[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20220009900A - Transition metal compound and catalyst composition comprising the same - Google Patents

Transition metal compound and catalyst composition comprising the same Download PDF

Info

Publication number
KR20220009900A
KR20220009900A KR1020210092809A KR20210092809A KR20220009900A KR 20220009900 A KR20220009900 A KR 20220009900A KR 1020210092809 A KR1020210092809 A KR 1020210092809A KR 20210092809 A KR20210092809 A KR 20210092809A KR 20220009900 A KR20220009900 A KR 20220009900A
Authority
KR
South Korea
Prior art keywords
formula
transition metal
methyl
group
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020210092809A
Other languages
Korean (ko)
Other versions
KR102736434B1 (en
Inventor
이인선
김석환
김병석
정윤철
강민영
김세영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP21842001.6A priority Critical patent/EP4043470B1/en
Priority to PCT/KR2021/009156 priority patent/WO2022015094A1/en
Priority to US17/767,800 priority patent/US20240109923A1/en
Priority to CN202180005385.9A priority patent/CN114401977B/en
Publication of KR20220009900A publication Critical patent/KR20220009900A/en
Application granted granted Critical
Publication of KR102736434B1 publication Critical patent/KR102736434B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention relates to a novel transition metal compound which realizes excellent catalytic activity in polyethylene polymerization and is useful for preparing polyethylene having a high intramolecular short-chain branching content without degradation of physical properties such as molecular weight, melting point, density, and the like, a catalyst composition comprising the same, and a method for manufacturing polyethylene using the same.

Description

전이금속 화합물 및 이를 포함하는 촉매 조성물 {TRANSITION METAL COMPOUND AND CATALYST COMPOSITION COMPRISING THE SAME}Transition metal compound and catalyst composition comprising the same

본 발명은 신규한 전이금속 화합물 및 이를 포함하는 촉매 조성물에 관한 것이다.The present invention relates to a novel transition metal compound and a catalyst composition comprising the same.

선형 저밀도 폴리에틸렌은 일반 폴리에틸렌의 특성과 더불어 파단강도와 신율이 높고, 인열강도, 낙추충격강도 등이 우수하여 기존의 저밀도 폴리에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운 스트레치 필름, 오버랩 필름 등에 널리 사용되고 있다.Linear low-density polyethylene is widely used in stretch films and overlap films, where it is difficult to apply conventional low-density polyethylene or high-density polyethylene, because it has high breaking strength and elongation, as well as excellent tear strength and falling impact strength, along with the characteristics of general polyethylene.

고압법에 의해 생산된 저밀도 폴리에틸렌은 용융 장력이 커서 성형성이 좋기 때문에 필름이나 중공 용기 등의 용도에 제공되고 있다. 그러나 고압법 저밀도 폴리에틸렌은 수많은 장쇄 분기 구조를 갖기 때문에, 인장강도, 인열강도 또는 내충격강도 등의 기계적 강도가 뒤떨어진다는 문제가 있었다.Low-density polyethylene produced by the high-pressure method has a high melt tension and has good moldability, so it is being used for applications such as films and hollow containers. However, since high-pressure low-density polyethylene has numerous long-chain branching structures, there is a problem in that mechanical strength such as tensile strength, tear strength or impact strength is inferior.

지글러 촉매를 사용하여 얻어지는 에틸렌계 중합체는 고압법 저밀도 폴리에틸렌에 비해, 인장강도, 인열강도 또는 내충격강도 등의 기계적 강도가 우수하지만, 필름 등의 성형체가 끈적거리는 단점이 있다.The ethylene-based polymer obtained by using the Ziegler catalyst has excellent mechanical strength such as tensile strength, tear strength or impact resistance compared to high-pressure low-density polyethylene, but has a disadvantage in that the molded article such as a film is sticky.

이러한 문제를 해결하기 위하여, 균일 촉매(싱글 사이트 촉매)인 메탈로센 촉매를 사용한 여러 가지의 에틸렌계 중합체가 개시되어 있다.In order to solve this problem, various ethylene-based polymers using a metallocene catalyst as a homogeneous catalyst (single site catalyst) have been disclosed.

일본 특허공개 제2005-97481호에는 라세미-에틸렌 비스(1-인덴일)지르코늄 다이페녹사이드로 이루어지는 촉매의 존재하에서 기상 중합에 의해 얻어진 에틸렌계 중합체가, 일본 특허공개 제1997-111208호에는 메탈로센 화합물을 중합 촉매로서 사용하여 얻어진 에틸렌계 중합체(엑손케미컬사제, 상품명 EXACT)가, 일본 특허공개 제1999-269324호에는 에틸렌-비스(4,5,6,7-테트라하이드로인덴일)지르코늄 다이클로라이드와 메틸알루목세인으로 이루어지는 촉매의 존재하에서 고압 이온중합에 의해 얻어진 에틸렌계 중합체가, 일본 특허공개 제2002-3661호에는 비스(n-부틸사이클로펜타다이엔일)지르코늄 다이클로라이드와 메틸알루목세인으로 이루어지는 촉매를 사용하여 얻어진 에틸렌계 중합체가 개시되어 있다.Japanese Patent Laid-Open No. 2005-97481 discloses an ethylene-based polymer obtained by gas phase polymerization in the presence of a catalyst composed of racemic-ethylene bis(1-indenyl)zirconium diphenoxide, and Japanese Patent Application Laid-Open No. 1997-111208 discloses a metal An ethylene-based polymer (Exxon Chemical, trade name EXACT) obtained by using a Rosene compound as a polymerization catalyst is disclosed in Japanese Patent Laid-Open No. 1999-269324 with ethylene-bis(4,5,6,7-tetrahydroindenyl)zirconium. An ethylene-based polymer obtained by high-pressure ionic polymerization in the presence of a catalyst consisting of dichloride and methylalumoxane is disclosed in Japanese Patent Laid-Open No. 2002-3661, bis(n-butylcyclopentadienyl)zirconium dichloride and methylalu An ethylene-based polymer obtained using a catalyst composed of moxane is disclosed.

또한, 미국 특허 제6,180,736호에는 1종의 메탈로센 촉매를 사용하고 단일 기상 반응기 또는 연속 슬러리 반응기에서 제조해 제조원가가 낮고 파울링이 거의 발생하지 않으며 중합 활성이 안정적인 폴리에틸렌 제조방법에 대해 기재되어 있다. 또, 미국 특허 제6,911,508호에는 새로운 메탈로센 촉매 화합물을 사용하고 1-헥센을 공단량체로 하여 단일 기상 반응기에서 중합한 유변물성이 개선된 폴리에틸렌 제조에 대해 보고되어 있다. 하지만 좁은 분자량 분포로 가공성이 좋지 않은 문제가 있다. 또, 미국 특허 제6,828,394호에는 공단량체 결합성이 좋은 것과 그렇지 않은 것을 혼합사용해 가공성이 우수하고 특히 필름용에 적합한 폴리에틸렌 제조방법에 대해 보고되어 있다.In addition, U.S. Patent No. 6,180,736 describes a method for producing polyethylene using one type of metallocene catalyst and producing it in a single gas phase reactor or a continuous slurry reactor, so that the manufacturing cost is low, fouling hardly occurs, and the polymerization activity is stable. . In addition, U.S. Patent No. 6,911,508 reports on the preparation of polyethylene with improved rheological properties by polymerization in a single gas phase reactor using a novel metallocene catalyst compound and 1-hexene as a comonomer. However, there is a problem of poor processability due to a narrow molecular weight distribution. In addition, U.S. Patent No. 6,828,394 reports on a method for producing polyethylene having excellent processability and particularly suitable for films by using a mixture of those having good comonomer binding properties and those not having good comonomer binding properties.

한편, 미국 특허 제6,841,631호, 미국 특허 제6,894,128호에는 적어도 2종의 메탈 컴파운드가 사용된 메탈로센계 촉매로 이정 또는 다정 분자량분포를 갖는 폴리에틸렌을 제조하여, 필름, 블로우몰딩, 파이프 등의 용도에 적용이 가능하다고 보고되어 있다. 하지만 이러한 제품들은 가공성은 개선되었으나 단위 입자 내의 분자량별 분산 상태가 균일하지 못해 비교적 양호한 압출 조건에서도 압출 외관이 거칠고 물성이 안정적이지 못한 문제가 있다.On the other hand, U.S. Patent Nos. 6,841,631 and 6,894,128 disclose that at least two types of metal compounds are used as metallocene-based catalysts to produce polyethylene having a bicrystalline or polycrystalline molecular weight distribution, and to be used in films, blow molding, pipes, etc. reported to be applicable. However, these products have improved processability, but the dispersion state for each molecular weight within the unit particle is not uniform, so the extrusion appearance is rough and the physical properties are not stable even under relatively good extrusion conditions.

이러한 배경에서 물성과 가공성 간의 균형이 이루어진 보다 우수한 제품의 제조가 끊임없이 요구되고 있으며 이에 대한 개선이 더욱 필요한 상태이다.Against this background, there is a constant demand for the production of better products with a balance between physical properties and processability, and further improvement is required.

본 명세서는, 에틸렌 중합에 우수한 촉매 활성과 함께 높은 높은 분자량 및 분자내 단쇄 분지(SCB, short chain branch) 함량을 갖는 폴리에틸렌 제조에 유용한, 신규 전이금속 화합물을 제공하고자 한다.An object of the present specification is to provide a novel transition metal compound useful for preparing polyethylene having a high molecular weight and an intramolecular short chain branch (SCB) content along with excellent catalytic activity for ethylene polymerization.

또한 본 명세서는, 상기 전이금속 화합물을 포함하는 촉매 조성물을 제공하고자 한다.In addition, the present specification is to provide a catalyst composition comprising the transition metal compound.

또한, 본 발명은 상기 촉매 조성물을 이용한 폴리에틸렌의 제조 방법 및 이로부터 생성되는 폴리에틸렌을 제공하고자 한다. In addition, the present invention is to provide a method for producing polyethylene using the catalyst composition and polyethylene produced therefrom.

본 발명은, 하기 화학식 1로 표시되는 전이금속 화합물을 제공한다.The present invention provides a transition metal compound represented by the following formula (1).

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서,In Formula 1,

A는 14족 원소이고, A is a group 14 element,

M은 4족 전이금속이며,M is a Group 4 transition metal,

R1 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,R 1 and R 2 are the same as or different from each other, and each independently hydrogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 alkoxysilyl , C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,

X1, 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐이고,X 1 , and X 2 are the same as or different from each other and are each independently halogen,

Q1, 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 C1-20 알킬이다.Q 1 , and Q 2 are the same as or different from each other , and are each independently C 1-20 alkyl.

또한, 본 발명은 상기 전이금속 화합물을 포함하는 촉매 조성물을 제공한다. In addition, the present invention provides a catalyst composition comprising the transition metal compound.

또한, 본 발명은 상기 촉매 조성물의 존재 하에, 에틸렌 및 알파-올레핀을 공중합하는 단계를 포함하는, 폴리에틸렌의 제조 방법을 제공한다. In addition, the present invention provides a method for producing polyethylene, comprising the step of copolymerizing ethylene and alpha-olefin in the presence of the catalyst composition.

또한, 본 발명은 상기 제조 방법에 의해 수득되는 폴리에틸렌을 제공한다. In addition, the present invention provides a polyethylene obtained by the above production method.

본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. The terminology used herein is used to describe exemplary embodiments only, and is not intended to limit the present invention.

단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. The singular expression includes the plural expression unless the context clearly dictates otherwise.

본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합을 설명하기 위한 것이며, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 이들의 조합 또는 부가 가능성을 배제하는 것은 아니다. In this specification, terms such as "comprises", "comprises" or "have" are used to describe embodied features, numbers, steps, components, or combinations thereof, and include one or more other features, numbers, or steps. , components, combinations or additions thereof are not excluded.

또한 본 명세서에 있어서, 각 층 또는 요소가 각 층들 또는 요소들의 "상에" 또는 "위에” 형성되는 것으로 언급되는 경우에는 각 층 또는 요소가 직접 각 층들 또는 요소들의 위에 형성되는 것을 의미하거나, 다른 층 또는 요소가 각 층 사이, 대상체, 기재 상에 추가적으로 형성될 수 있음을 의미한다. Also in this specification, when it is said that each layer or element is formed "on" or "over" each layer or element, it means that each layer or element is formed directly on each layer or element, or other It means that a layer or element may additionally be formed between each layer, on the object, on the substrate.

또한, 본 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.In addition, the terms "about," "substantially," and the like, to the extent used throughout this specification are used in or close to the numerical value when the manufacturing and material tolerances inherent in the stated meaning are presented, and are used in the meaning of the present application. It is used to prevent an unscrupulous infringer from using the disclosure in which exact or absolute figures are mentioned for better understanding.

또한, 본 발명에서, (공)중합체는 단독 중합체(homo-polymer)와 공중합체(co-polymer)를 모두 포함하는 의미이다. In addition, in the present invention, the (co)polymer is meant to include both a homo-polymer and a copolymer (co-polymer).

본 명세서에서 별도의 정의가 없는 한, "공중합"이란 블록 공중합, 랜덤 공중합, 그래프트 공중합 또는 교호 공중합을 의미할 수 있고, "공중합체"란 블록 공중합체, 랜덤 공중합체, 그래프트 공중합체 또는 교호 공중합체를 의미할 수 있다.Unless otherwise defined herein, "copolymerization" may mean block copolymerization, random copolymerization, graft copolymerization or alternating copolymerization, and "copolymer" means block copolymer, random copolymer, graft copolymer or alternating copolymer. It can mean amalgamation.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태로 한정하는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the present invention may have various changes and may have various forms, specific embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to the specific disclosed form, and should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 측면에 따르면, 하기 화학식 1로 표시되는 전이금속 화합물이 제공된다. According to one aspect of the present invention, there is provided a transition metal compound represented by the following formula (1).

[화학식 1][Formula 1]

Figure pat00002
Figure pat00002

상기 화학식 1에서,In Formula 1,

A는 14족 원소이고, A is a group 14 element,

M은 4족 전이금속이며,M is a Group 4 transition metal,

R1 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,R 1 and R 2 are the same as or different from each other, and each independently hydrogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 alkoxysilyl , C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,

X1, 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐이고,X 1 , and X 2 are the same as or different from each other and are each independently halogen,

Q1, 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 C1-20 알킬이다.Q 1 , and Q 2 are the same as or different from each other , and are each independently C 1-20 alkyl.

구체적으로, 상기 화학식 1로 표시되는 화합물은, 특정의 치환기를 포함하는 인다센 리간드와 인덴 리간드가 특정의 브릿지 그룹으로 결합된 비대칭 구조의 화합물로, 상기 화합물은 인다센 리간드와 인덴 리간드의 2번 위치에 메틸기가 치환되고 알킬기만이 치환된 브릿지 그룹으로 결합되는 것을 특징으로 한다. 특히, 상기 화합물은 동일한 리간드가 브릿지된 대칭 구조의 화합물이나 리간드에 메틸기가 아닌 벌키한 치환기가 결합된 화합물, 또는 브릿지 그룹에 산소 등의 헤테로 원자를 포함한 치환기를 포함한 화합물에 비하여, 에틸렌 중합 반응에서 우수한 공정안정성 및 높은 중합 활성을 나타내면서도, 분자내 단쇄 분지(SCB, short chain branch) 함량을 크게 증대시켜 분자 구조 및 분포를 변화시켜, 모폴로지가 우수하고 기계적 물성이 우수하며 내구성이 강화된 폴리에틸렌 제조용 촉매에 효과적으로 적용할 수 있다.Specifically, the compound represented by Formula 1 is a compound having an asymmetric structure in which an indacene ligand and an indene ligand having a specific substituent are bonded to each other by a specific bridging group, wherein the compound is an indacene ligand and an indene ligand 2 times It is characterized in that the methyl group is substituted at the position and the alkyl group is bonded to the substituted bridging group. In particular, the compound is a compound having a symmetric structure in which the same ligand is bridged, or a compound in which a bulky substituent other than a methyl group is bonded to the ligand, or a compound including a substituent including a hetero atom such as oxygen in the bridging group. While exhibiting excellent process stability and high polymerization activity, it greatly increases the short chain branch (SCB) content in the molecule to change the molecular structure and distribution, so that it has excellent morphology, excellent mechanical properties, and enhanced durability. It can be effectively applied to catalysts.

본 명세서에서, "라세믹 형태(racemic form)" 또는 "라세믹체" 또는 "라세믹 이성질체"는, 두 개의 인데닐 및 인다세닐 부분 상의 동일한 치환체가, 상기 화학식 1에서 M으로 표시되는 전이금속, 예컨대, 지르코늄(Zr) 또는 하프늄(Hf) 등의 전이금속을 포함한 평면 및, 상기 인데닐과 인다세닐 부분의 중앙에 대해 서로 반대편 상에 있는 형태를 의미한다.As used herein, "racemic form" or "racemic form" or "racemic isomer" means that the same substituent on two indenyl and indacenyl moieties is a transition metal represented by M in Formula 1 above, For example, it refers to a shape on opposite sides of a plane including a transition metal such as zirconium (Zr) or hafnium (Hf) and the center of the indenyl and indacenyl portions.

그리고, 본 명세서에서 용어 "메조 형태(meso isomer)" 또는 "메조 이성질체"는, 상술한 라세믹 이성질체의 입체 이성질체로서, 두 개의 인데닐 및 인다세닐 부분 상의 동일한 치환체가, 상기 화학식 1에서 M으로 표시되는 전이금속, 예컨대, 지르코늄(Zr) 또는 하프늄(Hf) 등의 전이금속을 포함한 평면 및, 상기 인데닐과 인다세닐 부분의 중앙에 대해 동일편 상에 있는 형태를 의미한다.And, as used herein, the term "meso isomer" or "meso isomer" is a stereoisomer of the above-mentioned racemic isomer, and the same substituents on two indenyl and indacenyl moieties are represented by M in Formula 1 above. The indicated transition metal, for example, means a plane including a transition metal such as zirconium (Zr) or hafnium (Hf), and a form on the same side with respect to the center of the indenyl and indacenyl moieties.

또한, 본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다. In addition, unless there is a special limitation in the present specification, the following terms may be defined as follows.

할로겐(halogen)은 불소(F), 염소(Cl), 브롬(Br), 또는 요오드(I)일 수 있다.The halogen may be fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).

탄소수 1 내지 20(C1-20)의 알킬은 직쇄, 분지쇄 또는 고리형 알킬일 수 있다. 구체적으로, 탄소수 1 내지 20의 알킬은 탄소수 1 내지 20의 직쇄 알킬; 탄소수 1 내지 15의 직쇄 알킬; 탄소수 1 내지 5의 직쇄 알킬; 탄소수 3 내지 20의 분지쇄 또는 고리형 알킬; 탄소수 3 내지 15의 분지쇄 또는 고리형 알킬; 또는 탄소수 3 내지 10의 분지쇄 또는 고리형 알킬일 수 있다. 일예로, 상기 탄소수 1 내지 20(C1-20)의 알킬은 메틸, 에틸, 프로필, 이소프로필, n-부틸, tert-부틸, 펜틸, 헥실, 헵틸, 옥틸, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵틸, 시클로옥틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다.Alkyl having 1 to 20 carbon atoms (C 1-20 ) may be a straight chain, branched chain or cyclic alkyl. Specifically, alkyl having 1 to 20 carbon atoms is straight-chain alkyl having 1 to 20 carbon atoms; straight-chain alkyl having 1 to 15 carbon atoms; straight-chain alkyl having 1 to 5 carbon atoms; branched or cyclic alkyl having 3 to 20 carbon atoms; branched or cyclic alkyl having 3 to 15 carbon atoms; Or it may be a branched or cyclic alkyl having 3 to 10 carbon atoms. For example, the alkyl having 1 to 20 carbon atoms (C 1-20 ) is methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, cyclopropyl, cyclobutyl, cyclopentyl , cyclohexyl, cycloheptyl, cyclooctyl, and the like, but is not limited thereto.

탄소수 2 내지 20(C2-20)의 알케닐로는 직쇄 또는 분지쇄의 알케닐을 포함하고, 구체적으로 알릴, 알릴, 에테닐, 프로페닐, 부테닐, 펜테닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.The alkenyl having 2 to 20 carbon atoms (C 2-20 ) includes straight-chain or branched alkenyl, and specifically includes allyl, allyl, ethenyl, propenyl, butenyl, pentenyl, and the like. but is not limited.

탄소수 1 내지 20(C1-20)의 알콕시로는 메톡시기, 에톡시, 이소프로폭시, n-부톡시, tert-부톡시, 시클로헥실옥시기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.Examples of alkoxy having 1 to 20 carbon atoms (C 1-20 ) include, but are not limited to, a methoxy group, ethoxy, isopropoxy, n-butoxy, tert-butoxy, and cyclohexyloxy group. .

탄소수 2 내지 20(C2-20)의 알콕시알킬기는 상술한 알킬의 1개 이상의 수소가 알콕시로 치환된 작용기이며, 구체적으로 메톡시메틸, 메톡시에틸, 에톡시메틸, iso-프로폭시메틸, iso-프로폭시에틸, iso-프로폭시프로필, iso-프로폭시헥실, tert-부톡시메틸, tert-부톡시에틸, tert-부톡시프로필, tert-부톡시헥실 등의 알콕시알킬을 들 수 있으나, 이에만 한정되는 것은 아니다.The alkoxyalkyl group having 2 to 20 (C 2-20 ) is a functional group in which one or more hydrogens of the aforementioned alkyl are substituted with alkoxy, specifically methoxymethyl, methoxyethyl, ethoxymethyl, iso-propoxymethyl, alkoxyalkyl such as iso-propoxyethyl, iso-propoxypropyl, iso-propoxyhexyl, tert-butoxymethyl, tert-butoxyethyl, tert-butoxypropyl, and tert-butoxyhexyl; The present invention is not limited thereto.

탄소수 6 내지 40(C6-40)의 아릴옥시로는 페녹시, 비페녹실, 나프톡시 등을 들 수 있으나, 이에만 한정되는 것은 아니다.The aryloxy having 6 to 40 carbon atoms (C 6-40 ) may include, but is not limited to, phenoxy, biphenoxyl, naphthoxy, and the like.

탄소수 7 내지 40(C7-40)의 아릴옥시알킬기는 상술한 알킬의 1개 이상의 수소가 아릴옥시로 치환된 작용기이며, 구체적으로 페녹시메틸, 페녹시에틸, 페녹시헥실 등을 들 수 있으나, 이에만 한정되는 것은 아니다.The aryloxyalkyl group having 7 to 40 (C 7-40 ) is a functional group in which one or more hydrogens of the aforementioned alkyl are substituted with aryloxy, and specifically, phenoxymethyl, phenoxyethyl, phenoxyhexyl, etc. may be mentioned. , but is not limited thereto.

탄소수 1 내지 20(C1-20)의 알킬실릴 또는 탄소수 1 내지 20(C1-20)의 알콕시실릴기는 -SiH3의 1 내지 3개의 수소가 1 내지 3개의 상술한 바와 같은 알킬 또는 알콕시로 치환된 작용기이며, 구체적으로 메틸실릴, 디메틸실릴, 트라이메틸실릴, 디메틸에틸실릴, 디에틸메틸실릴기 또는 디메틸프로필실릴 등의 알킬실릴; 메톡시실릴, 디메톡시실릴, 트라이메톡시실릴 또는 디메톡시에톡시실릴 등의 알콕시실릴; 메톡시디메틸실릴, 디에톡시메틸실릴 또는 디메톡시프로필실릴 등의 알콕시알킬실릴을 들 수 있으나, 이에만 한정되는 것은 아니다.Alkylsilyl having 1 to 20 (C 1-20 ) or an alkoxysilyl group having 1 to 20 (C 1-20 ) is -SiH 3 1 to 3 hydrogens are 1 to 3 alkyl or alkoxy as described above. A substituted functional group, specifically, alkylsilyl, such as methylsilyl, dimethylsilyl, trimethylsilyl, dimethylethylsilyl, diethylmethylsilyl group or dimethylpropylsilyl; alkoxysilyl such as methoxysilyl, dimethoxysilyl, trimethoxysilyl or dimethoxyethoxysilyl; alkoxyalkylsilyl such as methoxydimethylsilyl, diethoxymethylsilyl, or dimethoxypropylsilyl, but is not limited thereto.

탄소수 1 내지 20(C1-20)의 실릴알킬은 상술한 바와 같은 알킬의 1 이상의 수소가 실릴로 치환된 작용기이며, 구체적으로 -CH2-SiH3, 메틸실릴메틸 또는 디메틸에톡시실릴프로필 등을 들 수 있으나, 이에만 한정되는 것은 아니다.Silylalkyl having 1 to 20 (C 1-20 ) is a functional group in which one or more hydrogens of alkyl as described above are substituted with silyl, specifically -CH 2 -SiH 3 , methylsilylmethyl or dimethylethoxysilylpropyl, etc. can be mentioned, but is not limited thereto.

