또는 룩업 테이블 등이 생성될 수 있다.
도 7은 도 1b에 도시된 장치(100)에 의해 구현될 수 있는 본 개시내용의 실시예에 따른 파라미터 추정 모듈(700)의 블록도이다. 파라미터 추정 모듈(700)은 가속도계(104)로부터 출력된 하나 이상의 가속도계 신호(702)를 수신하도록 구성된다. 가속도계(104)로부터의 가속도계 신호들(702)은, 파라미터 추정 모듈(700)에 제공되기 전에, 먼저, 특정 지속기간의 프레임들(요소의 수, M)로 디지털화(양자화 및 이산화)될 수 있다. 가속도계(104)는 가속도계(104)의 하나 이상의 축 각각에 대한 신호를 생성할 수 있다. 예컨대, 가속도계(104)가 3개의 측정 축을 포함하는 경우, 하나 이상의 가속도계 신호(702)는 각각의 측정 축에 대해 하나씩 3개의 신호를 포함할 수 있다. 파라미터 추정 모듈(700)은 가속도계(104)에 입사하는 바람의 하나 이상의 추정된 파라미터를 포함하는 파라미터 추정 출력(704)을 생성하도록 구성된다. 이러한 파라미터들은 가속도계(104)에서의 바람의 존재, 바람 속도, 바람 방향, 및 마이크로폰 신호에서의 잡음의 차단 주파수를 포함할 수 있지만 이에 제한되지는 않는다.
임의로, 파라미터 추정 모듈(700)에 추가하여 바람-아닌 잡음 검출기(706)가 제공될 수 있다. 일부 실시예들에서, 바람-아닌 잡음 검출기(706)는 파라미터 추정 모듈(700)에 통합될 수 있다. 바람-아닌 잡음 검출기(706)는 바람과 연관되지 않은 가속도계(104)에서의 잡음의 존재를 검출하도록 구성될 수 있다. 예컨대, 바람-아닌 잡음 검출기(706)는 가속도계(104)에서의 사용자 스피치를 검출하도록 구성된 음성 활성도 검출기(voice activity detector)(VAD)를 구현할 수 있다. 이전에 언급된 바와 같이, 스피치의 존재는 가속도계 신호들에 기초하여 바람 파라미터들을 정확하게 추정하는 능력에 영향을 미칠 수 있다. 따라서, 바람-아닌 잡음 검출기(706)는 스피치가 검출되었는지 여부를 표시하는 음성 활성도 신호를 파라미터 추정 모듈(700)로 출력할 수 있다. 다른 예에서, 바람-아닌 잡음 검출기(706)는 사용자(107)가 달리고 있거나 또는 걷고 있는지를 결정할 수 있고, 이는 가속도계(104)의 방향의 격렬한 변화들(즉, 상하)로 인해 가속도계(104)에서 잡음을 야기할 수 있다. 예컨대, 달리고 있는 것으로 인한 이러한 잡음은 가속도계(105)에서 약 100 Hz 초과의 광대역 신호로서 나타난다. 따라서, 바람-아닌 잡음 검출기(706)는 바람-아닌 잡음이 존재하고 가속도계(104)로부터 출력된 하나 이상의 신호의 임의의 바람 잡음 성분을 손상시킬 수 있음을 표시하는 신호를 출력할 수 있다. 바람-아닌 잡음 검출기(706)로부터 수신된 하나 이상의 신호에 응답하여, 파라미터들의 부정확한 추정을 피하기 위해, 파라미터 추정 모듈(700)은, 바람-아닌 잡음이 존재하지 않거나 또는 그러한 바람-아닌 잡음이 가속도계(104)로부터 출력된 신호들에 실질적으로 영향을 미치지 않는 것으로 표시되는 기간들 동안 가속도계(104)로부터 수신된 가속도계 신호들(702)만을 사용할 수 있다. 추가적으로 또는 대안적으로, 바람-아닌 잡음 검출기(706)로부터의 출력들은 바람-아닌 잡음과 관련된 하나 이상의 가속도계 신호의 성분들을 제거하기 위해 하나 이상의 필터를 토글링(toggle)하기 위해 사용될 수 있다.
장치(100)의 가속도계(104)로부터 가속도계 신호들(702)을 수신하는 것에 추가하여, 파라미터 추정 모듈(700)은 임의로, 하나 이상의 추가적인 가속도계(710)로부터 추가적인 가속도계 신호들(708)을 수신할 수 있다. 예컨대, 하나 이상의 추가적인 가속도계(710)는 장치(100)의 가속도계(104)로부터 공간적으로 분리될 수 있다. 예컨대, 장치(100)가 이어폰 또는 헤드폰, 또는 이어폰들 또는 헤드폰들의 세트를 포함하는 경우, 하나 이상의 추가적인 가속도계(710)는 쌍을 이루는 다른 이어폰 또는 헤드폰에 위치된 가속도계를 포함할 수 있다. 가속도계(104)와 하나 이상의 추가적인 가속도계(710)의 공간적 분리는 파라미터 추정 모듈(700)이 바람의 입사 방향을 분해하는 것을 가능하게 할 수 있다. 이는, 예컨대, 부대역 전력과 같은, 각각의 가속도계로부터 수신된 가속도계 신호들의 공통 특성을 비교함으로써 달성될 수 있다.
