[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20210136752A - Monoclonal Antibody for Detecting Serotype A of Foot and Mouth Disease Virus, and Uses Thereof - Google Patents

Monoclonal Antibody for Detecting Serotype A of Foot and Mouth Disease Virus, and Uses Thereof Download PDF

Info

Publication number
KR20210136752A
KR20210136752A KR1020200055455A KR20200055455A KR20210136752A KR 20210136752 A KR20210136752 A KR 20210136752A KR 1020200055455 A KR1020200055455 A KR 1020200055455A KR 20200055455 A KR20200055455 A KR 20200055455A KR 20210136752 A KR20210136752 A KR 20210136752A
Authority
KR
South Korea
Prior art keywords
foot
mouth disease
monoclonal antibody
seq
variable region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020200055455A
Other languages
Korean (ko)
Other versions
KR102355688B1 (en
Inventor
김상직
정수교
안현주
민경진
변재원
박미영
표현미
구복경
나진주
유소윤
Original Assignee
한국생명공학연구원
대한민국(농림축산식품부 농림축산검역본부장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원, 대한민국(농림축산식품부 농림축산검역본부장) filed Critical 한국생명공학연구원
Priority to KR1020200055455A priority Critical patent/KR102355688B1/en
Publication of KR20210136752A publication Critical patent/KR20210136752A/en
Application granted granted Critical
Publication of KR102355688B1 publication Critical patent/KR102355688B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1009Picornaviridae, e.g. hepatitis A virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/085Picornaviridae, e.g. coxsackie virus, echovirus, enterovirus
    • G01N2333/09Foot-and-mouth disease virus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Communicable Diseases (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)

Abstract

The present invention relates to a monoclonal antibody derived from pigs capable of specifically binding to the serotype A of foot-and-mouth disease virus, to a kit for diagnosing foot-and-mouth disease virus comprising the same, to a method for diagnosing foot-and-mouth disease using the same, and to a method for preventing or treating foot-and-mouth disease. More specifically, the monoclonal antibody that specifically binds to the foot-and-mouth disease virus of the present invention can be used as an antibody for detecting foot-and-mouth disease virus by specifically binding to an antigen of the foot-and-mouth disease virus. Furthermore, the monoclonal antibody derived from pigs exhibits excellent neutralizing ability against the foot-and-mouth disease virus, so that it can be used as a vaccine for prevention and treatment of foot-and-mouth disease in an emergency without risks provoking rejection of an immune response in pigs.

Description

구제역 바이러스 혈청형 A형 검출용 단일클론항체 및 이의 용도{Monoclonal Antibody for Detecting Serotype A of Foot and Mouth Disease Virus, and Uses Thereof}Monoclonal Antibody for Detecting Serotype A of Foot and Mouth Disease Virus, and Uses Thereof

본 발명은 구제역 바이러스의 혈청형 A형에 특이적으로 결합 가능한 돼지 유래 단일클론항체 및 이를 포함하는 구제역 바이러스 진단용 키트, 이를 이용한 구제역의 진단 방법, 구제역의 예방 또는 치료 방법에 관한 것이다. The present invention relates to a pig-derived monoclonal antibody capable of specifically binding to serotype A of foot-and-mouth disease virus, a kit for diagnosing foot-and-mouth disease virus comprising the same, a method for diagnosing foot-and-mouth disease, and a method for preventing or treating foot-and-mouth disease using the same.

구제역은 소, 돼지, 염소, 사슴, 낙타 등 발굽이 2개인 우제류 동물에 대해 전염성이 높고 치사율이 5~55%인 바이러스성 질병으로서 국제수역사무국(Office International des Epizooties)에서 정한 가축 전염병 중 가장 위험한 A급(List A) 질병이며, 국내에서도 제1종 법정 전염병으로 분류된다. 구제역 바이러스(Foot and Mouth Disease Virus; FMDV)는 피코나바이러스과 애프도바이러스(Picornaviridae aphthovirus)에 속하는 RNA 바이러스로, 전세계적으로 항원 구조에 따른 7종의 혈청형 (O, A, Asia1, C, SAT1, SAT2, SAT3)과 70여 종의 아형 바이러스가 분포하고 있다. 구제역 바이러스에 감염된 동물은 혀, 점막 등 입과 발굽 주변에 수포 및 가피가 형성되고, 증세가 심해지면 수포가 터져 궤양으로 진전되어 죽게 된다. Foot-and-mouth disease is a viral disease with high contagiousness and a mortality rate of 5 to 55% for two-hoofed animals such as cattle, pigs, goats, deer, and camels. It is a Class A disease and is classified as a type 1 legal infectious disease in Korea. Foot and Mouth Disease Virus (FMDV) is an RNA virus belonging to the Picornaviridae aphthovirus , and has seven serotypes (O, A, Asia1, C, SAT1) according to the antigenic structure worldwide. , SAT2, SAT3) and about 70 subtype viruses are distributed. In animals infected with foot-and-mouth disease virus, blisters and crusts are formed around the mouth and hoofs, such as the tongue and mucous membranes, and when the symptoms worsen, the blisters burst and develop into ulcers and die.

국내에서는 구제역이 1934년 처음 발생하여 2000년 이후 경기도, 충청도 등 전국 각지에서 꾸준히 발생하고 있고, 최근 2017년에 9건, 2018년에 2건이, 2019년 1월에 3건이 보고되었다. 구제역 발생시 질병의 확산을 억제하거나 예방하기 위해 구제역 감수성 개체에 백신을 접종하지만, 여전히 살처분이 최선의 확산 방지책으로 사용되고 있어 구제역 발생 농가의 막대한 재산 피해가 불가피하다.In Korea, foot-and-mouth disease first occurred in 1934 and has been steadily occurring in various parts of the country including Gyeonggi-do and Chungcheong-do since 2000. Recently, 9 cases were reported in 2017, 2 cases in 2018, and 3 cases in January 2019. When foot-and-mouth disease occurs, vaccines are vaccinated to individuals susceptible to foot-and-mouth disease to suppress or prevent the spread of the disease, but killing is still used as the best way to prevent the spread of foot-and-mouth disease.

현재 구제역 바이러스를 진단하는 방법으로는 바이러스 유전자를 대량으로 증폭시키는 중합효소 연쇄반응(polymerase chain reaction) 등의 유전자 검출 방법과 항원-항체 반응을 이용한 바이러스의 단백질 항원 검출 방법으로 나눌 수 있다. 단백질 항원 검출 방법은 유전자 검출 방법에 비해 검사 시간 및 비용이 적게 소요되며, 구제역 바이러스의 항원과 특이적으로 결합하는 항체를 이용하기 때문에 구제역 양성 판정과 동시에 혈청형까지 분석할 수 있는 장점이 있다. 구제역 바이러스는 7종의 혈청형으로 뚜렷이 구분되어 혈청형 간의 상호 방어되지 않는 특성이 있어, 구제역 확산 방지를 위한 백신을 선정하기 위해서는 혈청형 분석이 반드시 필요하다.Currently, methods for diagnosing foot-and-mouth disease virus can be divided into gene detection methods such as polymerase chain reaction, which amplifies viral genes in large quantities, and virus protein antigen detection methods using antigen-antibody reaction. The protein antigen detection method requires less testing time and cost compared to the gene detection method, and since it uses an antibody that specifically binds to the antigen of the foot-and-mouth disease virus, it has the advantage of being able to analyze foot-and-mouth disease as well as the serotype at the same time. Foot-and-mouth disease virus is distinctly divided into 7 serotypes, and there is no mutual protection between the serotypes, so serotype analysis is absolutely necessary to select a vaccine for preventing the spread of foot-and-mouth disease.

따라서, 구제역 감염에 대한 정확한 진단과 혈청형 분석을 위해서는 구제역 바이러스의 개별 항원에 대해 높은 검출 민감도를 갖는 항체의 개발이 더욱 활발히 진행되어야 한다.Therefore, for accurate diagnosis and serotype analysis of foot-and-mouth disease infection, the development of antibodies with high detection sensitivity to individual antigens of foot-and-mouth disease virus should be more actively progressed.

본 발명은 구제역 바이러스 혈청형 A형에 특이적으로 결합하는 단일클론항체를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a monoclonal antibody that specifically binds to foot-and-mouth disease virus serotype A.

또한, 본 발명은 구제역 바이러스 혈청형 A형에 특이적으로 결합하는 단일클론항체의 중쇄 가변영역 또는 경쇄 가변영역을 코딩하는 폴리뉴클레오티드를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a polynucleotide encoding a heavy chain variable region or a light chain variable region of a monoclonal antibody that specifically binds to foot-and-mouth disease virus serotype A.

또한, 본 발명은 상기 폴리뉴클레오티드를 포함하는 재조합 벡터 및 이를 포함하는 숙주세포를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a recombinant vector comprising the polynucleotide and a host cell comprising the same.

또한, 본 발명은 상기 단일클론항체를 포함하는 구제역 진단용 키트를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a kit for diagnosing foot-and-mouth disease comprising the monoclonal antibody.

또한, 본 발명은 상기 단일클론항체를 인간을 제외한 동물에게 투여하는 단계를 포함하는 구제역의 예방 또는 치료 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method for preventing or treating foot-and-mouth disease comprising administering the monoclonal antibody to an animal other than a human.

본 발명의 일 양상은 구제역 바이러스(FMDV) 혈청형 A형에 특이적으로 결합하는 단일클론항체를 제공한다.One aspect of the present invention provides a monoclonal antibody that specifically binds to foot-and-mouth disease virus (FMDV) serotype A.

구제역 바이러스는 항원 구조에 따라 혈청형이 O, A, Asia1, C, SAT1, SAT2 및 SAT3으로 구분되며, 구제역 바이러스의 항원은 구조가 서로 뚜렷이 구분되기 때문에 하나의 혈청형에 대한 특이적인 항체를 사용하여 다른 혈청형을 검출하거나, 또는 면역을 형성시키는 것이 불가능하다. 즉, 구제역 진단시 A형 FMDV에 대한 항체를 포함하는 진단 키트를 이용할 경우, A형이 아닌 다른 혈청형의 구제역 감염 동물로부터 구제역 확진 판정을 할 수 없다. 또한, 구제역 의심 동물에 A형 FMDV 에 대한 백신(항체)을 접종할 경우, A형에 대한 방어 면역만 형성할 뿐 다른 혈청형에 대한 면역이 형성되지 않아 A형을 제외한 혈청형의 바이러스가 침입하면 구제역이 발생하게 된다. Foot-and-mouth disease virus is divided into serotypes O, A, Asia1, C, SAT1, SAT2 and SAT3 according to the antigenic structure. Since the antigens of foot-and-mouth disease virus have distinct structures, a specific antibody for one serotype is used. Therefore, it is impossible to detect other serotypes or to develop immunity. That is, when a diagnostic kit containing an antibody to FMDV type A is used for diagnosing foot-and-mouth disease, it is impossible to confirm the diagnosis of foot-and-mouth disease from animals infected with foot-and-mouth disease of a serotype other than type A. In addition, when an animal suspected of foot-and-mouth disease is inoculated with a vaccine (antibody) against type A FMDV, only protective immunity to type A is formed, but immunity to other serotypes is not formed, so viruses of serotypes other than type A invade This will cause foot-and-mouth disease.

본 명세서에서, "단일클론항체"는 하나의 항원 결정기(epitope)만을 인식하여 반응하는 특이성을 가지며, 단일 항체 형성세포로 형성되어 하나의 분자 구조로 이루어진 항체를 의미한다. 완전한 항체는 전체적으로 Y 모양을 하며, 2개의 긴 중쇄(heavy chain; H)과 2개의 짧은 경쇄(light chain; L)로 구성된다. 각 중쇄와 경쇄는 서로 황화결합으로 연결되며, 항원과 반응하는 부위인 가변영역(variable region; V)와 효과기능을 발현하는 부위인 불변영역(constant region; C)로 구분된다. 가변영역에는 항원과 특이적인 결합을 형성할 수 있도록 가변영역의 구조를 결정하며 항체결합세기를 조절하는 상보성 결정 부위(complementarity-determining region; CDR)가 존재한다. 일례로, A형 FMDV의 항체는 A형에 대해 특이적으로 결합하며, 완전한 형태의 항체뿐만 아니라 CDR을 포함하는 항체 분자의 항원 결합 단편(antigen binding fragment; Fab)일 수 있다.As used herein, the term "monoclonal antibody" refers to an antibody having specificity to react by recognizing only one epitope, and is formed from a single antibody-forming cell and has a single molecular structure. A complete antibody is generally Y-shaped and consists of two long heavy chains (H) and two short light chains (L). Each heavy chain and light chain are connected to each other by a sulfide bond, and are divided into a variable region (V), a region that reacts with an antigen, and a constant region (C), a region that expresses an effector function. In the variable region, there is a complementarity-determining region (CDR) that determines the structure of the variable region so as to form specific binding with an antigen and controls antibody binding strength. For example, the antibody of type A FMDV specifically binds to type A, and may be an antigen binding fragment (Fab) of an antibody molecule including a CDR as well as a complete antibody.

본 명세서에서, "중쇄(heavy chain)"는 항원에 특이성을 부여하기 위해 충분한 가변영역 서열을 갖는 아미노산 서열을 포함하는 가변영역 도메인 VH 및 3개의 불변영역 도메인 CH1, CH2 및 CH3를 포함하는 전장 중쇄 및 이의 단편을 모두 포함하는 의미로 해석되며, "경쇄(light chain)"는 항원에 특이성을 부여하기 위한 충분한 가변영역 서열을 갖는 아미노산 서열을 포함하는 가변영역 도메인 VL 및 불변영역 도메인 CL을 포함하는 전장 경쇄 및 이의 단편을 모두 포함하는 의미로 해석된다.As used herein, "heavy chain" refers to a full-length heavy chain comprising a variable region domain VH comprising an amino acid sequence having sufficient variable region sequence to confer specificity to an antigen and three constant region domains CH1, CH2 and CH3. and fragments thereof, and "light chain" includes a variable region domain VL and a constant region CL comprising an amino acid sequence having sufficient variable region sequence to confer specificity to an antigen. It is construed to include both full-length light chains and fragments thereof.

본 명세서에서, "CDR(complementarity determining region)"은 면역글로불린의 중쇄 및 경쇄의 고가변영역(hypervariable region)의 아미노산 서열을 의미한다. 중쇄 및 경쇄는 각각 3개의 CDR을 포함할 수 있다 (CDRH1, CDRH2, CDRH3 및 CDRL1, CDRL2, CDRL3). 상기 CDR은 항체가 항원 또는 에피토프에 결합하는 데 있어서 주요한 접촉 잔기를 제공할 수 있다.As used herein, "CDR (complementarity determining region)" refers to the amino acid sequence of the hypervariable region of the heavy chain and light chain of an immunoglobulin. The heavy and light chains may each comprise three CDRs (CDRH1, CDRH2, CDRH3 and CDRL1, CDRL2, CDRL3). The CDRs may provide key contact residues for the binding of an antibody to an antigen or epitope.

본 명세서에서, "항원 결합 단편"은 면역글로불린 전체 구조에 대한 그의 단편으로, 항원이 결합할 수 있는 부분을 포함하는 폴리펩티드의 일부를 의미한다. 예를 들어, F(ab')2, Fab', Fab, Fv 또는 scFv일 수 있으나, 이에 한정하지 않는다. 상기 항원 결합 단편 중 Fab는 경쇄 및 중쇄의 가변영역과 경쇄의 불변영역 및 중쇄의 첫 번째 불변영역(CH1)을 가지는 구조로 1개의 항원 결합 부위를 가진다. Fab'는 중쇄 CH1 도메인의 C-말단에 하나 이상의 시스테인 잔기를 포함하는 힌지 영역(hinge region)을 가진다는 점에서 Fab와 차이가 있다. F(ab')2 항체는 Fab'의 힌지 영역의 시스테인 잔기가 디설파이드 결합을 이루면서 생성된다. Fv는 중쇄 가변부위 및 경쇄 가변부위만을 가지고 있는 최소의 항체조각으로 Fv 단편을 생성하는 재조합 기술은 당업계에 널리 공지되어 있다. 이중쇄 Fv(two-chain Fv)는 비공유 결합으로 중쇄 가변부위와 경쇄 가변부위가 연결되어 있고 단쇄 Fv(single-chain Fv)는 일반적으로 펩타이드 링커를 통하여 중쇄의 가변영역과 단쇄의 가변영역이 공유 결합으로 연결되거나 또는 C-말단에서 바로 연결되어 있어서 이중쇄 Fv와 같이 다이머와 같은 구조를 이룰 수 있다. 상기 항원 결합 단편은 단백질 가수분해 효소를 이용해서 얻을 수 있고 (예를 들어, 전체 항체를 파파인으로 제한 절단하면 Fab를 얻을 수 있고 펩신으로 절단하면 F(ab')2 단편을 얻을 수 있다), 유전자 재조합 기술을 통하여 제작할 수 있다.As used herein, the term "antigen-binding fragment" refers to a fragment of the entire immunoglobulin structure, and refers to a portion of a polypeptide including a portion capable of binding an antigen. For example, it may be F(ab')2, Fab', Fab, Fv, or scFv, but is not limited thereto. Among the antigen-binding fragments, Fab has a structure having variable regions of light and heavy chains, constant regions of light chain and the first constant region (CH1) of heavy chain, and has one antigen-binding site. Fab' differs from Fab in that it has a hinge region comprising one or more cysteine residues at the C-terminus of the heavy chain CH1 domain. The F(ab') 2 antibody is produced by forming a disulfide bond with a cysteine residue in the hinge region of Fab'. Fv is a minimal antibody fragment having only a heavy chain variable region and a light chain variable region, and a recombinant technique for generating an Fv fragment is well known in the art. In a double-chain Fv (two-chain Fv), the heavy chain variable region and the light chain variable region are connected by a non-covalent bond, and in single-chain Fv (single-chain Fv), the heavy chain variable region and the single chain variable region are generally shared through a peptide linker. They are linked by a bond or are linked directly at the C-terminus to form a dimer-like structure like a double-stranded Fv. The antigen-binding fragment can be obtained using a proteolytic enzyme (for example, by restriction digestion of the whole antibody with papain, Fab can be obtained, and when digested with pepsin, a F(ab') 2 fragment can be obtained), It can be produced through genetic recombination technology.

이러한 A형 FMDV에 대한 단일클론항체는 돼지에서 유래된 것으로, 구제역 바이러스에 감염된 돼지로부터 형성된 항체의 염기서열을 일부 또는 전체를 포함할 수 있다. 일례로, 서열번호 2로 이루어진 중쇄 CDR1(complementarity determining region 1), 서열번호 3으로 이루어진 중쇄 CDR2(complementarity determining region 2) 및 서열번호 4로 이루어진 중쇄 CDR3(complementarity determining region 3)을 포함하는 중쇄 가변영역; 및 서열번호 6으로 이루어진 경쇄 CDR1(complementarity determining region 1), 서열번호 7로 이루어진 경쇄 CDR2(complementarity determining region 2) 및 서열번호 8로 이루어진 경쇄 CDR3(complementarity determining region 3)을 포함하는 경쇄 가변영역을 포함하는 것일 수 있다. 바람직하게는, 서열번호 1의 아미노산 서열을 포함하는 중쇄 가변영역 및 서열번호 5의 아미노산 서열을 포함하는 경쇄 가변영역을 포함하는 것일 수 있다. The monoclonal antibody against type A FMDV is derived from a pig, and may include some or all of the nucleotide sequence of an antibody formed from a pig infected with the foot-and-mouth disease virus. For example, a heavy chain variable region comprising a heavy chain CDR1 (complementarity determining region 1) consisting of SEQ ID NO: 2, a heavy chain complementarity determining region 2 (CDR2) consisting of SEQ ID NO: 3 and a heavy chain CDR3 (complementarity determining region 3) consisting of SEQ ID NO: 4 ; and a light chain variable region comprising a light chain CDR1 (complementarity determining region 1) of SEQ ID NO: 6, a light chain CDR2 (complementarity determining region 2) of SEQ ID NO: 7, and a light chain CDR3 (complementarity determining region 3) of SEQ ID NO: 8 may be doing Preferably, it may include a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 1 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 5.

상기 단일클론항체는 당 업계에 공지된 방법을 사용하여 제조될 수 있다. 일례로, 돼지의 혈액에서 분리된 말초 혈액 림프구(peripheral blood lymphocyte)에서 총 RNA를 추출하여 cDNA를 합성하고, 그 cDNA와 돼지 항체의 중쇄 가변영역 및 경쇄 가변영역에 특이적인 프라이머를 이용하여 발현 벡터를 제조한 후 그 발현 벡터를 숙주세포에 형질전환시키고, 그 중에서 A형 FMDV에 특이적으로 결합하는 항체만을 선택함으로써 FMDV 단일클론항체를 제조할 수 있다. The monoclonal antibody may be prepared using methods known in the art. For example, total RNA is extracted from peripheral blood lymphocytes isolated from swine blood to synthesize cDNA, and the cDNA and an expression vector using primers specific for the heavy chain variable region and the light chain variable region of the porcine antibody After preparing the FMDV monoclonal antibody can be prepared by transforming the expression vector into a host cell, and selecting only an antibody that specifically binds to type A FMDV among them.

최종 얻어진 FMDV 단일클론항체는 IgG1, IgG2a, IgG2b, IgG3, IgA, IgM 타입일 수 있다.The finally obtained FMDV monoclonal antibody may be of IgG 1 , IgG 2a , IgG 2b , Ig G3 , IgA or IgM type.

본 발명의 다른 양상은 서열번호 1의 아미노산 서열을 포함하는 구제역 바이러스 혈청형 A형에 특이적으로 결합하는 단일클론항체의 중쇄 가변영역을 코딩하는 폴리뉴클레오티드 및 서열번호 5의 아미노산 서열을 포함하는 구제역 바이러스 혈청형 A형에 특이적으로 결합하는 단일클론항체의 경쇄 가변영역을 코딩하는 폴리뉴클레오티드를 제공한다.Another aspect of the present invention is foot-and-mouth disease comprising a polynucleotide encoding the heavy chain variable region of a monoclonal antibody that specifically binds to foot-and-mouth disease virus serotype A comprising the amino acid sequence of SEQ ID NO: 1 and the amino acid sequence of SEQ ID NO: 5 Provided is a polynucleotide encoding the light chain variable region of a monoclonal antibody that specifically binds to virus serotype A.

본 발명의 다른 양상은 상기 폴리뉴클레오티드를 포함하는 재조합 벡터 및 상기 재조합 벡터를 포함하는 숙주세포를 제공한다.Another aspect of the present invention provides a recombinant vector comprising the polynucleotide and a host cell comprising the recombinant vector.

상기 재조합 벡터는 하나의 벡터에서 중쇄 가변영역 및 경쇄 가변영역이 동시에 발현되는 벡터 시스템이거나, 또는 각각의 벡터에서 중쇄 가변영역 및 경쇄 가변영역이 발현되는 벡터 시스템일 수 있다. 각각의 벡터를 이용하는 시스템인 경우에는 두 벡터를 동시 형질전환(co-transformation) 또는 표적 형질전환(targeted transformation)하여 숙주세포에 도입시킬 수 있다.The recombinant vector may be a vector system in which a heavy chain variable region and a light chain variable region are simultaneously expressed in one vector, or a vector system in which a heavy chain variable region and a light chain variable region are expressed in each vector. In the case of a system using each vector, the two vectors may be introduced into a host cell by co-transformation or targeted transformation.

상기 숙주세포는 발현 벡터를 안정화시켜 연속적으로 클로닝 또는 발현시킬 수 있는 세포로서 당 업계에 공지된 숙주세포를 제한 없이 사용할 수 있다. 일례로, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X1776, E. coli W3110, 바실러스 속 균주, 효모(Saccharomyce cerevisiae), 곤충 세포, 식물 세포, Sp2/0, CHO(chinese hamster ovary) K1, CHO DG44, PER.C6, W138, BHK, COS-7, 293, HepG2, Huh7, 3T3, RIN, MDCK 등의 동물 세포일 수 있다. The host cell is a cell that can be continuously cloned or expressed by stabilizing the expression vector, and a host cell known in the art can be used without limitation. For example, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X1776, E. coli W3110, Bacillus sp. strain, yeast ( Saccharomyce cerevisiae ), insect cells , plant cells, Sp2/0, CHO (chinese hamster ovary) K1, CHO DG44, PER.C6, W138, BHK, COS-7, 293, HepG2, Huh7, 3T3, RIN, animal cells such as MDCK.

이러한 숙주세포는 배양을 통해 단일클론항체를 생산할 수 있다. 배양 조건은 숙주세포의 증식 특성에 따라 조절할 수 있다. 상기 배양은 회분식(batchwise), 반-회분식(semi-batchwise), 연속식(continuous culture) 또는 유가식(fed-batch culture)으로 이루어질 수 있다. 배양 온도는 15℃ 내지 45℃, 바람직하게는 25℃ 내지 40℃, 더 바람직하게는 32℃ 내지 37℃일 수 있으며, 배지의 pH는 5 내지 9, 바람직하게는 6 내지 8, 더 바람직하게는 6.8일 수 있다. 배양 시간은 목적하는 바의 생성물의 형성이 최대에 도달할 때까지 지속되는 것이 바람직하며, 숙주세포의 최적 생산 효율을 나타내기 위해 7 내지 9일 동안 배양할 수 있다. 이와 같이 숙주세포의 배양을 통해 생산된 단일클론항체는 배지로 분비되어 잔류하며, 당 업계에 공지된 정제 방법을 사용하여 정제할 수 있다.These host cells can produce monoclonal antibodies through culture. Culture conditions can be adjusted according to the proliferation characteristics of the host cells. The culture may be performed in batchwise, semi-batchwise, continuous culture or fed-batch culture. The culture temperature may be 15° C. to 45° C., preferably 25° C. to 40° C., more preferably 32° C. to 37° C., and the pH of the medium is 5 to 9, preferably 6 to 8, more preferably It could be 6.8. The incubation time is preferably continued until the formation of the desired product reaches a maximum, and in order to show the optimal production efficiency of the host cells, the culture may be performed for 7 to 9 days. As such, the monoclonal antibody produced by culturing the host cell remains secreted into the medium, and can be purified using a purification method known in the art.

본 발명의 다른 양상은 상기 단일클론항체를 포함하는 구제역 진단용 키트 및 이를 이용하여 구제역 바이러스를 신속하고 정확하게 진단할 수 있는 구제역의 진단 방법을 제공한다.Another aspect of the present invention provides a kit for diagnosing foot-and-mouth disease comprising the monoclonal antibody and a method for diagnosing foot-and-mouth disease by using the same to rapidly and accurately diagnose foot-and-mouth disease.

상기 키트는 A형에 대한 FMDV 단일클론항체를 사용하여 구제역 바이러스의 감염 여부를 정량적으로 측정하는데 사용될 수 있으며, 항원-항체 반응을 이용한 효소 면역분석법(enzyme immunoassay), 방사선 면역분석법(radio immunoassay), 형광 면역분석법(fluorescence immunoassay) 등의 방법을 이용할 수 있다. The kit can be used to quantitatively measure whether foot-and-mouth disease virus is infected using the FMDV monoclonal antibody against type A, and includes an enzyme immunoassay using an antigen-antibody reaction, a radio immunoassay, A method such as fluorescence immunoassay may be used.

상기 진단 방법은 FMDV 단일클론항체를 직접 사용하거나, 또는 FMDV 단일클론항체를 이용한 진단용 키트를 사용하여 구제역을 진단할 수 있다. 구체적으로, 돼지 또는 소 등의 구제역 의심 동물로부터 분리된 생물학적 시료를 FMDV 단일클론항체와 반응시켜 항원-항체 반응으로 검출할 수 있다. 이때, 생물학적 시료는 혈액, 혈청, 혈장, 소변, 눈물, 침, 젖 등일 수 있으며, 채취가 용이하도록 체외로 분비되는 체액을 이용하는 것이 바람직하다.The diagnosis method can diagnose foot-and-mouth disease by directly using the FMDV monoclonal antibody or by using a diagnostic kit using the FMDV monoclonal antibody. Specifically, a biological sample isolated from an animal suspected of foot-and-mouth disease, such as a pig or cow, can be reacted with an FMDV monoclonal antibody to detect the antigen-antibody reaction. In this case, the biological sample may be blood, serum, plasma, urine, tears, saliva, milk, etc., and it is preferable to use a body fluid secreted outside the body for easy collection.

또한, 사용되는 FMDV 단일클론항체에 따라 혈청형을 분석할 수 있다. A형 FMDV에 특이적으로 결합하는 항체 (A-serotype) 또는 이를 포함한 키트를 사용할 경우에는 A형 구제역을 진단할 수 있으나, A형이 아닌 다른 혈청형 구제역을 진단할 수 없다. In addition, the serotype can be analyzed according to the FMDV monoclonal antibody used. When using an antibody (A-serotype) that specifically binds to type A FMDV or a kit including the same, type A foot-and-mouth disease can be diagnosed, but other serotypes other than type A foot-and-mouth disease cannot be diagnosed.

본 발명의 다른 양상은 전술한 단일클론항체를 인간을 제외한 동물에게 투여하는 단계를 포함하는 구제역의 예방 또는 치료 방법을 제공한다.Another aspect of the present invention provides a method for preventing or treating foot-and-mouth disease, comprising administering the above-described monoclonal antibody to an animal other than a human.

상기 예방 또는 치료 방법은 이미 구제역 바이러스에 감염되었거나, 감염 가능성이 높은 돼지를 대상으로 FMDV 단일클론항체를 투여하여 구제역 바이러스에 대한 면역을 형성시킬 수 있다. 이때, 사용되는 FMDV 단일클론항체에 따라 해당 혈청형에 대한 면역을 형성시킬 수 있다. A형 FMDV에 특이적으로 결합하는 항체 (A-serotype)를 투여할 경우에는 A형 FMDV에 대해 면역이 형성되어 A형 구제역에 대한 예방 또는 치료 효과를 나타낼 수 있다. The prevention or treatment method can form immunity to the foot-and-mouth disease virus by administering the FMDV monoclonal antibody to a pig that has already been infected with the foot-and-mouth disease virus or has a high possibility of infection. At this time, depending on the FMDV monoclonal antibody used, immunity to the corresponding serotype can be formed. When an antibody (A-serotype) that specifically binds to type A FMDV is administered, immunity to type A FMDV is formed, and thus a preventive or therapeutic effect against type A foot and mouth disease can be exhibited.

본 발명에 따른 구제역 바이러스에 특이적으로 결합하는 단일클론항체는 구제역 바이러스의 항원과 특이적으로 결합하여 구제역 바이러스의 검출용 항체로 사용될 수 있으며, 구제역 바이러스에 대한 중화능이 우수하고 돼지에서 유래되어 돼지의 면역 거부 반응 발생에 대한 우려가 없으므로 긴급시 구제역 예방용 및 치료용 백신으로 사용될 수 있다.The monoclonal antibody that specifically binds to the foot-and-mouth disease virus according to the present invention can be used as an antibody for detecting foot-and-mouth disease virus by specifically binding to the antigen of the foot-and-mouth disease virus. Since there is no concern about the occurrence of immune rejection, it can be used as a vaccine for prevention and treatment of foot-and-mouth disease in an emergency.

도 1은 본 발명의 일 구체예에 따른 실험 결과로, 패닝 이후 선별된 클론들의 FMDV의 다양한 혈청형에 대한 결합 특이성을 확인한 그래프이다.
도 2는 본 발명의 일 구체예에 따른 실험 결과로, CHO 세포주에서 발현된 단일클론항체 pigA4, pigA2, pigA25를 정제하여 SDS-PAGE로 확인한 이미지이다.
도 3은 본 발명의 일 구체예에 따른 실험 결과로, A형 FMDV에 대한 단일클론항체 pigA4, pigA2, pigA25의 결합력을 확인한 그래프이다.
1 is a graph confirming the binding specificity for various serotypes of FMDV of clones selected after panning as an experimental result according to an embodiment of the present invention.
Figure 2 is an experimental result according to an embodiment of the present invention, the monoclonal antibodies pigA4, pigA2, pigA25 expressed in the CHO cell line are purified and confirmed by SDS-PAGE.
3 is a graph confirming the binding affinity of monoclonal antibodies pigA4, pigA2, and pigA25 to type A FMDV as an experimental result according to an embodiment of the present invention.

이하, 첨부된 도면을 참조하며 본 발명을 보다 상세하게 설명한다. 그러나, 이러한 설명은 본 발명의 이해를 돕기 위하여 예시적으로 제시된 것일 뿐, 본 발명의 범위가 이러한 예시적인 설명에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. However, these descriptions are provided for illustrative purposes only to help the understanding of the present invention, and the scope of the present invention is not limited by these illustrative descriptions.

실시예 1. FMDV 단일클론항체의 제조Example 1. Preparation of FMDV monoclonal antibody

A형 FMDV (연천주)을 공격 접종한 돼지의 혈액으로부터 원심분리하여 PBL를 분리하였다. RNA 추출 키트 (TRIzol, Invitrogen)를 이용하여 PBL에서 total RNA를 추출한 후 이로부터 RT-PCR 키트 (SuperScript IV First-Strand Synthesis System, Invitrogen)를 이용하여 cDNA를 합성하였다. PBL was isolated by centrifugation from blood of pigs challenged with type A FMDV (Yeoncheonju). Total RNA was extracted from PBL using an RNA extraction kit (TRIzol, Invitrogen), and cDNA was synthesized from it using an RT-PCR kit (SuperScript IV First-Strand Synthesis System, Invitrogen).

합성된 cDNA로부터 돼지 항체 가변영역에 특이적인 프라이머 세트 (하기 표 1 참조)를 이용하여 VH, Vk, Vλ 유전자를 각각 증폭하였고, 중쇄 가변영역 유전자 (VH)와 경쇄 가변영역 유전자 (Vk, Vλ)를 G4S linker 서열을 이용하여 scFv 형태로 연결하였다. 합성된 library scFv 서열은 제한효소 SfiI를 이용하여 자르고 동일한 SfiI로 잘라진 pDR-D1 벡터에 T4 Ligase를 이용하여 연결하였다. 이 ligate DNA를 electrocompetent ER2738 E. coli에 Electroporator (Bio-rad)를 이용하여 도입하였다. 항체 라이브러리가 도입된 대장균으로부터 항체가 디스플레이된 재조합 파지(phage)를 얻기 위해 Helper phage (VCSM13, Stratagene)를 중복감염(superinfection)시키고 밤새 배양하였고, 최종적으로 PEG8000 (Sigma)을 이용하여 상등액에 존재하는 파지를 농축하였다. From the synthesized cDNA, the VH, Vk, and Vλ genes were respectively amplified using a primer set specific to the porcine antibody variable region (see Table 1 below), and the heavy chain variable region gene (VH) and light chain variable region gene (Vk, Vλ) was linked in the form of scFv using the G4S linker sequence. The synthesized library scFv sequence was cut using restriction enzyme SfiI and ligated to pDR-D1 vector cut with the same SfiI using T4 Ligase. This ligate DNA was introduced into electrocompetent ER2738 E. coli using Electroporator (Bio-rad). Helper phage (VCSM13, Stratagene) was superinfected and cultured overnight in order to obtain a recombinant phage in which the antibody library was introduced from E. coli, finally present in the supernatant using PEG8000 (Sigma). The phage was concentrated.

농축된 scFv가 표면발현된 라이브러리 파지를 FBS(Fetal bovine serum)가 코팅된 immunotube에서 각각 30분간 반응시켜서 비특이적 결합의 파지를 제거하고, 남은 파지를 FMDV 항원 A22 Iraq 또는 A zabaykalsky이 코팅된 immunotube에서 2시간 동안 반응시켰다. 5회의 반복적인 PBST 세척을 통해 결합하지 않은 파지를 제거하고, 최종적으로 결합하고 있는 파지를 0.1M Glycin HCl (pH 2.7)을 이용하여 용출하였다. 1M Tris-HCl (pH 8.0)으로 중화시킨 파지를 대장균에 감염시켜 다시 파지를 증폭한 후, 다음 회차의 패닝을 진행하였다. 패닝 회차가 진행될수록 세척 횟수를 증가시켜 특이적이고 강한 결합의 파지만 선택적으로 증폭되도록 하였다. The library phages in which the enriched scFv was surface-expressed were reacted for 30 minutes each in an immunotube coated with Fetal bovine serum (FBS) to remove phages of non-specific binding, and the remaining phages were transferred to an immunotube coated with FMDV antigen A22 Iraq or A zabaykalsky 2 reacted for an hour. Unbound phages were removed through repeated PBST washing 5 times, and finally bound phages were eluted using 0.1M Glycin HCl (pH 2.7). The phages neutralized with 1M Tris-HCl (pH 8.0) were infected with E. coli to amplify the phages again, and then the next round of panning was performed. As the panning cycle progressed, the number of washings was increased so that only phages with specific and strong binding were selectively amplified.

3차 패닝 후 96개의 클론을 무작위로 선정하여 96 deep well plate (Bioneer)에서 배양한 후 helper phage를 이용하여 각 클론에 대한 재조합 파지를 얻었다. 이를 FMDV 항원과 FBS가 코팅된 microtiter plate의 well에 결합시키고, 개별 재조합 파지 클론들의 결합능을 anti-M13-Ab-HRP 항체를 이용하여 확인하였다. 대조군 (FBS)에 결합하지 않고 FMDV에만 특이적으로 결합하는 항체 클론들을 확인하였고, 서열 분석을 통해 Unique한 서열의 항체 클론들을 선별하였다.After the third panning, 96 clones were randomly selected and cultured in a 96 deep well plate (Bioneer), and then recombinant phage for each clone was obtained using a helper phage. The FMDV antigen and the FBS-coated microtiter plate were bound to the wells, and the binding ability of individual recombinant phage clones was confirmed using an anti-M13-Ab-HRP antibody. Antibody clones that specifically bind only to FMDV without binding to the control (FBS) were identified, and antibody clones with unique sequences were selected through sequence analysis.

프라이머primer 염기서열 (5'> 3')base sequence (5'> 3') 서열번호SEQ ID NO: VH-ForwardVH-Forward PVH1-2PVH1-2 GCGGCCCAGC CGGCCATGGC Cgaggtgaag ctggtggagt gGCGGCCCAGC CGGCCATGGC Cgaggtgaag ctggtggagt g 99 PVH1mPVH1m GCGGCCCAGC CGGCCATGGC CgaggWgaag ctggtggagt cGCGGCCCAGC CGGCCATGGC CgaggWgaag ctggtggagt c 1010 PVH1S6PVH1S6 GCGGCCCAGC CGGCCATGGC Ccaggagaag ctggtggagt cGCGGCCCAGC CGGCCATGGC Ccaggagaag ctggtggagt c 1111 PVH1PVH1 GCGGCCCAGC CGGCCATGGC Cgaggagaag ctggtggagt ctgGCGGCCCAGC CGGCCATGGC Cgaggagaag ctggtggagt ctg 1212 VH-ReverseVH-Reverse PJH12RPJH12R cgagccgccg ccgccagatc cacctccacc tgaacctcct ccacctgagg agacggtgac caggcgagccgccg ccgccagatc cacctccacc tgaacctcct ccacctgagg agacggtgac cagg 1313 PJH3RPJH3R cgagccgccg ccgccagatc cacctccacc tgaacctcct ccacctgagg agacggtgac ctcgcgagccgccg ccgccagatc cacctccacc tgaacctcct ccacctgagg agacggtgac ctcg 1414 PJH4RPJH4R cgagccgccg ccgccagatc cacctccacc tgaacctcct ccacccgagg cgtcgtagac taggcgagccgccg ccgccagatc cacctccacc tgaacctcct ccacccgagg cgtcgtagac tagg 1515 PJH5RPJH5R cgagccgccg ccgccagatc cacctccacc tgaacctcct ccacctgagg acacgacgac ttcaaccgagccgccg ccgccagatc cacctccacc tgaacctcct ccacctgagg acacgacgac ttcaac 1616 Vk-ForwardVk-Forward PVk1PVk1 ggatctggcg gcggcggctc ggccatccag ctgacccagt cggatctggcg gcggcggctc ggccatccag ctgacccagt c 1717 PVk2-1PVk2-1 ggatctggcg gcggcggctc ggccatggtg ttgacccaga gggatctggcg gcggcggctc ggccatggtg ttgacccaga g 1818 PVk2-2PVk2-2 ggatctggcg gcggcggctc ggccatYgtg ctgacccaga cggatctggcg gcggcggctc ggccatYgtg ctgacccaga c 1919 PVk3PVk3 ggatctggcg gcggcggctc ggaaattgtg ctgacccagt cggatctggcg gcggcggctc ggaaattgtg ctgacccagt c 2020 PVk5PVk5 ggatctggcg gcggcggctc ggaaacaaca gtcactcaat cggatctggcg gcggcggctc ggaaacaaca gtcactcaat c 2121 Vk-ReverseVk-Reverse PJk12RPJk12R CTGCTCGAGG CCTCCCGGGC CtttgagYtc cagcttggtY cCTGCTCGAGG CCTCCCGGGC CtttgagYtc cagcttggtY c 2222 PJk3RPJk3R CTGCTCGAGG CCTCCCGGGC Ctttgggctc cactttggtc cCTGCTCGAGG CCTCCCGGGC Ctttgggctc cactttggtc c 2323 PJk4RPJk4R CTGCTCGAGG CCTCCCGGGC Ctttgatttc cagcttggtc cCTGCTCGAGG CCTCCCGGGC Ctttgatttc cagcttggtc c 2424 PJk5RPJk5R CTGCTCGAGG CCTCCCGGGC Cttcaatctc cacggatgtc cCTGCTCGAGG CCTCCCGGGC Cttcaatctc cacggatgtc c 2525 Vλ-ForwardVλ-Forward PVL1/5PVL1/5 ggatctggcg gcggcggctc gcaggctgtg ctgacKcagcggatctggcg gcggcggctc gcaggctgtg ctgacKcagc 2626 PVL2PVL2 ggatctggcg gcggcggctc gcagtctgcc ctgactcagcggatctggcg gcggcggctc gcagtctgcc ctgactcagc 2727 PVL3-1PVL3-1 ggatctggcg gcggcggctc gtcctgtgag ctgactcagcggatctggcg gcggcggctc gtcctgtgag ctgactcagc 2828 PVL3-2PVL3-2 ggatctggcg gcggcggctc gtcctatgag gtgactcagcggatctggcg gcggcggctc gtcctatgag gtgactcagc 2929 PVL3-3PVL3-3 ggatctggcg gcggcggctc gtcctatgag ctgacccagcggatctggcg gcggcggctc gtcctatgag ctgacccagc 3030 PVL3-4PVL3-4 ggatctggcg gcggcggctc gtcttctMag ctgactcagcggatctggcg gcggcggctc gtcttctMag ctgactcagc 3131 PVL7-1PVL7-1 ggatctggcg gcggcggctc gtcccagatg gtgactcaggggatctggcg gcggcggctc gtcccagatg gtgactcagg 3232 PVL7-2PVL7-2 ggatctggcg gcggcggctc gccaagctgt gtgactcaggggatctggcg gcggcggctc gccaagctgt gtgactcagg 3333 PVL8PVL8 ggatctggcg gcggcggctc gtctcagact gtgatccaggggatctggcg gcggcggctc gtctcagact gtgatccagg 3434 Vλ-ReverseVλ - Reverse PJL23RPJL23R CTGCTCGAGG CCTCCCGGGC Cgaggacggt cagatgggtc cCTGCTCGAGG CCTCCCGGGC Cgaggacggt cagatgggtc c 3535 PJL4RPJL4R CTGCTCGAGG CCTCCCGGGC Cgaggacact tagacgggtc cCTGCTCGAGG CCTCCCGGGC Cgaggacact tagacgggtc c 3636 scFv-ForwardscFv-Forward GACGACGACG ACGACGCGGC CCAGCCGGCC ATGGCCGACGACGACG ACGACGCGGC CCAGCCGGCC ATGGCC 3737 scFv-ReversescFv-Reverse GACGACGACG ACGACCTGCT CGAGGCCTCC CGGGCCGACGACGACG ACGACCTGCT CGAGGCCTCC CGGGCC 3838

실시예 2. 단일클론항체의 FMDV 혈청형 특이성 분석Example 2. FMDV serotype specificity analysis of monoclonal antibodies

선별된 단일클론항체의 FMDV 혈청형 특이성을 확인하기 위해, FMDV O (O manisa), A (A22 Iraq 또는 A zabaykalsky), SAT1, SAT2, SAT3 혈청형 및 대조군 (BSA)에 대하여 실시예 1에서 선별된 단일클론항체의 결합능을 분석하였다.In order to confirm the FMDV serotype specificity of the selected monoclonal antibodies, FMDV O (O manisa), A (A22 Iraq or A zabaykalsky), SAT1, SAT2, SAT3 serotypes and the control group (BSA) were selected in Example 1 The binding capacity of the monoclonal antibody was analyzed.

먼저, 정밀한 항체 결합능 분석을 위해 항체 클론들의 scFv 서열을 동물세포 발현벡터 pDR-OriP-Fc1에 클로닝하여 293E 세포에서 scFv-Fc형태로 발현하고, protein G affinity column (GE Healthcare)을 이용하여 정제하였다. scFv-Fc항체 2.5 ng 를 각각의 항원이 코팅된 microtiter well에 반응시키고 결합된 scFv-Fc를 anti-human IgG (Fc specific)-HRP (Jackson ImmunoResearch Laboratories)를 이용하여 측정하였다. 그 결과를 도 1에 나타내었다. First, for precise antibody binding capacity analysis, scFv sequences of antibody clones were cloned into animal cell expression vector pDR-OriP-Fc1, expressed in scFv-Fc form in 293E cells, and purified using protein G affinity column (GE Healthcare). . 2.5 ng of scFv-Fc antibody was reacted with each antigen-coated microtiter well, and bound scFv-Fc was measured using anti-human IgG (Fc specific)-HRP (Jackson ImmunoResearch Laboratories). The results are shown in FIG. 1 .

도 1를 통해, A형 FMDV 항원에만 특이적이고 높은 결합능을 보이며 서열정보가 서로 다른 클론 pigA4, pigA2, pigA25를 최종적으로 선별하였다.1, clones pigA4, pigA2, and pigA25 that are specific only to the A-type FMDV antigen and exhibit high binding ability and have different sequence information were finally selected.

실시예 3. CHO 세포주를 이용한 FMDV 단일클론항체 생산 및 정제Example 3. FMDV monoclonal antibody production and purification using CHO cell line

실시예 2에서 선별된 3개의 클론으로부터 단일클론항체를 생산하기 위해, 각 클론의 scFv서열을 pCEP vector에 형질전환하여 재조합 벡터를 구축하였다. 이를 CHO 세포주에 형질전환하여 유가식 방법으로 37℃, pH 6.8의 조건에서 하루 배양 후, 추가적으로 glucose를 첨가하여 발현 및 세포의 성장을 촉진하였다. 이후, 32℃, pH 6.8의 조건으로 7일 동안 배양하였다. scFv-Fc 형태로 발현된 단백질을 protein G affinity column (GE Healthcare)을 이용하여 정제하였다. To produce monoclonal antibodies from the three clones selected in Example 2, the scFv sequence of each clone was transformed into a pCEP vector to construct a recombinant vector. This was transformed into a CHO cell line and cultured for one day at 37°C and pH 6.8 in a fed-batch method, and then glucose was additionally added to promote expression and cell growth. Then, it was cultured for 7 days under conditions of 32 °C and pH 6.8. The protein expressed in the form of scFv-Fc was purified using protein G affinity column (GE Healthcare).

도 2와 같은 높은 수득률로 단일클론항체 pigA4, pigA2, pigA25를 확보하였다.The monoclonal antibodies pigA4, pigA2, and pigA25 were obtained with a high yield as shown in FIG.

실시예 4. FMDV 단일클론항체의 결합력 분석Example 4. Avidity analysis of FMDV monoclonal antibody

A형 FMDV에 대한 실시예 3에서 정제된 단일클론항체의 결합능을 비교 분석하였다. The binding capacity of the monoclonal antibody purified in Example 3 to type A FMDV was comparatively analyzed.

96-well ELISA plate에 FMDV A형 단백질을 코팅한 후 103 pM 부터 1/4의 농도로 희석한 각각의 단일클론항체들을 첨가하여 단백질과 항체가 서로 결합하도록 반응시켰다. PBST를 이용한 세 번의 세척 과정 이후, HRP 결합 이차 항체(HRP-conjugated secondary antibody)를 첨가하여 반응시켰다. 이후, PBST를 이용한 네 번의 세척 과정 후 HRP와 기질(substrate)의 반응을 통해 흡광도 측정기로 신호 검출을 수행하였다. 그 결과를 도 3 및 하기 표 2에 나타내었다.After coating the FMDV type A protein on a 96-well ELISA plate, each monoclonal antibody diluted from 10 3 pM to 1/4 concentration was added to allow the protein and antibody to bind to each other. After three washes using PBST, an HRP-conjugated secondary antibody was added and reacted. Thereafter, after four washing processes using PBST, signal detection was performed with an absorbance meter through the reaction of HRP with a substrate. The results are shown in FIG. 3 and Table 2 below.

단일클론항체monoclonal antibody 결합력 (pM)binding force (pM) pigA4pigA4 17.417.4 pigA2pigA2 8.88.8 pigA25pigA25 10.910.9

도 3 및 상기 표 2와 같이, FMDV 단일클론항체 pigA4, pigA2, pigA25는 8.8 ~ 17.4 pM 수준의 높은 결합력(binding affinity)을 나타내는 것으로 확인되었다.As shown in FIG. 3 and Table 2, the FMDV monoclonal antibodies pigA4, pigA2, and pigA25 were confirmed to exhibit high binding affinity at a level of 8.8 to 17.4 pM.

실시예 5. Competition ELISA 측정Example 5. Competition ELISA measurement

기존 FMDV 진단 키트 (예: PrioCHECK® FMDV Type A Antibody ELISA Kit)는 competitive ELISA 방식으로, 마우스 유래의 FMDV 특이 단일클론항체가 동물에서 분리된 혈청에 존재하는 FMDV 항체와 경쟁하여 ELISA 플레이트에 코팅된 FMDV 항원과 결합하지 못하는 것을 탐지한다.The existing FMDV diagnostic kit (eg PrioCHECK® FMDV Type A Antibody ELISA Kit) is a competitive ELISA method, in which a mouse-derived FMDV-specific monoclonal antibody competes with the FMDV antibody present in serum isolated from an animal, and FMDV coated on an ELISA plate. Detects inability to bind antigen.

실시예 3에서 제조된 단일클론항체 중 결합력이 우수한 pigA4, pigA25를 이용하여 FMDV 진단 키트에 적용 가능한지를 테스트하였다. 먼저, FMDV 항원이 코팅된 ELISA plate에 9종의 소 혈청 또는 2종의 돼지 혈청을 각각 결합시킨 후, 한 번의 세척 과정을 수행하였다. 이후, 신호 검출을 위한 HRP 결합 이차 항체 복합체를 첨가하여 반응시키고, 네 번의 세척 과정 후 흡광도 측정기를 이용하여 HRP의 신호를 검출하였다. 그 결과를 하기 표 3에 나타내었다.Among the monoclonal antibodies prepared in Example 3, pigA4 and pigA25 having excellent binding strength were used to test whether they can be applied to the FMDV diagnostic kit. First, 9 types of bovine sera or 2 types of porcine sera were respectively bound to an ELISA plate coated with FMDV antigen, and then one washing process was performed. Thereafter, the HRP-binding secondary antibody complex for signal detection was added and reacted, and the HRP signal was detected using an absorbance meter after four washing steps. The results are shown in Table 3 below.

PI 값 (%)PI value (%) pigA4pigA4 pigA25pigA25 대조군control 소 혈청 1bovine serum 1 98.398.3 97.297.2 8282 소 혈청 2bovine serum 2 98.298.2 96.196.1 75.975.9 소 혈청 3bovine serum 3 96.896.8 93.693.6 74.374.3 소 혈청 4bovine serum 4 97.897.8 97.897.8 73.473.4 소 혈청 5bovine serum 5 97.897.8 74.174.1 69.269.2 소 혈청 6bovine serum 6 98.098.0 95.395.3 78.978.9 소 혈청 7bovine serum 7 96.596.5 95.495.4 77.677.6 소 혈청 8bovine serum 8 92.792.7 86.586.5 74.274.2 소 혈청 9bovine serum 9 97.997.9 92.492.4 72.572.5 돼지 혈청 1Pig Serum 1 89.089.0 94.094.0 66.066.0 돼지 혈청 2Pig Serum 2 72.072.0 97.097.0 57.057.0

상기 표 3과 같이, 진단 키트 내 마우스 유래의 FMDV 특이 단일클론항체 대신 FMDV 단일클론항체 pigA4, pigA25를 사용한 결과, 기존 키트 (대조군)에 비해 현저히 개선된 결과 값을 갖는 것으로 확인되었다. 특히, pigA4가 소 혈청에 대한 우수한 PI 값을 나타내는 것을 확인하였다. 이러한 결과는 pigA4가 구제역 A형 항체진단을 위한 새로운 A형 FMDV 단일클론항체로 사용 가능함을 시사한다.As shown in Table 3 above, as a result of using the FMDV monoclonal antibodies pigA4 and pigA25 instead of the FMDV-specific monoclonal antibody derived from the mouse in the diagnostic kit, it was confirmed to have significantly improved result values compared to the existing kit (control group). In particular, it was confirmed that pigA4 exhibited excellent PI values for bovine serum. These results suggest that pigA4 can be used as a new type A FMDV monoclonal antibody for diagnosing foot-and-mouth disease type A antibody.

상기 단일클론항체 pigA4의 아미노산 서열은 하기 표 4와 같다.The amino acid sequence of the monoclonal antibody pigA4 is shown in Table 4 below.

pigA4pigA4 아미노산 서열amino acid sequence VH(서열번호 1)VH (SEQ ID NO: 1) EEKLVESGGGWVWPGGSLRLSCVGSGFTFSSYEISWVRQAPGKGLEWLAGIGSSGSNTYYVDSVKGRFTISRDNSQNTAYLQMNSLRTEDTAHYYCARGGSRYGSSLMDLWGPGVEVVVSSEEKLVESGGGWVWPGGSLRLSCVGSGFTFS SYEIS WVRQAPGKGLEWLA GIGSSGSNTYYVDSVKG RFTISRDNSQNTAYLQMNSLRTEDTAHYYCAR GGSRYGSSLMDL WGPGVEVVVSS VL(서열번호 5)VL (SEQ ID NO: 5) ELTQPSSESVALGNTAKITCSGDLLDEKYTQWYQQKPGQAPLLLIYRDSERPSGIPERFSGSSSGKTATLTITGAQAEDEADYYCQSADSSDDAIFGGGTRLSVLELTQPSSESVALGNTAKITC SGDLLDEKYTQ WYQQKPGQAPLLLIY RDSERPS GIPERFSGSSSGKTATLTITGAQAEDEADYYC QSADSSDDAI FGGGTRLSVL

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, with respect to the present invention, the preferred embodiments have been looked at. Those of ordinary skill in the art to which the present invention pertains will understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments are to be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

<110> Korea Research Institute of Bioscience and Biotechnology <120> Monoclonal Antibody for Detecting Serotype A of Foot and Mouth Disease Virus, and Uses Thereof <130> PN200054 <160> 38 <170> KoPatentIn 3.0 <210> 1 <211> 121 <212> PRT <213> Artificial Sequence <220> <223> variable region of heavy chain <400> 1 Glu Glu Lys Leu Val Glu Ser Gly Gly Gly Trp Val Trp Pro Gly Gly 1 5 10 15 Ser Leu Arg Leu Ser Cys Val Gly Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30 Glu Ile Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Leu 35 40 45 Ala Gly Ile Gly Ser Ser Gly Ser Asn Thr Tyr Tyr Val Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Gln Asn Thr Ala Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Thr Glu Asp Thr Ala His Tyr Tyr Cys 85 90 95 Ala Arg Gly Gly Ser Arg Tyr Gly Ser Ser Leu Met Asp Leu Trp Gly 100 105 110 Pro Gly Val Glu Val Val Val Ser Ser 115 120 <210> 2 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> variable region of heavy chain - CDR1 <400> 2 Ser Tyr Glu Ile Ser 1 5 <210> 3 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> variable region of heavy chain - CDR2 <400> 3 Gly Ile Gly Ser Ser Gly Ser Asn Thr Tyr Tyr Val Asp Ser Val Lys 1 5 10 15 Gly <210> 4 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> variable region of heavy chain - CDR3 <400> 4 Gly Gly Ser Arg Tyr Gly Ser Ser Leu Met Asp Leu 1 5 10 <210> 5 <211> 105 <212> PRT <213> Artificial Sequence <220> <223> variable region of light chain <400> 5 Glu Leu Thr Gln Pro Ser Ser Glu Ser Val Ala Leu Gly Asn Thr Ala 1 5 10 15 Lys Ile Thr Cys Ser Gly Asp Leu Leu Asp Glu Lys Tyr Thr Gln Trp 20 25 30 Tyr Gln Gln Lys Pro Gly Gln Ala Pro Leu Leu Leu Ile Tyr Arg Asp 35 40 45 Ser Glu Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser Ser Ser 50 55 60 Gly Lys Thr Ala Thr Leu Thr Ile Thr Gly Ala Gln Ala Glu Asp Glu 65 70 75 80 Ala Asp Tyr Tyr Cys Gln Ser Ala Asp Ser Ser Asp Asp Ala Ile Phe 85 90 95 Gly Gly Gly Thr Arg Leu Ser Val Leu 100 105 <210> 6 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> variable region of light chain - CDR1 <400> 6 Ser Gly Asp Leu Leu Asp Glu Lys Tyr Thr Gln 1 5 10 <210> 7 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> variable region of light chain - CDR2 <400> 7 Arg Asp Ser Glu Arg Pro Ser 1 5 <210> 8 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> variable region of light chain - CDR3 <400> 8 Gln Ser Ala Asp Ser Ser Asp Asp Ala Ile 1 5 10 <210> 9 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVH1-2 <400> 9 gcggcccagc cggccatggc cgaggtgaag ctggtggagt g 41 <210> 10 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVH1m <400> 10 gcggcccagc cggccatggc cgaggwgaag ctggtggagt c 41 <210> 11 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVH1S6 <400> 11 gcggcccagc cggccatggc ccaggagaag ctggtggagt c 41 <210> 12 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> PVH1 <400> 12 gcggcccagc cggccatggc cgaggagaag ctggtggagt ctg 43 <210> 13 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> PJH12R <400> 13 cgagccgccg ccgccagatc cacctccacc tgaacctcct ccacctgagg agacggtgac 60 cagg 64 <210> 14 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> PJH3R <400> 14 cgagccgccg ccgccagatc cacctccacc tgaacctcct ccacctgagg agacggtgac 60 ctcg 64 <210> 15 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> PJH4R <400> 15 cgagccgccg ccgccagatc cacctccacc tgaacctcct ccacccgagg cgtcgtagac 60 tagg 64 <210> 16 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> PJH5R <400> 16 cgagccgccg ccgccagatc cacctccacc tgaacctcct ccacctgagg acacgacgac 60 ttcaac 66 <210> 17 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVk1 <400> 17 ggatctggcg gcggcggctc ggccatccag ctgacccagt c 41 <210> 18 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVk2-1 <400> 18 ggatctggcg gcggcggctc ggccatggtg ttgacccaga g 41 <210> 19 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVk2-2 <400> 19 ggatctggcg gcggcggctc ggccatygtg ctgacccaga c 41 <210> 20 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVk3 <400> 20 ggatctggcg gcggcggctc ggaaattgtg ctgacccagt c 41 <210> 21 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVk5 <400> 21 ggatctggcg gcggcggctc ggaaacaaca gtcactcaat c 41 <210> 22 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PJk12R <400> 22 ctgctcgagg cctcccgggc ctttgagytc cagcttggty c 41 <210> 23 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PJk3R <400> 23 ctgctcgagg cctcccgggc ctttgggctc cactttggtc c 41 <210> 24 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PJk4R <400> 24 ctgctcgagg cctcccgggc ctttgatttc cagcttggtc c 41 <210> 25 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PJk5R <400> 25 ctgctcgagg cctcccgggc cttcaatctc cacggatgtc c 41 <210> 26 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL1/5 <400> 26 ggatctggcg gcggcggctc gcaggctgtg ctgackcagc 40 <210> 27 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL2 <400> 27 ggatctggcg gcggcggctc gcagtctgcc ctgactcagc 40 <210> 28 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL3-1 <400> 28 ggatctggcg gcggcggctc gtcctgtgag ctgactcagc 40 <210> 29 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL3-2 <400> 29 ggatctggcg gcggcggctc gtcctatgag gtgactcagc 40 <210> 30 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL3-3 <400> 30 ggatctggcg gcggcggctc gtcctatgag ctgacccagc 40 <210> 31 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL3-4 <400> 31 ggatctggcg gcggcggctc gtcttctmag ctgactcagc 40 <210> 32 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL7-1 <400> 32 ggatctggcg gcggcggctc gtcccagatg gtgactcagg 40 <210> 33 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL7-2 <400> 33 ggatctggcg gcggcggctc gccaagctgt gtgactcagg 40 <210> 34 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL8 <400> 34 ggatctggcg gcggcggctc gtctcagact gtgatccagg 40 <210> 35 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PJL23R <400> 35 ctgctcgagg cctcccgggc cgaggacggt cagatgggtc c 41 <210> 36 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PJL4R <400> 36 ctgctcgagg cctcccgggc cgaggacact tagacgggtc c 41 <210> 37 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> scFv-Forward <400> 37 gacgacgacg acgacgcggc ccagccggcc atggcc 36 <210> 38 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> scFv-Reverse <400> 38 gacgacgacg acgacctgct cgaggcctcc cgggcc 36 <110> Korea Research Institute of Bioscience and Biotechnology <120> Monoclonal Antibody for Detecting Serotype A of Foot and Mouth Disease Virus, and Uses Thereof <130> PN200054 <160> 38 <170> KoPatentIn 3.0 <210> 1 <211> 121 <212> PRT <213> Artificial Sequence <220> <223> variable region of heavy chain <400> 1 Glu Glu Lys Leu Val Glu Ser Gly Gly Gly Trp Val Trp Pro Gly Gly 1 5 10 15 Ser Leu Arg Leu Ser Cys Val Gly Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30 Glu Ile Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Leu 35 40 45 Ala Gly Ile Gly Ser Ser Gly Ser Asn Thr Tyr Tyr Val Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Gln Asn Thr Ala Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Thr Glu Asp Thr Ala His Tyr Tyr Cys 85 90 95 Ala Arg Gly Gly Ser Arg Tyr Gly Ser Ser Leu Met Asp Leu Trp Gly 100 105 110 Pro Gly Val Glu Val Val Val Ser Ser 115 120 <210> 2 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> variable region of heavy chain - CDR1 <400> 2 Ser Tyr Glu Ile Ser 1 5 <210> 3 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> variable region of heavy chain - CDR2 <400> 3 Gly Ile Gly Ser Ser Gly Ser Asn Thr Tyr Tyr Val Asp Ser Val Lys 1 5 10 15 Gly <210> 4 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> variable region of heavy chain - CDR3 <400> 4 Gly Gly Ser Arg Tyr Gly Ser Ser Leu Met Asp Leu 1 5 10 <210> 5 <211> 105 <212> PRT <213> Artificial Sequence <220> <223> variable region of light chain <400> 5 Glu Leu Thr Gln Pro Ser Ser Glu Ser Val Ala Leu Gly Asn Thr Ala 1 5 10 15 Lys Ile Thr Cys Ser Gly Asp Leu Leu Asp Glu Lys Tyr Thr Gln Trp 20 25 30 Tyr Gln Gln Lys Pro Gly Gln Ala Pro Leu Leu Leu Ile Tyr Arg Asp 35 40 45 Ser Glu Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser Ser Ser Ser 50 55 60 Gly Lys Thr Ala Thr Leu Thr Ile Thr Gly Ala Gln Ala Glu Asp Glu 65 70 75 80 Ala Asp Tyr Tyr Cys Gln Ser Ala Asp Ser Ser Asp Asp Ala Ile Phe 85 90 95 Gly Gly Gly Thr Arg Leu Ser Val Leu 100 105 <210> 6 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> variable region of light chain - CDR1 <400> 6 Ser Gly Asp Leu Leu Asp Glu Lys Tyr Thr Gln 1 5 10 <210> 7 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> variable region of light chain - CDR2 <400> 7 Arg Asp Ser Glu Arg Pro Ser 1 5 <210> 8 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> variable region of light chain - CDR3 <400> 8 Gln Ser Ala Asp Ser Ser Asp Asp Ala Ile 1 5 10 <210> 9 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVH1-2 <400> 9 gcggcccagc cggccatggc cgaggtgaag ctggtggagt g 41 <210> 10 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVH1m <400> 10 gcggcccagc cggccatggc cgaggwgaag ctggtggagt c 41 <210> 11 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVH1S6 <400> 11 gcggcccagc cggccatggc ccaggagaag ctggtggagt c 41 <210> 12 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> PVH1 <400> 12 gcggcccagc cggccatggc cgaggagaag ctggtggagt ctg 43 <210> 13 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> PJH12R <400> 13 cgagccgccg ccgccagatc cacctccacc tgaacctcct ccacctgagg agacggtgac 60 cagg 64 <210> 14 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> PJH3R <400> 14 cgagccgccg ccgccagatc cacctccacc tgaacctcct ccacctgagg agacggtgac 60 ctcg 64 <210> 15 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> PJH4R <400> 15 cgagccgccg ccgccagatc cacctccacc tgaacctcct ccacccgagg cgtcgtagac 60 tag 64 <210> 16 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> PJH5R <400> 16 cgagccgccg ccgccagatc cacctccacc tgaacctcct ccacctgagg acacgacgac 60 ttcaac 66 <210> 17 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVk1 <400> 17 ggatctggcg gcggcggctc ggccatccag ctgacccagt c 41 <210> 18 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVk2-1 <400> 18 ggatctggcg gcggcggctc ggccatggtg ttgacccaga g 41 <210> 19 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVk2-2 <400> 19 ggatctggcg gcggcggctc ggccatygtg ctgacccaga c 41 <210> 20 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVk3 <400> 20 ggatctggcg gcggcggctc ggaaattgtg ctgacccagt c 41 <210> 21 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PVk5 <400> 21 ggatctggcg gcggcggctc ggaaacaaca gtcactcaat c 41 <210> 22 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PJk12R <400> 22 ctgctcgagg cctcccgggc ctttgagytc cagcttggty c 41 <210> 23 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PJk3R <400> 23 ctgctcgagg cctcccgggc ctttgggctc cactttggtc c 41 <210> 24 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PJk4R <400> 24 ctgctcgagg cctcccgggc ctttgatttc cagcttggtc c 41 <210> 25 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PJk5R <400> 25 ctgctcgagg cctcccgggc cttcaatctc cacggatgtc c 41 <210> 26 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL1/5 <400> 26 ggatctggcg gcggcggctc gcaggctgtg ctgackcagc 40 <210> 27 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL2 <400> 27 ggatctggcg gcggcggctc gcagtctgcc ctgactcagc 40 <210> 28 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL3-1 <400> 28 ggatctggcg gcggcggctc gtcctgtgag ctgactcagc 40 <210> 29 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL3-2 <400> 29 ggatctggcg gcggcggctc gtcctatgag gtgactcagc 40 <210> 30 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL3-3 <400> 30 ggatctggcg gcggcggctc gtcctatgag ctgacccagc 40 <210> 31 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL3-4 <400> 31 ggatctggcg gcggcggctc gtcttctmag ctgactcagc 40 <210> 32 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL7-1 <400> 32 ggatctggcg gcggcggctc gtcccagatg gtgactcagg 40 <210> 33 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL7-2 <400> 33 ggatctggcg gcggcggctc gccaagctgt gtgactcagg 40 <210> 34 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> PVL8 <400> 34 ggatctggcg gcggcggctc gtctcagact gtgatccagg 40 <210> 35 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PJL23R <400> 35 ctgctcgagg cctcccgggc cgaggacggt cagatgggtc c 41 <210> 36 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PJL4R <400> 36 ctgctcgagg cctcccgggc cgaggacact tagacgggtc c 41 <210> 37 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> scFv-Forward <400> 37 gacgacgacg acgacgcggc ccagccggcc atggcc 36 <210> 38 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> scFv-Reverse <400> 38 gacgacgacg acgacctgct cgaggcctcc cgggcc 36

Claims (11)

구제역 바이러스(Foot and mouth disease virus) 혈청형 A형에 특이적으로 결합하는 단일클론항체.
A monoclonal antibody that specifically binds to foot and mouth disease virus serotype A.
청구항 1에 있어서,
상기 단일클론항체는 서열번호 1의 아미노산 서열을 포함하는 중쇄 가변영역 및 서열번호 5의 아미노산 서열을 포함하는 경쇄 가변영역을 포함하는 것인 단일클론항체.
The method according to claim 1,
The monoclonal antibody is a monoclonal antibody comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 1 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 5.
청구항 1에 있어서,
상기 단일클론항체는 서열번호 2로 이루어진 중쇄 CDR1(complementarity determining region 1), 서열번호 3으로 이루어진 중쇄 CDR2(complementarity determining region 2) 및 서열번호 4로 이루어진 중쇄 CDR3(complementarity determining region 3)을 포함하는 중쇄 가변영역; 및
서열번호 6으로 이루어진 경쇄 CDR1(complementarity determining region 1), 서열번호 7로 이루어진 경쇄 CDR2(complementarity determining region 2) 및 서열번호 8로 이루어진 경쇄 CDR3(complementarity determining region 3)을 포함하는 경쇄 가변영역을 포함하는 것인 단일클론항체.
The method according to claim 1,
The monoclonal antibody is a heavy chain comprising a heavy chain CDR1 (complementarity determining region 1) consisting of SEQ ID NO: 2, a heavy chain complementarity determining region 2 (CDR2) consisting of SEQ ID NO: 3, and a heavy chain CDR3 (complementarity determining region 3) consisting of SEQ ID NO: 4 variable region; and
A light chain variable region comprising a light chain CDR1 (complementarity determining region 1) of SEQ ID NO: 6, a light chain CDR2 (complementarity determining region 2) of SEQ ID NO: 7 and a light chain CDR3 (complementarity determining region 3) of SEQ ID NO: 8 monoclonal antibody.
서열번호 1의 아미노산 서열을 포함하는 구제역 바이러스 혈청형 A형에 특이적으로 결합하는 단일클론항체의 중쇄 가변영역을 코딩하는 폴리뉴클레오티드.
A polynucleotide encoding the heavy chain variable region of a monoclonal antibody that specifically binds to foot-and-mouth disease virus serotype A comprising the amino acid sequence of SEQ ID NO: 1.
서열번호 5의 아미노산 서열을 포함하는 구제역 바이러스 혈청형 A형에 특이적으로 결합하는 단일클론항체의 경쇄 가변영역을 코딩하는 폴리뉴클레오티드.
A polynucleotide encoding the light chain variable region of a monoclonal antibody specifically binding to foot-and-mouth disease virus serotype A comprising the amino acid sequence of SEQ ID NO: 5.
청구항 4 또는 청구항 5의 폴리뉴클레오티드를 포함하는 재조합 벡터.
A recombinant vector comprising the polynucleotide of claim 4 or 5 .
청구항 6의 재조합 벡터를 포함하는 숙주세포.
A host cell comprising the recombinant vector of claim 6.
청구항 1의 단일클론항체를 포함하는 구제역 진단용 키트.
A kit for diagnosing foot-and-mouth disease comprising the monoclonal antibody of claim 1.
청구항 8에 있어서,
상기 키트는 소 구제역 또는 돼지 구제역을 진단하는 것인 구제역 진단용 키트.
9. The method of claim 8,
The kit is a kit for diagnosing foot-and-mouth disease in cattle or swine foot-and-mouth disease.
청구항 1의 단일클론항체를 인간을 제외한 동물에게 투여하는 단계를 포함하는 구제역의 예방 또는 치료 방법.
A method for preventing or treating foot-and-mouth disease, comprising administering the monoclonal antibody of claim 1 to an animal other than a human.
청구항 10에 있어서,
상기 동물은 돼지인 것인 구제역 예방 또는 치료 방법.
11. The method of claim 10,
The method for preventing or treating foot-and-mouth disease wherein the animal is a pig.
KR1020200055455A 2020-05-08 2020-05-08 Monoclonal Antibody for Detecting Serotype A of Foot and Mouth Disease Virus, and Uses Thereof Active KR102355688B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200055455A KR102355688B1 (en) 2020-05-08 2020-05-08 Monoclonal Antibody for Detecting Serotype A of Foot and Mouth Disease Virus, and Uses Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200055455A KR102355688B1 (en) 2020-05-08 2020-05-08 Monoclonal Antibody for Detecting Serotype A of Foot and Mouth Disease Virus, and Uses Thereof

Publications (2)

Publication Number Publication Date
KR20210136752A true KR20210136752A (en) 2021-11-17
KR102355688B1 KR102355688B1 (en) 2022-01-27

Family

ID=78703067

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200055455A Active KR102355688B1 (en) 2020-05-08 2020-05-08 Monoclonal Antibody for Detecting Serotype A of Foot and Mouth Disease Virus, and Uses Thereof

Country Status (1)

Country Link
KR (1) KR102355688B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116217714A (en) * 2022-10-14 2023-06-06 华中农业大学 Full porcine PEDV monoclonal antibody and epitope thereof
CN118344474A (en) * 2024-05-28 2024-07-16 中国农业科学院兰州兽医研究所(中国动物卫生与流行病学中心兰州分中心) Foot-and-mouth disease virus type-O, type-A and Asia1 broad-spectrum neutralization swine monoclonal antibody and application thereof
CN118344473A (en) * 2024-05-28 2024-07-16 中国农业科学院兰州兽医研究所(中国动物卫生与流行病学中心兰州分中心) Foot-and-mouth disease virus type O and type A broad spectrum neutralization swine monoclonal antibody pOA-2 and application thereof
CN119219767A (en) * 2023-06-29 2024-12-31 华中农业大学 Two strains of PEDV monoclonal neutralizing antibodies from whole pigs and their uses
CN119264249A (en) * 2024-11-22 2025-01-07 华南农业大学 Broad-spectrum neutralizing monoclonal antibody from pigs against foot-and-mouth disease virus type O and its application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101960968B1 (en) * 2017-10-13 2019-03-22 주식회사 메디안디노스틱 Monoclonal Antibodies for detecting Foot and Mouth Disease Virus serotype A and using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101960968B1 (en) * 2017-10-13 2019-03-22 주식회사 메디안디노스틱 Monoclonal Antibodies for detecting Foot and Mouth Disease Virus serotype A and using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116217714A (en) * 2022-10-14 2023-06-06 华中农业大学 Full porcine PEDV monoclonal antibody and epitope thereof
CN116217714B (en) * 2022-10-14 2024-03-15 华中农业大学 A whole pig-derived PEDV monoclonal antibody and its antigenic epitope
CN119219767A (en) * 2023-06-29 2024-12-31 华中农业大学 Two strains of PEDV monoclonal neutralizing antibodies from whole pigs and their uses
CN118344474A (en) * 2024-05-28 2024-07-16 中国农业科学院兰州兽医研究所(中国动物卫生与流行病学中心兰州分中心) Foot-and-mouth disease virus type-O, type-A and Asia1 broad-spectrum neutralization swine monoclonal antibody and application thereof
CN118344473A (en) * 2024-05-28 2024-07-16 中国农业科学院兰州兽医研究所(中国动物卫生与流行病学中心兰州分中心) Foot-and-mouth disease virus type O and type A broad spectrum neutralization swine monoclonal antibody pOA-2 and application thereof
CN119264249A (en) * 2024-11-22 2025-01-07 华南农业大学 Broad-spectrum neutralizing monoclonal antibody from pigs against foot-and-mouth disease virus type O and its application

Also Published As

Publication number Publication date
KR102355688B1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
KR102355688B1 (en) Monoclonal Antibody for Detecting Serotype A of Foot and Mouth Disease Virus, and Uses Thereof
DK2310413T3 (en) Camelide-derived antigen-binding polypeptides
CA2784767C (en) Camelid antibody platform for generating humanized antibodies
CN112794899B (en) A fully human monoclonal neutralizing antibody against novel coronavirus and its application
EP1639009B1 (en) Fab library for the preparation of a mixture of antibodies
US7432364B2 (en) Human TIMP-1 antibodies
US6342587B1 (en) A33 antigen specific immunoglobulin products and uses thereof
CN111744013B (en) Methods and pharmaceutical combinations for treating diseases using anti-TIGIT antibodies in combination with PD-1 inhibitors
CN110317267B (en) Bispecific antibodies against rabies virus and uses thereof
WO1993017105A1 (en) Altered antibodies, products and processes relating thereto
JPH08500487A (en) L chain deficient immunoglobulin
JP7457822B2 (en) Anti-CD3 and anti-CD123 bispecific antibodies and uses thereof
US20240207401A1 (en) Coronavirus antibody
WO2011050001A2 (en) Anti-botulinum neurotoxin antibodies
CN109021107B (en) Monoclonal antibody specifically binding to human PD-L1, and medicine and kit containing monoclonal antibody
JP2024522670A (en) Antibodies to respiratory syncytial virus and uses thereof
CN112225813B (en) Antibodies against tetanus toxin and uses thereof
KR102245325B1 (en) Monoclonal Antibody for Detecting Foot and Mouth Disease Virus, and Uses Thereof
CN113651884A (en) Humanized anti-SARS-CoV-2 monoclonal antibody and its application
Houimel et al. Isolation and characterization of human neutralizing antibodies to rabies virus derived from a recombinant immune antibody library
CN105061596B (en) The monoclonal antibody and its application of human B lymphocyte stimulating factor
JP2023547167A (en) Antibodies specific to coronavirus spike protein and their uses
CN115850477A (en) Anti-human 4-1BB monoclonal antibody and application thereof
KR102115300B1 (en) Antibody library and Screening Method of Antibody by Using the Same
CN114761434B (en) PD-1 antibody and preparation method and application thereof

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20200508

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20211028

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20220119

PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20220121

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20220124

End annual number: 3

Start annual number: 1

PG1601 Publication of registration