또한, 탄소수 1 내지 20(C1-20)의 알킬렌으로는 2가 치환기라는 것을 제외하고는 상술한 알킬과 동일한 것으로, 구체적으로 메틸렌, 에틸렌, 프로필렌, 부틸렌, 펜틸렌, 헥실렌, 헵틸렌, 옥틸렌, 시클로프로필렌, 시클로부틸렌, 시클로펜틸렌, 시클로헥실렌, 시클로헵틸렌, 시클로옥틸렌 등을 들 수 있으나, 이에만 한정되는 것은 아니다.In addition, the alkylene having 1 to 20 carbon atoms (C 1-20 ) is the same as the above-mentioned alkyl except that it is a divalent substituent, specifically methylene, ethylene, propylene, butylene, pentylene, hexylene, hep. tylene, octylene, cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cycloheptylene, cyclooctylene, and the like, but is not limited thereto.

탄소수 6 내지 20(C6-20)의 아릴은 모노사이클릭, 바이사이클릭 또는 트라이사이클릭 방향족 탄화수소일 수 있다. 일예로, 상기 탄소수 6 내지 20(C6-20)의 아릴은 페닐, 비페닐, 나프틸, 안트라세닐, 페난트레닐, 플루오레닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.Aryl having 6 to 20 carbon atoms (C 6-20 ) may be a monocyclic, bicyclic or tricyclic aromatic hydrocarbon. For example, the aryl having 6 to 20 carbon atoms (C 6-20 ) may include, but is not limited to, phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, and fluorenyl.

탄소수 7 내지 20(C7-20)의 알킬아릴은 방향족 고리의 수소 중 하나 이상의 수소가 상술한 알킬에 의하여 치환된 치환기를 의미할 수 있다. 일예로, 상기 탄소수 7 내지 20(C7-20)의 알킬아릴은 메틸페닐, 에틸페닐, 메틸비페닐, 메틸나프틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다 Alkylaryl having 7 to 20 carbon atoms (C 7-20 ) may refer to a substituent in which one or more hydrogens among hydrogens of an aromatic ring are substituted by the aforementioned alkyl. For example, the alkylaryl having 7 to 20 carbon atoms (C 7-20 ) may include, but is not limited to, methylphenyl, ethylphenyl, methylbiphenyl, methylnaphthyl, and the like.

상기 탄소수 7 내지 20(C7-20)의 아릴알킬은 상술한 알킬의 1 이상의 수소가 상술한 아릴에 의하여 치환된 치환기를 의미할 수 있다. 일예로, 상기 탄소수 7 내지 20(C7-20)의 아릴알킬은 페닐메틸, 페닐에틸, 비페닐메틸, 나프틸메틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다.The arylalkyl having 7 to 20 carbon atoms (C 7-20 ) may mean a substituent in which one or more hydrogens of the aforementioned alkyl are substituted by the aforementioned aryl. For example, the arylalkyl having 7 to 20 carbon atoms (C 7-20 ) may include, but is not limited to, phenylmethyl, phenylethyl, biphenylmethyl, naphthylmethyl, and the like.

또한, 탄소수 6 내지 20(C6-20)의 아릴렌은 2가 치환기라는 것을 제외하고는 상술한 아릴과 동일한 것으로, 구체적으로 페닐렌, 비페닐렌, 나프틸렌, 안트라세닐렌, 페난트레닐렌, 플루오레닐렌 등을 들 수 있으나, 이에만 한정되는 것은 아니다.In addition, arylene having 6 to 20 (C 6-20 ) is the same as the above-described aryl except that it is a divalent substituent, specifically phenylene, biphenylene, naphthylene, anthracenylene, and phenanthrenylene. , fluorenylene, and the like, but are not limited thereto.

그리고, 4족 전이 금속은, 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf), 또는 러더포듐(Rf)일 수 있으며, 구체적으로 티타늄(Ti), 지르코늄(Zr), 또는 하프늄(Hf) 일 수 있으며, 보다 구체적으로 지르코늄(Zr), 또는 하프늄(Hf)일 수 있으며, 이에만 한정되는 것은 아니다. And, the Group 4 transition metal may be titanium (Ti), zirconium (Zr), hafnium (Hf), or rutherpodium (Rf), specifically, titanium (Ti), zirconium (Zr), or hafnium (Hf) may be, and more specifically, may be zirconium (Zr) or hafnium (Hf), but is not limited thereto.

또한, 13족 원소는, 붕소(B), 알루미늄(Al), 갈륨(Ga), 인듐(In), 또는 탈륨(Tl)일 수 있으며, 구체적으로 붕소(B), 또는 알루미늄(Al)일 수 있으며, 이에만 한정되는 것은 아니다. In addition, the group 13 element may be boron (B), aluminum (Al), gallium (Ga), indium (In), or thallium (Tl), specifically, boron (B), or aluminum (Al). and is not limited thereto.

상술한 치환기들은 목적하는 효과와 동일 내지 유사한 효과를 발휘하는 범위 내에서 임의적으로 하이드록시기; 할로겐; 알킬 또는 알케닐, 아릴, 알콕시; 14족 내지 16족의 헤테로 원자들 중 하나 이상의 헤테로 원자를 포함하는 알킬 또는 알케닐, 아릴, 알콕시; 실릴; 알킬실릴 또는 알콕시실릴; 포스파인기; 포스파이드기; 술포네이트기; 및 술폰기로 이루어진 군에서 선택된 1 이상의 치환기로 치환될 수 있다.The above-mentioned substituents are optionally a hydroxyl group within the range of exhibiting the same or similar effect as the desired effect; halogen; alkyl or alkenyl, aryl, alkoxy; alkyl or alkenyl, aryl, alkoxy containing one or more heteroatoms among the heteroatoms of Groups 14 to 16; silyl; alkylsilyl or alkoxysilyl; phosphine group; phosphide group; sulfonate group; And it may be substituted with one or more substituents selected from the group consisting of a sulfone group.

참고로, 본 명세서에서 "중량부 (part by weight)"란 어떤 물질의 중량을 기준으로 나머지 물질의 중량을 비로 나타낸 상대적인 개념을 의미한다. 예를 들어, A 물질의 중량이 50 g이고, B 물질의 중량이 20 g이고, C 물질의 중량이 30 g으로 포함된 혼합물에서, A 물질 100 중량부 기준 B 물질 및 C 물질의 양은 각각 40 중량부 및 60 중량부인 것이다.For reference, in the present specification, "part by weight" refers to a relative concept in which the weight of the other material is expressed as a ratio based on the weight of a certain material. For example, in a mixture in which the weight of material A is 50 g, the weight of material B is 20 g, and the weight of material C is 30 g, based on 100 parts by weight of material A, the amounts of material B and material C are each 40 parts by weight and 60 parts by weight.

한편, "중량% (% by weight)" 란 전체의 중량 중 어떤 물질의 중량의 중량을 백분율로 나타낸 절대적인 개념을 의미한다. 상기 예로 든 혼합물에서, 혼합물 전체 중량 100 % 중 A 물질, B 물질, 및 C 물질의 함량은 각각 50 중량%, 20 중량%, 30 중량%인 것이다.On the other hand, "wt% (% by weight)" means an absolute concept in which the weight of a certain material is expressed as a percentage among the total weight. In the mixture exemplified above, the content of material A, material B, and material C in 100% of the total weight of the mixture is 50% by weight, 20% by weight, and 30% by weight, respectively.

구체적으로, 상기 화학식 1에서, A는 탄소, 실리콘, 게르마늄일 수 있으며, 바람직하게는 실리콘이다. Specifically, in Formula 1, A may be carbon, silicon, or germanium, preferably silicon.

상기 화학식 1에서, M은 지르코늄(Zr) 또는 하프늄(Hf)일 수 있으며, 바람직하게는 지르코늄(Zr)이다. In Formula 1, M may be zirconium (Zr) or hafnium (Hf), preferably zirconium (Zr).

특히, 상기 전이금속 화합물은 인다센 리간드와 인덴 리간드의 특정 위치, 즉, 2번 위치에 메틸기를 치환함으로써, 에틸렌 중합 공정에 촉매로 적용시 우수한 공정안정성 및 높은 중합 활성을 나타내면서도, 분자내 단쇄 분지(SCB, short chain branch) 함량을 크게 증대시켜 분자 구조 및 분포를 변화시켜 생성된 중합체가 우수한 기계적 물성과 함께 모래알처럼 분산되며 알갱이가 원형을 유지하는 우수한 모폴로지를 구현할 수 있다. In particular, the transition metal compound exhibits excellent process stability and high polymerization activity when applied as a catalyst to an ethylene polymerization process by substituting a methyl group at a specific position of the indacene ligand and the indene ligand, that is, position 2, while exhibiting a short intramolecular chain By greatly increasing the short chain branch (SCB) content, the molecular structure and distribution are changed, and the resulting polymer is dispersed like grains of sand with excellent mechanical properties, and an excellent morphology can be realized in which the grains maintain their original shape.

또, 상기 전이금속 화합물은 인다센 리간드와 인덴 리간드에 메틸기 이외에 특정 위치, 즉, 인다센 리간드와 인덴 리간드의 4번 위치에 치환기 R1 및 R2를 포함한다. In addition, the transition metal compound includes substituents R 1 and R 2 at a specific position in the indacene ligand and the indene ligand in addition to the methyl group, that is, at the 4th position of the indacene ligand and the indene ligand.

구체적으로, R1 및 R2는 각각 수소, 페닐, C1-6 직쇄 또는 분지쇄 알킬이 치환된 페닐일 수 있다. 일예로, R1 및 R2는 각각 수소, 페닐, 또는 C1-4 직쇄 또는 분지쇄 알킬이 치환된 페닐일 수 있으며, 바람직하게는 수소, 페닐, 또는 tert-부틸이 치환된 페닐일 수 있다. Specifically, R 1 and R 2 may each be hydrogen, phenyl, or phenyl substituted with C 1-6 straight or branched chain alkyl. For example, R 1 and R 2 may each be hydrogen, phenyl, or phenyl substituted with C 1-4 straight or branched chain alkyl, preferably hydrogen, phenyl, or phenyl substituted with tert-butyl .

일예로, 상기 전이금속 화합물은 하기 화학식 1-1로 표시되는 것일 수 있다. For example, the transition metal compound may be represented by the following Chemical Formula 1-1.

[화학식 1-1][Formula 1-1]

Figure pat00003
Figure pat00003

상기 화학식 1-1에서, A, M, X1, X2, Q1, Q2는 화학식 1에서 정의한 바와 같으며, In Formula 1-1, A, M, X 1 , X 2 , Q 1 , Q 2 are as defined in Formula 1,

상기 화학식 1-1에서, R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소 또는 C1-6 직쇄 또는 분지쇄 알킬이고; In Formula 1-1, R' is the same as or different from each other, and each independently represents hydrogen or C 1-6 straight or branched chain alkyl;

a 및 b은 각각 독립적으로 0 또는 1이다.a and b are each independently 0 or 1.

또, 상기 화학식 1-1에서 R' 중 적어도 하나 이상은 C3-6 분지쇄 알킬이고, 나머지 R'은 수소일 수 있다. 구체적으로, R'는 수소 또는 tert-부틸일 수 있다. In addition, in Formula 1-1, at least one of R' may be C 3-6 branched chain alkyl, and the remaining R' may be hydrogen. Specifically, R' may be hydrogen or tert-butyl.

또, 상기 화학식 1-1에서 a 및 b가 0인 경우에는 수소가 치환된 것이다. In addition, when a and b are 0 in Formula 1-1, hydrogen is substituted.

한편, 상기 화학식 1 및 화학식 1-1에서, X1, X2는 각각 할로겐이고, 구체적으로는 염소, 요오드, 브롬일 수 있으며, 바람직하게는 염소이다. Meanwhile, in Chemical Formulas 1 and 1-1, X 1 and X 2 are each a halogen, specifically chlorine, iodine, or bromine, preferably chlorine.

또, 상기 화학식 1 및 화학식 1-1에서, Q1, Q2는 서로 동일하거나 상이하고, 각각 C1-6 직쇄 또는 분지쇄 알킬, C1-4 직쇄 또는 분지쇄 알킬, 또는 C1-3 직쇄 또는 분지쇄 알킬일 수 있다. 특히, Q1, Q2는 각각 C1-6 직쇄 알킬, C1-4 직쇄 알킬, 또는 C1-3 직쇄 알킬일 수 있다. 일예로, Q1, 및 Q2는 각각 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, 또는 tert-부틸일 수 있으며, 바람직하게는 메틸, 에틸, 또는 n-프로필일 수 있다. In addition, in Formulas 1 and 1-1, Q 1 , Q 2 are the same as or different from each other, and each is C 1-6 straight or branched chain alkyl, C 1-4 straight or branched chain alkyl, or C 1-3 It may be a straight chain or branched chain alkyl. In particular, Q 1 and Q 2 may each be C 1-6 straight chain alkyl, C 1-4 straight chain alkyl, or C 1-3 straight chain alkyl. For example, Q 1 , and Q 2 may each be methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, or tert-butyl, preferably methyl, ethyl, or n-propyl have.

특히, 본 발명의 전이금속 화합물은 브릿지 그룹에 포함된 치환기 Q1, Q2가 산소 등의 헤테로 원자를 포함한 치환기가 아닌 알킬기만으로 이뤄짐으로써, 에틸렌 중합 반응에서 파울링 현상 등이 나타나지 않는 우수한 공정안정성을 확보할 수 있다. In particular, in the transition metal compound of the present invention, the substituents Q 1 , Q 2 included in the bridging group consist of an alkyl group rather than a substituent including a hetero atom such as oxygen. can be obtained

또한, 상기 화학식 1로 표시되는 화합물은, 좀더 바람직하게는, 하기 구조식으로 표시되는 화합물들 중 어느 하나일 수 있다. In addition, the compound represented by the formula (1), more preferably, may be any one of the compounds represented by the following structural formula.

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

Figure pat00006
Figure pat00007
.
Figure pat00006
Figure pat00007
.

상기 구조식은 본 발명을 설명하기 위한 일 예일뿐, 본 발명이 이에 한정되는 것은 아니다.The structural formula is only an example for explaining the present invention, and the present invention is not limited thereto.

그리고, 상기 리간드 화합물 및 전이금속 화합물을 제조하기 위한 일련의 반응은, 하기 반응식 1과 같다. 다만, 하기 반응식은 본 발명을 설명하기 위한 하나의 예시일 뿐, 본 발명이 반드시 이에 한정되는 것은 아니다.And, a series of reactions for preparing the ligand compound and the transition metal compound are shown in Scheme 1 below. However, the following reaction scheme is only an example for explaining the present invention, and the present invention is not necessarily limited thereto.

이하 반응식 1을 참조하여 설명하면, 발명의 일 구현 예에 따른 상기 전이금속 화합물은, R2 치환된 2-메틸인데닐 화합물(Compound 1)을 Q1 및 Q2가 치환된 할로겐화 실란 화합물(silane)과 반응시켜 14족 원소 A를 포함하는 브릿지 그룹이 연결된 2-메틸인데닐 화합물(Compound 2)를 제조하는 단계(Step 1); 상기 14족 원소 A를 포함하는 브릿지가 연결된 2-메틸인데닐 화합물(Compound 2)를 R1이 치환된 인다센 화합물과 반응시켜 2-메틸인데닐과 인다세닐이 14족 원소 A를 포함하는 브릿지 그룹으로 연결된 리간드 화합물(Compound 3)을 제조하는 단계(Step 2); 상기 리간드 화합물 (Compound 3)를 4족 전이금속 M에 할로겐 원소인 X1, X2가 치환된 4족 전이금속의 할로겐염(metal halide)과 반응시켜, 상기 화학식 1의 전이금속 화합물(Compound 4)을 제조하는 단계(Step 3);를 포함하는 방법에 의해 제조될 수 있다.Hereinafter, referring to Scheme 1, the transition metal compound according to an embodiment of the present invention is a halogenated silane compound in which R 2 substituted 2-methylindenyl compound (Compound 1) and Q 1 and Q 2 are substituted (silane). ) to prepare a 2-methylindenyl compound (Compound 2) to which a bridging group containing a group 14 element A is linked (Step 1); The 2-methylindenyl compound (Compound 2) having a bridge containing the group 14 element A is reacted with an indacene compound substituted with R 1 , so that 2-methylindenyl and indacenyl are a bridge containing the group 14 element A Preparing a ligand compound (Compound 3) linked to a group (Step 2); The ligand compound (Compound 3) is reacted with a halogen salt of a Group 4 transition metal in which X 1 , X 2 is substituted with a halogen element in the Group 4 transition metal M, and the transition metal compound of Formula 1 (Compound 4) ) may be prepared by a method comprising a; (Step 3) for manufacturing.

[반응식 1][Scheme 1]

Figure pat00008
Figure pat00008

상기 반응식 1에서 각 치환기들은 앞서 정의한 바와 같고, X는 할로겐 원소이며, 일예로 염소, 요오드, 브롬일 수 있으며, 바람직하게는 염소일 수 있다. 그리고, 상기 각 단계에서의 반응은 공지의 반응들을 응용하여 수행될 수 있으며, 보다 상세한 합성 방법은 후술하는 실시예를 참고할 수 있다.In Scheme 1, each substituent is as defined above, and X is a halogen element, and may be, for example, chlorine, iodine, or bromine, preferably chlorine. In addition, the reaction in each step may be performed by applying known reactions, and for a more detailed synthesis method, reference may be made to Examples to be described later.

구체적으로, 발명의 일 구현 예에 따른 상기 전이금속 화합물의 제조 방법은, 2-메틸인데닐 등과 같이 2번 위치와 4번 위치에 각각 특정 치환기인 메틸 및 R2를 갖는 전구체 화합물(Compound 1)을 N-부틸 리튬(N-Buli)과 같은 알킬 리튬의 존재 하에서, 할로겐화 실란(silane) 등과 같이 브릿지 그룹 제공 화합물과 반응시켜, 실리콘 등과 같은 14족 원소 A를 포함하는 브릿지가 결합된 2-메틸인데닐 화합물(Compound 2)을 제조하는 단계(Step 1); 상기 실리콘 브릿지가 결합된 2-메틸인데닐 화합물(Compound 2)을, N-부틸 리튬(N-Buli)과 같은 알킬 리튬 및 Cucn 촉매의 존재 하에서, 2번 위치와 4번 위치에 각각 특정 치환기인 메틸 및 R1을 갖는 인다세닐 화합물과 반응시켜, 상술한 바와 같이 2-메틸 인데닐 구조와 2-메틸 인다세닐 구조가 실리콘 등의 14족 원소 A를 포함하는 브릿지 그룹으로 연결된 리간드 화합물(Compound 3)을 제조하는 단계(Step 2); 및 상기 리간드 화합물(Compound 3)을, ZrCl4 등과 같은 4족 전이금속의 할로겐염(Metal Halide)과 반응시켜, 상기 화학식 1의 전이금속 화합물(Compound 4)을 제조하는 단계(Step 3);를 포함할 수 있다.Specifically, in the method for preparing the transition metal compound according to an embodiment of the present invention, a precursor compound having methyl and R 2 as specific substituents at the 2nd and 4th positions, respectively, such as 2-methylindenyl (Compound 1) reacted with a bridging group-providing compound such as a halogenated silane in the presence of alkyl lithium such as N-butyl lithium (N-Buli), to which a bridge containing a group 14 element A such as silicon is bonded to 2-methyl Preparing an indenyl compound (Compound 2) (Step 1); The 2-methylindenyl compound (Compound 2) to which the silicon bridge is bonded, in the presence of an alkyl lithium such as N-butyl lithium (N-Buli) and a Cucn catalyst, is a specific substituent at the 2nd and 4th positions, respectively. By reacting with an indacenyl compound having methyl and R 1 , as described above, a ligand compound in which a 2-methyl indenyl structure and a 2-methyl indacenyl structure are linked by a bridging group including a group 14 element A such as silicon (Compound 3 ) to prepare (Step 2); and reacting the ligand compound (Compound 3) with a halogen salt of a Group 4 transition metal such as ZrCl 4 to prepare a transition metal compound (Compound 4) of Formula 1 (Step 3); may include

한편, 본 발명의 다른 일 측면에 따르면, 상술한 전이금속 화합물을 포함하는, 촉매 조성물이 제공된다.Meanwhile, according to another aspect of the present invention, a catalyst composition comprising the above-described transition metal compound is provided.

구체적으로 발명의 일 구현예에 따른 촉매 조성물은, 상기 화학식 1의 전이금속 화합물을 단일 촉매로서 포함할 수 있다.Specifically, the catalyst composition according to an embodiment of the present invention may include the transition metal compound of Formula 1 as a single catalyst.

이 때, 상기 촉매 조성물은, 상기 전이금속 화합물을 단일 촉매 성분으로 포함할 수도 있으며, 예컨대, 상기 전이금속 화합물 및 담체를 포함하는, 담지 메탈로센 촉매 형태일 수 있다. 담지 메탈로센 촉매를 사용하는 경우, 제조되는 폴리에틸렌의 모폴로지 및 물성이 우수하며, 종래의 슬러리 중합 또는 벌크 중합, 기상 중합 공정에 적합하게 사용 가능하다.In this case, the catalyst composition may include the transition metal compound as a single catalyst component, for example, may be in the form of a supported metallocene catalyst including the transition metal compound and a carrier. When a supported metallocene catalyst is used, the morphology and physical properties of the polyethylene produced are excellent, and it can be suitably used in the conventional slurry polymerization, bulk polymerization, or gas phase polymerization process.

구체적으로 상기 담체로는 표면에 반응성이 큰 하이드록시기, 실라놀기 또는 실록산기를 갖는 담체를 사용할 수 있으며, 이를 위해 하소(calcination)에 의해 표면 개질되거나, 또는 건조에 의해 표면에 수분이 제거된 것이 사용될 수 있다. 예컨대, 실리카겔을 하소하여 제조한 실리카, 고온에서 건조한 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4, 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.Specifically, as the carrier, a carrier having a hydroxyl group, a silanol group, or a siloxane group having a high reactivity on the surface may be used. can be used For example, silica prepared by calcining silica gel, silica dried at high temperature, silica-alumina, and silica-magnesia may be used, and these are typically Na 2 O, K 2 CO 3 , BaSO 4 , and Mg(NO 3 ). 2 and the like oxide, carbonate, sulfate, and nitrate components.

상기 담체에 대한 하소 또는 건조 시 온도는 약 200 ℃ 내지 약 600 ℃, 또는, 약 250 ℃ 내지 약 600 ℃일 수 있다. 상기 담체에 대한 하소 또는 건조 온도가 낮을 경우에는 담체에 잔류하는 수분이 너무 많아서 표면의 수분과 조촉매가 반응할 우려가 있고, 또 과량으로 존재하는 하이드록실기로 인해 조촉매 담지율이 상대적으로 높아질 수 있으나, 이로 인해 많은 양의 조촉매가 요구되게 된다. 또 건조 또는 하소 온도가 지나치게 높을 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 감소하고, 표면에 하이드록시기 또는 실라놀기가 많이 없어지고, 실록산기만 남게 되어 조촉매와의 반응자리가 감소할 우려가 있다.The temperature for calcining or drying the carrier may be from about 200 °C to about 600 °C, or from about 250 °C to about 600 °C. When the calcination or drying temperature for the carrier is low, there is a risk that the surface moisture and the cocatalyst may react because there is too much moisture remaining in the carrier, and the cocatalyst loading rate is relatively low due to the excess hydroxyl groups. It can be increased, but this requires a large amount of co-catalyst. In addition, if the drying or calcination temperature is too high, the surface area decreases as the pores on the surface of the carrier coalesce, a lot of hydroxyl groups or silanol groups disappear on the surface, and only siloxane groups remain, so there is a risk of reducing the reaction site with the promoter. have.

상기 담체 표면의 하이드록시기 양은 0.1 mmol/g 내지 10 mmol/g이 바람직하며, 0.5 mmol/g 내지 5 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.The amount of hydroxyl groups on the surface of the carrier is preferably 0.1 mmol/g to 10 mmol/g, more preferably 0.5 mmol/g to 5 mmol/g. The amount of hydroxyl groups on the surface of the carrier can be controlled by the method and conditions or drying conditions of the carrier, such as temperature, time, vacuum or spray drying, and the like.

상기 하이드록시기의 양이 0.1 mmol/g 미만이면 조촉매와의 반응자리가 적고, 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.If the amount of the hydroxyl group is less than 0.1 mmol/g, there are few reaction sites with the co-catalyst, and if it exceeds 10 mmol/g, it is not preferable because it may be caused by moisture other than the hydroxyl group present on the surface of the carrier particle. not.

일 예로, 담체 표면의 하이드록시 기 양은 0.1 mmol/g 내지 10 mmol/g 또는 0.5 mmol/g 내지 5 mmol/g일 수 있다. 상기 담체 표면에 있는 하이드록시 기의 양은 담체의 제조 방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다. 상기 하이드록시 기의 양이 지나치게 낮으면 조촉매와의 반응 자리가 적고, 지나치게 많으면 담체 입자 표면에 존재하는 하이드록시 기 이외에 수분에서 기인한 것일 가능성이 있다.For example, the amount of hydroxyl groups on the surface of the carrier may be 0.1 mmol/g to 10 mmol/g or 0.5 mmol/g to 5 mmol/g. The amount of hydroxyl groups on the surface of the carrier can be controlled by the method and conditions or drying conditions of the carrier, such as temperature, time, vacuum or spray drying, and the like. If the amount of the hydroxyl group is too low, there are few reaction sites with the promoter, and if it is too large, it may be due to moisture other than the hydroxyl group present on the surface of the carrier particle.