파라미터 추정 모듈(700)은 하나 이상의 가속도계 신호의 다양한 특성들을 결정함으로써 위의 파라미터들 중 하나 이상을 결정할 수 있다. 일부 실시예들에서, 파라미터 추정 모듈은 하나 이상의 가속도계 신호(702)의 부대역의 전력을 결정할 수 있다.
도 8은 도 7에 도시된 파라미터 추정 모듈(700)에 의해 구현될 수 있는 프로세스의 흐름도이다. 단계(802)에서, 파라미터 추정 모듈(700)은 하나 이상의 가속도계(104, 710)로부터 하나 이상의 가속도계 신호(702, 708)를 수신할 수 있다. 이어서, 단계(804)에서, 가속도계 신호(들)(702, 708)는 하나 이상의 부대역 가속도계 신호를 생성하기 위해 필터링될 수 있다. 필터링은 임계 주파수 초과의 가속도계 신호의 성분들을 제거하기 위한 저역 통과 필터링을 포함할 수 있다. 일부 실시예들에서, 임계 주파수는 가속도계(104)의 스펙트럼 전력 프로파일에 기초하여 결정된다. 임계 주파수는 스피치, 장치(100) 내의 라우드스피커(들)로부터의 누화(cross-talk), 탭(tap)들 또는 헤드셋과의 다른 물리적 상호작용들, 및/또는 유휴 채널 잡음으로 인해 존재하는 실질적으로 모든 바람-아닌 잡음을 제거하도록 선택될 수 있다. 일부 실시예들에서, 임계(차단) 주파수는 약 500 Hz이다. 일부 실시예들에서, 임계치는 가속도계 신호들 사이에서 상이할 수 있다. 추가적으로, 필터링은 또한, 예컨대, 헤드셋의 움직임(걷기/달리기 등)으로 인한 가속도계의 운동과 연관된 가속도계 신호(들)의 성분들을 제거하기 위한 고역 통과 필터링을 포함할 수 있다. 이어서, 단계(806)에서, 파라미터 추정 모듈(700)은 부대역 가속도계 신호들 각각의 부대역 전력을 결정할 수 있다. 이어서, 단계(808)에서, 결정된 부대역 전력(들)은 마이크로폰에 입사하는 바람의 하나 이상의 파라미터 또는 특성을 추정하기 위해 사용될 수 있다. 예컨대, 부대역 전력은 가속도계(104)에서의 바람 속력을 결정하기 위해 사용될 수 있다. 추가적으로 또는 대안적으로, 부대역 전력은 가속도계(104)에서의 바람의 입사각을 결정하기 위해 사용될 수 있다. 추가적으로 또는 대안적으로, 부대역 전력은 마이크로폰들(102, 103) 중 하나 또는 둘 모두의 마이크로폰 잡음 차단 주파수를 결정하기 위해 사용될 수 있고, 마이크로폰 잡음 차단 주파수 미만에서, 잡음은 마이크로폰들(102) 중 하나 또는 둘 모두로부터 출력되는 신호(들)에 영향을 미친다. 결정은 메모리에 저장된 하나 이상의 모델 또는 룩업 테이블에 기초하여 이루어질 수 있다. 위에서 설명된 바와 같이, 하나 이상의 모듈 또는 룩업 테이블은 사전에 생성될 수 있다. 이어서, 단계(810)에서, 파라미터 추정 출력(704)에서 하나 이상의 바람 파라미터 또는 특성이 출력될 수 있다.
위에서 설명되고 도 6c에 예시된 바와 같이, 마이크로폰 부대역 전력과 가속도계 부대역 전력 사이의 관계는 장치(100)에서의 바람의 입사각에 의존한다. 따라서, 바람 입사각의 지식은 파라미터 추정을 위해 복수의 모델 또는 룩업 테이블 중 어떤 것을 사용할지를 결정하기 위해 사용될 수 있다. 예컨대, 파라미터 추정 모듈(700)이 하나 이상의 추가적인 가속도계(710)에 추가하여 가속도계(104)로부터 가속도계 신호들(702, 708)을 수신하는 경우, 단계(808)에서, 파라미터 추정 모듈(700)은 각각의 가속도계 신호들의 결정된 부대역 신호 전력들을 비교하고, 장치(100)에 대한 바람의 입사각을 결정할 수 있다. 이어서, 파라미터 추정 모듈(700)은, 이에 기초하여, 바람 파라미터들의 결정을 위해 복수의 모델 또는 룩업 테이블 중 어떤 것을 사용할지를 결정할 수 있다.
도 9, 도 10, 및 도 100은 도 7의 파라미터 추정 모듈(700)을 통합하는 바람 잡음 감소 시스템(900, 1000, 1100)의 블록도이다. 간략화를 위해, 도 7에 도시된 임의적인 바람-아닌 잡음 검출기(706) 및 추가적인 가속도계(들)(710)는 도 9, 도 10, 또는 도 11에 도시되지 않지만, 시스템들(900, 1000, 1100)에 통합될 수 있다.