상기한 담체들 중에서도 실리카, 특히 실리카겔을 하소하여 제조한 실리카의 경우, 실리카 담체와 상기 화학식 1의 화합물의 작용기가 화학적으로 결합하여 담지되기 때문에, 프로필렌 중합 공정에서 담체 표면으로부터 유리되어 나오는 촉매가 거의 없으며, 그 결과 슬러리 또는 기상 중합으로 폴리에틸렌을 제조할 때 반응기 벽면이나 중합체 입자끼리 엉겨 붙는 파울링을 최소화할 수 있다.Among the above-mentioned carriers, silica, especially silica prepared by calcining silica gel, is supported by chemical bonding between the silica carrier and the functional group of the compound of Formula 1, so the catalyst released from the surface of the carrier in the propylene polymerization process is almost non-existent. As a result, when polyethylene is produced by slurry or gas phase polymerization, it is possible to minimize fouling of the reactor wall or polymer particles agglomerated with each other.

또한, 담체에 담지될 경우, 상기 화학식 1의 화합물은 담체 중량당, 예컨대, 실리카 약 1 g을 기준으로 약 10 μmol 이상, 또는 약 30 μmol 이상이고, 약 100 μmol 이하, 또는 약 80 μmol 이하의 함량 범위로 담지될 수 있다. 상기 함량 범위로 담지될 때, 적절한 담지 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할 수 있다.In addition, when supported on a carrier, the compound of Formula 1 is present in an amount of, for example, about 10 μmol or more, or about 30 μmol or more, and about 100 μmol or less, or about 80 μmol or less, based on the weight of the carrier, based on about 1 g of silica. It may be supported in a content range. When supported in the above content range, it may exhibit an appropriate supported catalyst activity, which may be advantageous in terms of maintaining the activity of the catalyst and economic feasibility.

그리고, 상기 촉매 조성물은, 상술한 전이금속 화합물 및 담체와 함께 하나 이상의 조촉매를 더 포함할 수 있다.In addition, the catalyst composition may further include one or more cocatalysts together with the above-described transition metal compound and the carrier.

상기 조촉매는 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용되는 조촉매이면 모두 사용 가능하다. 이러한 조촉매는 담체에 있는 하이드록시기와 13족 전이금속 간에 결합이 생성되도록 한다. 또한, 조촉매는 담체의 표면에만 존재함으로써 중합체 입자들이 반응기 벽면이나 서로 엉겨붙는 파울링 현상이 없이 본원 특정 혼성 촉매 구성이 가지는 고유특성을 확보하는 데 기여할 수 있다.The cocatalyst may be any cocatalyst used for polymerization of olefins under a general metallocene catalyst. This co-catalyst causes a bond to be formed between the hydroxyl group and the Group 13 transition metal on the carrier. In addition, since the cocatalyst exists only on the surface of the carrier, it can contribute to securing the unique characteristics of the specific hybrid catalyst composition of the present application without a fouling phenomenon in which the polymer particles are agglomerated with the reactor wall or each other.

그리고, 상기 촉매 조성물은, 하기 화학식 2 내지 4로 표시되는 화합물로 이루어진 군에서 선택된 1종 이상의 조촉매를 더 포함할 수도 있다.In addition, the catalyst composition may further include one or more cocatalysts selected from the group consisting of compounds represented by the following Chemical Formulas 2 to 4.

[화학식 2][Formula 2]

-[Al(R21)-O]m--[Al(R 21 )-O] m -

상기 화학식 2에서,In Formula 2,

R21은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1-20 알킬 또는 C1-20 할로알킬이고;R 21 are the same as or different from each other and are each independently halogen, C 1-20 alkyl or C 1-20 haloalkyl;

m은 2 이상의 정수이며;m is an integer greater than or equal to 2;

[화학식 3][Formula 3]

J(R31)3 J(R 31 ) 3

상기 화학식 3에서,In Formula 3,

R31은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1-20 알킬 또는 C1-20 할로알킬이고;R 31 are the same as or different from each other and are each independently halogen, C 1-20 alkyl or C 1-20 haloalkyl;

J는 알루미늄 또는 보론이며;J is aluminum or boron;

[화학식 4][Formula 4]

[E-H]+[ZQ4]- 또는 [E]+[ZQ4]- [EH] + [ZQ 4 ] - or [E] + [ZQ 4 ] -

상기 화학식 4에서,In Formula 4,

E는 중성 또는 양이온성 루이스 염기이고, [E-H]+ 및 [E]+는 브뢴스테드 산이며;E is a neutral or cationic Lewis base, [EH] + and [E] + are Bronsted acids;

H는 수소 원자이며;H is a hydrogen atom;

Z는 13족 원소이고;Z is a group 13 element;

Q는, 서로 동일하거나 상이하고, 각각 독립적으로 C6-20 아릴 또는 C1-20 알킬이고, 여기서 상기 C6-20 아릴 또는 C1-20 알킬은 비치환되거나 또는 할로겐, C1-20 알킬, C1-20 알콕시 및 C6-20 페녹시로 구성되는 군으로부터 선택되는 하나 이상의 치환기로 치환된다. Q is the same as or different from each other and is each independently C 6-20 aryl or C 1-20 alkyl, wherein the C 6-20 aryl or C 1-20 alkyl is unsubstituted or halogen, C 1-20 alkyl , C 1-20 alkoxy and C 6-20 substituted with one or more substituents selected from the group consisting of phenoxy.

본 명세서에서, 하이드로카빌기는 하이드로카본으로부터 수소 원자를 제거한 형태의 1가 작용기로서, 알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 아르알키닐기, 알킬아릴기, 알케닐아릴기 및 알키닐아릴기 등을 포함할 수 있다. 그리고, 탄소수 1 내지 30의 하이드로카빌기는 탄소수 1 내지 20 또는 탄소수 1 내지 10의 하이드로카빌기일 수 있다. 일예로, 하이드로카빌기는 직쇄, 분지쇄 또는 고리형 알킬일 수 있다. 보다 구체적으로, 탄소수 1 내지 30의 하이드로카빌기는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, tert-부틸기, n-펜틸기, n-헥실기, n-헵틸기, 사이클로헥실기 등의 직쇄, 분지쇄 또는 고리형 알킬기; 또는 페닐, 비페닐, 나프틸, 안트라세닐, 페난트레닐, 또는 플루오레닐 등의 아릴기일 수 있다. 또한, 메틸페닐, 에틸페닐, 메틸비페닐, 메틸나프틸 등의 알킬아릴일 수 있으며, 페닐메틸, 페닐에틸, 비페닐메틸, 나프틸메틸 등의 아릴알킬일 수도 있다. 또한, 알릴, 알릴, 에테닐, 프로페닐, 부테닐, 펜테닐 등의 알케닐일 수 있다. In the present specification, the hydrocarbyl group is a monovalent functional group in the form of removing a hydrogen atom from hydrocarbon, and an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, an aralkenyl group, an aralkynyl group, an alkylaryl group, an alkenyl group It may include an aryl group and an alkynylaryl group. The hydrocarbyl group having 1 to 30 carbon atoms may be a hydrocarbyl group having 1 to 20 carbon atoms or 1 to 10 carbon atoms. For example, the hydrocarbyl group may be a straight chain, branched chain or cyclic alkyl group. More specifically, the hydrocarbyl group having 1 to 30 carbon atoms is a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, an n-pentyl group, and a n-hexyl group. straight-chain, branched-chain or cyclic alkyl groups such as a sil group, n-heptyl group, and cyclohexyl group; or an aryl group such as phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, or fluorenyl. In addition, it may be an alkylaryl such as methylphenyl, ethylphenyl, methylbiphenyl, or methylnaphthyl, and may be an arylalkyl such as phenylmethyl, phenylethyl, biphenylmethyl, or naphthylmethyl. In addition, it may be an alkenyl such as allyl, allyl, ethenyl, propenyl, butenyl, pentenyl.

상기 화학식 2로 표시되는 화합물은, 예를 들어 개질메틸알루미녹산(MMAO), 메틸알루미녹산(MAO), 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등과 같은 알킬알루미녹산일 수 있다.The compound represented by Formula 2 may be, for example, alkylaluminoxane such as modified methylaluminoxane (MMAO), methylaluminoxane (MAO), ethylaluminoxane, isobutylaluminoxane, butylaluminoxane, and the like.

상기 화학식 3으로 표시되는 알킬 금속 화합물은, 예를 들어 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 디메틸이소부틸알루미늄, 디메틸에틸알루미늄, 디에틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리씨클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등일 수 있다.The alkyl metal compound represented by the above formula (3) is, for example, trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, dimethylisobutylaluminum, dimethylethylaluminum, diethylchloro Aluminum, triisopropylaluminum, tri-s-butylaluminum, tricyclopentylaluminum, tripentylaluminum, triisopentylaluminum, trihexylaluminum, ethyldimethylaluminum, methyldiethylaluminum, triphenylaluminum, tri-p-tolyl aluminum, dimethylaluminummethoxide, dimethylaluminumethoxide, trimethylboron, triethylboron, triisobutylboron, tripropylboron, tributylboron, and the like.

상기 화학식 4로 표시되는 화합물은, 예를 들어 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론, 트리프로필암모니움테트라(p-톨릴)보론, 트리에틸암모니움테트라(o,p-디메틸페닐)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플루오로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플루오로페닐보론, 디에틸암모니움테트라펜타플루오로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라(p-톨릴)알루미늄, 트리프로필암모니움테트라(p-톨릴)알루미늄, 트리에틸암모니움테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)알루미늄, 트리메틸암모니움테트라(p-트리플루오로메틸페닐)알루미늄,트리부틸암모니움테트라펜타플루오로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타플루오로페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리페닐카보니움테트라페닐보론, 트리페닐카보니움테트라페닐알루미늄, 트리페닐카보니움테트라(p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라펜타플루오로페닐보론 등일 수 있다The compound represented by Formula 4 is, for example, triethylammonium tetraphenyl boron, tributyl ammonium tetraphenyl boron, trimethyl ammonium tetraphenyl boron, tripropyl ammonium tetraphenyl boron, trimethyl ammonium tetra (p- Tolyl) boron, tripropylammonium tetra(p-tolyl) boron, triethylammonium tetra(o,p-dimethylphenyl) boron, trimethylammonium tetra(o,p-dimethylphenyl) boron, tributylammonium tetra (p-trifluoromethylphenyl)boron, trimethylammonium tetra(p-trifluoromethylphenyl)boron, tributylammonium tetrapentafluorophenylboron, N,N-diethylaniliniumtetraphenylboron, N, N-diethylanilinium tetrapentafluorophenylboron, diethylammonium tetrapentafluorophenylboron, triphenylphosphonium tetraphenylboron, trimethylphosphonium tetraphenylboron, triethylammonium tetraphenylaluminum, tributyl Ammonium tetraphenyl aluminum, trimethyl ammonium tetraphenyl aluminum, tripropyl ammonium tetraphenyl aluminum, trimethyl ammonium tetra (p-tolyl) aluminum, tripropyl ammonium tetra (p-tolyl) aluminum, triethyl ammonium tetra ( o,p-dimethylphenyl)aluminum, tributylammonium tetra(p-trifluoromethylphenyl)aluminum, trimethylammoniumtetra(p-trifluoromethylphenyl)aluminum, tributylammonium tetrapentafluorophenylaluminum, N ,N-diethylanilinium tetraphenylaluminum, N,N-diethylaniliniumtetrapentafluorophenylaluminum, diethylammoniumtetrapentafluorophenylaluminum, triphenylphosphoniumtetraphenylaluminum, trimethylphosphonium Tetraphenylaluminum, triphenylcarboniumtetraphenylboron, triphenylcarboniumtetraphenylaluminum, triphenylcarboniumtetra(p-trifluoromethylphenyl)boron, triphenylcarboniumtetrapentafluorophenylboron, etc. can

또한, 상기 촉매 조성물은, 상기 조촉매와 상기 화학식 1의 메탈로센 화합물은 각각 약 1:1 내지 약 1:10000의 몰비로 포함할 수 있으며, 바람직하게는 약 1:1 내지 약 1: 1000의 몰비로 포함할 수 있고, 더욱 바람직하게는 약 1:10 내지 약 1:100의 몰비로 포함할 수 있다. 이때, 상기 몰비가 약 1 미만이면 조촉매의 금속 함량이 너무 적어서 촉매 활성종이 잘 만들어지지 않아 활성이 낮아질 수 있고, 상기 몰비가 약 10000을 초과하면 조촉매의 금속이 오히려 촉매 독으로 작용할 우려가 있다.In addition, the catalyst composition may include the cocatalyst and the metallocene compound of Formula 1 in a molar ratio of about 1:1 to about 1:10000, preferably about 1:1 to about 1:1000, respectively. It may be included in a molar ratio of, and more preferably, may be included in a molar ratio of about 1:10 to about 1:100. At this time, if the molar ratio is less than about 1, the metal content of the cocatalyst is too small, so the catalytically active species is not well made, and the activity may be lowered. have.

이러한 조촉매의 담지량은 담체 1 g을 기준으로 약 3 mmol 내지 약 25 mmol, 또는 약 5 mmol 내지 약 20 mmol일 수 있다.The supported amount of the cocatalyst may be from about 3 mmol to about 25 mmol, or from about 5 mmol to about 20 mmol based on 1 g of the carrier.

한편, 상기 촉매 조성물은, 담체에 조촉매를 담지시키는 단계; 상기 조촉매가 담지된 담체에 메탈로센 화합물을 담지시키는 단계; 및 상기 조촉매 및 상기 메탈로센 화합물이 담지된 담체를 포함하는 제조 방법에 의해 제조될 수 있다.On the other hand, the catalyst composition, the step of supporting a cocatalyst on a carrier; supporting the metallocene compound on the support on which the promoter is supported; and a carrier on which the promoter and the metallocene compound are supported.

상기 방법에서, 담지 조건은 특별히 한정되지 않고 이 분야의 당업자들에게 잘 알려진 범위에서 수행할 수 있다. 예를 들면, 고온 담지 및 저온 담지를 적절히 이용하여 진행할 수 있고, 예를 들어, 담지 온도는 약 -30 oC 내지 약 150 oC의 범위에서 가능하고, 바람직하게는 약 50 oC 내지 약 98 oC, 또는 약 55 oC 내지 약 95 oC가 될 수 있다. 담지 시간은 담지하고자 하는 제1 메탈로센 화합물의 양에 따라 적절하게 조절될 수 있다. 반응시킨 담지 촉매는 반응 용매를 여과하거나 감압 증류시켜 제거하여 그대로 사용할 수 있고, 필요하면 톨루엔과 같은 방향족 탄화수소로 속실렛 필터하여 사용할 수 있다.In the above method, the supporting conditions are not particularly limited and may be performed within a range well known to those skilled in the art. For example, it can proceed by appropriately using high-temperature loading and low-temperature loading, for example, the loading temperature is possible in the range of about -30 o C to about 150 o C, preferably about 50 o C to about 98 o C, or from about 55 o C to about 95 o C. The loading time may be appropriately adjusted according to the amount of the first metallocene compound to be supported. The supported catalyst reacted may be used as it is by removing the reaction solvent by filtration or distillation under reduced pressure, and if necessary, it may be used after Soxhlet filter with an aromatic hydrocarbon such as toluene.

그리고, 상기 담지 촉매의 제조는 용매 또는 무용매 하에 수행될 수 있다. 용매가 사용될 경우, 사용 가능한 용매로는 헥산 또는 펜탄과 같은 지방족 탄화 수소 용매, 톨루엔 또는 벤젠과 같은 방향족 탄화 수소 용매, 디클로로메탄과 같은 염소 원자로 치환된 탄화수소 용매, 디에틸에테르 또는 테트라히드로퓨란(THF)와 같은 에테르계 용매, 아세톤, 에틸아세테이트 등의 대부분 유기 용매를 들 수 있고, 헥산, 헵탄, 톨루엔, 또는 디클로로메탄이 바람직하다.And, the preparation of the supported catalyst may be carried out in the presence of a solvent or non-solvent. When a solvent is used, the usable solvent includes an aliphatic hydrocarbon solvent such as hexane or pentane, an aromatic hydrocarbon solvent such as toluene or benzene, a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane, diethyl ether or tetrahydrofuran (THF) ) and most organic solvents such as acetone and ethyl acetate, preferably hexane, heptane, toluene, or dichloromethane.

그리고, 상기 촉매 조성물은, 하기 화학식 5로 표시되는 대전방지제 1종 이상을 더 포함할 수도 있다.In addition, the catalyst composition may further include at least one antistatic agent represented by the following formula (5).

[화학식 5][Formula 5]

R51N-(CH2CH2OH)2 R 51 N-(CH 2 CH 2 OH) 2

상기 화학식 5에서, R51은 C8-30의 직쇄 알킬이다. In Formula 5, R 51 is C 8-30 straight-chain alkyl.

구체적으로, 상기 화학식 5에서 R51은 C8-30의 알킬이며, 상기 R51이 상기한 범위의 탄소수를 갖는 알킬기를 포함할 때, 불쾌한 냄새 유발 없이 우수한 대전 방지 작용을 통한 미분 감소 효과를 나타낼 수 있다. Specifically, in Formula 5, R 51 is C 8-30 alkyl, and when R 51 includes an alkyl group having a carbon number in the above-described range, it exhibits an effect of reducing fine powder through excellent antistatic action without causing unpleasant odor. can

보다 구체적으로 상기 히드록시에틸 치환된 알킬아민은 상기 화학식 5에서 R51은 C8-22의 직쇄 알킬이거나, 혹은 C12-18의 직쇄 알킬, 혹은 C13-15의 직쇄 알킬인 화합물일 수 있으며, 이들 화합물 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 또 상업적으로 입수 가능한 제품으로, N,N-비스(2-히드록시에틸)펜타데실아민(N,N-Bis(2-hydroxyethyl)pentadeylamine, Atmer 163TM, CRODA사제) 등이 사용될 수도 있다. More specifically, the hydroxyethyl-substituted alkylamine may be a compound in which R 51 in Formula 5 is C 8-22 straight-chain alkyl, C 12-18 straight-chain alkyl, or C 13-15 straight-chain alkyl, , either alone or a mixture of two or more of these compounds may be used. In addition, as a commercially available product, N,N-bis(2-hydroxyethyl)pentadecylamine (N,N-Bis(2-hydroxyethyl)pentadeylamine, Atmer 163 TM , manufactured by CRODA) may be used.

또, 대전방지제가 더 포함될 경우, 상기 담체 100 g을 기준으로 1 g 내지 10 g, 보다 구체적으로 1 g 내지 5 g으로 포함될 수 있다.In addition, when an antistatic agent is further included, it may be included in an amount of 1 g to 10 g, more specifically 1 g to 5 g, based on 100 g of the carrier.

상기 촉매 조성물이 상기한 담체, 조촉매 및 대전방지제를 모두 포함하는 경우, 상기 촉매 조성물은 담체에 조촉매를 담지시키는 단계; 상기 조촉매가 담지된 담체에 상기 전이금속 화합물을 담지시키는 단계; 및 상기 조촉매와 전이금속 화합물이 담지된 담체에 대해 대전방지제를 용액(Solution)이나 현탁액 상태로 첨가하는 단계를 포함하는 제조방법에 의해 제조될 수 있다. 상기와 같이 담체에 대해 조촉매, 전이금속 화합물, 그리고 대전방지제의 순서로 담지된 구조를 갖는 촉매 조성물은 폴리프로필렌의 제조 공정에서 높은 촉매 활성과 함께 우수한 공정 안정성을 나타낼 수 있다.When the catalyst composition includes all of the above-described carrier, co-catalyst and antistatic agent, the catalyst composition comprises the steps of supporting the co-catalyst on a carrier; supporting the transition metal compound on the support on which the promoter is supported; and adding an antistatic agent in a solution or suspension state to the carrier on which the promoter and the transition metal compound are supported. As described above, the catalyst composition having a structure in which a promoter, a transition metal compound, and an antistatic agent are supported in this order on a carrier may exhibit excellent process stability with high catalytic activity in the polypropylene manufacturing process.

한편, 본 발명은, 상기 촉매 조성물의 존재 하에, 에틸렌 및 알파-올레핀을 공중합하는 단계를 포함하는, 폴리에틸렌의 제조 방법을 제공한다. On the other hand, the present invention, in the presence of the catalyst composition, provides a method for producing polyethylene, comprising the step of copolymerizing ethylene and alpha-olefin.

상술한 촉매 조성물은 우수한 담지 성능, 촉매 활성 및 고공중합성을 나타낼 수 있으며, 이러한 촉매 조성물 존재 하에 슬러리 공정에서 저밀도 폴리에틸렌을 제조하더라도, 종래 생산성 저하 및 파울링에 관한 문제점을 방지하고 공정 안정성을 향상시킬 수 있다. The above-described catalyst composition can exhibit excellent supporting performance, catalytic activity and high co-polymerizability, and even if low-density polyethylene is prepared in a slurry process in the presence of such a catalyst composition, it prevents problems related to conventional productivity deterioration and fouling, and improves process stability can do it

상기 폴리에틸렌의 제조 방법은 상술한 촉매 조성물의 존재 하에 에틸렌 및 알파-올레핀을 원료로 통상적인 장치 및 접촉 기술을 적용하여 슬러리 중합의 방법으로 수행될 수 있다.The method for preparing the polyethylene may be carried out by slurry polymerization by applying a conventional apparatus and contacting technique using ethylene and alpha-olefin as raw materials in the presence of the above-described catalyst composition.

상기 폴리에틸렌의 제조 방법은 연속식 슬러리 중합 반응기, 루프 슬러리 반응기 등을 이용하여 에틸렌과 알파-올레핀을 공중합할 수 있으나, 이로써 한정되는 것은 아니다.The method for preparing the polyethylene may copolymerize ethylene and alpha-olefin using a continuous slurry polymerization reactor, a loop slurry reactor, or the like, but is not limited thereto.

구체적으로, 상기 공중합 단계는, 에틸렌 1몰 기준으로 알파-올레핀을 약 0.45 몰 이하 또는 약 0.1 몰 내지 약 0.45 몰, 혹은 약 0.4 몰 이하 또는 약 0.2 몰 내지 약 0.4 몰, 혹은 약 0.35 몰 이하 또는 약 0.25 몰 내지 약 0.35 몰로 반응시키는 것으로 이뤄질 수 있다. Specifically, in the copolymerization step, based on 1 mole of ethylene, about 0.45 moles or less, or about 0.1 moles to about 0.45 moles, or about 0.4 moles or less, or about 0.2 moles to about 0.4 moles, or about 0.35 moles or less, or from about 0.25 moles to about 0.35 moles.

상기 폴리에틸렌의 제조 방법은, 제품 밀도를 낮추기 위해 공단량체의 함량을 높이지 않아도 되어 공정이 안정하고 제품의 높은 낙하충격강도 재현 가능한 특징을 갖는다. The method for producing polyethylene has a characteristic that it is not necessary to increase the content of comonomer in order to lower the density of the product, so that the process is stable and the high drop impact strength of the product is reproducible.

또한, 상기 알파-올레핀은 1-부텐, 1-펜텐, 1-헥센, 4-메틸-1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-옥타데센, 1-에이코센, 및 이들의 혼합물로 이루어진 군에서 선택되는 1종 이상일 수 있다. In addition, the alpha-olefin is 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, It may be at least one selected from the group consisting of 1-octadecene, 1-eicocene, and mixtures thereof.

구체적으로, 상기 폴리에틸렌의 제조 방법에서는, 예를 들어, 상기 알파-올레핀으로 1-헥센을 사용할 수 있다. Specifically, in the production method of the polyethylene, for example, 1-hexene may be used as the alpha-olefin.

그리고, 상기 중합 온도는 약 25 oC 내지 약 500 oC, 혹은 약 25 oC 내지 약 300 oC, 혹은 약 30 oC 내지 약 200 oC, 혹은 약 50 oC 내지 약 150 oC, 혹은 약 60 oC 내지 약 120 oC 일 수 있다. 또한, 중합 압력은 약 1 kgf/㎠ 내지 약 100 kgf/㎠, 혹은 약 1 kgf/㎠ 내지 약 50 kgf/㎠, 혹은 약 5 kgf/㎠ 내지 약 45 kgf/㎠, 혹은 약 10 kgf/㎠ 내지 약 40 kgf/㎠, 혹은 약 15 kgf/㎠ 내지 약 35 kgf/㎠일 수 있다.And, the polymerization temperature is about 25 o C to about 500 o C, or about 25 o C to about 300 o C, or about 30 o C to about 200 o C, or about 50 o C to about 150 o C, or It may be about 60 o C to about 120 o C. In addition, the polymerization pressure may be from about 1 kgf/cm 2 to about 100 kgf/cm 2 , or from about 1 kgf/cm 2 to about 50 kgf/cm 2 , or from about 5 kgf/cm 2 to about 45 kgf/cm 2 , or from about 10 kgf/cm 2 to about 10 kgf/cm 2 about 40 kgf/cm 2 , or about 15 kgf/cm 2 to about 35 kgf/cm 2 .