도 9를 참조하면, 시스템(900)은 바람 잡음 검출(WND) 모듈(902) 및 바람 잡음 감소(WNR) 모듈(904)을 포함한다. 바람 검출 모듈(WND)(902)은 마이크로폰(102)으로부터 마이크로폰 출력 신호(906)를 수신하기 위한 입력을 포함한다. WND 모듈(902)은 수신된 마이크로폰 출력 신호(906)에 기초하여 마이크로폰(102)에서의 바람을 검출하고, 바람 검출 신호(908)를 WNR 모듈(904)로 출력하도록 구성된다. 예시적인 WND 모듈은 미국 특허 제9,516,408호에 설명되고, 이 특허의 내용은 이로써 그 전체가 참조로 포함된다.
WNR 모듈(904)은 WND 모듈(902)로부터의 바람 검출 신호(908), 파라미터 추정 모듈(700)로부터의 파라미터 신호(704), 및 마이크로폰(102)으로부터의 마이크로폰 신호(906)를 수신하고, WND 모듈(902)에 의해 잡음이 검출될 때 그리고 파라미터 추정 모듈로부터의 파라미터 신호(700)에 기초하여 마이크로폰 신호(906)에서 바람 잡음을 감소시키도록 구성된다. 예컨대, WNR 모듈(904)은 각각의 마이크로폰(102, 103)에서의 바람의 강도를 결정하고, 바람을 최소화하기 위해 결과적인 신호에서 바람 세기가 감소되도록 신호들을 조합할 수 있다. 예컨대, WNR 모듈(904)은, 각각의 부대역에서의 바람 강도에 기초하여, 바람에 의해 영향을 받는 부대역들을 동적으로 감쇠시킬 수 있다. 예컨대, WNR 모듈(904)은 압축 알고리즘의 니 포인트 또는 대역폭을 동적으로 설정하기 위해, 추정된 차단 주파수를 사용하여 억제 또는 압축을 구현할 수 있다. 따라서, 압축량은 차단 주파수 및/또는 바람의 강도에 기초하여 제어될 수 있다. 바람 잡음 감소의 예시적인 방법은 미국 특허 제9,589,573호에 설명되고, 이 특허의 내용은 이로써 그 전체가 참조로 포함된다.
도 10은 도 9에 도시된 시스템(900)의 변형인 바람 잡음 감소 시스템(1000)의 블록도이고, 유사한 부분들에는 유사한 번호들이 제공된다. 바람 잡음 감소 시스템(1000)에서, 파라미터 추정 모듈(700)에 의해 바람 잡음 검출이 수행된다. 파라미터 추정 모듈(700)은 바람이 존재하거나 또는 바람이 존재할 가능성이 있다는 플래그에 추가하여 하나 이상의 바람 파라미터(1004)를 WNR 모듈(904)로 출력할 수 있다.
도 11은 도 9에 도시된 시스템(900)의 추가 변형인 바람 잡음 감소 시스템(1100)의 블록도이고, 유사한 부분들에는 유사한 번호들이 제공된다. 바람 잡음 감소 시스템(1100)은 WND 모듈(1102), 파라미터 추정 모듈(1104), 및 WNR 모듈(1106)을 포함한다. 도 11에서, WND 모듈(1102)은 마이크로폰 신호(906)와 가속도계 신호(들)(702) 중 하나 또는 둘 모두를 수신하고, 이러한 신호들(906, 702) 중 하나 또는 둘 모두에 기초하여 바람의 존재를 결정할 수 있다. 이어서, WND 모듈(1102)은 바람 검출 신호(1108)를 파라미터 추정 모듈(1104)로 출력할 수 있다. 이어서, 파라미터 추정 모듈(1104)은, WND 모듈(1102)에 의해 바람이 검출될 때에만, 즉, 바람 검출 신호(1108)가 파라미터 추정 모듈(1104)에 바람의 존재를 표시할 때에만, 가속도계 신호(들)(702)에 기초하여 바람의 하나 이상의 파라미터를 결정할 수 있다. 이어서, WND 모듈(1102)에 의해 바람이 존재한다고 결정될 때, 파라미터 추정 모듈(1104)은 하나 이상의 파라미터 신호(1110)를 WNR 모듈(1106)로 출력할 수 있다. WND 모듈(1102)에 의해 바람이 존재하지 않는다고 결정될 때, 파라미터 추정 모듈(1104)은 그와 같은 표시를 WNR 모듈(1106)로 출력할 수 있거나, 또는 대안적으로, WNR 모듈(1106)로 신호를 출력하지 않을 수 있다. 파라미터 추정 모듈(1104)로부터 수신된 신호(들)(704)에 기초하여, WNR 모듈(1106)은 마이크로폰 신호(906)에 바람 잡음 감소를 적용할 수 있다. WNR 모듈(1106)은 도 9 및 도 10의 WNR 모듈(906)을 참조하여 설명된 것들과 같은 관련 기술분야에 공지된 임의의 방식으로 마이크로폰 신호(906)에서의 바람 잡음을 감소시킬 수 있다.
실시예들은 스마트폰, 오디오 플레이어, 모바일 또는 셀룰러 폰, 핸드셋과 같은 전자, 휴대용 및/또는 배터리 구동식 호스트 디바이스에서 구현될 수 있다. 실시예들은 그러한 호스트 디바이스 내에 제공된 하나 이상의 집적 회로 상에 구현될 수 있다. 대안적으로, 실시예들은 스마트폰, 모바일 또는 셀룰러 폰, 헤드폰들, 이어폰들 등과 같은 한 사람에게 오디오 재생을 제공하도록 구성가능한 개인용 오디오 디바이스에서 구현될 수 있다. 다시, 실시예들은 그러한 개인용 오디오 디바이스 내에 제공된 하나 이상의 집적 회로 상에 구현될 수 있다. 또 다른 대안들에서, 실시예들은 호스트 디바이스와 개인용 오디오 디바이스의 조합에서 구현될 수 있다. 예컨대, 실시예들은 개인용 오디오 디바이스 내에 제공된 하나 이상의 집적 회로, 및 호스트 디바이스 내에 제공된 하나 이상의 집적 회로에서 구현될 수 있다.
특히 도면들과 관련하여 본원에서 설명되는 다양한 동작들이 다른 회로부 또는 다른 하드웨어 구성요소들에 의해 구현될 수 있다는 것이 특히 본 개시내용의 이익을 갖는 관련 기술분야의 통상의 기술자에 의해 이해되어야 한다. 주어진 방법의 각각의 동작이 수행되는 순서는 변경될 수 있고, 본원에서 예시되는 시스템들의 다양한 요소들은 추가, 재순서화, 조합, 생략, 수정 등이 될 수 있다. 본 개시내용은 모든 그러한 수정들 및 변경들을 포함하고, 그에 따라, 위의 설명은 제한적인 의미가 아니라 예시적인 것으로 간주되어야 한다는 것이 의도된다.
유사하게, 본 개시내용이 특정 실시예들을 참조하지만, 본 개시내용의 범위 및 커버리지로부터 벗어나지 않으면서 그러한 실시예들에 특정 수정들 및 변경들이 이루어질 수 있다. 더욱이, 특정 실시예들과 관련하여 본원에서 설명되는 임의의 이익들, 이점들, 또는 문제들에 대한 솔루션들은 중요한, 요구되는, 또는 필수적인 피처 또는 요소로서 해석되도록 의도되지 않는다.
마찬가지로, 본 개시내용의 이익을 갖는 추가 실시예들 및 구현들은 관련 기술분야의 통상의 기술자에게 명백할 것이고, 이러한 실시예들은 본원에 포함되는 것으로 간주되어야 한다. 추가로, 관련 기술분야의 통상의 기술자는, 논의되는 실시예들 대신에 또는 이와 함께, 다양한 등가의 기법들이 적용될 수 있고, 모든 그러한 등가물들은 본 개시내용에 의해 포함되는 것으로 간주되어야 한다는 것을 인식할 것이다.
통상의 기술자는, 위에서 설명된 장치 및 방법들, 예컨대 발견 및 구성 방법들의 일부 양태들이, 예컨대, 디스크, CD 또는 DVD ROM과 같은 비휘발성 캐리어 매체, 판독 전용 메모리와 같은 프로그래밍된 메모리(펌웨어), 또는 광 또는 전기 신호 캐리어와 같은 데이터 캐리어 상에 프로세서 제어 코드로서 구현될 수 있다는 것을 인식할 것이다. 다수의 애플리케이션에 대해, 본 개시내용의 실시예들은 디지털 신호 프로세서(DSP), 주문형 집적 회로(ASIC), 또는 필드 프로그램가능 게이트 어레이(FPGA) 상에 구현될 것이다. 따라서, 코드는 종래의 프로그램 코드 또는 마이크로코드, 또는 예컨대, ASIC 또는 FPGA를 설정 또는 제어하기 위한 코드를 포함할 수 있다. 코드는 또한, 재프로그램가능 논리 게이트 어레이들과 같은 재구성가능 장치를 동적으로 구성하기 위한 코드를 포함할 수 있다. 유사하게, 코드는 베릴로그(Verilog) TM 또는 VHDL(Very high speed integrated circuit Hardware Description Language)과 같은 하드웨어 기술 언어에 대한 코드를 포함할 수 있다. 통상의 기술자가 인식할 바와 같이, 코드는 서로 통신하는 복수의 커플링된 구성요소 사이에 분산될 수 있다. 적절한 경우, 실시예들은 또한, 아날로그 하드웨어를 구성하기 위해 필드 (재)프로그램가능 아날로그 어레이 또는 유사한 디바이스 상에서 실행되는 코드를 사용하여 구현될 수 있다.