본 발명에 따른 화학식 1의 전이금속 화합물을 포함한 촉매 조성물은 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.The catalyst composition including the transition metal compound of Formula 1 according to the present invention is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, hexane, heptane, nonane, decane, and isomers thereof, and an aromatic hydrocarbon solvent such as toluene and benzene. , dichloromethane or chlorobenzene can be dissolved or diluted in a hydrocarbon solvent substituted with a chlorine atom, etc. The solvent used here is preferably used by treating a small amount of alkyl aluminum to remove a small amount of water or air that acts as a catalyst poison, and it is also possible to further use a cocatalyst.

일예로, 상기 중합 단계는, 에틸렌 함량 기준으로 수소 기체 약 800 ppm 이하 또는 약 0 내지 약 800 ppm, 혹은 약 300 ppm 이하 또는 약 10 ppm 내지 약 300 ppm, 혹은 약 100 ppm 이하 또는 약 15 ppm 내지 약 100 ppm으로 투입하며 수행할 수 있다. For example, in the polymerization step, hydrogen gas is about 800 ppm or less, or about 0 to about 800 ppm, or about 300 ppm or less, or about 10 ppm to about 300 ppm, or about 100 ppm or less, or about 15 ppm to about, based on the ethylene content. It can be carried out by adding about 100 ppm.

이러한 에틸렌 공중합 공정에서, 본 발명의 전이 금속 화합물을 포함한 촉매 조성물은 높은 촉매 활성을 나타낼 수 있다. 일예로, 에틸렌 공중합시 촉매 활성은, 단위 시간(h)을 기준으로 사용된 촉매 조성물 질량(g)당 생성된 폴리에틸렌의 무게(kg PE)의 비로 계산하였을 때, 약 4.0 kg PE /gㆍcatㆍhr 이상 또는 약 4.0 kg PE /gㆍcatㆍhr 내지 약 50 kg PE /gㆍcatㆍhr일 수 있다. 구체적으로, 상기 촉매 조성물의 활성은 약 4.2 kg PE /gㆍcatㆍhr 이상, 또는 약 4.3 kg PE /gㆍcatㆍhr 이상, 또는 약 4.5 kg PE /gㆍcatㆍhr 이상이며, 혹은 약 40 kg PE /gㆍcatㆍhr 이하, 또는 약 30 kg PE /gㆍcatㆍhr 이하, 또는 약 15 kg PE /gㆍcatㆍhr 이하일 수 있다.In this ethylene copolymerization process, the catalyst composition including the transition metal compound of the present invention may exhibit high catalytic activity. For example, the catalyst activity during ethylene copolymerization is about 4.0 kg PE /g·cat when calculated as the ratio of the weight (kg PE) of the polyethylene produced per mass (g) of the catalyst composition used based on the unit time (h) hr or more or from about 4.0 kg PE /g.cat.hr to about 50 kg PE /g.cat.hr. Specifically, the activity of the catalyst composition is at least about 4.2 kg PE /g·cat·hr, or at least about 4.3 kg PE /g·cat·hr, or at least about 4.5 kg PE/g·cat·hr, or about 40 kg PE /g·cat·hr or less, or about 30 kg PE /g·cat·hr or less, or about 15 kg PE /g·cat·hr or less.

특히, 본 발명에 따른 화학식 1의 전이금속 화합물을 포함한 촉매 조성물을사용하여 에틸렌과 알파-올레핀의 공중합시, 기존에 비해 높은 공단량체 결합성을 나타내며 알파-올레핀의 공단량체를 동일한 함량으로 사용하더라도 공단량체 함유량이 높은 공중합체를 보다 높은 활성으로 생산할 수 있다. 이에 따라, 동등한 정도의 용융점(Tm) 이나 밀도 제품 대비 공단량체 함량 높으며, 즉 짧은 사슬 가지(Short Chain Branching, SCB) 함량이 높은 제품 생산 가능하다. 이때, 짧은 사슬 가지(SCB)라는 용어는 주 사슬에 붙어 있는 2 내지 7개의 탄소수를 가지는 가지들을 의미하며, 보통 공단량체로서 1-부텐, 1-헥센, 1-옥텐 등과 같이 탄소수 4 이상인 알파-올레핀을 사용할 경우 만들어지는 곁가지들을 의미한다.In particular, when copolymerizing ethylene and alpha-olefin using the catalyst composition containing the transition metal compound of Formula 1 according to the present invention, it exhibits higher comonomer binding properties than before, even when the alpha-olefin comonomer is used in the same amount. Copolymers with higher comonomer content can be produced with higher activity. Accordingly, it is possible to produce a product with a higher comonomer content than a product with an equivalent melting point (Tm) or density, that is, a product with a high Short Chain Branching (SCB) content. In this case, the term short chain branch (SCB) means branches having 2 to 7 carbon atoms attached to the main chain, and is usually a comonomer having 4 or more carbon atoms such as 1-butene, 1-hexene, 1-octene, etc. It refers to the side branches that are formed when olefins are used.

이와 같이 본 발명에 따르면, 상술한 화학식 1의 전이금속 화합물을 포함한 촉매 조성물을 사용하여, 에틸렌과 알파-올레핀을 공중합하여 폴리에틸렌을 제조할 수 있다. As described above, according to the present invention, polyethylene can be prepared by copolymerizing ethylene and alpha-olefin using the catalyst composition including the transition metal compound of Formula 1 described above.

이 때, 제조되는 상기 폴리에틸렌은 에틸렌 1-헥센 공중합체일 수 있다. In this case, the polyethylene to be prepared may be an ethylene 1-hexene copolymer.

상기 폴리에틸렌의 제조 방법은, 상술한 촉매 조성물 존재 하에 슬러리 중합으로 수행됨에 따라, 기계적 물성이 우수한 폴리에틸렌을 제공할 수 있다.The method for producing polyethylene is performed by slurry polymerization in the presence of the above-described catalyst composition, thereby providing polyethylene having excellent mechanical properties.

특히, 본 발명에 따른 화학식 1의 전이금속 화합물을 포함한 촉매 조성물은 에틸렌과 알파-올레핀의 공중합시, 상술한 바와 같은 높은 활성을 나타내며, 공단량체인 알파-올레핀의 함량을 과량으로 증대시키지 않고도 높은 분자량과 함께 분자내 단쇄 분지(SCB, short chain branch) 함량을 증대시킬 수 있다. In particular, the catalyst composition including the transition metal compound of Formula 1 according to the present invention exhibits high activity as described above during copolymerization of ethylene and alpha-olefin, and exhibits high activity without excessively increasing the content of alpha-olefin as a comonomer. It is possible to increase the content of short chain branch (SCB) in the molecule along with the molecular weight.

한편, 본 발명의 다른 일구현예에 따르면, 상술한 방법으로 제조되고, 알파-올레핀을 공단량체로 포함하는, 폴리에틸렌을 제공한다.On the other hand, according to another embodiment of the present invention, the polyethylene prepared by the above-described method, including an alpha-olefin as a comonomer, is provided.

상기 폴리에틸렌, 즉, 알파-올레핀을 공단량체로 포함하는, 폴리에틸렌 공중합체는, 중량평균분자량이 약 380000 g/mol 내지 약 650000 g/mol, 또는 약 390000 g/mol 내지 약 630000 g/mol, 또는 약 400000 g/mol 내지 약 580000 g/mol일 수 있다.The polyethylene, i.e., the polyethylene copolymer comprising an alpha-olefin as a comonomer, has a weight average molecular weight of from about 380000 g/mol to about 650000 g/mol, or from about 390000 g/mol to about 630000 g/mol, or from about 400000 g/mol to about 580000 g/mol.

일예로, 상기 폴리에틸렌의 중량평균 분자량(Mw)과 수평균 분자량(Mn)은 겔 투과 크로마토그래피(GPC, gel permeation chromatography, Water사 제조)를 이용하여 측정할 수 있다. For example, the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polyethylene can be measured using gel permeation chromatography (GPC, gel permeation chromatography, manufactured by Water).

구체적으로, 겔투과 크로마토그래피(GPC) 장치로는 Waters PL-GPC220 기기를 이용하고, Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 사용할 수 있다. 이때 측정 온도는 160 oC이며, 1,2,4-트리클로로벤젠(1,2,4-Trichlorobenzene)을 용매로서 사용할 수 있고, 유속은 1 mL/min로 적용할 수 있다. 폴리에틸렌의 샘플은 각각 GPC 분석 기기 (PL-GP220)을 이용하여 BHT 0.0125% 포함된 트리클로로벤젠(1,2,4-Trichlorobenzene)에서 160 oC, 10 시간 동안 녹여 전처리하고, 10 mg/10 mL의 농도로 조제한 다음, 200 μL의 양으로 공급하여 측정할 수 있다. 또한, 폴리스티렌 표준 시편을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn의 값을 유도할 수 있다. 폴리스티렌 표준 시편의 중량평균 분자량은 2000 g/mol, 10000 g/mol, 30000 g/mol, 70000 g/mol, 200000 g/mol, 700000 g/mol, 2000000 g/mol, 4000000 g/mol, 10000000 g/mol의 9종을 사용할 수 있다.Specifically, as a gel permeation chromatography (GPC) apparatus, a Waters PL-GPC220 instrument may be used, and a Polymer Laboratories PLgel MIX-B 300 mm long column may be used. At this time, the measurement temperature is 160 o C, 1,2,4-trichlorobenzene can be used as a solvent, and the flow rate can be applied at 1 mL/min. Each polyethylene sample was pretreated by dissolving it in trichlorobenzene (1,2,4-Trichlorobenzene) containing 0.0125% BHT at 160 o C for 10 hours using a GPC analysis device (PL-GP220), and 10 mg/10 mL It can be measured by preparing it at a concentration of , and then supplying it in an amount of 200 μL. In addition, the values of Mw and Mn can be derived using a calibration curve formed using a polystyrene standard specimen. The weight average molecular weight of the polystyrene standard specimen is 2000 g/mol, 10000 g/mol, 30000 g/mol, 70000 g/mol, 200000 g/mol, 700000 g/mol, 2000000 g/mol, 400000 g/mol, 1000000 g Nine types of /mol can be used.

또, 상기 폴리에틸렌 공중합체는, 용융점(Tm)이 약 115 ℃ 이상 또는 약 128 ℃ 이하일 수 있으며, 혹은 약 117 ℃ 이상 또는 약 126 ℃ 이하일 수 있다. In addition, the polyethylene copolymer may have a melting point (Tm) of about 115 °C or more or about 128 °C or less, or about 117 °C or more or about 126 °C or less.

일예로, 상기 폴리에틸렌 공중합체의 용융점(Tm)은 시차주사열량계(Differential Scanning Calorimeter, DSC)를 이용하여 층정할 수 있다. For example, the melting point (Tm) of the polyethylene copolymer may be determined using a differential scanning calorimeter (DSC).

구체적으로는, 상기 폴리에틸렌 공중합체를 150 oC까지 가열한 후 5분 동안 유지하고, -100 oC까지 온도를 내린 후 다시 온도를 증가시켰다. 이때 온도의 상승속도와 하강속도는 각각 10 oC/min으로 조절한다. 용융 온도는 두 번째 온도가 상승하는 구간에서 측정한 흡열 피크의 최대 지점으로 한다.Specifically, the polyethylene copolymer was heated to 150 o C, maintained for 5 minutes , lowered to -100 o C, and then increased again. At this time, the rate of rise and fall of the temperature is adjusted to 10 o C/min, respectively. The melting temperature is the maximum point of the endothermic peak measured in the section where the second temperature rises.

또, 상기 폴리에틸렌 공중합체는 적외선분광법(FT-IR)으로 측정한 탄소수 1000개당 탄소수 2 내지 7 개의 곁가지(branch)인 단쇄 분지(SCB) 개수가, 탄소수 4.0 개 이상 또는 10.0 개 이하, 혹은 4.3 개 이상, 또는 4.5 개 이상이거나, 혹은 8.5 개 이하, 또는 7.0 개 이하일 수 있다.In addition, the polyethylene copolymer has a short chain branch (SCB) having 2 to 7 carbon atoms per 1000 carbon atoms measured by infrared spectroscopy (FT-IR), 4.0 or more or 10.0 or less, or 4.3. or more, or 4.5 or more, or 8.5 or less, or 7.0 or less.

일예로, 상기 폴리에틸렌 공중합체의 분자내 단쇄 분지(SCB, short chain branch) 함량은, 탄소수 1000개당 탄소수 2 내지 7 개의 곁가지(branch) 단쇄 분지(SCB) 개수를 적외선분광법(FT-IR)으로 측정하는 방법으로 구할 수 있다.As an example, the short chain branch (SCB) content in the molecule of the polyethylene copolymer is measured by infrared spectroscopy (FT-IR) by measuring the number of branch short chain branches (SCB) having 2 to 7 carbon atoms per 1000 carbon atoms. can be obtained in a way that

구체적으로, 상기 폴리에틸렌 공중합체는 PL-SP260VS을 이용하여 BHT 0.0125%가 포함된 1, 2, 4-Trichlorobenzene에서 160 ℃, 10 시간 동안 녹여 전처리한 후, 고온 GPC(PL-GPC220)와 연결된 PerkinElmer Spectrum 100 FT-IR을 이용하여 160 ℃에서 측정한다. Specifically, the polyethylene copolymer was pretreated by dissolving it in 1,2,4-Trichlorobenzene containing 0.0125% of BHT at 160 °C for 10 hours using PL-SP260VS, and then PerkinElmer Spectrum connected to high-temperature GPC (PL-GPC220). 100 FT-IR was used to measure at 160 °C.

또, 상기 폴리에틸렌 공중합체는 최종 생성된 파우더 외관과 촉감으로 관찰시 모래알처럼 분산되며 알갱이가 원형을 유지하는 우수한 모폴로지(morphology)를 나타내며, 선형저밀도 폴리에틸렌 제조를 위한 기상중합 반응에 효과적으로 적용할 수 있다. In addition, the polyethylene copolymer is dispersed like grains of sand when observed by the appearance and feel of the finally produced powder, and exhibits an excellent morphology in which the grains maintain a circular shape, and can be effectively applied to the gas phase polymerization reaction for the production of linear low-density polyethylene. .

이와 같이 본 발명에 따라 얻어진 폴리에틸렌은, 상술한 화학식 1의 전이금속 화합물을 포함한 촉매 조성물을 사용하여, 에틸렌 및 알파-올레핀을 공중합 공정으로 제조될 수 있다. 그 결과, 상기 폴리에틸렌은 에틸렌 공중합시 높은 촉매 활성을 구현하며, 알파-올레핀의 함량을 증가시키지 않으면서도동등 수준 이상의 분자량과 융점, 밀도 등의 물성을 확보함과 동시에, 분자내 단쇄 분지(SCB, short chain branch) 함량을 크게 증대시켜 분자 구조 및 분포를 변화시킴으써, 기계적 물성이 우수하며 내구성이 우수한 사출 제품을 제조할 수 있다. As described above, the polyethylene obtained according to the present invention may be prepared by copolymerizing ethylene and alpha-olefin using the catalyst composition including the transition metal compound of Formula 1 described above. As a result, the polyethylene realizes high catalytic activity during ethylene copolymerization, and at the same time secures physical properties such as molecular weight, melting point, and density at the same level or higher without increasing the content of alpha-olefin, and at the same time, intramolecular short chain branching (SCB, By greatly increasing the short chain branch) content and changing the molecular structure and distribution, injection products with excellent mechanical properties and excellent durability can be manufactured.

본 발명의 전이금속 화합물은, 에틸렌 중합 반응에서 우수한 공정안정성 및 높은 중합 활성을 나타내면서도, 분자내 단쇄 분지(SCB, short chain branch) 함량을 크게 증대시켜 분자 구조 및 분포를 변화시켜 기계적 물성이 우수하며 내구성이 강화된 폴리에틸렌을 제조하는 우수한 효과가 있다. The transition metal compound of the present invention exhibits excellent process stability and high polymerization activity in the ethylene polymerization reaction, and greatly increases the short chain branch (SCB) content in the molecule to change the molecular structure and distribution, thereby providing excellent mechanical properties and has an excellent effect in manufacturing polyethylene with enhanced durability.

이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.Hereinafter, through specific examples of the invention, the operation and effect of the invention will be described in more detail. However, these embodiments are merely presented as an example of the invention, and the scope of the invention is not defined thereby.

<메탈로센 화합물의 제조><Preparation of metallocene compound>

합성예 1Synthesis Example 1

Figure pat00009
Figure pat00009

단계 1-1. 리간드 화합물 (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl (2-methyl indene) silane의 제조Step 1-1. Preparation of ligand compound (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl (2-methyl indene) silane

2-메틸 인덴 (2-methyl indene) 15.24 mmol을 반응기에 투입한 후 30분간 감압 건조하였다. n-헥산(n-hexane) 70 mL, 및 메틸 t-부틸 에테르 (MTBE, methyl tert-butyl ether) 10 mL를 투입하고 교반시켜 완전히 용해시켰다. 반응기를 -25 oC로 냉각시킨 후, n-부틸리튬 (n-BuLi, 2.5 M의 n-헥산 용액) 6.4 mL (16 mmol)를 교반하면서 천천히 적가하였다. 25 oC에서 12 시간 동안 교반한 후, 디클로로디메틸실란(dichloro dimethyl silane, 15.24 mmol)을 이어서 넣었다. After 15.24 mmol of 2-methyl indene was added to the reactor, it was dried under reduced pressure for 30 minutes. 70 mL of n-hexane and 10 mL of methyl tert-butyl ether (MTBE) were added and stirred to completely dissolve. After the reactor was cooled to -25 o C, 6.4 mL (16 mmol) of n-butyllithium (n-BuLi, 2.5 M n-hexane solution) was slowly added dropwise with stirring. After stirring at 25 o C for 12 hours, dichloro dimethyl silane (15.24 mmol) was then added thereto.

다른 반응기에 2-메틸-4-페닐-1,5,6,7-테트라하이드로-s-인다센 (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacene) 15.24 mmol을 반응기에 투입한 후 30분간 감압 건조하였다. MTBE 35 mL를 투입하고 교반시켜 완전히 용해시켰다. 반응기를 -25 oC로 냉각시킨 후, n-BuLi (2.5 M의 n-헥산 용액) 6.4 mL (16 mmol)를 교반하면서 천천히 적가하였다. 25 oC에서 12 시간 동안 교반 한 후, CuCN을 넣고 30분간 반응시켰다. In another reactor, 2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacene (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacene) 15.24 After adding mmol to the reactor, it was dried under reduced pressure for 30 minutes. 35 mL of MTBE was added and stirred to completely dissolve. After the reactor was cooled to -25 o C, 6.4 mL (16 mmol) of n-BuLi (2.5 M n-hexane solution) was slowly added dropwise with stirring. After stirring at 25 o C for 12 hours, CuCN was added and reacted for 30 minutes.

이렇게 준비한 두 반응물을 섞은 후, 25 oC에서 12 시간 동안 반응시켰다. 이후 물을 넣고 1 시간 동안 교반하고나서, 반응기를 정치시킨 후 물층을 분리하였다. 그리고나서, 물과 톨루엔을 반응기에 재투입하고 5 분 동안 교반 및 정치시킨 후 물층을 분리 제거하였다. 유기층을 MgSO4로 탈수시키고, 다시 필터(filter)하며 반응기로 투입한 후 건조하였다. After mixing the two reactants prepared in this way, they were reacted at 25 o C for 12 hours. After adding water and stirring for 1 hour, the reactor was allowed to stand and the water layer was separated. Then, water and toluene were re-injected into the reactor, and after stirring and standing for 5 minutes, the water layer was separated and removed. The organic layer was dehydrated with MgSO 4 , filtered again, and put into the reactor and dried.

Figure pat00010
Figure pat00010

단계 1-2. 전이 금속 화합물 Dimethyl silanediyl (2-methyl-1H-inden-1-yl)(2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) zirconium chloride의 제조Step 1-2. Preparation of transition metal compound Dimethyl silanediyl (2-methyl-1H-inden-1-yl) (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) zirconium chloride

상기 단계 1-1에서 제조한 리간드를 톨루엔(toluene) 21 mL 및 디에틸에테르(diethylether, Et2O) 2.1 mL의 혼합 용매(Toluene/Ether, 부피비 10/1)에 녹이고, -25 oC로 냉각 후, n-BuLi (2.5 M의 n-헥산 용액) 12.8 mL (32 mmol)를 천천히 적가하며 교반하였다. 이후에 25 oC에서 12 시간 동안 교반하고 -20 oC로 냉각한 후, ZrCl4 (15.24 mmol)을 톨루엔(0.17 M)에 혼합하여 제조한 슬러리를 투입하였다. 그리고나서, 25 oC에서 12 시간 동안 교반한 후 용매를 모두 건조시켜 제거하였다. 디클로로메탄(DCM, dichloromethane)을 이용하여 필터 진행하여 건조한 후에, 디클로로메탄/헥산을 첨가하여 상온에서 재결정시켰다. 이후 생성된 고체를 여과하여 진공 건조하여 표제의 메탈로센 화합물을 노란색 분말(powder, only racemic)로 20%(몰 기준) 수득하였다.The ligand prepared in step 1-1 was dissolved in a mixed solvent (Toluene/Ether, volume ratio 10/1) of 21 mL of toluene and 2.1 mL of diethylether, Et 2 O, and heated to -25 ° C. After cooling, 12.8 mL (32 mmol) of n-BuLi (2.5 M n-hexane solution) was slowly added dropwise and stirred. After stirring at 25 o C for 12 hours and cooling to -20 o C, a slurry prepared by mixing ZrCl 4 (15.24 mmol) with toluene (0.17 M) was added. Then, after stirring at 25 o C for 12 hours, all of the solvent was removed by drying. After filtering and drying using dichloromethane (DCM, dichloromethane), dichloromethane/hexane was added to recrystallize at room temperature. Then, the resulting solid was filtered and dried under vacuum to obtain the title metallocene compound as a yellow powder (powder, only racemic) in 20% (molar basis).

이렇게 얻어진 전이금속 화합물에 대하여, Bruker AVANCE III HD 500 MHz NMR/PABBO(1H/19F/Broad band) probe: 1H, 용매: CDCl3로 NMR 데이터를 측정하였다. For the thus-obtained transition metal compound, NMR data was measured with Bruker AVANCE III HD 500 MHz NMR/PABBO ( 1 H/ 19 F/Broad band) probe: 1 H and solvent: CDCl 3 .

1H-NMR (500 MHz, CDCl3, ppm): 0.21(s, 6H), 1.79(S, 6H), 1.95(m, 2H), 2.80(m, 4H), 6.36(s, 2H), 7.18-7.51(m, 10H). 1 H-NMR (500 MHz, CDCl 3 , ppm): 0.21(s, 6H), 1.79(S, 6H), 1.95(m, 2H), 2.80(m, 4H), 6.36(s, 2H), 7.18 -7.51 (m, 10H).

합성예 2Synthesis Example 2

Figure pat00011
Figure pat00011

단계 2-1. 리간드 화합물 (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl (2-methyl-4-phenyl-indene) silane의 제조Step 2-1. Preparation of ligand compound (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl (2-methyl-4-phenyl-indene) silane

상기 합성예 1의 단계 1-1에서 반응물질로 2-메틸 인덴 (2-methyl indene) 대신 2-메틸-4-페닐 인덴 (2-methyl-4-phenyl indene)을 사용하는 것을 제외하고는 합성예 1의 단계 1-1과 동일한 방법으로 상기 리간드 화합물 (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl (2-methyl-4-phenyl-indene) silane을 제조하였다.Synthesis except for using 2-methyl-4-phenyl indene instead of 2-methyl indene as a reactant in step 1-1 of Synthesis Example 1 In the same manner as in step 1-1 of Example 1, the ligand compound (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl (2-methyl-4-phenyl -indene) silane was prepared.

단계 2-2. 전이금속 화합물 Dimethyl silanediyl(2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(2-methyl-4-phenyl-1H-inden-1-yl) zirconium chloride의 제조Step 2-2. Transition metal compound Dimethyl silanediyl(2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(2-methyl-4-phenyl-1H-inden-1-yl) zirconium production of chloride

상기 단계 2-1에서 얻어진 리간드를 사용한 것을 제외하고는 합성예 1의 단계 1-2와 동일한 방법으로, 상기 구조를 갖는 전이금속 화합물 Dimethyl Silanediyl(2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(2-methyl-4-phenyl-1H-inden-1-yl) zirconium chloride (합성예 2)을 제조하였다.In the same manner as in Step 1-2 of Synthesis Example 1 except that the ligand obtained in Step 2-1 was used, the transition metal compound Dimethyl Silanediyl (2-methyl-4-phenyl-1,5,6 having the above structure) ,7-tetrahydro-s-indacen-1-yl)(2-methyl-4-phenyl-1H-inden-1-yl) zirconium chloride (Synthesis Example 2) was prepared.

1H-NMR (500 MHz, CDCl3, ppm): 0.22(s, 6H), 1.81(S, 6H), 1.98(m, 2H), 2.81(m, 4H), 6.35(s, 2H), 7.18-7.49(m, 13H), 8.29(d, 1H). 1 H-NMR (500 MHz, CDCl 3 , ppm): 0.22(s, 6H), 1.81(S, 6H), 1.98(m, 2H), 2.81(m, 4H), 6.35(s, 2H), 7.18 -7.49 (m, 13H), 8.29 (d, 1H).