본원에서 사용되는 바와 같이, 모듈이라는 용어는 커스텀 정의된(custom defined) 회로부와 같은 전용 하드웨어 구성요소들에 의해 적어도 부분적으로 구현될 수 있고/있거나, 적합한 범용 프로세서 등 상에서 실행되는 하나 이상의 소프트웨어 프로세서 또는 적절한 코드에 의해 적어도 부분적으로 구현될 수 있는 기능 유닛 또는 블록을 지칭하는 데 사용되어야 한다는 것에 유의한다. 모듈 자체는 다른 모듈들 또는 기능 유닛들을 포함할 수 있다. 모듈은 공동 위치될 필요가 없고 상이한 집적 회로들 상에 제공되고/되거나 상이한 프로세서들 상에서 실행될 수 있는 다수의 구성요소 또는 서브 모듈에 의해 제공될 수 있다.
위에서 언급된 실시예들은 본 발명을 제한하는 것이 아니라 예시하는 것이고, 관련 기술분야의 통상의 기술자는 첨부 청구항들 또는 실시예들의 범위로부터 벗어나지 않으면서 다수의 대안적인 실시예들을 설계할 수 있을 것이라는 점에 유의해야 한다. "포함하는"이라는 단어는 청구항 또는 실시예에 열거된 것들 이외의 요소들 또는 단계들의 존재를 배제하지 않고, 단수 표현은 복수를 배제하지 않고, 단일 피처 또는 다른 유닛은 청구항들 또는 실시예들에 기재된 여러 개의 유닛의 기능을 수행할 수 있다. 청구항들 또는 실시예들에서의 임의의 참조 번호들 또는 라벨들은 이들의 범위를 제한하는 것으로 해석되지 않아야 한다.
본 개시내용 및 특정 대표적인 이점들이 상세히 설명되었지만, 첨부 청구항들 또는 실시예들에 의해 정의되는 본 개시내용의 사상 및 범위로부터 벗어나지 않으면서 다양한 변화들, 치환들, 및 변경들이 본원에 이루어질 수 있다는 것을 이해해야 한다. 더욱이, 본 개시내용의 범위는 본원의 대응하는 실시예들이 활용될 수 있는 것과 실질적으로 동일한 결과를 달성하거나 또는 실질적으로 동일한 기능을 수행하는, 현재 존재하거나 또는 향후에 개발될, 프로세스, 머신, 제조, 물질의 조성들, 수단, 방법들, 또는 단계들의 특정 실시예들로 제한되도록 의도되지 않는다. 따라서, 첨부 청구항들 또는 실시예들은 이들의 범위 내에 이러한 프로세스들, 머신들, 제조, 물질의 조성들, 수단, 방법들, 또는 단계들을 포함하도록 의도된다.
본 개시내용의 넓은 일반적인 범위로부터 벗어나지 않으면서 다수의 변형 및/또는 수정이 위에서 설명된 실시예들에 이루어질 수 있다는 것이 관련 기술분야의 통상의 기술자에 의해 인식될 것이다. 따라서, 본 실시예들은 모든 면에서 제한적인 것이 아니라 예시적인 것으로 고려되어야 한다.
Claims (31)
- 방법으로서,
가속도계로부터 도출된 하나 이상의 가속도계 신호를 수신하는 단계; 및
상기 하나 이상의 가속도계 신호에 기초하여, 상기 가속도계에서의 하나 이상의 바람 파라미터를 결정하는 단계
를 포함하는, 방법. - 제1항에 있어서,
상기 가속도계에서의 상기 하나 이상의 바람 파라미터는 상기 가속도계에서의 바람 속력 및/또는 상기 가속도계에서의 바람 입사각을 포함하는, 방법. - 제2항에 있어서,
상기 하나 이상의 가속도계 신호는 상이한 가속도 축들을 나타내는 2개 이상의 가속도계 신호를 포함하고, 상기 가속도계에서의 상기 바람 입사각을 결정하는 것은 상기 2개 이상의 가속도계 신호를 비교하는 것을 포함하는, 방법. - 제1항 내지 제3항 중 어느 한 항에 있어서,
상기 가속도계에서의 상기 하나 이상의 바람 파라미터는 상기 가속도계에서의 바람의 존재 및/또는 상기 가속도계에서의 바람의 존재의 확률의 표시를 포함하는, 방법. - 제1항 내지 제4항 중 어느 한 항에 있어서,
바람-아닌 잡음을 제거하기 위해 상기 하나 이상의 가속도계 신호 중 하나 이상을 필터링하는 단계를 더 포함하고,
상기 하나 이상의 바람 파라미터는 필터링된 하나 이상의 가속도계 신호에 기초하여 결정되는, 방법. - 제1항 내지 제5항 중 어느 한 항에 있어서,
상기 하나 이상의 가속도계 신호 중 하나 이상에서의 바람-아닌 잡음의 존재를 검출하는 단계를 더 포함하고,
상기 결정하는 단계는 바람-아닌 잡음이 검출되지 않을 때에만 수행되는, 방법. - 제1항 내지 제6항 중 어느 한 항에 있어서,
상기 가속도계 근처의 마이크로폰으로부터 마이크로폰 신호를 수신하는 단계; 및
결정된 상기 가속도계에서의 상기 하나 이상의 바람 파라미터에 기초하여, 상기 마이크로폰 신호에서의 바람 잡음을 감소시키는 단계
를 더 포함하는, 방법. - 제7항에 있어서,
상기 가속도계에서의 하나 이상의 바람 파라미터를 결정하는 단계는,
상기 가속도계 신호들 중 하나 이상의 가속도계 신호에서의 부대역 전력을 결정하는 단계; 및
결정된 상기 하나 이상의 가속도계 신호에서의 부대역 전력에 기초하여, 상기 마이크로폰 신호에서의 잡음의 차단 주파수를 추정하는 단계
를 포함하고,
추정된 차단 주파수를 사용하여 상기 마이크로폰 신호에서 바람 잡음이 감소되는, 방법. - 제8항에 있어서,
상기 바람 잡음은 압축기를 사용하여 상기 마이크로폰 신호에서 감소되고, 상기 압축기의 니 포인트(knee point)는 상기 추정된 차단 주파수에 따라 결정되는, 방법. - 제9항에 있어서,
상기 가속도계에서의 하나 이상의 바람 파라미터를 결정하는 단계는 바람 속력을 결정하는 단계를 더 포함하고,
상기 압축기의 상기 니 포인트는 결정된 바람 속력에 따라 추가로 결정되는, 방법. - 제8항 내지 제11항 중 어느 한 항에 있어서,
상기 차단 주파수를 추정하는 단계는 룩업 테이블을 사용하여 상기 부대역 전력을 상기 차단 주파수로 변환하는 단계를 포함하는, 방법. - 제7항 내지 제11항 중 어느 한 항에 있어서,
상기 마이크로폰 신호에 기초하여, 상기 마이크로폰에서의 바람의 존재를 검출하거나, 또는 상기 마이크로폰에서의 바람의 확률을 결정하는 단계를 더 포함하는, 방법. - 제12항에 있어서,
상기 가속도계에서의 하나 이상의 바람 파라미터를 결정하는 단계는 상기 마이크로폰에서의 바람의 존재를 검출하는 것에 응답하여 수행되는, 방법. - 장치로서,
메모리; 및
상기 메모리에 커플링된 프로세서
를 포함하고,
상기 프로세서는,
가속도계로부터 도출된 하나 이상의 가속도계 신호를 수신하고,
상기 하나 이상의 가속도계 신호에 기초하여, 상기 가속도계에서의 하나 이상의 바람 파라미터를 결정하도록
구성되는, 장치. - 제14항에 있어서,
상기 가속도계에서의 상기 하나 이상의 바람 파라미터는 상기 가속도계에서의 바람 속력 및/또는 상기 가속도계에서의 바람 입사각을 포함하는, 장치. - 제15항에 있어서,
상기 하나 이상의 가속도계 신호는 상이한 가속도 축들을 나타내는 2개 이상의 가속도계 신호를 포함하고, 상기 가속도계에서의 상기 바람 입사각을 결정하는 것은 상기 2개 이상의 가속도계 신호를 비교하는 것을 포함하는, 장치. - 제14항 내지 제16항 중 어느 한 항에 있어서,
상기 가속도계에서의 상기 하나 이상의 바람 파라미터는 상기 가속도계에서의 바람의 존재 및/또는 상기 가속도계에서의 바람의 존재의 확률의 표시를 포함하는, 장치. - 제14항 내지 제17항 중 어느 한 항에 있어서,
상기 프로세서는 바람-아닌 잡음을 제거하기 위해 상기 하나 이상의 가속도계 신호 중 하나 이상을 필터링하도록 추가로 구성되고,
상기 하나 이상의 바람 파라미터는 필터링된 하나 이상의 가속도계 신호에 기초하여 결정되는, 장치. - 제14항 내지 제18항 중 어느 한 항에 있어서,
상기 프로세서는 상기 하나 이상의 가속도계 신호 중 하나 이상에서의 바람-아닌 잡음의 존재를 검출하도록 추가로 구성되고,
상기 결정은 바람-아닌 잡음이 검출되지 않을 때에만 수행되는, 장치. - 제14항 내지 제19항 중 어느 한 항에 있어서, 상기 프로세서는,
상기 가속도계 근처의 마이크로폰으로부터 도출된 마이크로폰 신호를 수신하고,
결정된 상기 가속도계에서의 상기 하나 이상의 바람 파라미터에 기초하여, 상기 마이크로폰 신호에서의 바람 잡음을 감소시키도록
추가로 구성되는, 장치. - 제20항에 있어서,
상기 가속도계에서의 하나 이상의 바람 파라미터를 결정하는 것은,
상기 가속도계 신호들 중 하나 이상의 가속도계 신호에서의 부대역 전력을 결정하는 것; 및
결정된 상기 하나 이상의 가속도계 신호에서의 부대역 전력에 기초하여, 상기 마이크로폰 신호에서의 잡음의 차단 주파수를 추정하는 것
을 포함하고,
추정된 차단 주파수를 사용하여 상기 마이크로폰 신호에서 바람 잡음이 감소되는, 장치. - 제21항에 있어서,
상기 프로세서는 상기 마이크로폰 신호에서의 바람 잡음을 감소시키기 위한 압축기를 구현하도록 구성되고, 상기 압축기의 니 포인트는 상기 추정된 차단 주파수에 따라 결정되는, 장치. - 제22항에 있어서,
상기 가속도계에서의 하나 이상의 바람 파라미터를 결정하는 것은 바람 속력을 결정하는 것을 더 포함하고,
상기 압축기의 상기 니 포인트는 결정된 바람 속력에 따라 추가로 결정되는, 장치. - 제20항 내지 제23항 중 어느 한 항에 있어서,
상기 차단 주파수를 추정하는 것은 상기 메모리에 저장된 룩업 테이블을 사용하여 상기 부대역 전력을 상기 차단 주파수로 변환하는 것을 포함하는, 장치. - 제20항 내지 제24항 중 어느 한 항에 있어서,
상기 프로세서는,
상기 마이크로폰 신호에 기초하여, 상기 마이크로폰에서의 바람의 존재를 검출하거나, 또는 상기 마이크로폰에서의 바람의 확률을 결정하도록 추가로 구성되는, 장치. - 제24항에 있어서,
상기 가속도계에서의 하나 이상의 바람 파라미터를 결정하는 것은 상기 마이크로폰에서의 바람의 존재를 검출하는 것에 응답하여 수행되는, 장치. - 제20항 내지 제26항 중 어느 한 항에 있어서,
상기 마이크로폰을 더 포함하는, 장치. - 제14항 내지 제27항 중 어느 한 항에 있어서,
상기 가속도계를 더 포함하는, 장치. - 전자 디바이스로서, 제14항 내지 제28항 중 어느 한 항의 장치를 포함하는, 전자 디바이스.