합성예 3Synthesis Example 3

Figure pat00012
Figure pat00012

단계 3-1. 리간드 화합물 (4-(4'-(tert-butyl)phenyl)-2-methyl-inden-1-yl)dimethyl(2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacene) silane의 제조Step 3-1. Ligand compound (4-(4'-(tert-butyl)phenyl)-2-methyl-inden-1-yl)dimethyl(2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacene ) production of silane

상기 합성예 1의 단계 1-1에서 반응물질로 2-메틸 인덴 (2-methyl indene) 대신 4-(4’-(터트부틸)페닐)-2메틸 인덴 (4-(4’-(tert-butyl)phenyl)-2-methyl indene)을 사용하는 것을 제외하고는 합성예 1의 단계 1-1과 동일한 방법으로 상기 리간드 화합물 (4-(4'-(tert-butyl)phenyl)-2-methyl-inden-1-yl)dimethyl(2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacene) silane을 제조하였다.In step 1-1 of Synthesis Example 1, 4-(4'-(tertbutyl)phenyl)-2methylindene (4-(4'-(tert-) butyl)phenyl)-2-methyl indene) in the same manner as in step 1-1 of Synthesis Example 1, except that the ligand compound (4-(4'-(tert-butyl)phenyl)-2-methyl -inden-1-yl)dimethyl(2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacene) silane was prepared.

단계 3-2. 전이금속 화합물 Dimethyl silanediyl (4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)(2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) zirconium chloride의 제조Step 3-2. Transition metal compound Dimethyl silanediyl (4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)(2-methyl-4-phenyl-1,5,6,7-tetrahydro Preparation of -s-indacen-1-yl) zirconium chloride

상기 단계 3-1에서 얻어진 리간드를 사용한 것을 제외하고는 합성예 1의 단계 1-2와 동일한 방법으로, 상기 구조를 갖는 전이금속 화합물 Dimethyl Silanediyl (4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)(2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) zirconium chloride (합성예 3)을 제조하였다.In the same manner as in Step 1-2 of Synthesis Example 1 except that the ligand obtained in Step 3-1 was used, the transition metal compound Dimethyl Silanediyl (4-(4'-(tert-butyl)phenyl) having the above structure was used. -2-methyl-1H-inden-1-yl) (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) zirconium chloride (Synthesis Example 3) was prepared .

1H-NMR (500 MHz, CDCl3, ppm): 0.25(s, 6H), 1.33(s, 9H), 1.75(S, 6H), 1.81(m, 2H), 2.81(m, 4H), 6.36(s, 2H), 7.18-7.39(m, 12H), 8.21(d, 1H). 1 H-NMR (500 MHz, CDCl 3 , ppm): 0.25(s, 6H), 1.33(s, 9H), 1.75(S, 6H), 1.81(m, 2H), 2.81(m, 4H), 6.36 (s, 2H), 7.18-7.39 (m, 12H), 8.21 (d, 1H).

합성예 4Synthesis Example 4

Figure pat00013
Figure pat00013

단계 4-1. 리간드 화합물 (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)dimethyl(4-(4'-(tert-butyl)phenyl)-2-methyl indene) silane의 제조Step 4-1. Ligand compound (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)dimethyl(4-(4'-(tert- Preparation of butyl)phenyl)-2-methyl indene)silane

상기 합성예 3의 단계 3-1에서 반응물질로 2-메틸-4-페닐-1,5,6,7-테트라하이드로-s-인다센 (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacene) 대신 2-메틸-4-(4'-(tert-부틸)페닐)-1,5,6,7-테트라하이드로-s-인다센 (2-methyl-4-(4'-(tert-butyl)-phenyl) -1,5,6,7-tetrahydro-s-indacene)을 사용하는 것을 제외하고는 합성예 3의 단계 3-1과 동일한 방법으로 상기 리간드 화합물 (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)dimethyl(4-(4'-(tert-butyl)phenyl)-2-methyl indene) silane을 제조하였다.2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacene (2-methyl-4-phenyl-1,5,6) as a reactant in step 3-1 of Synthesis Example 3 ,7-tetrahydro-s-indacene) instead of 2-methyl-4-(4'-(tert-butyl)phenyl)-1,5,6,7-tetrahydro-s-indacene (2-methyl-4- The ligand compound ( 4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)dimethyl(4-(4'-(tert-butyl)phenyl )-2-methyl indene) silane was prepared.

단계 4-2. 전이금속 화합물 Dimethyl silanediyl (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride의 제조Step 4-2. Transition metal compound Dimethyl silanediyl (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-( Preparation of tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride

상기 단계 4-1에서 얻어진 리간드를 사용한 것을 제외하고는 합성예 3의 단계 3-2와 동일한 방법으로, 상기 구조를 갖는 전이금속 화합물 Dimethyl silanediyl (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride (합성예 4)을 제조하였다.In the same manner as in Step 3-2 of Synthesis Example 3, except that the ligand obtained in Step 4-1 was used, the transition metal compound Dimethyl silanediyl (4-(4'-(tert-butyl)phenyl) having the structure -2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride (Synthesis Example 4) was prepared.

1H-NMR (500 MHz, CDCl3, ppm): 0.22(s, 6H), 1.29 (s,18H), 1.75(S, 6H), 1.81(m, 2H), 2.81(m, 4H), 6.36(s, 2H), 7.18-7.39(m,11H), 8.21(d, 1H). 1 H-NMR (500 MHz, CDCl 3 , ppm): 0.22(s, 6H), 1.29 (s,18H), 1.75(S, 6H), 1.81(m, 2H), 2.81(m, 4H), 6.36 (s, 2H), 7.18-7.39 (m, 11H), 8.21 (d, 1H).

합성예 5Synthesis Example 5

Figure pat00014
Figure pat00014

단계 5-1. 리간드 화합물 (2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)dimethyl(4-(4'-(tert-butyl)phenyl)-2-methyl indene) silane의 제조Step 5-1. Preparation of ligand compound (2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)dimethyl(4-(4'-(tert-butyl)phenyl)-2-methyl indene) silane

상기 합성예 3의 단계 3-1에서 반응물질로 2-메틸-4-페닐-1,5,6,7-테트라하이드로-s-인다센 (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacene) 대신 2-메틸-1,5,6,7-테트라하이드로-s-인다센 (2-methyl-1,5,6,7-tetrahydro-s-indacene)을 사용하는 것을 제외하고는 합성예 3의 단계 3-1과 동일한 방법으로 상기 리간드 화합물 (2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)dimethyl(4-(4'-(tert-butyl)phenyl)-2-methyl indene) silane을 제조하였다.2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacene (2-methyl-4-phenyl-1,5,6) as a reactant in step 3-1 of Synthesis Example 3 Use 2-methyl-1,5,6,7-tetrahydro-s-indacene (2-methyl-1,5,6,7-tetrahydro-s-indacene) instead of ,7-tetrahydro-s-indacene) In the same manner as in step 3-1 of Synthesis Example 3, except that -(tert-butyl)phenyl)-2-methyl indene) silane was prepared.

단계 5-2. 전이금속 화합물 Dimethyl silanediyl (2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride의 제조Step 5-2. Transition metal compound Dimethyl silanediyl (2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden Preparation of -1-yl) zirconium chloride

상기 단계 5-1에서 얻어진 리간드를 사용한 것을 제외하고는 합성예 3의 단계 3-2와 동일한 방법으로, 상기 구조를 갖는 전이금속 화합물 Dimethyl silanediyl (2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride (합성예 5)을 제조하였다.In the same manner as in Step 3-2 of Synthesis Example 3, except that the ligand obtained in Step 5-1 was used, the transition metal compound Dimethyl silanediyl (2-methyl-1,5,6,7-tetrahydro having the structure -s-indacen-1-yl)(4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride (Synthesis Example 5) was prepared.

1H-NMR (500 MHz, CDCl3, ppm): 0.22(s, 6H), 1.23 (s,9H), 1.79(S, 6H), 2.07(m, 2H), 2.85(t,4H), 6.36(s, 2H), 7.24-7.49(m, 8H), 8.29(d, 1H). 1 H-NMR (500 MHz, CDCl 3 , ppm): 0.22(s, 6H), 1.23 (s,9H), 1.79(S, 6H), 2.07(m, 2H), 2.85(t,4H), 6.36 (s, 2H), 7.24-7.49 (m, 8H), 8.29 (d, 1H).

합성예 6Synthesis Example 6

Figure pat00015
Figure pat00015

단계 6-1. 리간드 화합물 (2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl (2-methyl indene) silane의 제조Step 6-1. Preparation of ligand compound (2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl (2-methyl indene) silane

상기 합성예 1의 단계 1-1에서 반응물질로 2-메틸-4-페닐-1,5,6,7-테트라하이드로-s-인다센 (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacene) 대신 2-메틸-1,5,6,7-테트라하이드로-s-인다센 (2-methyl-1,5,6,7-tetrahydro-s-indacene)을 사용하는 것을 제외하고는 합성예 1의 단계 1-1과 동일한 방법으로 상기 리간드 화합물 (2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl (2-methyl indene) silane 을 제조하였다.2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacene (2-methyl-4-phenyl-1,5,6) as a reactant in step 1-1 of Synthesis Example 1 Use 2-methyl-1,5,6,7-tetrahydro-s-indacene (2-methyl-1,5,6,7-tetrahydro-s-indacene) instead of ,7-tetrahydro-s-indacene) In the same manner as in step 1-1 of Synthesis Example 1, except that silane was prepared.

단계 6-2. 전이 금속 화합물 Dimethyl silanediyl (2-methyl-1H-inden-1-yl)(2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl) zirconium chloride의 제조Step 6-2. Preparation of transition metal compound Dimethyl silanediyl (2-methyl-1H-inden-1-yl) (2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl) zirconium chloride

상기 단계 6-1에서 얻어진 리간드를 사용한 것을 제외하고는 합성예 1의 단계 1-2와 동일한 방법으로, 상기 구조를 갖는 전이금속 화합물 Dimethyl silanediyl (2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(2-methyl-1H-inden-1-yl) zirconium chloride (합성예 6)을 제조하였다.In the same manner as in Step 1-2 of Synthesis Example 1 except that the ligand obtained in Step 6-1 was used, the transition metal compound Dimethyl silanediyl (2-methyl-1,5,6,7-tetrahydro having the above structure) -s-indacen-1-yl) (2-methyl-1H-inden-1-yl) zirconium chloride (Synthesis Example 6) was prepared.

1H-NMR (500 MHz, CDCl3, ppm): 0.24(s, 6H), 1.76(S, 6H), 2.17(m, 2H), 2.89(t,4H), 6.42(s, 2H), 7.24-7.35 (m,6H). 1 H-NMR (500 MHz, CDCl 3 , ppm): 0.24(s, 6H), 1.76(S, 6H), 2.17(m, 2H), 2.89(t,4H), 6.42(s, 2H), 7.24 -7.35 (m,6H).

합성예 7Synthesis Example 7

Figure pat00016
Figure pat00016

단계 7-1. 리간드 화합물 (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)diethyl(4-(4'-(tert-butyl)phenyl)-2-methyl indene) silane의 제조Step 7-1. Ligand compound (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)diethyl(4-(4'-(tert-) Preparation of butyl)phenyl)-2-methyl indene)silane

상기 합성예 4의 단계 4-1에서 반응물질로 디클로로디메틸실란(dichloro dimethyl silane) 대신 디클로로디에틸실란(dichloro diethyl silane)을 사용하는 것을 제외하고는 합성예 3의 단계 3-1과 동일한 방법으로 상기 리간드 화합물 (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)diethyl(4-(4'-(tert-butyl)phenyl)-2-methyl indene) silane을 제조하였다.In the same manner as in Step 3-1 of Synthesis Example 3, except that dichlorodiethyl silane was used instead of dichlorodimethyl silane as a reactant in step 4-1 of Synthesis Example 4 The ligand compound (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)diethyl(4-(4'-(tert) -butyl)phenyl)-2-methyl indene) silane was prepared.

단계 7-2. 전이금속 화합물 Diethyl silanediyl (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride의 제조Step 7-2. Transition metal compound Diethyl silanediyl (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-( Preparation of tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride

상기 단계 7-1에서 얻어진 리간드를 사용한 것을 제외하고는 합성예 4의 단계 4-2와 동일한 방법으로, 상기 구조를 갖는 전이금속 화합물 Diethyl silanediyl (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride (합성예 7)을 제조하였다.In the same manner as in Step 4-2 of Synthesis Example 4 except that the ligand obtained in Step 7-1 was used, the transition metal compound Diethyl silanediyl (4-(4'-(tert-butyl)phenyl) having the above structure was used. -2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride (Synthesis Example 7) was prepared.

1H-NMR (500 MHz, CDCl3, ppm): 0.66 (m, 4H), 0.94 (t, 9H), 1.33 (s, 18H), 1.79 (s, 6H), 1.95(m, 2H), 2.83(m, 4H), 3.36(s, 2H), 7.3-7.40 (m, 11H), 8.29(d, 1H). 1 H-NMR (500 MHz, CDCl 3 , ppm): 0.66 (m, 4H), 0.94 (t, 9H), 1.33 (s, 18H), 1.79 (s, 6H), 1.95 (m, 2H), 2.83 (m, 4H), 3.36(s, 2H), 7.3-7.40 (m, 11H), 8.29(d, 1H).

합성예 8Synthesis Example 8

Figure pat00017
Figure pat00017

단계 8-1. 리간드 화합물 (4-(3',5'-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)diethyl(4-(3',5'-di-tert-butylphenyl)-2-methyl indene) silane의 제조Step 8-1. Ligand compound (4-(3',5'-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)diethyl(4-(3',5) Preparation of '-di-tert-butylphenyl)-2-methyl indene) silane

상기 합성예 7의 단계 7-1에서 반응물질로 2-메틸-4-(4'-(tert-부틸)페닐)-1,5,6,7-테트라하이드로-s-인다센 (2-methyl-4-(4'-(tert-butyl)-phenyl) -1,5,6,7-tetrahydro-s-indacene) 대신 4-(3’,5’-디터트부틸페닐)-2-메틸-1,5,6,7-테트라하이드로-s-인다센) ((4-(3',5'-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacene) 을 사용하고, 4-(4’-(터트부틸)페닐)-2메틸 인덴 (4-(4’-(tert-butyl)phenyl)-2-methyl indene) 대신 4-(3’,5’-디터트부틸페닐)-2-메틸-1,5,6,7-테트라하이드로-s-인다센) (4-(3',5'-di-tert-butylphenyl)-2-methyl-1H-indene)을 사용하는 것을 제외하고는 합성예 7의 단계 7-1과 동일한 방법으로 상기 리간드 화합물 (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)diethyl(4-(4'-(tert-butyl)phenyl)-2-methyl indene) silane을 제조하였다.As a reactant in step 7-1 of Synthesis Example 7, 2-methyl-4-(4'-(tert-butyl)phenyl)-1,5,6,7-tetrahydro-s-indacene (2-methyl -4-(4'-(tert-butyl)-phenyl) -1,5,6,7-tetrahydro-s-indacene) instead of 4-(3',5'-ditertbutylphenyl)-2-methyl- 1,5,6,7-tetrahydro-s-indacene) ((4-(3',5'-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s- indacene) and 4-(3',5 instead of 4-(4'-(tert-butyl)phenyl)-2methyl indene (4-(4'-(tert-butyl)phenyl)-2-methyl indene) '-ditertbutylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacene) (4-(3',5'-di-tert-butylphenyl)-2-methyl-1H -indene) in the same manner as in step 7-1 of Synthesis Example 7, except that the ligand compound (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6, 7-tetrahydro-s-indacen-1-yl)diethyl(4-(4'-(tert-butyl)phenyl)-2-methyl indene)silane was prepared.

단계 8-2. 전이금속 화합물 Diethyl silanediyl (4-(3',5'-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(3',5'-di-tert-butylphenyl)-2-methyl-1H-inden-1-yl) zirconium chloride의 제조Step 8-2. Transition metal compound Diethyl silanediyl (4-(3',5'-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(3') Preparation of ,5'-di-tert-butylphenyl)-2-methyl-1H-inden-1-yl) zirconium chloride

상기 단계 8-1에서 얻어진 리간드를 사용한 것을 제외하고는 합성예 7의 단계 7-2와 동일한 방법으로, 상기 구조를 갖는 전이금속 화합물 Diethyl silanediyl (4-(3',5'-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(3',5'-di-tert-butylphenyl)-2-methyl-1H-inden-1-yl) zirconium chloride (합성예 8)을 제조하였다.In the same manner as in Step 7-2 of Synthesis Example 7 except that the ligand obtained in Step 8-1 was used, the transition metal compound Diethyl silanediyl (4-(3',5'-di-tert-) having the structure butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(3',5'-di-tert-butylphenyl)-2-methyl-1H-inden- 1-yl) zirconium chloride (Synthesis Example 8) was prepared.

1H-NMR (500 MHz, CDCl3, ppm): 0.68 (m, 4H), 0.90 (t, 9H), 1.37 (s, 36H), 1.82 (s, 6H), 1.98(m, 2H), 2.81(m, 4H), 3.36(s, 2H), 7.35 (m, 4H), 7.73 (s,4H), 8.29(d,1H). 1 H-NMR (500 MHz, CDCl 3 , ppm): 0.68 (m, 4H), 0.90 (t, 9H), 1.37 (s, 36H), 1.82 (s, 6H), 1.98 (m, 2H), 2.81 (m, 4H), 3.36(s, 2H), 7.35 (m, 4H), 7.73 (s,4H), 8.29(d,1H).

합성예 9Synthesis Example 9

Figure pat00018
Figure pat00018

단계 9-1. 리간드 화합물 (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)methylpropyl(4-(4'-(tert-butyl)phenyl)-2-methyl indene) silane의 제조Step 9-1. Ligand compound (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)methylpropyl(4-(4'-(tert-) Preparation of butyl)phenyl)-2-methyl indene)silane

상기 합성예 4의 단계 4-1에서 반응물질로 디클로로디메틸실란(Dichlorodimethylsilane) 대신 디클로로메틸프로필실란(Dichloromethylpropylsilane)을 사용하는 것을 제외하고는 합성예 4의 단계 4-1과 동일한 방법으로 상기 리간드 화합물 (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)methylpropyl(4-(4'-(tert-butyl)phenyl)-2-methyl indene) silane을 제조하였다.The ligand compound ( 4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)methylpropyl(4-(4'-(tert-butyl)phenyl )-2-methyl indene) silane was prepared.

단계 9-2. 전이금속 화합물 Methylpropyl silanediyl (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride의 제조Step 9-2. Transition metal compound Methylpropyl silanediyl (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-( Preparation of tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride

상기 단계 9-1에서 얻어진 리간드를 사용한 것을 제외하고는 합성예 4의 단계 4-2와 동일한 방법으로, 상기 구조를 갖는 전이금속 화합물 Methylpropyl silanediyl (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride (합성예 9)을 제조하였다.In the same manner as in Step 4-2 of Synthesis Example 4 except that the ligand obtained in Step 9-1 was used, the transition metal compound Methylpropyl silanediyl (4-(4'-(tert-butyl)phenyl) having the structure -2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride (Synthesis Example 9) was prepared.

1H-NMR (500 MHz, CDCl3, ppm): 0.21(s, 3H), 0.60(t, 2H), 0.94(t, 3H), 1.29(m, 20H), 1.79(S, 6H), 1.94(m, 2H), 2.84(m, 4H), 6.34(s,1H), 6.36(s,1H), 7.28-7.39(m,11H), 7.91(d, 1H). 1 H-NMR (500 MHz, CDCl 3 , ppm): 0.21 (s, 3H), 0.60 (t, 2H), 0.94 (t, 3H), 1.29 (m, 20H), 1.79 (S, 6H), 1.94 (m, 2H), 2.84 (m, 4H), 6.34 (s, 1H), 6.36 (s, 1H), 7.28-7.39 (m, 11H), 7.91 (d, 1H).

비교합성예 1Comparative Synthesis Example 1

Figure pat00019
Figure pat00019

단계 10-1. 리간드 화합물의 제조Step 10-1. Preparation of Ligand Compounds

건조된 250 mL의 schlenk flask에 0.83 g (5 mmol)의 플루오렌(fluorene)을 넣고 감압 하에서 30 mL의 디에틸에테르(diethyl ether)를 주입하였다. 상기 에테르 용액(ether solution)을 -78 ℃까지 냉각한 후 플라스크 내부를 아르곤(argon)으로 치환하고 2.4 mL (6 mmol)의 2.5 M의 nBuLi 헥산 용액(hexane solution)을 천천히 적가하였다. 반응 혼합물은 천천히 상온으로 올린 후 다음날까지 교반하였다. 다른 250 mL schlenk flask에 에테르 30 mL를 채운 후 2.4 mL (20 mmol)의 디클로로디메틸실란(dichlorodimethylsilane)을 주입하였다. 이 플라스크를 -78 ℃까지 냉각한 뒤, 여기에 2-헥실 플루오렌(2-hexyl-fluorene)의 lithiated solution을 캐뉼라(cannula)를 통해 주입하였다. 주입이 끝난 혼합물은 상온으로 천천히 올린 후 약 5시간 동안 교반시킨 후, 진공 감압 하에서 용매로 사용된 에테르와 남아있는 과량의 디클로로디메틸실란을 제거하였다. 플라스크 내에 진한 황토색 고체(solid)의 chloro(9H-fluoren-9-yl)dimethylsilane을 얻었다.0.83 g (5 mmol) of fluorene was added to a dried 250 mL schlenk flask, and 30 mL of diethyl ether was injected under reduced pressure. After the ether solution was cooled to -78 °C, the inside of the flask was replaced with argon, and 2.4 mL (6 mmol) of 2.5 M nBuLi hexane solution was slowly added dropwise. The reaction mixture was slowly raised to room temperature and stirred until the next day. Another 250 mL schlenk flask was filled with 30 mL of ether, and then 2.4 mL (20 mmol) of dichlorodimethylsilane was injected. After the flask was cooled to -78 °C, a lithiated solution of 2-hexyl-fluorene was injected thereto through a cannula. After the injection was completed, the mixture was slowly raised to room temperature, stirred for about 5 hours, and then ether used as a solvent and excess dichlorodimethylsilane remaining were removed under vacuum under reduced pressure. A dark ocher colored solid chloro(9H-fluoren-9-yl)dimethylsilane was obtained in the flask.

건조된 100 mL schlenk flask에 0.83 g (5 mmol)의 플루오렌을 주입하고 30 mL의 에테르에 용해시켰다. 이후 -78 ℃에서 2.4 mL (6 mmol)의 2.5 M의 nBuLi 헥산 용액을 천천히 적가하고 하루 동안 교반하였다. 앞서 합성한 chloro(9H-fluoren-9-yl)dimethylsilane을 40 mL의 에테르에 녹인 후, -78 ℃에서 플루오렌의 lithiated solution을 적가하였다. 하룻밤 동안(overnight) 반응한 후 플라스크 내에 50 mL의 물을 넣어 퀀칭(quenchin g)하고 유기층을 분리하여 MgSO4로 건조(dryin g)하였다. 필터(filtration)을 통해 얻어진 혼합물은 진공 감압 조건에서 용매(solvent)를 모두 제거한 후 헥산(hexane)으로 재결정하여 리간드 화합물을 얻었다.0.83 g (5 mmol) of fluorene was injected into a dried 100 mL schlenk flask and dissolved in 30 mL of ether. Then, 2.4 mL (6 mmol) of a 2.5 M nBuLi hexane solution was slowly added dropwise at -78°C, followed by stirring for one day. After dissolving the previously synthesized chloro(9H-fluoren-9-yl)dimethylsilane in 40 mL of ether, a lithiated solution of fluorene was added dropwise at -78 °C. After reacting overnight (overnight), 50 mL of water was added to the flask to quench (quenching), and the organic layer was separated and dried over MgSO 4 (drying g). The mixture obtained through filtration was recrystallized with hexane after removing all solvents under vacuum reduced pressure to obtain a ligand compound.

1H-NMR (500 MHz, CDCl3, ppm): -0.52 (6H, s), 4.26 (2H, s), 7.29 (4H, m), 7.36 (4H, m), 7.53 (4H, m), 7.89 (4H, m) 1 H-NMR (500 MHz, CDCl 3 , ppm): -0.52 (6H, s), 4.26 (2H, s), 7.29 (4H, m), 7.36 (4H, m), 7.53 (4H, m), 7.89 (4H, m)

단계 10-2. 전이금속 화합물의 제조Step 10-2. Preparation of transition metal compounds

건조한 250 mL schlenk flask에 상기 단계 10-1에서 합성한 리간드 화합물 1.94 g(5 mmol)을 넣고 에테르에 녹인 다음, 4.4 mL (11 mmol)의 2.5 M nBuLi 헥산 용액을 가해 lithiation을 시켰다. 하루가 지난 후 글러브 박스(glove box) 내에서 1.88 g (5 mmol)의 ZrCl4(THF)2를 취해 250 mL schlenk flask에 담고 에테르를 넣은 서스펜션(suspension)을 준비하였다. 위의 두 개의 플라스크 모두 -78 ℃까지 냉각시킨 후 lithiation된 리간드 화합물을 천천히 Zr suspension에 가하였다. 주입이 끝난 후, 반응 혼합물은 천천히 상온까지 올렸다. 하루동안 반응을 진행시킨 후 외부 공기와 닿지 않는 필터 시스템(filter system)에서 이 혼합물을 필터하여 메탈로센 화합물을 수득하였다. In a dry 250 mL schlenk flask, 1.94 g (5 mmol) of the ligand compound synthesized in step 10-1 was dissolved in ether, and then 4.4 mL (11 mmol) of a 2.5 M nBuLi hexane solution was added for lithiation. After one day, 1.88 g (5 mmol) of ZrCl 4 (THF) 2 was taken in a glove box and placed in a 250 mL schlenk flask to prepare a suspension containing ether. After both flasks were cooled to -78 °C, the lithiated ligand compound was slowly added to the Zr suspension. After injection, the reaction mixture was slowly raised to room temperature. After the reaction was allowed to proceed for one day, the mixture was filtered in a filter system not in contact with external air to obtain a metallocene compound.

1H-NMR (500 MHz, CDCl3, ppm): 1.46 (6H, s), 6.99 (4H, m), 7.29 (4H, m), 7.68 (4H, m), 7.9 (4H, m). 1 H-NMR (500 MHz, CDCl 3 , ppm): 1.46 (6H, s), 6.99 (4H, m), 7.29 (4H, m), 7.68 (4H, m), 7.9 (4H, m).

비교합성예 2Comparative Synthesis Example 2

Figure pat00020
Figure pat00020

단계 11-1. 리간드 화합물의 제조Step 11-1. Preparation of Ligand Compounds

THF 용매 하에서 tert-Bu-O-(CH2)6Cl 화합물과 Mg(0) 간의 반응으로부터 그리냐드(Grignard) 시약인 tert-Bu-O-(CH2)6MgCl 용액 1.0 mol을 얻었다. 제조된 그리냐드 화합물을 -30 ℃의 상태의 methyl-SiCl3 화합물(176.1 mL, 1.5 mol)과 THF(2.0 mL)가 담겨있는 플라스크에 가하고, 상온에서 8 시간 이상 교반시킨 후, 걸러낸 용액을 진공 건조하여 tert-Bu-O-(CH2)6SiMeCl2의 화합물을 얻었다(수율 92%).From the reaction between the tert-Bu-O-(CH 2 ) 6 Cl compound and Mg(0) in a THF solvent, 1.0 mol of a Grignard reagent tert-Bu-O-(CH 2 ) 6 MgCl solution was obtained. The prepared Grignard compound was added to a flask containing methyl-SiCl 3 compound (176.1 mL, 1.5 mol) and THF (2.0 mL) at -30 ° C., stirred at room temperature for at least 8 hours, and then the filtered solution was It was vacuum dried to obtain a compound of tert-Bu-O-(CH 2 ) 6 SiMeCl 2 (yield 92%).

-20 ℃에서 반응기에 플루오렌(3.33 g, 20 mmol)과 헥산(100 mL), 및 MTBE(methyl tert-butyl ether, 1.2 mL, 10 mmol)를 넣고, 8ml의 n-BuLi(2.5 M in Hexane)을 천천히 가하고, 상온에서 6 시간 교반시켜 플로오레닐 리튬 용액을 얻었다. 교반이 종결된 후, 반응기 온도를 -30 ℃로 냉각시키고, -30 ℃에서 헥산(100 mL)에 녹아있는 tert-Bu-O-(CH2)6SiMeCl2(2.7 g, 10mmol) 용액에 상기 제조된 플루오레닐 리튬 용액을 1 시간에 걸쳐 천천히 가하였다. 상온에서 8 시간 이상 교반한 후, 물을 첨가하여 추출하고, 건조(evaporation)하여 (tert-Bu-O-(CH2)6)MeSi(9-C13H10)2 화합물을 얻었다(5.3 g, 수율 100%). Fluorene (3.33 g, 20 mmol), hexane (100 mL), and MTBE (methyl tert-butyl ether, 1.2 mL, 10 mmol) were put in a reactor at -20 °C, and 8 ml of n-BuLi (2.5 M in Hexane) was added. ) was slowly added and stirred at room temperature for 6 hours to obtain a fluorenyl lithium solution. After the stirring was completed, the reactor temperature was cooled to -30 °C, and tert-Bu-O-(CH 2 ) 6 SiMeCl 2 (2.7 g, 10 mmol) dissolved in hexane (100 mL) at -30 °C was added to the solution. The prepared lithium fluorenyl solution was slowly added over 1 hour. After stirring at room temperature for at least 8 hours, extraction was performed by adding water, and evaporation was performed to obtain (tert-Bu-O-(CH 2 ) 6 )MeSi(9-C 13 H 10 ) 2 compound (5.3 g). , yield 100%).

1H-NMR(500 MHz, CDCl3, ppm) : -0.35 (MeSi, 3H, s), 0.26 (Si-CH2, 2H, m), 0.58 (CH2, 2H, m), 0.95 (CH2, 4H, m), 1.17(tert-BuO, 9H, s), 1.29(CH2, 2H, m), 3.21(tert-BuO-CH2, 2H, t), 4.10(Flu-9H, 2H, s), 7.25(Flu-H, 4H, m), 7.35(Flu-H, 4H, m), 7.40(Flu-H, 4H, m), 7.85(Flu-H, 4H, d). 1 H-NMR (500 MHz, CDCl 3 , ppm): -0.35 (MeSi, 3H, s), 0.26 (Si-CH 2 , 2H, m), 0.58 (CH 2 , 2H, m), 0.95 (CH 2 ) , 4H, m), 1.17 (tert-BuO, 9H, s), 1.29 (CH 2 , 2H, m), 3.21 (tert-BuO-CH 2 , 2H, t), 4.10 (Flu-9H, 2H, s) ), 7.25 (Flu-H, 4H, m), 7.35 (Flu-H, 4H, m), 7.40 (Flu-H, 4H, m), 7.85 (Flu-H, 4H, d).

단계 11-2. 전이금속 화합물의 제조Step 11-2. Preparation of transition metal compounds

-20 ℃에서 상기 단계 11-1에서 제조한 (tert-Bu-O-(CH2)6)MeSi(9-C13H10)2 (3.18 g, 6 mmol)/MTBE(20 mL) 용액에 4.8 mL의 n-BuLi(2.5 M in Hexane)을 천천히 가하고 상온으로 올리면서 8 시간 이상 반응시켜 디리튬염(dilithium salts) 슬러리 용액을 제조하였다. -20 ℃에서 상기 제조된 디리튬염 슬러리 용액을 ZrCl4(THF)2(2.26 g, 6 mmol)/헥산(20 mL)의 슬러리 용액으로 천천히 가하고 상온에서 8시간 동안 더 반응시켰다. 침전물을 여과하고 여러 번 헥산으로 씻어내어 붉은색 고체 형태의 (tert-Bu-O-(CH2)6)MeSi(9-C13H9)2ZrCl2 화합물을 얻었다(4.3 g, 수율 94.5%).In the (tert-Bu-O-(CH 2 ) 6 )MeSi(9-C1 3 H 10 ) 2 (3.18 g, 6 mmol)/MTBE (20 mL) solution prepared in step 11-1 at -20 ° C. 4.8 mL of n-BuLi (2.5 M in Hexane) was slowly added and reacted for at least 8 hours while raising to room temperature to prepare a slurry solution of dilithium salts. The prepared dilithium salt slurry solution was slowly added to the slurry solution of ZrCl 4 (THF) 2 (2.26 g, 6 mmol)/hexane (20 mL) at -20 °C, and the reaction was further conducted at room temperature for 8 hours. The precipitate was filtered and washed several times with hexane to obtain a red solid (tert-Bu-O-(CH 2 ) 6 )MeSi(9-C 13 H 9 ) 2 ZrCl 2 compound (4.3 g, yield 94.5%). ).

1H-NMR(500 MHz, C6D6, ppm) : 1.15(tert-BuO, 9H, s), 1.26 (MeSi, 3H, s), 1.58 (Si-CH2, 2H, m), 1.66 (CH2, 4H, m), 1.91(CH2, 4H, m), 3.32(tert-BuO-CH2, 2H, t), 6.86 (Flu-H, 2H, t), 6.90 (Flu-H, 2H, t), 7.15 (Flu-H, 4H, m), 7.60 (Flu-H, 4H, dd), 7.64(Flu-H, 2H, d), 7.77(Flu-H, 2H, d). 1 H-NMR (500 MHz, C 6 D 6 , ppm): 1.15 (tert-BuO, 9H, s), 1.26 (MeSi, 3H, s), 1.58 (Si-CH 2 , 2H, m), 1.66 ( CH 2 , 4H, m), 1.91 (CH 2 , 4H, m), 3.32 (tert-BuO-CH 2 , 2H, t), 6.86 (Flu-H, 2H, t), 6.90 (Flu-H, 2H) , t), 7.15 (Flu-H, 4H, m), 7.60 (Flu-H, 4H, dd), 7.64 (Flu-H, 2H, d), 7.77 (Flu-H, 2H, d).

비교합성예 3Comparative Synthesis Example 3

Figure pat00021
Figure pat00021

단계 12-1. 리간드 8-(4-(Step 12-1. Ligand 8-(4-( terttert -butyl)phenyl)-6-methyl-1,2,3,5-tetrahydro-s-indacene의 합성Synthesis of -butyl)phenyl)-6-methyl-1,2,3,5-tetrahydro-s-indacene

8-Bromo-6-methyl-1,2,3,5-tetrahydro-s-indacene (35 mmol, 9.8 g), (4-(tert-butyl)phenyl)boronic acid (70 mmol, 12.5 g), sodium carbonate (87.50 mmol, 9.3 g), tetrakistriphenylphosphine palladium(1.80 mmol, 2 g)을 250 mL RBF에 넣고 톨루엔(35 mL), 에탄올(18 mL), 물(1 mL)을 넣었다. 그리고, 90 ℃로 미리 가열된 오일 배쓰에서 16 시간 동안 교반하였다. NMR로 반응이 진행된 정도를 확인하고 반응이 덜 진행되었다면 16 시간 추가 반응시키거나, indacene 및 용매를 제외한 반응물을 남아있는 indacene의 양에 맞추어 추가 처방한뒤 16 시간 동안 반응시켰다. 반응이 끝나면 rotary evaporator에서 에탄올을 모두 제거하고, 물과 헥산으로 work up하였다. 유기층을 모아 MgSO4로 건조하고 용매를 모두 제거하였다. 용매가 제거된 crude mixture를 silica gel short column 하여 검은색 불순물을 제거하였다. 다시 용매를 모두 제거하고 메탄올을 넣어 고체를 생성시켰다. 생성된 고체를 여과하고 메탄올로 세척하여 하기 구조의 리간드 8-(4-(tert-butyl)phenyl)-6-methyl-1,2,3,5-tetrahydro-s-indacene (8.5 g, 80%, white solid)을 수득하였다.8-Bromo-6-methyl-1,2,3,5-tetrahydro-s-indacene (35 mmol, 9.8 g), (4-( tert- butyl)phenyl)boronic acid (70 mmol, 12.5 g), sodium carbonate (87.50 mmol, 9.3 g) and tetrakistriphenylphosphine palladium (1.80 mmol, 2 g) were put in 250 mL RBF, and toluene (35 mL), ethanol (18 mL), and water (1 mL) were added. Then, the mixture was stirred in an oil bath preheated to 90° C. for 16 hours. After confirming the degree of reaction by NMR, if the reaction was less advanced, the reaction was further performed for 16 hours, or reactants excluding indacene and solvent were additionally prescribed according to the amount of remaining indacene and reacted for 16 hours. After the reaction was completed, all ethanol was removed from the rotary evaporator, and work up was performed with water and hexane. The organic layers were collected , dried over MgSO 4 , and all solvents were removed. The crude mixture from which the solvent was removed was subjected to silica gel short column to remove black impurities. Again, all the solvent was removed and methanol was added to form a solid. The resulting solid was filtered and washed with methanol. The ligand 8-(4-( tert- butyl)phenyl)-6-methyl-1,2,3,5-tetrahydro-s-indacene (8.5 g, 80% , a white solid) was obtained.

Figure pat00022
Figure pat00022

1H-NMR (500 MHz, CDCl3, ppm): 7.44~7.31(m, 4H), 7.12(s, 1H), 6.47(s, 1H), 3.19(s, 2H), 2.97(t, 2H), 2.09~2.02(m, 5H), 1.38(s, 9H). 1 H-NMR (500 MHz, CDCl 3 , ppm): 7.44~7.31(m, 4H), 7.12(s, 1H), 6.47(s, 1H), 3.19(s, 2H), 2.97(t, 2H) , 2.09 to 2.02 (m, 5H), 1.38 (s, 9H).

단계 12-2. 리간드 화합물 (6-(tert-butoxy)hexyl)(4-(4-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)(methyl)silane의 합성Step 12-2. Ligand compound (6-(tert-butoxy)hexyl)(4-(4-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4 Synthesis of -(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)(methyl)silane

4-(4-(tert-butyl)phenyl)-2-methyl-1H-indene(19 mmol, 5 g)을 100 mL Schlenk flask에 넣고 아르곤 상태를 만들어 주었다. 아르곤 상태가 조성되면 무수 헥산(66 mL), 무수 MTBE(13 mL)를 넣고, -25 ℃로 냉각하였다. n-BuLi(2.5 M in Hexane, 21 mmol, 8.4 mL)를 천천히 주입하고, 주입이 끝나면 실온으로 승온하여 3시간 동안 쇼반하였다. 교반이 끝나면, 다시 -25 ℃로 냉각하고 tether silane(15.20 mmol, 4.1 g)을 one shot으로 플라스크에 주입하고 실온으로 천천히 필터하여 LiCl을 제거한 뒤 용매를 건조하여 (6-(tert-butoxy)hexyl)(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)chloro(methyl)silane 를 제조하였다. 4-(4-( tert- butyl)phenyl)-2-methyl- 1H- indene (19 mmol, 5 g) was placed in a 100 mL Schlenk flask, and an argon state was created. When the argon state was formed, anhydrous hexane (66 mL) and anhydrous MTBE (13 mL) were added, and the mixture was cooled to -25 °C. n- BuLi (2.5 M in Hexane, 21 mmol, 8.4 mL) was slowly injected, and when the injection was finished, the temperature was raised to room temperature and shoban was carried out for 3 hours. After stirring, cool to -25 ℃ again, inject tether silane (15.20 mmol, 4.1 g) into the flask with one shot, filter slowly to room temperature to remove LiCl, and then dry the solvent to (6-(tert-butoxy)hexyl )(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)chloro(methyl)silane was prepared.

그리고, 다른 100 mL Schlenk flask에, 상기 단계 12-1에서 얻어진 8-(4-(tert-butyl)phenyl)-6-methyl-1,2,3,5-tetrahydro-s-indacene(19 mmol, 5.75 g) 및 CuCN(0.95 mmol, 0.09 g)을 넣고 아르곤 상태를 만들어 주었다. 아르곤 상태가 조성되면 무수 MTBE(48 mL)를 넣고, -25 ℃로 냉각하였다. n-BuLi(2.5 M in Hexane, 21 mmol, 8.4 mL)를 천천히 주입하고 주입이 끝나면 실온으로 승온하여 3시간 동안 교반하였다. 교반이 끝나면, 다시 -25 ℃로 냉각하고 앞서 합성한 (6-(tert-butoxy)hexyl)(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)chloro(methyl)silane을 one shot으로 플라스크에 주입하였다. 그리고, 실온으로 천천히 승온시키고 16 시간 동안 교반하였다. 실리카겔 컬럼으로 정제하여, 하기 구조의 리간드 화합물(6-(tert-butoxy)hexyl)(4-(4-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)(methyl)silane를 수득하였다(10.87 mmol, 8.30 g, 57%, light yellow solid).Then, in another 100 mL Schlenk flask, 8-(4-( tert- butyl)phenyl)-6-methyl-1,2,3,5-tetrahydro-s-indacene (19 mmol, 5.75 g) and CuCN (0.95 mmol, 0.09 g) were added to create an argon state. When the argon state was formed, anhydrous MTBE (48 mL) was added, and the mixture was cooled to -25 °C. n- BuLi (2.5 M in Hexane, 21 mmol, 8.4 mL) was slowly injected, and when the injection was finished, the temperature was raised to room temperature and stirred for 3 hours. After stirring, cool to -25 ℃ again and (6-(tert-butoxy)hexyl)(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl) synthesized earlier Chloro(methyl)silane was injected into the flask with one shot. Then, the temperature was slowly raised to room temperature and stirred for 16 hours. Purified by silica gel column, the ligand compound of the following structure (6-(tert-butoxy)hexyl)(4-(4-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s -indacen-1-yl)(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)(methyl)silane was obtained (10.87 mmol, 8.30 g, 57%, light yellow solid).

Figure pat00023
Figure pat00023

1H-NMR (500 MHz, CDCl3, ppm): 7.78~7.41 (m, 6H), 7.34~7.31(m, 3H), 7.28~7.12(m, 2H), 6.84~6.80(m, 1H), 6.56~6.54(m, 1H), 3.77~3.60(m, 2H), 3.27~3.23(t, 2H), 2.97~2.81(m, 4H), 2.20~2.09(m, 6H), 2.04~2.02(m, 2H), 1.39~1.38(m, 18H), 1.15(s, 9H), 1.52~0.43(m, 10H), 0.02~-0.15(m, 3H). 1 H-NMR (500 MHz, CDCl 3 , ppm): 7.78 to 7.41 (m, 6H), 7.34 to 7.31 (m, 3H), 7.28 to 7.12 (m, 2H), 6.84 to 6.80 (m, 1H), 6.56 to 6.54 (m, 1H), 3.77 to 3.60 (m, 2H), 3.27 to 3.23 (t, 2H), 2.97 to 2.81 (m, 4H), 2.20 to 2.09 (m, 6H), 2.04 to 2.02 (m) , 2H), 1.39 to 1.38 (m, 18H), 1.15 (s, 9H), 1.52 to 0.43 (m, 10H), 0.02 to -0.15 (m, 3H).

단계 12-3. 전이금속 화합물 (6-(tert-butoxy)hexyl)(methyl)silanediyl(4-(4-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)zirconium dichloride의 제조Step 12-3. Transition metal compound (6-(tert-butoxy)hexyl)(methyl)silanediyl(4-(4-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1 Preparation of -yl)(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)zirconium dichloride

상기 단계 12-2에서 얻어진 (6-(tert-butoxy)hexyl)(4-(4-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)(methyl)silane 리간드(2.62 mmol, 2 g)을 50 mL Schlenk flask에 넣고 아르곤 상태를 만들어 주었다. 아르곤 상태가 조성되면 무수 디에틸에테르(52.4 mL)를 넣고 -25 ℃로 냉각하였다. n-BuLi(2.5 M in Hexane, 5.76 mmol, 2.3 mL)를 천천히 주입하고 주입이 끝나면 실온으로 승온하여 3시간 동안 교반하였다. 교반이 끝나면 이 용액과, ZrCl4-2(THF) (2.62 mmol, 1.0 g)이 들어있는 아르곤 상태의 Schlenk flask를 -78 ℃로 냉각하고 리간드 용액을 지르코늄이 들어있는 flask로 저온 상태에서 트랜스퍼 하였다. 실온으로 천천히 승온 시킨 뒤 16 시간 동안 교반하였다. 교반이 끝나면 생성된 고체를 아르곤 상태에서 필터하여 제거하고 용매를 건조하여 crude mixture를 얻었다. 이를 최소량의 무수 톨루엔에 녹여 -25 ℃ 내지 -30 ℃에서 보관하여 고체를 생성하였다. 생성된 고체는 저온 상태일 때 과량의 헥산을 첨가하여 풀어준 뒤 필터하여 모아주었다. 그리고, 얻은 고체를 건조하여 정제된 촉매 화합물, 즉, 전이금속 화합 (6-(tert-butoxy)hexyl)(methyl)silanediyl(4-(4-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)zirconium dichloride (0.49 mmol, 0.45 g, 19%, yellow solid)를 수득하였다.(6-(tert-butoxy)hexyl)(4-(4-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1 obtained in step 12-2 -yl)(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)(methyl)silane ligand (2.62 mmol, 2 g) was placed in a 50 mL Schlenk flask and argon made When the argon state was formed, anhydrous diethyl ether (52.4 mL) was added, and the mixture was cooled to -25 °C. n- BuLi (2.5 M in Hexane, 5.76 mmol, 2.3 mL) was slowly injected, and when the injection was finished, the temperature was raised to room temperature and stirred for 3 hours. After stirring, this solution and an argon Schlenk flask containing ZrCl 4 -2 (THF) (2.62 mmol, 1.0 g) were cooled to -78 ℃, and the ligand solution was transferred to a flask containing zirconium at low temperature. . After slowly raising the temperature to room temperature, the mixture was stirred for 16 hours. After stirring, the generated solid was filtered out under argon and the solvent was dried to obtain a crude mixture. This was dissolved in a minimum amount of anhydrous toluene and stored at -25 °C to -30 °C to produce a solid. The resulting solid was collected by filtering after it was released by adding an excess of hexane when it was in a low temperature state. Then, the obtained solid was dried and purified catalyst compound, that is, transition metal compound (6-(tert-butoxy)hexyl)(methyl)silanediyl(4-(4-(tert-butyl)phenyl)-2-methyl-1 ,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)zirconium dichloride (0.49 mmol, 0.45 g, 19%, yellow solid) was obtained.

1H-NMR (500MHz, CDCl3, ppm): 7.48~7.46 (m, 3H), 7.42~7.40(m, 5H), 7.25~7.23(m, 2H), 7.18~7.16(m, 2H), 6.69(s, 1H), 3.38~3.35(t, 2H), 3.01~2.79(m, 4H), 2.35(s, 3H), 2.21(s, 3H), 2.03~1.94(m, 2H), 1.88~1.35(m, 10H), 1.15(s, 9H), 1.33(s, 18H), 1.19(s, 9H), 1.16~1.12(m, 3H). 1 H-NMR (500 MHz, CDCl 3 , ppm): 7.48~7.46 (m, 3H), 7.42~7.40(m, 5H), 7.25~7.23(m, 2H), 7.18~7.16(m, 2H), 6.69 (s, 1H), 3.38 to 3.35 (t, 2H), 3.01 to 2.79 (m, 4H), 2.35 (s, 3H), 2.21 (s, 3H), 2.03 to 1.94 (m, 2H), 1.88 to 1.35 (m, 10H), 1.15 (s, 9H), 1.33 (s, 18H), 1.19 (s, 9H), 1.16 to 1.12 (m, 3H).

비교합성예 4Comparative Synthesis Example 4

Figure pat00024
Figure pat00024

단계 13-1. 리간드 화합물 (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)dimethyl(4-(4’-(tert-butyl)-6-tert-butyl-5-methoxy-phenyl)-2-methyl indene) silane의 제조Step 13-1. Ligand compound (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)dimethyl(4-(4'-(tert- Preparation of butyl)-6-tert-butyl-5-methoxy-phenyl)-2-methyl indene) silane

상기 합성예 4의 단계 4-1에서 반응물질로 4-(4’-(터트부틸)페닐)-2메틸 인덴 (4-(4’-(tert-butyl)phenyl)-2-methyl indene) 대신 4-(4’-(터트부틸)-6-터트부틸-5-메톡시-페닐)-2메틸 인덴 (4-(4’-(tert-butyl)-6-tert-butyl-5-methoxy-phenyl)-2-methyl indene)을 사용하는 것을 제외하고는 합성예 3의 단계 3-1과 동일한 방법으로 상기 리간드 화합물 (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)dimethyl(4-(4'-(tert-butyl)phenyl)-2-methyl indene) silane을 제조하였다.Instead of 4-(4'-(tertbutyl)phenyl)-2methyl indene (4-(4'-(tert-butyl)phenyl)-2-methyl indene) as a reactant in step 4-1 of Synthesis Example 4 4-(4'-(tertbutyl)-6-tertbutyl-5-methoxy-phenyl)-2methyl indene (4-(4'-(tert-butyl)-6-tert-butyl-5-methoxy- phenyl)-2-methyl indene) in the same manner as in step 3-1 of Synthesis Example 3, except that the ligand compound (4-(4'-(tert-butyl)phenyl)-2-methyl-1 ,5,6,7-tetrahydro-s-indacen-1-yl)dimethyl(4-(4'-(tert-butyl)phenyl)-2-methyl indene) silane was prepared.

단계 13-2. 전이금속 화합물 Dimethyl silanediyl (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4’-(tert-butyl)-6-tert-butyl-5-methoxy-phenyl)- 2-methyl-1H-inden-1-yl) zirconium chloride의 제조Step 13-2. Transition metal compound Dimethyl silanediyl (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-( Preparation of tert-butyl)-6-tert-butyl-5-methoxy-phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride

상기 단계 13-1에서 얻어진 리간드를 사용한 것을 제외하고는 합성예 4의 단계 4-2와 동일한 방법으로, 상기 구조를 갖는 전이금속 화합물 Dimethyl silanediyl (4-(4'-(tert-butyl)phenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4’-(tert-butyl)-6-tert-butyl-5-methoxy-phenyl)-2-methyl-1H-inden-1-yl) zirconium chloride (비교합성예 4)을 제조하였다.In the same manner as in Step 4-2 of Synthesis Example 4 except that the ligand obtained in Step 13-1 was used, the transition metal compound Dimethyl silanediyl (4-(4'-(tert-butyl)phenyl) having the above structure was used. -2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(4-(4'-(tert-butyl)-6-tert-butyl-5-methoxy-phenyl)-2 -methyl-1H-inden-1-yl) zirconium chloride (Comparative Synthesis Example 4) was prepared.

1H-NMR (500 MHz, CDCl3, ppm): 0.23(s, 6H), 1.29(s,18H), 1.41(s, 9H), 1.76(S, 6H), 1.92(m, 2H), 2.80(m, 4H), 3.85(s, 3H), 6.36(s, 2H), 7.28-7.36(m,9H), 7.58(s, 1H). 1 H-NMR (500 MHz, CDCl 3 , ppm): 0.23(s, 6H), 1.29(s,18H), 1.41(s, 9H), 1.76(S, 6H), 1.92(m, 2H), 2.80 (m, 4H), 3.85(s, 3H), 6.36(s, 2H), 7.28-7.36(m,9H), 7.58(s, 1H).

비교합성예 5Comparative Synthesis Example 5

Figure pat00025
Figure pat00025

단계 14-1. 리간드 화합물 (4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl indene silane의 제조Step 14-1. Preparation of ligand compound (4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl indene silane

상기 합성예 1의 단계 1-1에서 반응물질로 2-메틸 인덴 (2-methyl indene) 대신 인덴 (indene)을 사용하고, 2-메틸-4-페닐-1,5,6,7-테트라하이드로-s-인다센 (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacene) 대신 4-페닐-1,5,6,7-테트라하이드로-s-인다센 (4-phenyl-1,5,6,7-tetrahydro-s-indacene)을 사용하는 것을 제외하고는, 합성예 1의 단계 1-1과 동일한 방법으로 상기 리간드 화합물 (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl (2-isopropyl-4-phenyl-indene) silane을 제조하였다.In step 1-1 of Synthesis Example 1, indene was used instead of 2-methyl indene as a reactant, and 2-methyl-4-phenyl-1,5,6,7-tetrahydro -s-indacene (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacene) instead of 4-phenyl-1,5,6,7-tetrahydro-s-indacene (4 -phenyl-1,5,6,7-tetrahydro-s-indacene) in the same manner as in step 1-1 of Synthesis Example 1, except that the ligand compound (2-methyl-4-phenyl-1 ,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl (2-isopropyl-4-phenyl-indene) silane was prepared.

단계 14-2. 전이금속 화합물 Dimethyl silanediyl(4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(1H-inden-1-yl) zirconium chloride의 제조Step 14-2. Preparation of transition metal compound dimethyl silanediyl (4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) (1H-inden-1-yl) zirconium chloride

상기 단계 14-1에서 얻어진 리간드를 사용한 것을 제외하고는 합성예 1의 단계 1-2와 동일한 방법으로, 상기 구조를 갖는 전이금속 화합물 Dimethyl Silanediyl(4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(1H-inden-1-yl) zirconium chloride (비교합성예 5)을 제조하였다.In the same manner as in Step 1-2 of Synthesis Example 1, except that the ligand obtained in Step 14-1 was used, the transition metal compound Dimethyl Silanediyl (4-phenyl-1,5,6,7-tetrahydro having the above structure) -s-indacen-1-yl) (1H-inden-1-yl) zirconium chloride (Comparative Synthesis Example 5) was prepared.

1H-NMR (500 MHz, CDCl3, ppm): 0.22(s, 6H), 1.96(m, 2H), 2.83(m, 4H), 6.36(d, 2H), 6.58(d, 2H), 7.18-7.50(m, 10H). 1 H-NMR (500 MHz, CDCl 3 , ppm): 0.22(s, 6H), 1.96(m, 2H), 2.83(m, 4H), 6.36(d, 2H), 6.58(d, 2H), 7.18 -7.50 (m, 10H).

비교합성예 6Comparative Synthesis Example 6

Figure pat00026
Figure pat00026

PCT 특허출원 공개 공보 WO 2006-097497 A1에 개시된 바에 따라 상기 구조의 전이금속 화합물, 1,1'-dimethylsilylene-bis[2-methyl-4-(4-tert-butylphenyl)-5,6,7-trihydro-s-indacen-1-yl]} zirconium dichloride (비교합성예 6)를 제조하였다. As disclosed in PCT Patent Application Publication No. WO 2006-097497 A1, the transition metal compound having the above structure, 1,1'-dimethylsilylene-bis[2-methyl-4-(4-tert-butylphenyl)-5,6,7- trihydro-s-indacen-1-yl]} zirconium dichloride (Comparative Synthesis Example 6) was prepared.

비교합성예 7Comparative Synthesis Example 7

Figure pat00027
Figure pat00027

단계 15-1. 리간드 화합물 (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl cyclopentadienyl silane의 제조Step 15-1. Preparation of ligand compound (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl cyclopentadienyl silane

상기 합성예 1의 단계 1-1에서 반응물질로 2-메틸 인덴 (2-methyl indene) Li Salt solution 대신 시클로펜타디에닐 나트륨(소듐Cp, Na cyclopentadiene) in THF(1.0 M)을 사용하는 것을 제외하고는 합성예 1의 단계 1-1과 동일한 방법으로 상기 리간드 화합물 (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl cyclopentadienyl silane을 제조하였다.Except for using sodium cyclopentadienyl (sodium Cp, Na cyclopentadiene) in THF (1.0 M) instead of 2-methyl indene Li Salt solution as a reactant in step 1-1 of Synthesis Example 1 Then, the ligand compound (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) dimethyl cyclopentadienyl silane was prepared in the same manner as in step 1-1 of Synthesis Example 1. .

단계 15-2. 전이금속 화합물 Dimethyl silanediyl(2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(cyclopentadienyl) zirconium chloride의 제조Step 15-2. Preparation of transition metal compound Dimethyl silanediyl (2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl) (cyclopentadienyl) zirconium chloride

상기 단계 15-1에서 얻어진 리간드를 사용한 것을 제외하고는 합성예 1의 단계 1-2와 동일한 방법으로, 상기 구조를 갖는 전이금속 화합물 Dimethyl Silanediyl(2-methyl-4-phenyl-1,5,6,7-tetrahydro-s-indacen-1-yl)(cyclopentadienyl) zirconium chloride (비교합성예 7)을 제조하였다.In the same manner as in Step 1-2 of Synthesis Example 1, except that the ligand obtained in Step 15-1 was used, the transition metal compound Dimethyl Silanediyl (2-methyl-4-phenyl-1,5,6 having the above structure) ,7-tetrahydro-s-indacen-1-yl) (cyclopentadienyl) zirconium chloride (Comparative Synthesis Example 7) was prepared.

1H-NMR (500 MHz, CDCl3, ppm): 0.22(s, 6H), 1.80(S, 3H), 1.98(m, 2H), 2.80(m, 4H), 6.35(d, 2H), 6.41(s, 1H), 6.50(d, 2H), 7.41-7.46(m, 6H). 1 H-NMR (500 MHz, CDCl 3 , ppm): 0.22(s, 6H), 1.80(S, 3H), 1.98(m, 2H), 2.80(m, 4H), 6.35(d, 2H), 6.41 (s, 1H), 6.50 (d, 2H), 7.41-7.46 (m, 6H).

<담지 촉매의 제조><Preparation of supported catalyst>

제조예 1Preparation Example 1

피코(pico) 반응기에 50 mL 톨루엔을 넣은 후, Ar 하에서 실리카겔(Silica gel, SYLOPOL 952X, calcinated under 250 ℃) 7 g을 넣고, 메틸알루미녹산(MAO) 10 mmol을 상온에서 천천히 주입하여 95 ℃에서 24 시간 동안 교반하여 반응시켰다. 반응 종결 후, 상온으로 식히고 15 분 동안 방치하여 cannula를 이용해 용매를 decant한다. Toluene (400 mL)을 넣고 1 분 동안 교반하고 15 분 동안 방치하여 cannula를 이용해 용매를 decant 하였다. After putting 50 mL toluene in a pico reactor, 7 g of silica gel (Silica gel, SYLOPOL 952X, calcinated under 250 ℃) was added under Ar, and 10 mmol of methylaluminoxane (MAO) was slowly injected at room temperature at 95 ℃. The reaction was stirred for 24 hours. After completion of the reaction, cool to room temperature and leave for 15 minutes to decant the solvent using a cannula. Toluene (400 mL) was added, stirred for 1 minute, and left for 15 minutes to decant the solvent using a cannula.

합성예 1의 메탈로센 화합물 60 μmol을 톨루엔 30 mL에 녹인 후, 반응기에 cannula를 이용해 transfer하였다. 80 ℃에서 2 시간 동안 교반하며 반응시켰다. 반응 종료 후 침전이 끝나면, 상온으로 식히고 15 분 동안 방치하여 cannula를 이용해 용매를 decant하였다. 상층부 용액은 제거하고 남은 반응 생성물을 톨루엔으로 세척하였다. 헥산으로 재차 세척한 후 헥산 하에서 대전방지제로 N,N-비스(2-히드록시에틸)펜타데실아민(N,N-Bis(2-hydroxyethyl)pentadeylamine, Atmer 163)를 실리카 중량(g) 기준으로 2 wt%를 헥산 3 mL에 녹여 넣은 후 상온에서 10 분 동안 교반하였다. 반응 종결후 침전이 끝나면, 상층부는 제거하고 glass filter로 transfer하여 용매를 제거하였다. After dissolving 60 μmol of the metallocene compound of Synthesis Example 1 in 30 mL of toluene, it was transferred to the reactor using a cannula. The reaction was stirred at 80 °C for 2 hours. After the reaction was completed and the precipitation was completed, the solvent was decanted using a cannula, cooled to room temperature and left for 15 minutes. The upper layer solution was removed and the remaining reaction product was washed with toluene. After washing again with hexane, N,N-bis(2-hydroxyethyl)pentadecylamine (N,N-Bis(2-hydroxyethyl)pentadeylamine, Atmer 163) as an antistatic agent under hexane based on silica weight (g) After dissolving 2 wt% in 3 mL of hexane, the mixture was stirred at room temperature for 10 minutes. After completion of the reaction and the completion of precipitation, the upper layer was removed and transferred to a glass filter to remove the solvent.

상온에서 진공 하에 5 시간 동안 1차 건조하고, 45 ℃에서 4 시간 동안 진공 하에 2차 건조하여 고체 입자 형태의 실리카 담지 메탈로센 촉매를 수득하였다.The silica-supported metallocene catalyst in the form of solid particles was obtained by primary drying at room temperature under vacuum for 5 hours, and secondary drying at 45° C. under vacuum for 4 hours.

제조예 2 내지 9Preparation Examples 2 to 9

합성예 1의 메탈로센 화합물 대신에, 각각 합성예 2 내지 9의 메탈로센 화합물을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 실리카 담지 메탈로센 촉매를 제조하였다. A silica-supported metallocene catalyst was prepared in the same manner as in Preparation Example 1, except that the metallocene compounds of Synthesis Examples 2 to 9 were used instead of the metallocene compound of Synthesis Example 1, respectively.

비교제조예 1 내지 7Comparative Preparation Examples 1 to 7

합성예 1의 메탈로센 화합물 대신에, 각각 비교합성예 1 내지 7의 메탈로센 화합물을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 실리카 담지 메탈로센 촉매를 제조하였다. A silica-supported metallocene catalyst was prepared in the same manner as in Preparation Example 1, except that the metallocene compounds of Comparative Synthesis Examples 1 to 7 were used instead of the metallocene compound of Synthesis Example 1, respectively.

<폴리에틸렌 중합><Polyethylene Polymerization>

실시예 1Example 1

상기 제조예 1에서 얻어진 담지 촉매의 존재 하에 에틸렌-1-헥센 공중합체를 제조하였으며, 구체적인 방법은 아래와 같다.An ethylene-1-hexene copolymer was prepared in the presence of the supported catalyst obtained in Preparation Example 1, and the specific method is as follows.

600 mL 스테인레스 반응기를 120 ℃에서 진공 건조한 후 냉각하고, 실온에서 헥산 250 g에 트리메틸알루미늄(TMA) 1 g을 넣고 10 분 동안 교반하였다. 반응시킨 헥산을 모두 제거 후, 헥산 250 g, 트리이소부틸알루미늄(TIBAL) 0.5 g을 넣고 5분동안 교반하였다. 그리고나서, 상기 제조예 1에서 얻어진 담지 촉매 7 mg을 넣은 후, 70 oC까지 온도를 올리며 교반하였다. 70 oC에서 교반을 멈춘 후 공단량체인 1-헥센(1-hexene, C6) 10 mL를 넣고 에틸렌(ethylene, C2)를 30 bar까지 채운 후 교반을 시작하였다. 30분 동안 중합 후 미반응 된 C2는 벤트하였다.A 600 mL stainless steel reactor was vacuum dried at 120° C., cooled, and 1 g of trimethylaluminum (TMA) was added to 250 g of hexane at room temperature and stirred for 10 minutes. After removing all of the reacted hexane, 250 g of hexane and 0.5 g of triisobutylaluminum (TIBAL) were added and stirred for 5 minutes. Then, after adding 7 mg of the supported catalyst obtained in Preparation Example 1, the temperature was raised to 70 o C and stirred. After stopping stirring at 70 o C, 10 mL of comonomer 1-hexene (1-hexene, C6) was added, and ethylene (ethylene, C2) was filled to 30 bar, and then stirring was started. After polymerization for 30 minutes, unreacted C2 was vented.

실시예 2 내지 9Examples 2 to 9

제조예 1의 담지 촉매 대신에, 각각 제조예 2 내지 9의 담지 촉매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 에틸렌-1-헥센 공중합체를 제조하였다.An ethylene-1-hexene copolymer was prepared in the same manner as in Example 1, except that the supported catalysts of Preparation Examples 2 to 9 were used instead of the supported catalyst of Preparation Example 1, respectively.

비교예 1Comparative Example 1

제조예 1의 담지 촉매 대신에, 비교제조예 1의 담지 촉매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 에틸렌-1-헥센 공중합체를 제조하였다.An ethylene-1-hexene copolymer was prepared in the same manner as in Example 1, except that the supported catalyst of Comparative Preparation Example 1 was used instead of the supported catalyst of Preparation Example 1.

비교예 2 및 3Comparative Examples 2 and 3

공단량체인 공단량체인 1-헥센(1-hexene, C6)의 투입량을 각각 20 mL (비교예 2) 및 25 mL (비교예 3)으로 달리한 것을 제외하고는, 비교예 1과 동일한 방법으로 에틸렌-1-헥센 공중합체를 제조하였다.In the same manner as in Comparative Example 1, except that the amount of 1-hexene (1-hexene, C6), which is a comonomer, was changed to 20 mL (Comparative Example 2) and 25 mL (Comparative Example 3), respectively. An ethylene-1-hexene copolymer was prepared.

비교예 4Comparative Example 4

제조예 1의 담지 촉매 대신에, 비교제조예 2의 담지 촉매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 에틸렌-1-헥센 공중합체를 제조하였다.An ethylene-1-hexene copolymer was prepared in the same manner as in Example 1, except that the supported catalyst of Comparative Preparation Example 2 was used instead of the supported catalyst of Preparation Example 1.

비교예 5 및 6Comparative Examples 5 and 6

공단량체인 공단량체인 1-헥센(1-hexene, C6)의 투입량을 각각 20 mL (비교예 5) 및 25 mL (비교예 6)으로 달리한 것을 제외하고는, 비교예 4와 동일한 방법으로 에틸렌-1-헥센 공중합체를 제조하였다.In the same manner as in Comparative Example 4, except that the amount of 1-hexene (1-hexene, C6), which is a comonomer, was changed to 20 mL (Comparative Example 5) and 25 mL (Comparative Example 6), respectively An ethylene-1-hexene copolymer was prepared.

비교예 7Comparative Example 7

제조예 1의 담지 촉매 대신에, 비교제조예 3의 담지 촉매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 에틸렌-1-헥센 공중합체를 제조하였다.An ethylene-1-hexene copolymer was prepared in the same manner as in Example 1, except that the supported catalyst of Comparative Preparation Example 3 was used instead of the supported catalyst of Preparation Example 1.

비교예 8Comparative Example 8

공단량체인 공단량체인 1-헥센(1-hexene, C6)의 투입량을 20 mL로 달리한 것을 제외하고는, 비교예 7과 동일한 방법으로 에틸렌-1-헥센 공중합체를 제조하였다.An ethylene-1-hexene copolymer was prepared in the same manner as in Comparative Example 7, except that the amount of 1-hexene (1-hexene, C6), which is a comonomer, was changed to 20 mL.

비교예 9Comparative Example 9

제조예 1의 담지 촉매 대신에, 비교제조예 4의 담지 촉매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 에틸렌-1-헥센 공중합체를 제조하였다.An ethylene-1-hexene copolymer was prepared in the same manner as in Example 1, except that the supported catalyst of Comparative Preparation Example 4 was used instead of the supported catalyst of Preparation Example 1.

비교예 10Comparative Example 10

제조예 1의 담지 촉매 대신에, 비교제조예 5의 담지 촉매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 에틸렌-1-헥센 공중합체를 제조하였다.An ethylene-1-hexene copolymer was prepared in the same manner as in Example 1, except that the supported catalyst of Comparative Preparation 5 was used instead of the supported catalyst of Preparation Example 1.

비교예 11Comparative Example 11

제조예 1의 담지 촉매 대신에, 비교제조예 6의 담지 촉매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 에틸렌-1-헥센 공중합체를 제조하였다.An ethylene-1-hexene copolymer was prepared in the same manner as in Example 1, except that the supported catalyst of Comparative Preparation Example 6 was used instead of the supported catalyst of Preparation Example 1.

비교예 12Comparative Example 12

제조예 1의 담지 촉매 대신에, 비교제조예 7의 담지 촉매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 에틸렌-1-헥센 공중합체를 제조하였다.An ethylene-1-hexene copolymer was prepared in the same manner as in Example 1, except that the supported catalyst of Comparative Preparation 7 was used instead of the supported catalyst of Preparation Example 1.

<시험예: 폴리에틸렌의 중합 공정 및 물성 평가><Test Example: Polymerization process and evaluation of physical properties of polyethylene>

상기 실시예 및 비교예의 촉매 활성, 공정안정성 및 폴리에틸렌 공중합체의 물성을 하기의 방법으로 측정하고, 그 결과를 하기 표 1에 나타내었다.Catalytic activity, process stability, and physical properties of the polyethylene copolymer of Examples and Comparative Examples were measured by the following method, and the results are shown in Table 1 below.

(1) 촉매 활성(activity, kg PE/g catㆍhr)(1) Catalytic activity (activity, kg PE/g cat·hr)

단위 시간(h)당 사용된 담지 촉매 함량(g Cat)당 생성된 폴리에틸렌 공중합체의 무게(kg PE)의 비로 계산하였다.It was calculated as a ratio of the weight (kg PE) of the polyethylene copolymer produced per unit time (h) per the supported catalyst content (g Cat) used.

(2) 용융점 (Tm, ℃)(2) Melting point (Tm, ℃)

시차주사열량계(Differential Scanning Calorimeter, DSC)를 이용하여 Tm을 측정하였다. Tm was measured using a differential scanning calorimeter (DSC).

구체적으로, 시차주사열량계(DSC)로서, DSC 2920 (TA instrument)를 이용하여 중합체의 용융 온도를 측정하였다. 구체적으로는 중합체를 150 oC까지 가열한 후 5분 동안 유지하고, -100 oC까지 온도를 내린 후 다시 온도를 증가시켰다. 이때 온도의 상승속도와 하강속도는 각각 10 oC/min으로 조절하였다. 용융 온도는 두 번째 온도가 상승하는 구간에서 측정한 흡열 피크의 최대 지점으로 하였다.Specifically, as a differential scanning calorimeter (DSC), the melting temperature of the polymer was measured using a DSC 2920 (TA instrument). Specifically, the polymer was heated to 150 o C and maintained for 5 minutes, and then lowered to -100 o C and then the temperature was increased again. At this time, the rate of rise and fall of the temperature was adjusted to 10 o C/min, respectively. The melting temperature was taken as the maximum point of the endothermic peak measured in the section where the second temperature was increased.

(3) 중량 평균 분자량 (Mw, g/mol)(3) weight average molecular weight (Mw, g/mol)

겔 투과 크로마토그래피(GPC, gel permeation chromatography, Water사 제조)를 이용하여 폴리에틸렌 공중합체의 중량평균 분자량(Mw)을 측정하였다. The weight average molecular weight (Mw) of the polyethylene copolymer was measured using gel permeation chromatography (GPC, gel permeation chromatography, manufactured by Water).

구체적으로, 겔투과 크로마토그래피(GPC) 장치로는 Waters PL-GPC220 기기를 이용하고, Polymer Laboratories PLgel MIX-B 300 mm 길이 칼럼을 사용하였다. 이때 측정 온도는 160 oC이며, 1,2,4-트리클로로벤젠(1,2,4-Trichlorobenzene)을 용매로서 사용하였으며, 유속은 1 mL/min로 하였다. 실시예 및 비교예에 따른 폴리에틸렌 공중합체 시료는 각각 GPC 분석 기기 (PL-GP220)을 이용하여 BHT 0.0125% 포함된 트리클로로벤젠(1,2,4-Trichlorobenzene)에서 160 oC, 10 시간 동안 녹여 전처리하고, 10 mg/10 mL의 농도로 조제한 다음, 200 μL의 양으로 공급하였다. 폴리스티렌 표준 시편을 이용하여 형성된 검정 곡선을 이용하여 Mw의 값을 유도하였다. 폴리스티렌 표준 시편의 중량평균 분자량은 2000 g/mol, 10000 g/mol, 30000 g/mol, 70000 g/mol, 200000 g/mol, 700000 g/mol, 2000000 g/mol, 4000000 g/mol, 10000000 g/mol의 9종을 사용하였다.Specifically, as a gel permeation chromatography (GPC) apparatus, a Waters PL-GPC220 instrument was used, and a Polymer Laboratories PLgel MIX-B 300 mm long column was used. At this time, the measurement temperature was 160 o C, 1,2,4-trichlorobenzene (1,2,4-Trichlorobenzene) was used as a solvent, and the flow rate was 1 mL/min. Each polyethylene copolymer sample according to Examples and Comparative Examples was dissolved in trichlorobenzene (1,2,4-Trichlorobenzene) containing 0.0125% BHT at 160 ° C for 10 hours using a GPC analysis device (PL-GP220). It was pretreated, prepared to a concentration of 10 mg/10 mL, and then supplied in an amount of 200 μL. The value of Mw was derived using a calibration curve formed using a polystyrene standard specimen. The weight average molecular weight of the polystyrene standard specimen is 2000 g/mol, 10000 g/mol, 30000 g/mol, 70000 g/mol, 200000 g/mol, 700000 g/mol, 2000000 g/mol, 400000 g/mol, 1000000 g Nine species of /mol were used.

(4) 단쇄분지(SCB, short chain branch, FT-IR) 개수(4) Number of short chain branches (SCB, FT-IR)

실시예 및 비교예의 폴리에틸렌 공중합체에 대하여 적외선분광법(FT-IR)으로, 탄소수 1000개당 탄소수 2 내지 7 개의 곁가지(branch)인 단쇄 분지(SCB) 개수를 측정하였다. For the polyethylene copolymers of Examples and Comparative Examples, the number of short-chain branches (SCB) having 2 to 7 carbon atoms per 1000 carbon atoms was measured by infrared spectroscopy (FT-IR).

구체적으로, 폴리에틸렌 공중합체 시료를 PL-SP260VS을 이용하여 BHT 0.0125%가 포함된 1, 2, 4-Trichlorobenzene에서 160 ℃, 10 시간 동안 녹여 전처리한 후, 고온 GPC(PL-GPC220)와 연결된 PerkinElmer Spectrum 100 FT-IR을 이용하여 160 ℃에서 측정하였다.Specifically, a polyethylene copolymer sample was pretreated by dissolving it in 1,2,4-Trichlorobenzene containing 0.0125% BHT at 160 °C for 10 hours using PL-SP260VS, and then PerkinElmer Spectrum connected to high temperature GPC (PL-GPC220). Measurements were made at 160 °C using 100 FT-IR.

(5) 중합체의 모폴로지 평가(5) Evaluation of morphology of polymers

실시예 및 비교예의 폴리에틸렌 공중합체에 대하여, 수득한 공중합체 파우더의 외관과 촉감을 육안 및 촉각으로 확인하고 중합체의 모폴로지(morphology)를 평가하였다. With respect to the polyethylene copolymers of Examples and Comparative Examples, the appearance and touch of the obtained copolymer powder were visually and tactilely checked, and the morphology of the polymer was evaluated.

구체적으로, 수득한 파우더를 모두 동일한 조건으로 건조한 이후, 중합체의 모폴로지(morphology)가 모래알처럼 분산되며 알갱이가 원형을 유지하는 경우에는 양호(very good)로 평가하고, 중합체의 모폴로지(morphology)가 모래알처럼 분산되지만 알갱이가 눈사람처럼 뭉치는 입자가 있는 경우에는 보통(good)으로 평가하고, 중합체의 모폴로지(morphology)가 모래알이 아닌 뭉쳐진 덩어리로 입자가 엉켜있는 경우 불량(bad)로 평가하였다. 특히, 폴리에틸렌 공중합체의 모폴로지가 불량인 경우에는, 선형저밀도 폴리에틸렌 제조를 위한 기상중합 반응에 투입하기 어려울 수 있다.Specifically, after drying all the obtained powders under the same conditions, if the morphology of the polymer is dispersed like grains of sand and the grains maintain their original shape, it is evaluated as very good, and the morphology of the polymer is determined as grains of sand. If there are particles that are dispersed like a snowman but aggregate like a snowman, it was evaluated as good, and if the morphology of the polymer was tangled in a lump rather than a grain of sand, it was evaluated as bad. In particular, when the morphology of the polyethylene copolymer is poor, it may be difficult to put into the gas phase polymerization reaction for the production of linear low density polyethylene.

화합물compound C6
사용량
(mL)
C6
usage
(mL)
활성
(kg PE /gㆍcatㆍhr)
activation
(kg PE /g·cat·hr)
Mw
(Х103 g/mol)
Mw
(Х10 3 g/mol)
Tm
(oC)
Tm
( o C)
SCB
(개/1000C)
SCB
(pcs/1000C)
Morphology
평가
Morphology
evaluation
실시예 1Example 1 합성예 1Synthesis Example 1 1010 4.54.5 530530 123.5123.5 5.25.2 양호Good 실시예 2Example 2 합성예 2Synthesis Example 2 1010 5.15.1 400400 124.2124.2 5.05.0 양호Good 실시예 3Example 3 합성예 3Synthesis Example 3 1010 6.26.2 480480 121.5121.5 5.85.8 양호Good 실시예 4Example 4 합성예 4Synthesis Example 4 1010 5.95.9 450450 118.5118.5 6.56.5 양호Good 실시예 5Example 5 합성예 5Synthesis Example 5 1010 5.25.2 480480 124.5124.5 5.25.2 양호Good 실시예 6Example 6 합성예 6Synthesis Example 6 1010 6.06.0 460460 125.7125.7 4.54.5 양호Good 실시예 7Example 7 합성예 7Synthesis Example 7 1010 6.76.7 450450 117.2117.2 6.86.8 양호Good 실시예 8Example 8 합성예 8Synthesis Example 8 1010 5.55.5 580580 121.8121.8 5.85.8 양호Good 실시예 9Example 9 합성예 9Synthesis Example 9 1010 6.06.0 480480 121.6121.6 5.95.9 양호Good 비교예 1Comparative Example 1 비교합성예 1Comparative Synthesis Example 1 1010 3.23.2 450450 127.7127.7 2.22.2 보통usually 비교예 2Comparative Example 2 비교합성예 1Comparative Synthesis Example 1 2020 2.92.9 380380 124.1124.1 3.93.9 불량error 비교예 3Comparative Example 3 비교합성예 1Comparative Synthesis Example 1 2525 측정
불가
measurement
impossible
측정
불가
measurement
impossible
측정
불가
measurement
impossible
측정
불가
measurement
impossible
-
(Fouling)
-
(Fouling)
비교예 4Comparative Example 4 비교합성예 2Comparative Synthesis Example 2 1010 2.72.7 400400 128.4128.4 1.91.9 보통usually 비교예 5Comparative Example 5 비교합성예 2Comparative Synthesis Example 2 2020 3.03.0 350350 125.8125.8 2.92.9 불량error 비교예 6Comparative Example 6 비교합성예 2Comparative Synthesis Example 2 2525 측정
불가
measurement
impossible
측정
불가
measurement
impossible
측정
불가
measurement
impossible
측정
불가
measurement
impossible
-
(Fouling)
-
(Fouling)
비교예 7Comparative Example 7 비교합성예 3Comparative Synthesis Example 3 1010 2.12.1 350350 126.8126.8 3.53.5 보통usually 비교예 8Comparative Example 8 비교합성예 3Comparative Synthesis Example 3 2020 1.51.5 300300 123.5123.5 4.14.1 불량error 비교예 9Comparative Example 9 비교합성예 4Comparative Synthesis Example 4 1010 0.70.7 350350 124.8124.8 3.83.8 보통usually 비교예 10Comparative Example 10 비교합성예 5Comparative Synthesis Example 5 1010 1.11.1 150150 127.8127.8 1.81.8 보통usually 비교예 11Comparative Example 11 비교합성예 6Comparative Synthesis Example 6 1010 5.15.1 500500 128.1128.1 1.11.1 불량error 비교예 12Comparative Example 12 비교합성예 7Comparative Synthesis Example 7 1010 1.11.1 330330 129.2129.2 1.31.3 보통usually

상기 표 1에 나타낸 바와 같이, 본 발명에 따른 실시예 1 내지 9의 폴리에틸렌 공중합체는, 특정의 브릿지 그룹과 인다센 및 인덴 리간드로 이루어진 비대칭 구조를 갖는 메탈로센 화합물을 포함한 담지 촉매를 사용함으로써, 탄소수 1000개당 단쇄 분지(SCB) 개수가 4.5개/1000C 내지 6.8개/1000C로 매우 높게 나타남을 알 수 있다. As shown in Table 1, the polyethylene copolymers of Examples 1 to 9 according to the present invention were prepared by using a supported catalyst including a metallocene compound having an asymmetric structure consisting of a specific bridging group and indacene and indene ligands. , It can be seen that the number of short chain branches (SCB) per 1000 carbon atoms is very high, from 4.5/1000C to 6.8/1000C.

반면에, 촉매의 치환기 및 구조를 달리하여 공중합 공정을 수행한 비교예들의 경우에, 공단량체인 1-헥센(C6) 투입량을 증대하더라도 SCB 함량을 높이기 어려운 문제가 발생하거나, 촉매 활성이 떨어지거나 폴리에틸렌의 모폴로지가 좋지 않은 문제가 발생함을 알 수 있다. On the other hand, in the case of comparative examples in which the copolymerization process was performed by changing the substituent and structure of the catalyst, it is difficult to increase the SCB content even if the input amount of 1-hexene (C6), which is a comonomer, is increased, or the catalyst activity is lowered, or It can be seen that the problem of poor morphology of polyethylene occurs.

구체적으로, 실시예들과 동일하게 공단량체 1-헥센(C6) 10 mL를 투입한 비교예 1 및 4의 경우에, 탄소수 1000개당 단쇄 분지(SCB) 개수가 2.2개/1000C 및 1.9개/1000C로 현저히 저하됨을 확인하였다. 또, 공단량체 1-헥센(C6)을 20 mL로 증량한 비교예 2, 5의 경우에도 탄소수 1000개당 단쇄 분지(SCB) 개수가 3.9개/1000C 및 2.9개/1000C일 뿐으로, 2배로 증량하여도 4개/1000C 이상으로 확보하기 어려울 뿐만 아니라 모폴로지(morphology) 역지 나빠지는 것을 확인하였다. 더욱이, 공단량체 1-헥센(C6)을 25 mL로 더 증량한 비교예 3 및 6의 경우에는 중합 공정에서 파울링(Fouling)이 발생하여 중합체에 대한 물성 평가가 불가능하였다.Specifically, in Comparative Examples 1 and 4, in which 10 mL of comonomer 1-hexene (C6) was added in the same manner as in Examples, the number of short chain branches (SCB) per 1000 carbon atoms was 2.2/1000C and 1.9/1000C was confirmed to be significantly reduced. Also, in Comparative Examples 2 and 5, in which the comonomer 1-hexene (C6) was increased to 20 mL, the number of short chain branches (SCB) per 1000 carbon atoms was only 3.9/1000C and 2.9/1000C, and the amount was doubled to It was confirmed that not only was it difficult to secure more than 4/1000C, but also the morphology deteriorated. Furthermore, in Comparative Examples 3 and 6, in which the comonomer 1-hexene (C6) was further increased to 25 mL, fouling occurred in the polymerization process, making it impossible to evaluate the physical properties of the polymer.

한편, 실시예들에 사용한 촉매 구조와 유사한 비대칭 모핵 구조를 갖는 메탈로센 화합물을 포함한 촉매를 사용한 경우에도, 실시예들과 동일하게 공단량체 1-헥센(C6) 10 mL를 투입한 비교예 7의 경우에, 탄소수 1000개당 단쇄 분지(SCB) 개수가 3.5개/1000C로 현저히 저하되었다. 또, 비교예 7과 동일한 촉매를 사용하여 공단량체 1-헥센(C6)을 20 mL로 더 증량한 비교예 8의 경우에는 탄소수 1000개당 단쇄 분지(SCB) 개수가 4.1개/1000C로 높아졌으나, 중합 공정에서 촉매 활성이 4 kg PE/g_cat_h 이상 현저히 저하되고 얻어진 폴리에틸렌 공중합체의 중량평균분자량이 낮아지고 morphology 또한 나쁨을 확인할 수 있다.Meanwhile, in Comparative Example 7 in which 10 mL of comonomer 1-hexene (C6) was added in the same manner as in Examples even when a catalyst including a metallocene compound having an asymmetric parent nucleus structure similar to the catalyst structure used in Examples was used. In the case of , the number of short chain branches (SCB) per 1000 carbon atoms was significantly lowered to 3.5/1000C. In addition, in the case of Comparative Example 8, in which the comonomer 1-hexene (C6) was further increased to 20 mL using the same catalyst as in Comparative Example 7, the number of short chain branches (SCB) per 1000 carbon atoms was increased to 4.1/1000C, In the polymerization process, it can be seen that the catalyst activity is significantly lowered by 4 kg PE/g_cat_h or more, the weight average molecular weight of the obtained polyethylene copolymer is lowered, and the morphology is also poor.

또, 인덴의 5번 위치에 메톡시(methoxy)와 6번 위에 터트-부틸(tert-butyl)이 포함된 비교예 9의 경우 실시예들과 비슷한 물성을 가지나 활성이 매우 저조하고 이로써 전체적인 공정 비용 및 합성 단가가 올라가는 단점이 발생한다. 이와 마찬가지로 인덴과 인다센의 2번 위치의 메틸기가 없는 비교예 10의 경우에도 활성이 저조할 뿐만 아니라, 분자량이 낮으며 공중합성이 떨어짐을 확인하였다.In addition, in the case of Comparative Example 9, in which methoxy at position 5 and tert-butyl at position 6 of indene were included, physical properties similar to those of Examples but the activity was very low, and thus the overall process cost and a disadvantage in that the synthesis cost increases. Similarly, in Comparative Example 10 without a methyl group at the 2-position of indene and indacene, it was confirmed that the activity was not only low, but also the molecular weight was low and the copolymerizability was poor.

또, 리간드 화합물 구조가 인덴-인다센 조합이 아닌 비스 인다센 구조인 비교예 11의 경우에는, 실시예와 비슷한 활성과 분자량을 유지하지만 공중합성이 현저히 떨어짐을 SCB 함량이 매우 적어짐을 확인하였다. 더욱이, 리간드 화합물 구조가 인덴-인다센 조합이 아닌 시클로펜타디엔-인다센 구조인 비교예 12의 경우에는, 활성이 저조할 뿐만 아니라, 분자량이 낮으며 공중합성이 떨어짐을 확인하였다.In addition, in Comparative Example 11, in which the ligand compound structure was a bis-indacene structure rather than an indene-indacene combination, it was confirmed that the SCB content was very small, although the activity and molecular weight were similar to those of the Example, but the copolymerizability was significantly deteriorated. Moreover, in the case of Comparative Example 12, in which the ligand compound structure was a cyclopentadiene-indacene structure rather than an indene-indacene combination, it was confirmed that not only the activity was low, but also the molecular weight was low and the copolymerizability was poor.

Claims (14)

하기 화학식 1로 표시되는 전이금속 화합물:
[화학식 1]
Figure pat00028

상기 화학식 1에서,
A는 14족 원소이고,
M은 4족 전이금속이며,
R1 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐이고,
Q1 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 C1-20 알킬이다.
A transition metal compound represented by the following formula (1):
[Formula 1]
Figure pat00028

In Formula 1,
A is a group 14 element,
M is a Group 4 transition metal,
R 1 and R 2 are the same as or different from each other, and each independently hydrogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 alkoxysilyl , C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
X 1 and X 2 are the same as or different from each other and are each independently halogen,
Q 1 and Q 2 are the same as or different from each other, and are each independently C 1-20 alkyl.
제1항에 있어서,
A는 실리콘이고,
M은 지르코늄인,
전이금속 화합물.
The method of claim 1,
A is silicone,
M is zirconium,
transition metal compounds.
제1항에 있어서,
R1 및 R2는 각각 수소, 페닐, C1-6 직쇄 또는 분지쇄 알킬이 치환된 페닐인,
전이금속 화합물.
According to claim 1,
R 1 and R 2 are each hydrogen, phenyl, phenyl substituted with C 1-6 straight or branched chain alkyl;
transition metal compounds.
제1항에 있어서,
하기 화학식 1-1로 표시되는 것인,
전이금속 화합물:
[화학식 1-1]
Figure pat00029

상기 화학식 1-1에서, A, M, X1, X2, Q1, Q2는 제1항에서 정의한 바와 같으며,
R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소 또는 C1-6 직쇄 또는 분지쇄 알킬이고;
a 및 b은 각각 독립적으로 0 또는 1이다.
The method of claim 1,
Which is represented by the following formula 1-1,
Transition metal compounds:
[Formula 1-1]
Figure pat00029

In Formula 1-1, A, M, X 1 , X 2 , Q 1 , Q 2 are as defined in claim 1,
R′ is the same as or different from each other, and each independently represents hydrogen or C 1-6 straight or branched chain alkyl;
a and b are each independently 0 or 1.
제4항에 있어서,
상기 화학식 1-1에서 R' 중 적어도 하나 이상은 C3-6 분지쇄 알킬이고, 나머지 R'은 수소인,
전이금속 화합물.
5. The method of claim 4,
At least one of R' in Formula 1-1 is C 3-6 branched chain alkyl, and the remaining R' is hydrogen,
transition metal compounds.
제1항에 있어서,
Q1 및 Q2는 각각 독립적으로 C1-6 직쇄 또는 분지쇄 알킬인,
전이금속 화합물.
According to claim 1,
Q 1 and Q 2 are each independently C 1-6 straight or branched chain alkyl;
transition metal compounds.
제1항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
전이금속 화합물:
Figure pat00030

Figure pat00031

Figure pat00032
Figure pat00033
.
According to claim 1,
The compound represented by Formula 1 is any one selected from the group consisting of
Transition metal compounds:
Figure pat00030

Figure pat00031

Figure pat00032
Figure pat00033
.
제1항에 따른 전이금속 화합물을 포함하는 촉매 조성물.
A catalyst composition comprising the transition metal compound according to claim 1 .
제8항에 있어서,
상기 전이금속 화합물 및 담체를 포함하는,
촉매 조성물.
9. The method of claim 8,
Containing the transition metal compound and the carrier,
catalyst composition.
제8항에 있어서,
하기 화학식 2 내지 4로 표시되는 화합물로 이루어진 군에서 선택된 1종 이상의 조촉매를 더 포함하는,
촉매 조성물:
[화학식 2]
-[Al(R21)-O]m-
상기 화학식 2에서,
R21은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1-20 알킬 또는 C1-20 할로알킬이고;
m은 2 이상의 정수이며;
[화학식 3]
J(R31)3
상기 화학식 3에서,
R31은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1-20 알킬 또는 C1-20 할로알킬이고;
J는 알루미늄 또는 보론이며;
[화학식 4]
[E-H]+[ZQ4]- 또는 [E]+[ZQ4]-
상기 화학식 4에서,
E는 중성 또는 양이온성 루이스 염기이고, [E-H]+ 및 [E]+는 브뢴스테드 산이며;
H는 수소 원자이며;
Z는 13족 원소이고;
Q는 서로 동일하거나 상이하고, 각각 독립적으로 C6-20 아릴 또는 C1-20 알킬이고, 여기서 상기 C6-20 아릴 또는 C1-20 알킬은 비치환되거나 또는 할로겐, C1-20 알킬, C1-20 알콕시 및 C6-20 페녹시로 구성되는 군으로부터 선택되는 하나 이상의 치환기로 치환된다.
9. The method of claim 8,
Further comprising at least one cocatalyst selected from the group consisting of compounds represented by the following formulas 2 to 4,
Catalyst composition:
[Formula 2]
-[Al(R 21 )-O] m -
In Formula 2,
R 21 are the same as or different from each other and are each independently halogen, C 1-20 alkyl or C 1-20 haloalkyl;
m is an integer greater than or equal to 2;
[Formula 3]
J(R 31 ) 3
In Formula 3,
R 31 is the same as or different from each other, and each independently represents halogen, C 1-20 alkyl or C 1-20 haloalkyl;
J is aluminum or boron;
[Formula 4]
[EH] + [ZQ 4 ] - or [E] + [ZQ 4 ] -
In Formula 4,
E is a neutral or cationic Lewis base, [EH] + and [E] + are Bronsted acids;
H is a hydrogen atom;
Z is a group 13 element;
Q is the same as or different from each other, and each independently represents C 6-20 aryl or C 1-20 alkyl, wherein the C 6-20 aryl or C 1-20 alkyl is unsubstituted or halogen, C 1-20 alkyl, It is substituted with one or more substituents selected from the group consisting of C 1-20 alkoxy and C 6-20 phenoxy.
제8항에 있어서,
하기 화학식 5로 표시되는 대전방지제 1종 이상을 더 포함하는,
촉매 조성물:
[화학식 5]
R51N-(CH2CH2OH)2
상기 화학식 5에서,
R51은 C8-30의 직쇄 알킬이다.
9. The method of claim 8,
Further comprising at least one antistatic agent represented by the following formula (5),
Catalyst composition:
[Formula 5]
R 51 N-(CH 2 CH 2 OH) 2
In Formula 5,
R 51 is C 8-30 straight-chain alkyl.
제8항의 촉매 조성물의 존재 하에, 에틸렌 및 알파-올레핀을 공중합하는 단계를 포함하는, 폴리에틸렌의 제조 방법.
A process for preparing polyethylene comprising copolymerizing ethylene and alpha-olefin in the presence of the catalyst composition of claim 8 .
제12항에 있어서,
상기 알파-올레핀은 1-부텐, 1-펜텐, 1-헥센, 4-메틸-1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-옥타데센, 1-에이코센, 및 이들의 혼합물로 이루어진 군에서 선택되는 1종 이상인,
폴리에틸렌의 제조 방법.
13. The method of claim 12,
The alpha-olefin is 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1- At least one selected from the group consisting of octadecene, 1-eicosene, and mixtures thereof,
Method for producing polyethylene.
제12항에 있어서,
상기 에틸렌 공중합 단계에서 촉매 활성은 4.0 kg PE /gㆍcatㆍhr 이상이며, 상기 촉매 활성은 단위 시간(h)을 기준으로 사용된 촉매 조성물 중량(g)당 생성된 폴리에틸렌의 중량(kg PE)을 측정한 값인,
폴리에틸렌의 제조 방법.
13. The method of claim 12,
In the ethylene copolymerization step, the catalytic activity is 4.0 kg PE /g·cat·hr or more, and the catalytic activity is the weight (kg PE) of polyethylene produced per weight (g) of the catalyst composition used based on the unit time (h) is the measured value of
Method for producing polyethylene.
KR1020210092809A 2020-07-16 2021-07-15 Transition metal compound and catalyst composition comprising the same Active KR102736434B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21842001.6A EP4043470B1 (en) 2020-07-16 2021-07-16 Transition metal compound and catalyst composition including same
PCT/KR2021/009156 WO2022015094A1 (en) 2020-07-16 2021-07-16 Transition metal compound and catalyst composition including same
US17/767,800 US20240109923A1 (en) 2020-07-16 2021-07-16 Transition metal compound and catalyst composition comprising the same
CN202180005385.9A CN114401977B (en) 2020-07-16 2021-07-16 Transition metal compound and catalyst composition containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200088402 2020-07-16
KR1020200088402 2020-07-16

Publications (2)

Publication Number Publication Date
KR20220009900A true KR20220009900A (en) 2022-01-25
KR102736434B1 KR102736434B1 (en) 2024-11-29

Family

ID=80049305

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210092809A Active KR102736434B1 (en) 2020-07-16 2021-07-15 Transition metal compound and catalyst composition comprising the same

Country Status (1)

Country Link
KR (1) KR102736434B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160470A (en) * 2022-07-18 2022-10-11 宁夏清研高分子新材料有限公司 Preparation method of TPX polymer, catalyst and preparation method thereof
WO2024242929A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Low density polethylenes, films thereof, and methods and catalysts for production thereof
WO2024242931A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Catalysts, polyethylenes, polymerizations thereof, and films thereof
WO2024242933A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Catalysts and polymerizations for improved polyolefins
WO2024242949A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Polyethylenes having improved processability and films thereof
WO2024242932A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Polethylenes, catalysts for their polymerization, and films thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060123293A (en) * 2003-12-10 2006-12-01 바젤 폴리올레핀 게엠베하 Preparation of organometallic transition metal compounds, biscyclopentadienyl ligand systems, catalyst systems and polyolefins
US20170015767A1 (en) * 2013-07-17 2017-01-19 Exxonmobil Chemical Patents Inc. Substituted Metallocene Catalysts
WO2017204830A1 (en) * 2016-05-27 2017-11-30 Exxonmobil Chemical Patents, Inc. Metallocene catalyst compositions and polymerization process therewith
KR20190095956A (en) * 2016-12-29 2019-08-16 보레알리스 아게 catalyst
KR20200050844A (en) * 2018-11-02 2020-05-12 주식회사 엘지화학 Novel transition metal compound and method for preparing polypropylene with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060123293A (en) * 2003-12-10 2006-12-01 바젤 폴리올레핀 게엠베하 Preparation of organometallic transition metal compounds, biscyclopentadienyl ligand systems, catalyst systems and polyolefins
US20170015767A1 (en) * 2013-07-17 2017-01-19 Exxonmobil Chemical Patents Inc. Substituted Metallocene Catalysts
WO2017204830A1 (en) * 2016-05-27 2017-11-30 Exxonmobil Chemical Patents, Inc. Metallocene catalyst compositions and polymerization process therewith
KR20190095956A (en) * 2016-12-29 2019-08-16 보레알리스 아게 catalyst
KR20200050844A (en) * 2018-11-02 2020-05-12 주식회사 엘지화학 Novel transition metal compound and method for preparing polypropylene with the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160470A (en) * 2022-07-18 2022-10-11 宁夏清研高分子新材料有限公司 Preparation method of TPX polymer, catalyst and preparation method thereof
WO2024242929A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Low density polethylenes, films thereof, and methods and catalysts for production thereof
WO2024242931A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Catalysts, polyethylenes, polymerizations thereof, and films thereof
WO2024242933A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Catalysts and polymerizations for improved polyolefins
WO2024242949A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Polyethylenes having improved processability and films thereof
WO2024242932A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Polethylenes, catalysts for their polymerization, and films thereof

Also Published As

Publication number Publication date
KR102736434B1 (en) 2024-11-29

Similar Documents

Publication Publication Date Title
KR102736434B1 (en) Transition metal compound and catalyst composition comprising the same
JP6488002B2 (en) Olefin polymer excellent in processability
EP4043470B1 (en) Transition metal compound and catalyst composition including same
KR102064990B1 (en) Supported hybrid catalyst system for ethylene slurry polymerization and method for preparing ethylene polymer with the catalyst system
KR20200071034A (en) Polyethylene and its chlorinated polyethylene
KR102028063B1 (en) Transition metal compound, catalyst composition comprising the same, and method for preparing olefin polymer using the same
EP3173429B1 (en) Metallocene compound, metallocene supported catalyst, and method for preparing polyolefin using same
US10669356B2 (en) Supported hybrid catalyst and method for preparing olefin polymer using the same
KR20150063885A (en) Supported hybrid metallocene catalyst and method for preparing of olefin based polymer using the same
KR20220009782A (en) Polyethylene
KR20180067945A (en) Hybride supported metallocene catalysts
KR20150058105A (en) Olefin based polymer having excellent processibility
KR20210038379A (en) Hybride supported metallocene catalyst and process for preparing polyethylene copolymer using the same
KR20150062004A (en) Method for preparing of supported hybrid metallocene catalyst
KR102226823B1 (en) Catalyst composition for preparing polyolefin having an excellent flexural modulus using the same
KR101737568B1 (en) Supported hybrid catalyst and method for preparing of olefin based polymer using the same
CN113039217B (en) Hybrid supported catalyst and method for preparing polyolefin using the same
KR102724460B1 (en) Supported hybrid metallocene catalyst, and preparation method of polyolefin using the same
KR20170096862A (en) Polypropylene having high rigidity and for reducing energy in foaming
KR102784703B1 (en) Hybride supported metallocene catalyst and process for preparing polyethylene copolymer using the same
KR102086767B1 (en) Propylene-alpha olefin copolymer
KR102564398B1 (en) Hybride supported metallocene catalyst and method for preparing polyethylene copolymer using the same
KR20200093302A (en) Polyolefin
CN111491961B (en) Olefin-based polymers
KR20180044136A (en) Method for preparing supported hybrid metallocene catalyst

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20210715

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20211213

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20210715

Comment text: Patent Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20240404

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20241119

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20241126

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20241126

End annual number: 3

Start annual number: 1

PG1601 Publication of registration