- 비일시적 머신 판독가능 매체로서,
상기 비일시적 머신 판독가능 매체는 명령어들을 저장하고,
상기 명령어들은, 프로세싱 회로부에 의해 실행될 때, 전자 장치로 하여금,
가속도계로부터 도출된 하나 이상의 가속도계 신호를 수신하게 하고,
상기 하나 이상의 가속도계 신호에 기초하여, 상기 가속도계에서의 하나 이상의 바람 파라미터를 결정하게 하는, 비일시적 머신 판독가능 매체. - 마이크로폰으로부터 수신된 마이크로폰 신호에서의 바람 잡음을 감소시키는 방법으로서,
상기 마이크로폰 근처의 하나 이상의 가속도계로부터 하나 이상의 가속도계 신호를 수신하는 단계;
상기 하나 이상의 가속도계 신호 중 하나 이상에서의 부대역 전력을 결정하는 단계;
결정된 부대역 전력에 기초하여, 상기 마이크로폰 신호에서의 잡음의 차단 주파수를 추정하는 단계; 및
추정된 차단 주파수를 사용하여 상기 마이크로폰 신호에서의 바람 잡음을 감소시키는 단계
를 포함하는, 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/445,538 | 2019-06-19 | ||
US16/445,538 US10917716B2 (en) | 2019-06-19 | 2019-06-19 | Apparatus for and method of wind detection |
PCT/GB2020/051449 WO2020254792A1 (en) | 2019-06-19 | 2020-06-16 | Apparatus for and method of wind detection by means of acceleration measurements |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220013462A true KR20220013462A (ko) | 2022-02-04 |
KR102467742B1 KR102467742B1 (ko) | 2022-11-17 |
Family
ID=71120200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227001923A KR102467742B1 (ko) | 2019-06-19 | 2020-06-16 | 가속도 측정에 의한 바람 검출을 위한 장치 및 그 방법 |
Country Status (6)
Country | Link |
---|---|
US (3) | US10917716B2 (ko) |
EP (1) | EP3987821B1 (ko) |
JP (1) | JP7189377B2 (ko) |
KR (1) | KR102467742B1 (ko) |
CN (1) | CN113874732B (ko) |
WO (1) | WO2020254792A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11258908B2 (en) * | 2019-09-23 | 2022-02-22 | Apple Inc. | Spectral blending with interior microphone |
US11367458B2 (en) * | 2020-08-21 | 2022-06-21 | Waymo Llc | Accelerometer inside of a microphone unit |
US11812243B2 (en) | 2021-03-18 | 2023-11-07 | Bang & Olufsen A/S | Headset capable of compensating for wind noise |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150245129A1 (en) * | 2014-02-21 | 2015-08-27 | Apple Inc. | System and method of improving voice quality in a wireless headset with untethered earbuds of a mobile device |
CN105259928A (zh) * | 2015-11-13 | 2016-01-20 | 上海斐讯数据通信技术有限公司 | 根据风向调整设备方向的方法及装置 |
KR20190067237A (ko) * | 2016-10-21 | 2019-06-14 | 노키아 테크놀로지스 오와이 | 바람 잡음의 존재 검출 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6688169B2 (en) * | 2001-06-15 | 2004-02-10 | Textron Systems Corporation | Systems and methods for sensing an acoustic signal using microelectromechanical systems technology |
US8488803B2 (en) * | 2007-05-25 | 2013-07-16 | Aliphcom | Wind suppression/replacement component for use with electronic systems |
DK2780906T3 (da) | 2011-12-22 | 2017-01-02 | Cirrus Logic Int Semiconductor Ltd | Fremgangsmåde og anordning til detektering af vindstøj |
US20130204532A1 (en) * | 2012-02-06 | 2013-08-08 | Sony Ericsson Mobile Communications Ab | Identifying wind direction and wind speed using wind noise |
US9363596B2 (en) * | 2013-03-15 | 2016-06-07 | Apple Inc. | System and method of mixing accelerometer and microphone signals to improve voice quality in a mobile device |
AU2014289973A1 (en) | 2013-07-12 | 2016-03-03 | Cirrus Logic International Semiconductor Limited | Wind noise reduction |
CN106664486B (zh) * | 2014-07-21 | 2019-06-28 | 思睿逻辑国际半导体有限公司 | 用于风噪声检测的方法和装置 |
CN104244127B (zh) * | 2014-08-25 | 2017-12-19 | 歌尔股份有限公司 | 一种应用于耳机的心率检测方法和能检测心率的耳机 |
JP7188884B2 (ja) * | 2014-12-04 | 2022-12-13 | レスメド・プロプライエタリー・リミテッド | 空気送出用のウェラブルデバイス |
CN108597490A (zh) * | 2018-06-19 | 2018-09-28 | 山东共达电声股份有限公司 | 一种汽车音频噪声管理系统 |
US10657950B2 (en) * | 2018-07-16 | 2020-05-19 | Apple Inc. | Headphone transparency, occlusion effect mitigation and wind noise detection |
-
2019
- 2019-06-19 US US16/445,538 patent/US10917716B2/en active Active
-
2020
- 2020-06-16 EP EP20734292.4A patent/EP3987821B1/en active Active
- 2020-06-16 JP JP2021575434A patent/JP7189377B2/ja active Active
- 2020-06-16 CN CN202080039673.1A patent/CN113874732B/zh active Active
- 2020-06-16 KR KR1020227001923A patent/KR102467742B1/ko active IP Right Grant
- 2020-06-16 WO PCT/GB2020/051449 patent/WO2020254792A1/en unknown
- 2020-08-14 US US16/993,577 patent/US11252504B2/en active Active
-
2021
- 2021-12-06 US US17/543,085 patent/US11659326B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150245129A1 (en) * | 2014-02-21 | 2015-08-27 | Apple Inc. | System and method of improving voice quality in a wireless headset with untethered earbuds of a mobile device |
CN105259928A (zh) * | 2015-11-13 | 2016-01-20 | 上海斐讯数据通信技术有限公司 | 根据风向调整设备方向的方法及装置 |
KR20190067237A (ko) * | 2016-10-21 | 2019-06-14 | 노키아 테크놀로지스 오와이 | 바람 잡음의 존재 검출 |
Also Published As
Publication number | Publication date |
---|---|
EP3987821B1 (en) | 2024-01-17 |
US20200404416A1 (en) | 2020-12-24 |
JP7189377B2 (ja) | 2022-12-13 |
US11252504B2 (en) | 2022-02-15 |
US20200404415A1 (en) | 2020-12-24 |
US11659326B2 (en) | 2023-05-23 |
WO2020254792A1 (en) | 2020-12-24 |
CN113874732A (zh) | 2021-12-31 |
KR102467742B1 (ko) | 2022-11-17 |
CN113874732B (zh) | 2023-06-09 |
US20220095044A1 (en) | 2022-03-24 |
JP2022532953A (ja) | 2022-07-20 |
US10917716B2 (en) | 2021-02-09 |
EP3987821A1 (en) | 2022-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11659326B2 (en) | Apparatus for and method of wind detection | |
JP7066705B2 (ja) | ヘッドフォンオフイヤー検知 | |
CN112334972B (zh) | 耳机系统、个人声学设备以及用于检测反馈不稳定性的方法 | |
CN111328009B (zh) | 用于可听设备的声学入耳检测方法以及可听设备 | |
JP5395895B2 (ja) | 信号処理方法およびシステム | |
KR101275442B1 (ko) | 멀티채널 신호의 위상 기반 프로세싱을 위한 시스템들, 방법들, 장치들, 및 컴퓨터 판독가능한 매체 | |
US11553286B2 (en) | Wearable hearing assist device with artifact remediation | |
CN112087701B (zh) | 用于风检测的麦克风的扬声器仿真 | |
US9398366B2 (en) | Handset and headset | |
KR20210102333A (ko) | 음성 검출을 위한 방법들 및 시스템들 | |
AU2011248297A1 (en) | Wind suppression/replacement component for use with electronic systems | |
US11557307B2 (en) | User voice control system | |
JP7164794B2 (ja) | 自己音声推定付き聴覚保護システムと関連する方法 | |
US8760271B2 (en) | Methods and systems to support auditory signal detection | |
US11335362B2 (en) | Wearable mixed sensor array for self-voice capture | |
EP3840402B1 (en) | Wearable electronic device with low frequency noise reduction | |
CN114762361A (zh) | 使用扬声器作为传声器之一的双向传声器系统 | |
WO2022038333A1 (en) | Method and apparatus for on ear detect | |
Hashim et al. | Sound quality analysis for two-way radio under wind noise |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |