KR20210122178A - 장벽 층이 없는 인-시튜 텅스텐 증착 - Google Patents
장벽 층이 없는 인-시튜 텅스텐 증착 Download PDFInfo
- Publication number
- KR20210122178A KR20210122178A KR1020210040918A KR20210040918A KR20210122178A KR 20210122178 A KR20210122178 A KR 20210122178A KR 1020210040918 A KR1020210040918 A KR 1020210040918A KR 20210040918 A KR20210040918 A KR 20210040918A KR 20210122178 A KR20210122178 A KR 20210122178A
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- metal
- precursor
- substrate
- substrate surface
- Prior art date
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 25
- 238000011065 in-situ storage Methods 0.000 title abstract description 17
- 239000010937 tungsten Substances 0.000 title description 56
- 229910052721 tungsten Inorganic materials 0.000 title description 56
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title description 55
- 230000008021 deposition Effects 0.000 title description 33
- 229910052751 metal Inorganic materials 0.000 claims abstract description 209
- 239000002184 metal Substances 0.000 claims abstract description 209
- 238000000034 method Methods 0.000 claims abstract description 119
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052796 boron Inorganic materials 0.000 claims abstract description 27
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 23
- 239000010703 silicon Substances 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims description 170
- 239000002243 precursor Substances 0.000 claims description 126
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 81
- 239000012686 silicon precursor Substances 0.000 claims description 34
- 229910052731 fluorine Inorganic materials 0.000 claims description 33
- 239000011737 fluorine Substances 0.000 claims description 30
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 21
- 238000003672 processing method Methods 0.000 claims description 17
- 229910015275 MoF 6 Inorganic materials 0.000 claims description 7
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical group 0.000 claims description 6
- 229910052801 chlorine Inorganic materials 0.000 claims description 5
- 229910052794 bromium Inorganic materials 0.000 claims description 4
- 229910052740 iodine Inorganic materials 0.000 claims description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 2
- 230000008569 process Effects 0.000 abstract description 76
- 230000006911 nucleation Effects 0.000 abstract description 65
- 238000010899 nucleation Methods 0.000 abstract description 65
- 238000000151 deposition Methods 0.000 abstract description 50
- 239000010410 layer Substances 0.000 description 240
- 239000010408 film Substances 0.000 description 79
- 238000012545 processing Methods 0.000 description 64
- 238000000231 atomic layer deposition Methods 0.000 description 43
- 239000012790 adhesive layer Substances 0.000 description 31
- 239000007789 gas Substances 0.000 description 31
- 238000005229 chemical vapour deposition Methods 0.000 description 23
- 239000000376 reactant Substances 0.000 description 22
- 239000002019 doping agent Substances 0.000 description 19
- 238000012546 transfer Methods 0.000 description 19
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 18
- 239000011261 inert gas Substances 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 238000007872 degassing Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 17
- 229910052799 carbon Inorganic materials 0.000 description 15
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 13
- 238000010943 off-gassing Methods 0.000 description 13
- 238000011066 ex-situ storage Methods 0.000 description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 11
- 239000003570 air Substances 0.000 description 11
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 11
- 229910052750 molybdenum Inorganic materials 0.000 description 11
- 239000011733 molybdenum Substances 0.000 description 11
- 238000010926 purge Methods 0.000 description 11
- 229910052814 silicon oxide Inorganic materials 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 238000005240 physical vapour deposition Methods 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 230000010354 integration Effects 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 229920000548 poly(silane) polymer Polymers 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 238000005137 deposition process Methods 0.000 description 4
- VURFVHCLMJOLKN-UHFFFAOYSA-N diphosphane Chemical compound PP VURFVHCLMJOLKN-UHFFFAOYSA-N 0.000 description 4
- 238000001465 metallisation Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- -1 tungsten nitride Chemical class 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000003877 atomic layer epitaxy Methods 0.000 description 2
- 229910000085 borane Inorganic materials 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical class C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- YASNYMOWPQKVTK-UHFFFAOYSA-N diarsane Chemical compound [AsH2][AsH2] YASNYMOWPQKVTK-UHFFFAOYSA-N 0.000 description 2
- VXGHASBVNMHGDI-UHFFFAOYSA-N digermane Chemical compound [Ge][Ge] VXGHASBVNMHGDI-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- LICVGLCXGGVLPA-UHFFFAOYSA-N disilanyl(disilanylsilyl)silane Chemical compound [SiH3][SiH2][SiH2][SiH2][SiH2][SiH3] LICVGLCXGGVLPA-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- GCOJIFYUTTYXOF-UHFFFAOYSA-N hexasilinane Chemical compound [SiH2]1[SiH2][SiH2][SiH2][SiH2][SiH2]1 GCOJIFYUTTYXOF-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- CVLHDNLPWKYNNR-UHFFFAOYSA-N pentasilolane Chemical compound [SiH2]1[SiH2][SiH2][SiH2][SiH2]1 CVLHDNLPWKYNNR-UHFFFAOYSA-N 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- VEDJZFSRVVQBIL-UHFFFAOYSA-N trisilane Chemical compound [SiH3][SiH2][SiH3] VEDJZFSRVVQBIL-UHFFFAOYSA-N 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910008482 TiSiN Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- WYEMLYFITZORAB-UHFFFAOYSA-N boscalid Chemical compound C1=CC(Cl)=CC=C1C1=CC=CC=C1NC(=O)C1=CC=CN=C1Cl WYEMLYFITZORAB-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000001803 electron scattering Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910000078 germane Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76871—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
- H01L21/76876—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/28—Deposition of only one other non-metal element
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/08—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/08—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
- C23C16/14—Deposition of only one other metal element
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/16—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/18—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02697—Forming conducting materials on a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
장벽 층의 사용 없이 금속 막을 증착시키기 위한 인-시튜 방법들이 개시된다. 일부 실시예들은 규소 또는 붕소 중 하나 이상을 포함하는 비정질 핵형성 층을 형성하는 단계 및 핵형성 층 상에 금속 층을 형성하는 단계를 포함한다. 이러한 프로세스들은 프로세스들 사이의 에어 브레이크 없이 수행된다.
Description
본 개시내용은 일반적으로, 박막들을 증착시키는 방법들에 관한 것이다. 특히, 본 개시내용은 텅스텐 또는 텅스텐 함유 막들을 증착시키는 방법들에 관한 것이다.
반도체 처리 산업은 더 큰 표면적들을 갖는 기판들 상에 증착되는 층들의 균일성을 증가시키면서 더 큰 생산 수율들을 얻기 위해 계속 노력한다. 새로운 물질들과 조합된 이러한 동일한 인자들은 또한, 기판의 단위 면적당 회로들의 더 높은 집적을 제공한다. 회로 집적이 증가함에 따라, 층 두께에 관한 더 큰 균일성 및 프로세스 제어의 필요성이 증가한다. 그 결과, 층의 특징들에 대한 제어를 유지하면서, 비용 효과적인 방식으로 기판들 상에 층들을 증착시키기 위한 다양한 기술들이 개발되었다.
화학 기상 증착(CVD)은 기판 상에 층들을 증착시키기 위해 채용되는 가장 일반적인 증착 프로세스들 중 하나이다. CVD는 균일한 두께의 원하는 층을 생성하기 위해 처리 챔버 내로 도입되는 전구체들 및 기판 온도의 정밀한 제어를 요구하는 플럭스 의존적 증착 기법이다. 이러한 요구사항들은 기판 크기가 증가함에 따라 더 중요해지고, 적절한 균일성을 유지하기 위해 가스 유동 기법들 및 챔버 설계에서의 더 높은 복잡도에 대한 필요성을 생성한다.
우수한 스텝 커버리지를 보여주는 CVD의 변형은 주기적 증착 또는 원자 층 증착(ALD)이다. 주기적 증착은 원자 층 에피택시(ALE)에 기초하고, 순차적 주기들로 기판 표면 상에 전구체 분자들을 전달하기 위한 화학흡착 기법들을 채용한다. 주기는 기판 표면을 제1 전구체, 퍼지 가스, 제2 전구체 및 퍼지 가스에 노출시킨다. 제1 및 제2 전구체들이 반응하여 기판 표면 상에 막으로서 생성물 화합물을 형성한다. 주기는 층을 원하는 두께까지 형성하기 위해 반복된다.
비정질 규소는 반도체 디바이스들, 평판 디스플레이들, 및 태양 전지들에서 광범위하게 사용된다. 높은 종횡비 피쳐들에서 등각성(즉, 양호한 스텝 커버리지) 또는 갭필 성능을 갖는 비정질 규소 증착 프로세스의 개발에 대한 주요 기술적 도전과제가 남아 있다. 종래의 LPCVD 프로세스는 높은 온도(> 550 ℃) 및 낮은 압력으로 제한되고, 그러므로, 불량한 스텝 커버리지 및/또는 갭필 성능을 나타내며; PECVD 프로세스는 또한, 양호한 스텝 커버리지 및/또는 갭필 성능을 제공하지 않는다.
반도체 회로의 집적이 증가함으로 인해, 텅스텐이, 우수한 스텝 커버리지에 기초하여 사용되었다. 그 결과, CVD 기법들을 채용하는 텅스텐의 증착이, 프로세스의 높은 처리량으로 인해 반도체 처리에서 광범위하게 적용된다. 그러나, 종래의 CVD 방법들에 의해 텅스텐을 증착시키는 것에는 여러 단점들이 수반된다.
예를 들어, ALD 프로세스들은 높은 종횡비들(예를 들어, 20)을 포함하는 비아들 내에 텅스텐 막들을 증착시키는 반면, 종래의 CVD 프로세스들은 일반적으로, 유사한 비아들이 "핀치 오프(pinch-off)"되게 하고 완전히 채우지는 않을 것이다. 추가적으로, 텅스텐은 일부 표면들(예를 들어, 유전체 스페이서들 또는 산화물들)에 쉽게 접착되지 않는다. 유전체 스페이서들로의 텅스텐의 접착을 증가시키기 위해, 종래의 프로세스들은 TiN 층을 포함한다. 시드 층으로서 TiN 막의 증착은 시간 소모적일 수 있고 전체 프로세스에 추가적인 복잡도를 추가한다.
텅스텐 박막들의 원자 층 증착(ALD)은, 불량한 핵형성 성능으로 인해 규소, 이산화규소 및 질화티타늄 서비스들에 대해 매우 긴 배양 지연들을 나타낸다. 이 문제를 완화시키기 위해 핵형성 층이 일반적으로 사용된다. 통상적으로, ALD WSix 또는 WBx는 각각 WF6/Si2H6 및 WF6/B2H6에 의해 증착된다. 그러나, WF6은 기판 표면(예를 들어, Si, SiO2)에 직접 노출되고 기판을 손상시킨다.
추가적으로, ALD 텅스텐 막들은 규소 또는 산화규소 기판 표면들 상에 직접 잘 점착되지 않는다. 접착력을 개선하기 위해 질화티타늄 접착제 층이 사용된다. 그러나, 질화티타늄 접착제 층 및 WSix/WBx 핵형성 층 양쪽 모두는 잘 전도하지 않아서, 스택(W/WSix/TiN)의 경우 매우 높은 비저항을 초래한다.
그러므로, 관련 기술분야에서는 비저항이 감소되고 장벽/접착제 층을 갖지 않는 텅스텐 층들을 증착시키기 위한 개선된 기법들에 대한 필요성이 존재한다.
본 개시내용의 하나 이상의 실시예는 처리 방법에 관한 것이다. 방법은 비정질 붕소 층을 형성하기 위해 기판 표면을 붕소 전구체에 노출시키는 단계를 포함한다. 기판 표면은 실질적으로 장벽 층이 없다. 비정질 붕소 층은 비정질 붕소 층을 제1 금속 층으로 변환하기 위해 제1 금속 전구체에 노출된다. 제2 금속 층은 제1 금속 층을 제2 금속 전구체에 노출시킴으로써 제1 금속 층 상에 형성된다.
본 개시내용의 추가적인 실시예들은 처리 방법에 관한 것이다. 방법은 비정질 규소 층을 형성하기 위해 기판 표면을 규소 전구체에 노출시키는 단계를 포함한다. 기판 표면은 실질적으로 장벽 층이 없다. 비정질 규소 층은 비정질 규소 층을 제1 금속 층으로 변환하기 위해 제1 금속 전구체에 노출된다. 제2 금속 층은 제1 금속 층을 제2 금속 전구체에 노출시킴으로써 제1 금속 층 상에 형성된다.
본 개시내용의 추가의 실시예들은 처리 방법에 관한 것이다. 방법은 규소 및 붕소를 포함하는 비정질 층을 형성하기 위해 기판 표면을 규소 전구체 및 붕소 전구체에 노출시키는 단계를 포함한다. 기판 표면은 실질적으로 장벽 층이 없다. 비정질 층은 비정질 층을 제1 금속 층으로 변환하기 위해 제1 금속 전구체에 노출된다. 제2 금속 층은 제1 금속 층을 제2 금속 전구체에 노출시킴으로써 제1 금속 층 상에 형성된다.
위에서 언급된 본 개시내용의 특징들이 상세하게 이해될 수 있도록, 위에 간략하게 요약된 본 개시내용의 더 구체적인 설명이 실시예들을 참조하여 이루어질 수 있으며, 이들 중 일부는 첨부 도면들에 예시되어 있다. 그러나, 본 개시내용은 동등한 효과의 다른 실시예들을 허용할 수 있기 때문에, 첨부 도면들은 본 개시내용의 전형적인 실시예들만을 예시하고 그러므로 본 개시내용의 범위를 제한하는 것으로 간주되어서는 안 된다는 점에 주목해야 한다.
도 1은 본 개시내용의 하나 이상의 실시예에 따른 막 스택의 개략도를 도시하고;
도 2a는 본 개시내용의 하나 이상의 실시예에 따른 프로세스 방식을 도시하고;
도 2b는 도 2a의 프로세스 방식에 따른 막 스택의 개략도를 도시하고;
도 3은 본 개시내용의 하나 이상의 실시예에 따른 프로세스 방식을 도시하고;
도 4a는 본 개시내용의 하나 이상의 실시예에 따른 프로세스 방식을 도시하고;
도 4b는 도 4a의 프로세스 방식에 따른 막 스택의 개략도를 도시하고;
도 5는 본 개시내용의 하나 이상의 실시예에 따른 막 스택의 개략도를 도시하고;
도 6a는 본 개시내용의 하나 이상의 실시예에 따른 프로세스 방식을 도시하고;
도 6b는 도 6a의 프로세스 방식에 따른 막 스택의 개략도를 도시하고;
도 7은 본 개시내용의 하나 이상의 실시예에 따른 프로세스 방식을 도시하고;
도 8a는 본 개시내용의 하나 이상의 실시예에 따른 프로세스 방식을 도시하고;
도 8b는 도 8a의 프로세스 방식에 따른 막 스택의 개략도를 도시한다.
도 9a는 본 개시내용의 하나 이상의 실시예에 따른 프로세스 방식을 도시하고;
도 9b는 도 9a의 프로세스 방식에 따른 막 스택의 개략도를 도시하고;
도 10은 본 개시내용의 하나 이상의 실시예에 따른 인-시튜 방법들을 수행하기 위한 처리 시스템을 도시하고;
도 11a는 본 개시내용의 하나 이상의 실시예에 따른, 에어 브레이크 없이 인-시튜로 제조된 샘플의 단면 이미지를 도시하고;
도 11b는 본 개시내용의 하나 이상의 실시예에 따른, 에어 브레이크 없이 엑스-시튜로 제조된 샘플의 단면 이미지를 도시하며;
도 11c는 본 개시내용의 하나 이상의 실시예에 따른, 인-시튜로 제조된 샘플 및 엑스-시튜로 제조된 샘플의 접착력 테스트 결과를 도시한다.
도 1은 본 개시내용의 하나 이상의 실시예에 따른 막 스택의 개략도를 도시하고;
도 2a는 본 개시내용의 하나 이상의 실시예에 따른 프로세스 방식을 도시하고;
도 2b는 도 2a의 프로세스 방식에 따른 막 스택의 개략도를 도시하고;
도 3은 본 개시내용의 하나 이상의 실시예에 따른 프로세스 방식을 도시하고;
도 4a는 본 개시내용의 하나 이상의 실시예에 따른 프로세스 방식을 도시하고;
도 4b는 도 4a의 프로세스 방식에 따른 막 스택의 개략도를 도시하고;
도 5는 본 개시내용의 하나 이상의 실시예에 따른 막 스택의 개략도를 도시하고;
도 6a는 본 개시내용의 하나 이상의 실시예에 따른 프로세스 방식을 도시하고;
도 6b는 도 6a의 프로세스 방식에 따른 막 스택의 개략도를 도시하고;
도 7은 본 개시내용의 하나 이상의 실시예에 따른 프로세스 방식을 도시하고;
도 8a는 본 개시내용의 하나 이상의 실시예에 따른 프로세스 방식을 도시하고;
도 8b는 도 8a의 프로세스 방식에 따른 막 스택의 개략도를 도시한다.
도 9a는 본 개시내용의 하나 이상의 실시예에 따른 프로세스 방식을 도시하고;
도 9b는 도 9a의 프로세스 방식에 따른 막 스택의 개략도를 도시하고;
도 10은 본 개시내용의 하나 이상의 실시예에 따른 인-시튜 방법들을 수행하기 위한 처리 시스템을 도시하고;
도 11a는 본 개시내용의 하나 이상의 실시예에 따른, 에어 브레이크 없이 인-시튜로 제조된 샘플의 단면 이미지를 도시하고;
도 11b는 본 개시내용의 하나 이상의 실시예에 따른, 에어 브레이크 없이 엑스-시튜로 제조된 샘플의 단면 이미지를 도시하며;
도 11c는 본 개시내용의 하나 이상의 실시예에 따른, 인-시튜로 제조된 샘플 및 엑스-시튜로 제조된 샘플의 접착력 테스트 결과를 도시한다.
본 개시내용의 여러 예시적인 실시예들을 설명하기 전에, 본 개시내용은 이하의 설명에서 열거되는 구성 또는 프로세스 단계들의 세부사항들로 제한되지 않는다는 것을 이해해야 한다. 본 개시내용은 다른 실시예들이 가능하고, 다양한 방식들로 실시되거나 수행될 수 있다.
본원에서 사용되는 바와 같은 "기판 표면"은, 그 상에서 막 처리가 수행되는, 기판의 임의의 부분 또는 기판 상에 형성된 물질 표면의 부분을 지칭한다. 예를 들어, 처리가 수행될 수 있는 기판 표면은, 응용에 따라, 물질들, 예컨대, 규소, 산화규소, 질화규소, 도핑된 규소, 게르마늄, 비화갈륨, 유리, 사파이어, 및 임의의 다른 물질들, 예컨대, 금속들, 금속 질화물들, 금속 합금들, 및 다른 전도성 물질들을 포함한다. 기판 표면 상의 장벽 층들, 금속들 또는 금속 질화물들은 티타늄, 질화티타늄, 질화텅스텐, 탄탈럼 및 질화탄탈럼을 포함한다. 기판 표면은 또한, 유전체 물질들, 예컨대, 이산화규소 및 탄소 도핑된 산화규소들을 포함할 수 있다. 기판들은 다양한 치수들, 예컨대, 200 mm 또는 300 mm 직경 웨이퍼들뿐만 아니라, 직사각형 또는 정사각형 판유리들을 가질 수 있다. 일부 실시예들에서, 기판은 강성의 불연속 물질을 포함한다.
본원에서 사용되는 바와 같은 "원자 층 증착" 또는 "주기적 증착"은 기판 표면 상에 물질의 층을 증착시키기 위한, 2개 이상의 반응성 화합물들의 순차적인 노출을 지칭한다. 본 명세서 및 첨부된 청구항들에서 사용되는 바와 같이, "반응성 화합물", "반응성 가스", "반응성 종들", "전구체", "프로세스 가스" 등의 용어들은 표면 반응(예를 들어, 화학흡착, 산화, 환원)에서 기판 표면 또는 기판 표면 상의 물질과 반응할 수 있는 종들을 갖는 물질을 의미하기 위해 상호교환가능하게 사용된다. 기판, 또는 기판의 일부는, 처리 챔버의 반응 구역 내에 도입되는 2개 이상의 반응성 화합물들에 순차적으로 노출된다. 시간 도메인 ALD 프로세스에서, 각각의 반응성 화합물에 대한 노출은, 각각의 화합물이 기판 표면 상에 접착되고/거나 그와 반응하는 것을 허용하기 위해, 시간 지연에 의해 분리된다. 공간적 ALD 프로세스에서, 기판 표면의 상이한 부분들, 또는 기판 표면 상의 물질은, 기판 상의 임의의 주어진 지점이 실질적으로, 하나 초과의 반응성 화합물에 동시에 노출되지 않도록, 2개 이상의 반응성 화합물들에 동시에 노출된다. 본 명세서 및 첨부된 청구항들에서 사용되는 바와 같이, 이와 관련하여 사용되는 "실질적으로"라는 용어는, 관련 기술분야의 통상의 기술자에 의해 이해될 바와 같이, 기판의 작은 부분이, 확산으로 인해 동시에 다수의 반응성 가스들에 노출될 수 있는 가능성이 있고, 동시 노출이 의도되지 않음을 의미한다.
시간 도메인 ALD 프로세스의 일 양상에서, 제1 반응성 가스(즉, 제1 전구체 또는 화합물(A))가 반응 구역 내로 펄스화되고, 제1 시간 지연이 후속된다. 이어서, 제2 전구체 또는 화합물(B)이 반응 구역 내로 펄스화되고, 제2 지연이 후속된다. 각각의 시간 지연 동안, 반응 구역을 퍼징하거나, 임의의 잔류 반응성 화합물 또는 부산물들을 반응 구역으로부터 다른 방식으로 제거하기 위해 퍼지 가스, 예컨대, 아르곤이 처리 챔버 내로 도입된다. 대안적으로, 반응성 화합물들의 펄스들 사이의 시간 지연 동안 오직 퍼지 가스만 유동하도록 증착 프로세스 전체에 걸쳐 퍼지 가스가 연속적으로 유동할 수 있다. 반응성 화합물들은 대안적으로, 원하는 막 또는 막 두께가 기판 표면 상에 형성될 때까지 펄스화된다. 어느 시나리오에서든, 화합물(A), 퍼지 가스, 화합물(B) 및 퍼지 가스를 펄스화하는 ALD 프로세스는 주기이다. 주기는 화합물(A) 또는 화합물(B)로 시작하고, 원하는 두께를 갖는 막을 달성할 때까지 주기의 각각의 순서를 계속할 수 있다.
공간적 ALD 프로세스의 양상에서, 제1 반응성 가스 및 제2 반응성 가스(예를 들어, 수소 라디칼들)는 반응 구역에 동시에 전달되지만, 불활성 가스 커튼 및/또는 진공 커튼에 의해 분리된다. 기판은 기판 상의 임의의 주어진 지점이 제1 반응성 가스 및 제2 반응성 가스에 노출되도록 가스 전달 장치에 대해 이동된다.
본 개시내용의 하나 이상의 실시예는, 금속 ALD(예를 들어, 텅스텐 증착)를 위해 접착제 층, 플루오린 확산 장벽 및/또는 핵형성 층 중 하나 이상으로서 등각 비정질 규소 박막을 증착시키는 방법들에 관한 것이다. 많은 실시예들에서 텅스텐 증착이 참조되지만, 관련 기술분야의 통상의 기술자들은 다른 금속들(예를 들어, Mo)이, 개시된 프로세스에 의해 증착될 수 있다는 것을 이해할 것이다. 본 개시내용은 ALD 텅스텐 증착으로 제한되지 않는다.
본 개시내용의 특정 실시예들은 금속 ALD 프로세스들을 위한 프로세스 통합 방식들을 포함한다. 예를 들어, 텅스텐은 원자 층 증착에 의해 규소 기판 상에 증착된다. 도 1을 참조하면, 스택(10)은 접착제 층(14)(예를 들어, TiN), 핵형성 층(16)(예를 들어, WSix 및 WBx) 및 금속(18)(예를 들어, W)을 갖는 기판(12)(예를 들어, SiO2)을 포함할 수 있다. 프로세스 방식의 하나 이상의 실시예에서, 핵형성 층은 비정질 규소 층으로 대체된다. 일부 실시예들에서, 핵형성 층은 비정질 규소 층으로 대체되고 TiN 접착제 층은 더 얇게 만들어진다. 하나 이상의 실시예에서, 핵형성 층 및 접착제 층 양쪽 모두는 비정질 규소 층으로 대체된다.
도 2a 및 2b를 참조하면, 본 개시내용의 하나 이상의 실시예는 처리 방법들(300) 및 막 스택들(200)에 관한 것이다. 기판 표면(222)을 갖는 기판(220)이 단계(310)에서 제공된다. 단계(320)에서, 기판(220)은 기판 표면(222) 상에 비정질 규소 층(240)을 형성하기 위해 규소 전구체에 노출된다.
일부 실시예들에서, 비정질 규소(a-Si) 형성은, 웨이퍼 온도를 최소화하면서 규소 전구체의 분압을 최대화함으로써 달성될 수 있다. 적합한 규소 전구체들은 폴리실란들(SixHy)을 포함하지만, 이에 제한되지 않는다. 예를 들어, 폴리실란들은 디실란(Si2H6), 트리실란(Si3H8), 테트라실란(Si4H10), 이소테트라실란, 네오펜타실란(Si5H12), 시클로펜타실란(Si5H10), 헥사실란(C6H14), 시클로헥사실란(Si6H12) 또는, 일반적으로, x = 2 이상인 SixHy, 및 이들의 조합들을 포함한다. 예를 들어, 적당한 처리 온도 및 높은 증기압을 갖는 디실란은 단독으로 또는 다른 종들과 조합하여 규소 전구체로서 사용될 수 있다.
일부 실시예들에서, 규소 전구체는 실질적으로 오직 디실란만을 포함한다. 본 명세서 및 첨부된 청구항들에서 사용되는 바와 같이, "실질적으로 오직 디실란만"이라는 문구는 활성 종들의 적어도 95%가 디실란인 것을 의미한다. 다른 가스들, 예컨대, 캐리어 가스들 및 불활성 가스들이 임의의 양으로 포함될 수 있다.
비정질 규소 층(240)의 두께는, 예를 들어, 기판 표면 및 후속하는 막들 및 프로세스들에 따라 달라질 수 있다. 일부 실시예들에서, 비정질 규소 층(240)은 약 1 Å 내지 약 100 Å 범위의 두께를 갖는다. 하나 이상의 실시예에서, 비정질 규소 층(240)은 약 1 Å 내지 약 50 Å 범위, 또는 약 10 Å 내지 약 40 Å 범위, 또는 약 30 Å 내지 약 40 Å 범위의 두께를 갖는다. 일부 실시예들에서, 비정질 규소 층(240)의 두께는 0 Å 초과이고 약 50 Å, 45 Å 또는 40 Å 이하이다.
단계(330)에서, 비정질 규소 층(240) 상에 금속 층(280)이 형성된다. 금속 층(280)은, 원자 층 증착(ALD), 플라즈마 강화 원자 층 증착(PE-ALD), 화학 기상 증착(CVD), 플라즈마 강화 화학 기상 증착(PE-CVD) 및 물리 기상 증착(PVD)을 포함하지만 이에 제한되지 않는 임의의 적합한 기법에 의해 형성될 수 있다.
금속 층(280)은 임의의 적합한 금속을 포함할 수 있다. 일부 실시예들에서, 금속 층(280)은 텅스텐 또는 몰리브데넘 중 하나 이상을 포함한다. 일부 실시예들에서, 금속 층(280)은 본질적으로 텅스텐으로 구성된다. 일부 실시예들에서, 금속 층(280)은 본질적으로 몰리브데넘으로 구성된다. 이와 관련하여 사용되는 바와 같이, "본질적으로 ~로 구성"은 금속 층(280)에, 명시된 성분이 약 80, 85, 90 또는 95 원자% 이상이라는 것을 의미한다. 예를 들어, 본질적으로 텅스텐으로 구성된 금속 층(280)은, 예를 들어, 텅스텐이 약 90 원자% 이상인 조성을 갖는다.
일부 실시예들에서, 금속 층(280)은 CVD에 의해 증착된다. 금속 전구체 및 반응물은 기판 상에 층을 증착시키기 위해 처리 챔버 내로 공동유동될 수 있다. 전구체 및 반응물은 가스 상태로 반응하는 것이 허용된다.
일부 실시예들에서, 금속 층(280)은 ALD에 의해 증착된다. 일부 실시예들에서, 금속 층(280)은 비정질 규소 층(240)을 금속 전구체 및 반응물에 순차적으로 노출시킴으로써 증착된다.
금속 전구체는 금속 막을 증착시키는 데 사용될 수 있는 임의의 적합한 전구체일 수 있다. 일부 실시예들에서, 금속 전구체는 텅스텐, 몰리브데넘 및 이들의 조합들로부터 선택된 금속을 포함한다. 하나 이상의 실시예에서, 금속 전구체는 WF6 및 MoF6 중 하나 이상을 포함한다. 일부 실시예들에서, 금속 전구체는 플루오린 함유 전구체이다. 플루오린이 규소 표면을 식각할 수 있다는 것이 알려져 있다. 본 개시내용의 일부 실시예들은 유리하게, 플루오린 전구체들의 사용을 허용하는데, 이는 전구체가 a-Si 막 전체를 제거하지 않는 것을 보장하기에 충분한 두께까지 비정질 규소 층(240)이 형성될 수 있기 때문이다.
반응물은 표면 상에 형성된 종들과 반응할 수 있는 임의의 적합한 반응물일 수 있다. 예를 들어, WF6이 전구체로서 사용되는 경우, 표면 상에 -WFx 종들이 존재할 것이다. 반응물은 W 막을 생성하기 위해 -WFx 종들과 반응할 수 있다.
도 3은, 비정질 규소 층(240)의 형성 후에 탈가스 프로세스(325)가 포함되는, 본 개시내용의 다른 실시예에 대한 프로세스 흐름을 도시한다. 일부 실시예들에서 비정질 규소 층(240)은 금속 층(280)을 형성하기 전에, 가스방출된 종들을 제거하기 위해 탈가스 환경에 노출된다.
증착된 비정질 규소 층(240)은 종들, 예를 들어, 수소를 배출 또는 가스방출할 수 있다. 탈가스 환경은 가스성 종들이 배출될 기회를 제공하여, 최종 막의 기포발생을 최소화한다. 탈가스 환경은 막의 탈가스를 허용하거나 촉진하는 임의의 조건을 포함할 수 있다. 예를 들어, 탈가스 환경은 본질적으로 불활성 가스로 구성될 수 있다. 이와 관련하여 사용되는 바와 같이, "본질적으로 ~로 구성"은 증착된 막의 가스방출을 방해하는 가스성 종들이 없음을 의미한다. 다른 반응성 종들이 막의 탈가스를 억제하지 않고 존재할 수 있으면서 여전히 본질적으로 불활성 가스로 구성된다.
적합한 불활성 가스들은 아르곤, 헬륨, 질소, 및/또는 이들의 혼합물들 중 하나 이상을 포함하지만 이에 제한되지는 않는다.
하나 이상의 실시예에서, 가스방출된 종들은 수소, SiH2, SiH3, SiH4, 및/또는 다른 저급(low-order) 실란들을 포함한다.
처리 챔버에서의 압력, 또는 처리 챔버의 영역은 전구체 노출 및 탈가스 환경에 대해 독립적으로 제어될 수 있다. 일부 실시예들에서, 규소 전구체 및 탈가스 환경 각각에 대한 노출은, 약 10 mTorr 내지 약 100 Torr 범위의 압력에서 일어난다. 일부 실시예들에서, 규소 전구체는 약 500 mTorr 이상, 또는 약 1 Torr 이상, 또는 약 5 Torr 이상, 또는 약 10 Torr 이상, 또는 약 20 Torr 이상, 또는 약 30 Torr 이상의 압력으로 기판에 노출된다.
기판 표면이 전구체 또는 탈가스 환경에 노출되는 온도는, 예를 들어, 전구체 및 형성되고 있는 디바이스의 열 예산에 따라 달라질 수 있다. 일부 실시예들에서, 전구체 및 탈가스 환경 각각에 대한 노출은, 약 100 ℃ 내지 약 700 ℃ 범위의 온도에서 일어난다. 하나 이상의 실시예에서, 할로겐화규소 전구체는 약 250 ℃ 내지 약 600 ℃ 범위, 또는 약 400 ℃ 내지 약 550 ℃ 범위의 온도에서 기판에 노출된다.
탈가스 환경에 노출되기 전에 규소 전구체로 형성된 a-Si 막의 두께는 수정될 수 있다. 일부 실시예들에서, 규소 전구체 및 탈가스 환경에 대한 각각의 노출은 약 5 Å 내지 약 20 Å 범위의 두께를 갖는 막을 성장시킨다.
미리 결정된 두께를 갖는 막을 형성하기 위해, 전구체 및 탈가스 환경들은 기판 표면에 반복적으로 순차적으로 노출될 수 있다. 일부 실시예들에서, 비정질 규소 막은 약 100 Å 내지 약 1 ㎛ 범위의 총 두께를 갖는다.
일부 실시예들에서, a-Si는 약 450 ℃ 미만의 웨이퍼 온도에서 디실란에 의해 증착되고, 디실란 분압은 약 20 Torr 이상이다. 예시적인 실시예에서, 기판은 약 20 Torr 이상의 압력에서 약 400 ℃ 내지 약 550 ℃ 범위의 온도에서 규소 전구체에 노출된다.
도 4a 및 4b를 참조하면, 본 개시내용의 일부 실시예들은 비정질 규소 층(240)을 형성하기 전에 접착제 층(260)이 기판 상에 증착되는 단계(360)를 더 포함한다. 접착제 층(260)은, 비정질 규소 층이 기판(220) 상에 직접 증착된 경우보다 박피될 가능성이 더 낮은 조건으로 비정질 규소가 점착될 수 있는 층이다. 일부 실시예들에서, 접착제 층은 TiN을 포함한다. 하나 이상의 실시예에서, 기판(220)은 산화규소 표면을 갖고, 접착제 층은 TiN을 포함한다.
접착제 층(260)의 두께는 증착될 비정질 규소의 두께 및 기판에 따라 달라질 수 있다. 일부 실시예들에서, 접착제 층(260)은 약 1 Å 내지 약 30 Å 범위, 또는 약 5 Å 내지 약 30 Å 범위의 두께를 갖는다. 일부 실시예들에서, 접착제 층(260)은 약 20 Å 이하, 또는 약 15 Å 이하 또는 약 10 Å 이하 또는 약 5 Å 이하의 두께를 갖는다.
도 4b를 참조하면, 본 개시내용의 하나 이상의 실시예는 산화물 표면(222)을 갖는 기판(220)을 포함하는 스택들(200)에 관한 것이다. 접착제 층(260)은 산화물 표면(222) 상에 있다. 일부 실시예들의 접착제 층은 약 5 Å 내지 약 30 Å 범위의 두께를 갖는 TiN을 포함한다. 비정질 규소 층(240)은 접착제 층(260) 상에 있고 약 5 Å 내지 약 50 Å 범위의 두께를 갖는다. 금속 층(280)은 비정질 규소 층(240) 상에 있고 텅스텐 및 몰리브데넘 중 하나 이상을 포함한다.
본 개시내용의 하나 이상의 실시예는, 금속 증착(예를 들어, ALD 텅스텐 증착)을 위해 접착제 층, 플루오린 확산 장벽 및/또는 핵형성 층 중 하나 이상으로서 등각의 도핑된 비정질 규소 박막을 증착시키는 방법들에 관한 것이다. 많은 실시예들에서 텅스텐 증착이 참조되지만, 관련 기술분야의 통상의 기술자들은 다른 금속들(예를 들어, Mo)이, 개시된 프로세스에 의해 증착될 수 있다는 것을 이해할 것이다. 본 개시내용은 ALD 텅스텐 증착, ALD 증착 또는 텅스텐 증착으로 제한되지 않는다.
본 개시내용의 실시예들은 금속 ALD 프로세스들을 위한 프로세스 통합 방식들을 포함한다. 예를 들어, 텅스텐은 원자 층 증착에 의해 규소 기판 상에 증착된다. 도 5를 참조하면, 스택(10)은 접착제 층(14)(예를 들어, TiN), 핵형성 층(16)(예를 들어, WSix 및 WBx) 및 금속(18)(예를 들어, W)을 갖는 기판(12)(예를 들어, SiO2)을 포함할 수 있다. 프로세스 방식의 하나 이상의 실시예에서, 핵형성 층은 도핑된 비정질 규소 층으로 대체된다. 일부 실시예들에서, 핵형성 층은 도핑된 비정질 규소 층으로 대체되고 TiN 접착제 층은 더 얇게 만들어진다. 하나 이상의 실시예에서, 핵형성 층 및 접착제 층 양쪽 모두는 도핑된 비정질 규소 층으로 대체된다.
도 6a 및 6b를 참조하면, 본 개시내용의 하나 이상의 실시예는 처리 방법들(500) 및 막 스택들(400)에 관한 것이다. 기판 표면(422)을 갖는 기판(420)이 단계(510)에서 제공된다. 단계(520)에서, 기판(420)은 도핑된 비정질 규소 층(440)을 기판 표면(422) 상에 형성하기 위해 규소 전구체 및 도펀트에 노출된다.
본 개시내용의 일부 실시예들은 유리하게, 도펀트를 도입함으로써 핵형성 층의 증착 온도를 낮추는 방법들을 제공한다. 일부 실시예들에서, 핵형성 층의 형태는 등각 비정질 규소 층 증착 동안 도펀트를 추가함으로써 수정된다. 일부 실시예들에서, 비정질 규소의 증착 온도는 약 400 ℃ 이상으로부터 약 100 ℃ 이하로 감소될 수 있다. 일부 실시예들에서, 텅스텐 막 특성들은 유리하게, 도핑되지 않은 비정질 규소 막에 비해 도핑된 규소 막들의 상이한 막 특성들/형태로 인해 도펀트 농도들을 변경함으로써 수정될 수 있다.
일부 실시예들에서, 도핑된 비정질 규소(도핑된 a-Si) 형성은, 웨이퍼 온도를 최소화하면서 규소 전구체의 분압을 최대화함으로써 달성될 수 있다. 일부 실시예들에서, 도핑된 비정질 규소는 규소 전구체 및 도펀트가 동시에 기판에 노출되는 CVD 증착 프로세스를 사용하여 증착된다.
적합한 규소 전구체들은 폴리실란들(SizHa) 및 할로실란들(SizHaXb)을 포함하지만, 이에 제한되지 않는다. 예를 들어, 폴리실란들은 실란, 디실란(Si2H6), 트리실란(Si3H8), 테트라실란(Si4H10), 이소테트라실란, 네오펜타실란(Si5H12), 시클로펜타실란(Si5H10), 헥사실란(C6H14), 시클로헥사실란(Si6H12) 또는, 일반적으로, z = 1 이상인 SizHa, 및 이들의 조합들을 포함한다. 예를 들어, 적당한 처리 온도 및 높은 증기압을 갖는 디실란은 단독으로 또는 다른 종들과 조합하여 규소 전구체로서 사용될 수 있다.
예를 들어, 할로실란들은 디할로실란(SiH2X2), 트리할로실란(SiHX3), 테트라할로실란(SiX4), 또는 헥사할로디실란(Si2X6) 또는, 일반적으로, z = 1 이상이고 X가 할로겐이고 b = 1 이상인 SizHaXb, 및 이들의 조합들을 포함한다. 일부 실시예들에서, 할로실란에 존재하는 할로겐은 플루오린, 염소, 브로민 또는 아이오딘으로부터 독립적으로 선택된다. 일부 실시예들에서, 할로겐은 본질적으로 염소로 구성된다.
일부 실시예들에서, 규소 전구체는 실질적으로 오직 디실란만을 포함한다. 일부 실시예들에서, 규소 전구체는 실질적으로 오직 디클로로실란만을 포함한다. 본 명세서 및 첨부된 청구항들에서 사용되는 바와 같이, "실질적으로 오직"이라는 문구는 활성 종들의 적어도 95%가 언급된 종들인 것을 의미한다. 다른 가스들, 예컨대, 캐리어 가스들 및 불활성 가스들이 임의의 양으로 포함될 수 있다.
도펀트는 증착된 비정질 규소 층을 도핑하기에 적합한 임의의 물질일 수 있다. 일부 실시예들에서, 도핑된 비정질 규소 층은 붕소, 인, 비소 또는 게르마늄 중 하나 이상을 포함한다. 일부 실시예들에서, 도펀트는 보란, 디보란, 포스핀, 디포스핀, 아르신, 디아르신, 게르만 또는 디게르만 중 하나 이상을 포함한다. 일부 실시예들에서, 도펀트는 실질적으로 오직 디보란만을 포함한다. 일부 실시예들에서, 도펀트는 실질적으로 오직 디포스핀만을 포함한다. 일부 실시예들에서, 도펀트는 실질적으로 오직 디아르신만을 포함한다. 일부 실시예들에서, 도펀트는 실질적으로 오직 디게르만만을 포함한다.
도핑된 비정질 규소 층(440)의 두께는, 예를 들어, 기판 표면 및 후속하는 막들 및 프로세스들에 따라 달라질 수 있다. 일부 실시예들에서, 도핑된 비정질 규소 층(440)은 약 20 Å 이상의 두께를 갖는다. 하나 이상의 실시예에서, 도핑된 비정질 규소 층(440)은 약 1 Å 내지 약 200 Å 범위, 또는 약 10 Å 내지 약 150 Å 범위, 또는 약 20 Å 내지 약 100 Å 범위, 또는 약 40 Å 내지 약 100 Å 범위의 두께를 갖는다. 일부 실시예들에서, 도핑된 비정질 규소 층(440)은 약 10 Å 내지 약 50 Å 범위의 두께를 갖는다. 일부 실시예들에서, 도핑된 비정질 규소 층(440)의 두께는 0 Å 초과이고 약 100 Å, 75 Å, 50 Å, 45 Å 또는 40 Å 이하이다. 일부 실시예들에서, 도핑된 비정질 규소 층(440)은 연속적인 층을 형성하기에 충분한 최소 두께를 갖는다. 본원에 사용되는 바와 같이, "연속적인"이라는 용어는, 증착된 층 아래에 놓인 물질을 드러내는 갭들 또는 노출 부위들 없이, 전체 노출된 표면을 덮는 층을 지칭한다. 연속적인 층은, 막의 전체 표면적의 약 1% 미만의 표면적을 갖는 갭들 또는 노출 부위들을 가질 수 있다.
일부 실시예들에서, 도핑된 비정질 규소 층(440)은 기판(420) 상에 등각으로 형성된다. 본원에서 사용되는 바와 같이, "등각" 또는 "등각으로"라는 용어는, 막의 평균 두께에 대해 1% 미만의 변동을 갖는 두께로, 노출된 표면들에 접착되어 이 표면들을 균일하게 덮는 층을 지칭한다. 예를 들어, 100 Å 두께의 막은 두께에서 1 Å 미만의 변동들을 가질 것이다. 이러한 두께 및 변동은 함몰부들의 바닥, 측들, 코너들, 및 에지들을 포함한다. 예를 들어, 본 개시내용의 다양한 실시예들에서 증착된 등각 층은, 복잡한 표면들 상의 본질적으로 균일한 두께의 증착된 영역에 걸친 적용범위를 제공할 것이다.
단계(530)에서, 도핑된 비정질 규소 층(440) 상에 금속 층(480)이 형성된다. 금속 층(480)은, 원자 층 증착(ALD), 플라즈마 강화 원자 층 증착(PE-ALD), 화학 기상 증착(CVD), 플라즈마 강화 화학 기상 증착(PE-CVD) 및 물리 기상 증착(PVD)을 포함하지만 이에 제한되지 않는 임의의 적합한 기법에 의해 형성될 수 있다.
금속 층(480)은 임의의 적합한 금속을 포함할 수 있다. 일부 실시예들에서, 금속 층(480)은 텅스텐 또는 몰리브데넘 중 하나 이상을 포함한다. 일부 실시예들에서, 금속 층(480)은 본질적으로 텅스텐으로 구성된다. 일부 실시예들에서, 금속 층(480)은 본질적으로 몰리브데넘으로 구성된다. 이와 관련하여 사용되는 바와 같이, "본질적으로 ~로 구성"은 금속 층(480)에, 명시된 성분이 약 80, 85, 90 또는 95 원자% 이상이라는 것을 의미한다. 예를 들어, 본질적으로 텅스텐으로 구성된 금속 층(480)은, 예를 들어, 텅스텐이 약 90 원자% 이상인 조성을 갖는다.
일부 실시예들에서, 금속 층(480)은 CVD에 의해 증착된다. 금속 전구체 및 반응물은 기판 상에 층을 증착시키기 위해 처리 챔버 내로 공동유동될 수 있다. 전구체 및 반응물은 가스 상태로 반응하는 것이 허용된다.
일부 실시예들에서, 금속 층(480)은 ALD에 의해 증착된다. 일부 실시예들에서, 금속 층(480)은 도핑된 비정질 규소 층(440)을 금속 전구체 및 반응물에 순차적으로 노출시킴으로써 증착된다.
금속 전구체는 금속 막을 증착시키는 데 사용될 수 있는 임의의 적합한 전구체일 수 있다. 일부 실시예들에서, 금속 전구체는 텅스텐, 몰리브데넘 및 이들의 조합들로부터 선택된 금속을 포함한다. 하나 이상의 실시예에서, 금속 전구체는 WF6 및 MoF6 중 하나 이상을 포함한다. 일부 실시예들에서, 금속 전구체는 플루오린 함유 전구체이다. 플루오린이 규소 표면을 식각할 수 있다는 것이 알려져 있다. 본 개시내용의 일부 실시예들은 유리하게, 플루오린 전구체들의 사용을 허용하는데, 이는 전구체가, 도핑된 비정질 규소 막 전체를 제거하지 않는 것을 보장하기에 충분한 두께까지, 도핑된 비정질 규소 층(240)이 형성될 수 있기 때문이다.
반응물은 표면 상에 형성된 종들과 반응할 수 있는 임의의 적합한 반응물일 수 있다. 예를 들어, ALD 프로세스에서, WF6이 전구체로서 사용되는 경우, 표면 상에 -WFx 종들이 존재할 것이다. 반응물은 W 막을 생성하기 위해 -WFx 종들과 반응할 수 있다.
도 7은, 도핑된 비정질 규소 층(440)의 형성 후에 탈가스 프로세스(125)가 포함되는, 본 개시내용의 다른 실시예에 대한 프로세스 흐름을 도시한다. 일부 실시예들에서, 도핑된 비정질 규소 층(440)은 금속 층(480)을 형성하기 전에, 가스방출된 종들을 제거하기 위해 탈가스 환경에 노출된다.
증착된 도핑된 비정질 규소 층(440)은 종들, 예를 들어, 수소를 배출 또는 가스방출할 수 있다. 탈가스 환경은 가스성 종들이 배출될 기회를 제공하여, 최종 막의 기포발생을 최소화한다. 탈가스 환경은 막의 탈가스를 허용하거나 촉진하는 임의의 조건을 포함할 수 있다. 예를 들어, 탈가스 환경은 본질적으로 불활성 가스로 구성될 수 있다. 이와 관련하여 사용되는 바와 같이, "본질적으로 ~로 구성"은 증착된 막의 가스방출을 방해하는 가스성 종들이 없음을 의미한다. 다른 반응성 종들이 막의 탈가스를 억제하지 않고 존재할 수 있으면서 여전히 본질적으로 불활성 가스로 구성된다.
적합한 불활성 가스들은 아르곤, 헬륨, 질소, 및/또는 이들의 혼합물들 중 하나 이상을 포함하지만 이에 제한되지는 않는다.
하나 이상의 실시예에서, 가스방출된 종들은 수소, SiH2, SiH3, SiH4, 및/또는 다른 저급 실란들을 포함한다.
처리 챔버에서의 압력, 또는 처리 챔버의 영역은 전구체 노출 및 탈가스 환경에 대해 독립적으로 제어될 수 있다. 일부 실시예들에서, 규소 전구체, 도펀트 및 탈가스 환경 각각에 대한 노출은, 약 100 mTorr 내지 약 600 Torr 범위의 압력에서 일어난다. 일부 실시예들에서, 규소 전구체 및/또는 도펀트는 약 500 mTorr 이상, 또는 약 1 Torr 이상, 또는 약 5 Torr 이상, 또는 약 10 Torr 이상, 또는 약 20 Torr 이상, 또는 약 30 Torr 이상의 압력으로 기판에 노출된다.
기판 표면이 규소 전구체, 도펀트 및/또는 탈가스 환경에 노출되는 온도는, 예를 들어, 규소 전구체 및/또는 도펀트 및 형성되고 있는 디바이스의 열 예산에 따라 달라질 수 있다. 일부 실시예들에서, 규소 전구체, 도펀트 및/또는 탈가스 환경 각각에 대한 노출은 약 25 ℃ 내지 약 700 ℃ 범위의 온도에서 일어난다. 하나 이상의 실시예에서, 도핑된 비정질 규소 층(440)은 약 25 ℃ 내지 약 700 ℃ 범위, 또는 약 50 ℃ 내지 약 600 ℃ 범위, 또는 약 100 ℃ 내지 약 550 ℃ 범위의 온도에서 형성된다. 일부 실시예들에서, 도핑된 비정질 규소 층(440)은 약 25 ℃ 이상 및 약 550 ℃ 이하, 약 400 ℃ 이하, 약 250 ℃ 이하, 약 200 ℃ 이하, 또는 약 100 ℃ 이하의 온도에서 형성된다.
탈가스 환경에 노출되기 전에 규소 전구체 및 도펀트로 형성된 도핑된 비정질 규소 층(440)의 두께는 수정될 수 있다. 일부 실시예들에서, 규소 전구체, 도펀트 및 탈가스 환경에 대한 각각의 노출은 약 5 Å 내지 약 20 Å, 또는 약 20 Å 내지 약 100 Å, 또는 약 40 Å 내지 약 100 Å 범위의 두께를 갖는 막을 성장시킨다.
미리 결정된 두께를 갖는 막을 형성하기 위해, 전구체, 도펀트 및 탈가스 환경들은 기판 표면에 반복적으로 순차적으로 노출될 수 있다. 일부 실시예들에서, 비정질 규소 막은 약 20 Å 내지 약 1 ㎛ 범위의 총 두께를 갖는다.
도 8a 및 8b를 참조하면, 본 개시내용의 일부 실시예들은 도핑된 비정질 규소 층(440)을 형성하기 전에 접착제 층(460)이 기판 상에 증착되는 단계(560)를 더 포함한다. 접착제 층(460)은, 도핑된 비정질 규소 층이 기판(420) 상에 직접 증착된 경우보다 박피될 가능성이 더 낮은 조건으로, 도핑된 비정질 규소가 점착될 수 있는 층이다. 일부 실시예들에서, 접착제 층은 TiN을 포함한다. 하나 이상의 실시예에서, 기판(420)은 산화규소 표면을 갖고, 접착제 층은 TiN을 포함한다.
접착제 층(460)의 두께는 증착될 도핑된 비정질 규소의 두께 및 기판에 따라 달라질 수 있다. 일부 실시예들에서, 접착제 층(460)은 약 1 Å 내지 약 30 Å 범위, 또는 약 5 Å 내지 약 30 Å 범위의 두께를 갖는다. 일부 실시예들에서, 접착제 층(460)은 약 20 Å 이하, 또는 약 15 Å 이하 또는 약 10 Å 이하 또는 약 5 Å 이하의 두께를 갖는다.
도 8b를 참조하면, 본 개시내용의 하나 이상의 실시예는 산화물 표면(422)을 갖는 기판(420)을 포함하는 스택들(400)에 관한 것이다. 접착제 층(460)은 산화물 표면(422) 상에 있다. 일부 실시예들의 접착제 층은 약 5 Å 내지 약 30 Å 범위의 두께를 갖는 TiN을 포함한다. 도핑된 비정질 규소 층(440)은 접착제 층(460) 상에 있고 약 5 Å 내지 약 50 Å 범위의 두께를 갖는다. 금속 층(480)은 도핑된 비정질 규소 층(440) 상에 있고 텅스텐 및 몰리브데넘 중 하나 이상을 포함한다.
본 개시내용의 하나 이상의 실시예는 장벽 층을 사용하지 않고 접착제 층, 플루오린 확산 장벽 및/또는 핵형성 층 중 하나 이상으로서 붕소 또는 규소 중 하나 이상을 포함하는 박막 상에 금속 층을 증착시키는 방법들에 관한 것이다. 많은 실시예들에서 텅스텐 금속의 증착이 참조되지만, 관련 기술분야의 통상의 기술자들은 다른 금속들(예를 들어, Mo)이, 개시된 프로세스들에 의해 증착될 수 있다는 것을 이해할 것이다. 추가적으로, 본 개시내용은 텅스텐의 증착 또는 ALD 증착에 의한 금속 증착으로 제한되지 않는다.
본 개시내용의 일부 실시예들은 유리하게, 실질적으로 장벽 층이 없는 기판 표면 상에 금속 층을 증착시키는 방법들을 제공한다. 장벽 층의 상대적 부재는 장벽 층을 함유하는 유사한 구조들보다 상대적으로 더 낮은 저항을 갖는 금속 라인들 또는 구조들의 형성을 허용한다. 이론에 얽매이지 않고, 장벽 층의 부재는 동일한 부피에서 더 큰 부피의 금속 증착 및 그에 의해 금속 벌크의 더 낮은 저항을 허용한다고 여겨진다. 일부 실시예들에서, 금속 층은 금속 스택의 일부로서 증착된다. 일부 실시예들에서, 핵형성 층은 장벽 층이 없는 기판 표면 상에 직접 형성된다. 일부 실시예들에서, 핵형성 층은 규소 또는 붕소 중 하나 이상을 포함한다.
통상의 기술자는 플루오린 함유 화합물들이 특정 표면들(예를 들어, 규소 표면들)을 식각할 수 있다는 것을 인식할 것이다. 본 개시내용의 일부 실시예들은 유리하게, 장벽 층 없이 플루오린 함유 금속 전구체들의 사용을 허용한다. 이론에 얽매이지 않고, 금속 전구체가 전체 핵형성 층을 제거하지 않고 기판 표면을 식각하거나 다른 방식으로 손상시키지 않는 것을 보장하기에 충분한 두께까지 핵형성 층(830)이 형성될 수 있는 것으로 여겨진다.
일부 실시예들에서, 핵형성 층에 노출된 금속 전구체는 실질적으로 플루오린을 포함하지 않는다. 이론에 얽매이지 않고, 플루오린 없는 금속 전구체들을 사용함으로써 기판 표면에 대한 플루오린 공격의 영향들이 최소화되거나 제거될 수 있다고 여겨진다.
도 9a 및 9b를 참조하면, 본 개시내용의 하나 이상의 실시예는 막 스택들(800)을 형성하기 위한 처리 방법들(700)에 관한 것이다. 710에서, 핵형성 층(830)을 형성하기 위해, 기판 표면(822)을 갖는 기판(820)이 핵형성 전구체에 노출된다. 일부 실시예들에서, 핵형성 층(830)은 핵형성 전구체의 열 분해에 의해 형성된다.
일부 실시예들에서, 기판(820)은 유전체를 포함한다. 일부 실시예들에서, 기판(820)은 이산화규소 또는 산화알루미늄 중 하나 이상을 포함한다. 일부 실시예들에서, 기판(820)은 본질적으로 산화규소 또는 산화알루미늄으로 구성된다. 이와 관련하여 사용되는 바와 같이, "본질적으로 ~로 구성"은 기판이, 원자 기준으로, 언급된 물질을 95%, 98%, 99% 또는 99.5% 초과로 포함한다는 것을 의미한다. 통상의 기술자는 "산화규소" 및 "산화알루미늄"이라는 용어들이 임의의 특정 원자 비율을 전달하지 않는다는 것을 인식할 것이다. 이러한 물질들은 화학량론적 또는 비-화학량론적일 수 있다.
일부 실시예들에서, 기판 표면(822)은 실질적으로 장벽 층이 없다. 이와 관련하여 사용되는 바와 같이, "실질적으로 장벽 층이 없다"는 기판 표면의 5%, 2%, 1% 또는 0.5% 미만이 장벽 층을 포함한다는 것을 의미한다. 일부 실시예들에서, 기판 표면(822)은 TiN, TaN, SiN, TiSiN 또는 SiCN 중 하나 이상을 포함하는 장벽 층이 실질적으로 없다.
일부 실시예들에서, 핵형성 전구체는 붕소 전구체를 포함하고, 핵형성 층은 붕소 층이다. 일부 실시예들에서, 핵형성 전구체는 본질적으로 붕소 전구체로 구성된다. 일부 실시예들에서, 붕소 층은 비정질 붕소 층이다.
적합한 붕소 전구체들은 보란들, 알킬보란들 및 할로보란들을 포함하지만, 이에 제한되지 않는다. 일부 실시예들에서, 붕소 전구체는 BcHdXeRf의 화학식을 갖는 하나 이상의 종을 포함하고, 여기서 각각의 X는 F, Cl, Br 및 I로부터 독립적으로 선택된 할로겐이고, 각각의 R은 독립적으로 선택된 C1-C4 알킬 기이고, c는 2 이상의 임의의 정수이고, d, e 및 f 각각은 c+2 이하이고, d+e+f는 c+2이다.
일부 실시예들에서, 핵형성 전구체는 규소 전구체를 포함하고, 핵형성 층은 규소 층이다. 일부 실시예들에서, 핵형성 전구체는 본질적으로 규소 전구체로 구성된다. 일부 실시예들에서, 규소 층은 비정질 규소 층이다.
적합한 규소 전구체들은 폴리실란들 및 할로실란들을 포함하지만, 이에 제한되지 않는다. 일부 실시예들에서, 규소 전구체는 SigHhXi의 화학식을 갖는 하나 이상의 종을 포함하고, 여기서 각각의 X는 F, Cl, Br 및 I로부터 독립적으로 선택된 할로겐이고, g는 1 이상의 임의의 정수이고, h 및 i 각각은 2g+2 이하이고, h+i는 2g+2이다.
일부 실시예들에서, 핵형성 전구체는 규소 전구체 및 붕소 전구체를 포함하고, 핵형성 층은 규소 및 붕소를 포함한다. 일부 실시예들에서, 핵형성 층은 비정질이다. 일부 실시예들에서, 비정질 층은 5 원자 퍼센트 이하의 규소를 포함한다. 일부 실시예들에서, 비정질 층은 5 원자 퍼센트 이하의 붕소를 포함한다.
핵형성 층(830)의 두께는, 예를 들어, 기판 표면(822) 및 후속하는 막들 및 프로세스들에 따라 달라질 수 있다. 일부 실시예들에서, 핵형성 층(830)은 약 20 Å 이상의 두께를 갖는다. 하나 이상의 실시예에서, 핵형성 층(830)은 약 1 Å 내지 약 200 Å 범위, 또는 약 10 Å 내지 약 150 Å 범위, 또는 약 20 Å 내지 약 100 Å 범위, 또는 약 40 Å 내지 약 100 Å 범위의 두께를 갖는다. 일부 실시예들에서, 핵형성 층(830)은 약 10 Å 내지 약 50 Å 범위의 두께를 갖는다. 일부 실시예들에서, 핵형성 층(830)의 두께는 0 Å 초과이고 약 100 Å, 75 Å, 50 Å, 45 Å 또는 40 Å 이하이다.
일부 실시예들에서, 핵형성 층(830)은 연속적인 층을 형성하기에 충분한 최소 두께를 갖는다. 본원에 사용되는 바와 같이, "연속적인"이라는 용어는, 증착된 층 아래에 놓인 물질을 드러내는 갭들 또는 노출 부위들 없이, 전체 노출된 표면을 덮는 층을 지칭한다. 연속적인 층은, 막의 전체 표면적의 약 1% 미만의 표면적을 갖는 갭들 또는 노출 부위들을 가질 수 있다.
일부 실시예들에서, 핵형성 층(830)은 기판 표면(822) 상에 등각으로 형성된다. 본원에서 사용되는 바와 같이, "등각" 또는 "등각으로"라는 용어는, 막의 평균 두께에 대해 1% 미만의 변동을 갖는 두께로, 노출된 표면들에 접착되어 이 표면들을 균일하게 덮는 층을 지칭한다. 예를 들어, 100 Å 두께의 막은 두께에서 1 Å 미만의 변동들을 가질 것이다. 이러한 두께 및 변동은 함몰부들의 바닥, 측들, 코너들, 및 에지들을 포함한다. 예를 들어, 본 개시내용의 다양한 실시예들에서 증착된 등각 층은, 복잡한 표면들 상의 본질적으로 균일한 두께의 증착된 영역에 걸친 적용범위를 제공할 것이다.
720에서, 핵형성 층(830)은 제1 금속 층(840)을 형성하기 위해 제1 금속 전구체에 노출된다. 제1 금속 전구체는 제1 금속을 포함한다. 일부 실시예들에서, 제1 금속 층을 형성하는 단계는 핵형성 층을 제1 금속 층으로 변환함으로써 수행된다. 일부 실시예들에서, 변환 프로세스는 핵형성 층의 원자들을 제1 금속 원자들로 치환하는 것을 수반한다. 일부 실시예들에서, 제1 금속 전구체와의 공반응물로서 H2가 추가된다.
제1 금속은 임의의 적합한 금속일 수 있다. 일부 실시예들에서, 제1 금속은 텅스텐 또는 몰리브데넘을 포함한다. 일부 실시예들에서, 제1 금속 전구체는 할라이드들, 카르보닐들 또는 시클로펜타디엔들로부터 선택된 하나 이상의 리간드를 포함한다. 일부 실시예들에서, 제1 금속 전구체는 본질적으로 WF6, WCl6, WCl5, W(CO)5, MoF6, MoCl5, 또는 Mo(CO)6 중 하나 이상으로 구성되거나 이를 포함한다. 일부 실시예들에서, 제1 금속 전구체는 본질적으로 W(CO)5로 구성된다. 이와 관련하여 사용되는 바와 같이, "본질적으로 ~로 구성"은 제1 금속 전구체가, 언급된 종들을 95%, 98%, 99% 또는 99.5% 초과로 포함한다는 것을 의미한다.
일부 실시예들에서, 제1 금속 전구체는 실질적으로 플루오린을 포함하지 않는다. 이와 관련하여 사용되는 바와 같이, "실질적으로 플루오린을 포함하지 않는"은 제1 금속 전구체가, 원자 기준으로, 플루오린 원자들을 2%, 1%, 0.5% 또는 0.1% 미만으로 포함한다는 것을 의미한다.
730에서, 제2 금속 층(850)은 기판(820)을 제2 금속 전구체에 노출시킴으로써 제1 금속 층(840) 상에 형성된다. 제2 금속 전구체는 제2 금속을 포함한다. 제2 금속은 임의의 적합한 금속일 수 있다. 일부 실시예들에서, 제2 금속은 텅스텐 또는 몰리브데넘을 포함한다. 일부 실시예들에서, 제2 금속 층(850)은 본질적으로 텅스텐으로 구성된다. 일부 실시예들에서, 제2 금속 층(850)은 본질적으로 몰리브데넘으로 구성된다. 이와 관련하여 사용되는 바와 같이, "본질적으로 ~로 구성"은 제2 금속 층(850)이, 원자 기준으로, 명시된 원소를 95%, 98%, 99% 또는 99.5% 초과로 포함한다는 것을 의미한다. 일부 실시예들에서, 제1 금속 전구체 및 제2 금속 전구체는 동일한 금속을 포함한다. 일부 실시예들에서, 제1 금속 전구체 및 제2 금속 전구체는 상이한 금속들을 포함한다.
일부 실시예들에서, 제2 금속 전구체는 할라이드들, 카르보닐들 또는 시클로펜타디엔들로부터 선택된 하나 이상의 리간드를 포함한다. 일부 실시예들에서, 제2 금속 전구체는 본질적으로 WF6, WCl6, WCl5, W(CO)5, MoF6, MoCl5, 또는 Mo(CO)6 중 하나 이상으로 구성되거나 이를 포함한다. 일부 실시예들에서, 제2 금속 전구체는 본질적으로 W(CO)5로 구성된다. 이와 관련하여 사용되는 바와 같이, "본질적으로 ~로 구성"은 제1 금속 전구체가, 언급된 종들을 95%, 98%, 99% 또는 99.5% 초과로 포함한다는 것을 의미한다.
제2 금속 층(850)은, 원자 층 증착(ALD), 플라즈마 강화 원자 층 증착(PE-ALD), 화학 기상 증착(CVD), 플라즈마 강화 화학 기상 증착(PE-CVD) 및 물리 기상 증착(PVD)을 포함하지만 이에 제한되지 않는 임의의 적합한 기법에 의해 형성될 수 있다.
일부 실시예들에서, 제2 금속 층(850)은 CVD에 의해 형성된다. 제2 금속 전구체 및 반응물은 기판(820) 상에 제2 금속 층(850)을 증착시키기 위해 처리 챔버 내로 공동유동될 수 있다. 제2 금속 전구체 및 반응물은 가스 상태로 반응하는 것이 허용된다.
일부 실시예들에서, 제2 금속 층(850)은 ALD에 의해 증착된다. 일부 실시예들에서, 제2 금속 층은 기판 표면을 제2 텅스텐 전구체 및 반응물에 개별적으로 노출시킴으로써 형성된다.
반응물은 표면 상에 형성된 종들과 반응할 수 있는 임의의 적합한 반응물일 수 있다. 예를 들어, ALD 프로세스에서, WF6이 전구체로서 사용되는 경우, 표면 상에 -WFx 종들이 존재할 것이다. 반응물은 W 막을 생성하기 위해 -WFx 종들과 반응할 수 있다. 일부 실시예들에서, 반응물은 수소 가스(H2) 또는 질소 가스(N2)를 포함한다.
일부 실시예들에서, 처리 동안 불활성 가스가 처리 챔버에 추가될 수 있다. 일부 실시예들에서, 제1 금속 막(840)의 형성 동안 불활성 가스가 추가된다. 일부 실시예들에서, 제2 금속 막(850)의 형성 동안 불활성 가스가 추가된다. 불활성 가스들은 제1 또는 제2 금속 전구체와 함께 처리 챔버 내로 유동될 수 있거나 개별적으로 유동될 수 있다. 일부 실시예들에서, 불활성 가스는 Ar, He, 또는 질소 가스(N2) 중 하나 이상을 포함한다.
기판 표면이 핵형성 전구체, 제1 금속 전구체 및/또는 제2 금속 전구체에 노출되는 온도는, 예를 들어, 선택된 전구체들 및 형성되고 있는 디바이스의 열 예산에 따라 달라질 수 있다. 일부 실시예들에서, 전구체들 각각에 대한 노출은 약 25 ℃ 내지 약 700 ℃ 범위의 온도에서 일어난다. 하나 이상의 실시예에서, 기판은 약 25 ℃ 내지 약 700 ℃ 범위, 또는 약 50 ℃ 내지 약 600 ℃ 범위, 또는 약 100 ℃ 내지 약 550 ℃ 범위의 온도에서 노출된다. 일부 실시예들에서, 기판은 약 25 ℃ 이상 및 약 550 ℃ 이하, 약 400 ℃ 이하, 약 250 ℃ 이하, 약 200 ℃ 이하, 또는 약 100 ℃ 이하의 온도에서 노출된다. 일부 실시예들에서, 핵형성 층(830) 및 제1 금속 막(840)은 약 300 ℃ 내지 약 550 ℃ 범위의 온도에서 형성되는 반면, 제2 금속 막은 약 200 ℃ 내지 약 550 ℃ 범위의 온도에서 형성된다.
기판 표면이 핵형성 전구체, 제1 금속 전구체 및/또는 제2 금속 전구체에 노출되는 압력은, 예를 들어, 선택된 전구체들 및 다른 프로세스 조건들에 따라 달라질 수 있다. 일부 실시예들에서, 전구체들 각각에 대한 노출은 약 0.01 Torr 내지 약 100 Torr 범위의 압력에서 일어난다. 하나 이상의 실시예에서, 기판은 약 0.01 Torr 내지 약 100 Torr 범위, 또는 약 0.1 Torr 내지 약 80 Torr 범위, 또는 약 1 Torr 내지 약 60 Torr 범위의 압력에서 노출된다. 일부 실시예들에서, 기판은 약 1 Torr 이상 및 약 100 Torr 이하, 약 80 Torr 이하, 약 60 Torr 이하, 약 40 Torr 이하, 또는 약 25 Torr 이하의 압력에서 노출된다. 일부 실시예들에서, 기판은 약 4 Torr 내지 약 100 Torr 범위의 압력에서 노출된다.
본 개시내용의 하나 이상의 실시예는 더 낮은 수소 함량을 갖는 고품질 a-Si 층을 증착시키는 방법들에 관한 것이다. 일부 실시예들에서, a-Si 층은 비교적 높은 압력 및 비교적 높은 온도에서 증착된다. 일부 실시예들에서, 증착은 약 200 Torr 이상, 약 225 Torr 이상, 약 250 Torr 이상, 약 275 Torr 이상, 약 300 Torr 이상, 약 325 Torr 이상, 또는 약 350 Torr 이상의 압력에서 일어난다. 일부 실시예들에서, 기판 표면은 약 450 ℃ 이상, 약 475 ℃ 이상, 약 500 ℃ 이상, 약 525 ℃ 이상, 또는 약 550 ℃ 이상의 온도로 유지된다.
비정질 규소 막의 품질은, 러더퍼드 후방산란 분광법(RBS)에 의해 측정된 바와 같은, 막의 수소 함량에 기초하여 결정된다. 일부 실시예들에서, a-Si 층의 수소 함량은 6 원자 퍼센트 이하, 5 원자 퍼센트 이하, 4 원자 퍼센트 이하, 3 원자 퍼센트 이하, 2 원자 퍼센트 이하, 1 원자 퍼센트 이하, 또는 0.5 원자 퍼센트 이하이다.
일부 실시예들에 따르면, 막 박피를 감소시키고 막 비저항을 감소시키기 위해 더 적은 플루오린 침투(즉, 플루오린 함량)를 갖는 막을 제공하기 위해, 핵형성 층(즉, 고품질 비정질 규소 막)이, 낮은 온도에서 금속(예를 들어, 텅스텐) 막으로 변환된다. 일부 실시예들에서, 핵형성 층은 약 450 ℃ 이하, 약 425 ℃ 이하, 약 400 ℃ 이하, 약 375 ℃ 이하, 또는 약 350 ℃ 이하의 온도에서 제1 금속 전구체에 노출된다. 일부 실시예들에서, 핵형성 층은 약 250 ℃ 이상, 약 275 ℃ 이상, 약 300 ℃ 이상, 약 325 ℃ 이상, 또는 약 350 ℃ 이상의 온도에서 제1 금속 전구체에 노출된다. 일부 실시예들에서, 핵형성 층은 약 250 ℃ 내지 약 450 ℃ 범위, 또는 약 275 ℃ 내지 약 425 ℃ 범위, 또는 약 300 ℃ 내지 약 400 ℃ 범위의 온도에서 제1 금속 전구체에 노출된다.
이론에 얽매이지 않고, 일부 실시예들의 비교적 낮은 플루오린 침투는 더 양호한 막 접착(예를 들어, 더 적은 막 박피) 및 결과적인 제1 금속 막에 대한 더 낮은 비저항을 제공하는 것으로 여겨진다. 일부 실시예들에서, 결과적인 제1 금속 막의 플루오린 농도는 약 1x1021 원자/㎤ 이하, 약 7.5x1020 원자/㎤ 이하, 또는 약 5x1020 원자/㎤ 이하, 또는 약 2.5x1020 원자/㎤ 이하, 또는 약 1x1020 원자/㎤ 이하이다. 일부 실시예들에서, 약 20 nm 두께를 갖는 결과적인 제1 금속 막의 비저항은 약 20 μΩ·cm 이하, 약 19 μΩ·cm 이하, 약 18 μΩ·cm 이하, 약 17 μΩ·cm 이하, 약 16 μΩ·cm 이하, 또는 약 15 μΩ·cm 이하이다.
본 개시내용의 하나 이상의 실시예는, x 선 회절(XRD)에 의해 측정되는 바와 같은, 비교적 더 큰 텅스텐 결정립도의 저-플루오린 텅스텐 벌크 막을 원자 층 증착에 의해 증착시키는 방법들에 관한 것이다. 일부 실시예들에서, 저-플루오린 벌크 텅스텐의 증착은, 기판이 약 450 ℃ 이상, 약 475 ℃ 이상, 약 500 ℃ 이상, 또는 약 525 ℃ 이상의 온도로 유지되는 동안 원자 층 증착에 의해 수행된다.
본 발명자들은 저-플루오린 벌크 텅스텐 막의 결정립도가, 막이 증착되는 온도에 정비례한다는 것을 발견하였다. 예를 들어, 더 높은 증착 온도들은 더 높은 결정립도들을 갖는 막들을 형성할 것이다. 이론에 얽매이지 않고, 더 작은 텅스텐 결정립들이 전자 산란을 야기한다고 여겨진다. 일부 실시예들에서, 저-플루오린 벌크 텅스텐의 평균 결정립도는 약 110 Å 이상, 약 115 Å 이상, 약 120 Å 이상, 약 122 Å 이상, 약 124 Å 이상, 약 126 Å 이상, 또는 약 128 Å 이상, 또는 약 130 Å 이상이다. 낮은 온도(즉, 300-400 ℃)에서 형성된 저-플루오린 벌크 텅스텐 막의 결정립도는 110 Å 미만이다.
본 발명자들은 저-플루오린 벌크 텅스텐 막의 비저항이, 저-플루오린 벌크 텅스텐의 증착이 수행되는 500 ℃ 미만에서 매 10 ℃마다 약 0.5 μΩ·cm 이상, 약 0.75 μΩ·cm 이상, 또는 약 1.0 μΩ·cm 이상만큼 증가된다는 것을 발견하였다. 예를 들어, 500 ℃에서 증착된 저-플루오린 벌크 텅스텐 막은 15 μΩ·cm의 비저항을 갖는다. 480 ℃에서 증착된 유사한 막은 17 μΩ·cm 이상의 비저항을 가질 수 있다.
하나 이상의 실시예에 따르면, 기판은 본 개시내용에 따른 처리 이전에 및/또는 이후에 처리를 겪는다. 이러한 처리는 동일한 챔버에서 또는 하나 이상의 별개의 처리 챔버에서 수행될 수 있다. 일부 실시예들에서, 기판은 추가의 처리를 위해 제1 챔버로부터 별개의 제2 챔버로 이동된다. 기판은 제1 챔버로부터 별개의 처리 챔버로 직접 이동될 수 있거나, 기판은 제1 챔버로부터 하나 이상의 이송 챔버로 이동된 다음, 별개의 처리 챔버로 이동될 수 있다. 이에 따라, 처리 장치는 이송 스테이션과 연통하는 다수의 챔버들을 포함할 수 있다. 이러한 종류의 장치는 "클러스터 툴" 또는 "클러스터형 시스템" 등으로 지칭될 수 있다.
일반적으로, 클러스터 툴은, 기판 중심 찾기 및 배향, 탈가스, 어닐링, 증착 및/또는 식각을 포함하는 다양한 기능들을 수행하는 다수의 챔버들을 포함하는 모듈형 시스템이다. 하나 이상의 실시예에 따르면, 클러스터 툴은 적어도 제1 챔버 및 중앙 이송 챔버를 포함한다. 중앙 이송 챔버는 처리 챔버들과 로드 록 챔버들 사이에서 그리고 그들 간에 기판들을 왕복시킬 수 있는 로봇을 수납할 수 있다. 이송 챔버는 전형적으로, 진공 조건으로 유지되며, 기판들을 하나의 챔버로부터, 클러스터 툴의 전단부에 위치된 로드 록 챔버 및/또는 다른 챔버로 왕복시키기 위한 중간 스테이지를 제공한다. 본 개시내용에 적응될 수 있는 2개의 잘 알려진 클러스터 툴들은 센츄라®(Centura®) 및 엔듀라®(Endura®)이며, 이 둘 모두는 캘리포니아주 산타클라라의 어플라이드 머티어리얼스, 인코포레이티드(Applied Materials, Inc.)로부터 입수가능하다. 그러나, 챔버들의 정확한 배열 및 조합은, 본원에 설명되는 바와 같은 프로세스의 특정 단계들을 수행할 목적들을 위해 변경될 수 있다. 사용될 수 있는 다른 처리 챔버들은, 주기적 층 증착(CLD), 원자 층 증착(ALD), 화학 기상 증착(CVD), 물리 기상 증착(PVD), 식각, 사전 세정, 화학적 세정, 열 처리, 예컨대, RTP, 플라즈마 질화, 탈가스, 배향, 히드록실화 및 다른 기판 프로세스들을 포함할 수 있지만, 이에 제한되지 않는다. 클러스터 툴 상의 챔버에서 프로세스들을 수행함으로써, 대기 불순물들에 의한 기판의 표면 오염은, 후속 막을 증착시키기 전에 산화 없이 회피될 수 있다.
하나 이상의 실시예에 따르면, 기판은 계속적으로 진공 또는 "로드 록" 조건들 하에 있고, 한 챔버로부터 다음 챔버로 이동될 때 주변 공기에 노출되지 않는다. 따라서, 이송 챔버들은 진공 하에 있고, 진공 압력 하에서 "펌핑 다운"된다. 처리 챔버들 또는 이송 챔버들에 불활성 가스들이 존재할 수 있다. 일부 실시예들에서, 불활성 가스는 반응물들의 일부 또는 전부를 제거하기 위한 퍼지 가스로서 사용된다. 하나 이상의 실시예에 따르면, 반응물들이 증착 챔버로부터 이송 챔버 및/또는 추가적인 처리 챔버로 이동하는 것을 방지하기 위해, 퍼지 가스가 증착 챔버의 출구에 주입된다. 따라서, 불활성 가스의 유동은 챔버의 출구에 커튼을 형성한다.
기판은 단일 기판 증착 챔버들에서 처리될 수 있으며, 여기서, 다른 기판이 처리되기 전에 단일 기판이 로딩되고, 처리되고 언로딩된다. 기판은 또한, 다수의 기판이 챔버의 제1 부분 내로 개별적으로 로딩되고, 챔버를 통해 이동하고, 챔버의 제2 부분으로부터 언로딩되는, 컨베이어 시스템과 유사한 연속적인 방식으로 처리될 수 있다. 챔버 및 연관된 컨베이어 시스템의 형상은 직선 경로 또는 곡선 경로를 형성할 수 있다. 추가적으로, 처리 챔버는 캐러셀일 수 있고, 이 캐러셀에서, 다수의 기판들이 중심 축을 중심으로 이동되고 캐러셀 경로 전체에 걸쳐 증착, 식각, 어닐링, 세정 등의 프로세스들에 노출된다.
처리 동안, 기판은 가열되거나 냉각될 수 있다. 이러한 가열 또는 냉각은, 기판 지지부의 온도를 변화시키고 가열된 또는 냉각된 가스들을 기판 표면으로 유동시키는 것(그러나 이에 제한되지 않음)을 포함하는 임의의 적합한 수단에 의해 달성될 수 있다. 일부 실시예들에서, 기판 지지부는 기판 온도를 전도식으로 변화시키도록 제어될 수 있는 가열기/냉각기를 포함한다. 하나 이상의 실시예에서, 채용되는 가스들(반응성 가스들 또는 불활성 가스들)은 기판 온도를 국부적으로 변화시키기 위해 가열되거나 냉각된다. 일부 실시예들에서, 가열기/냉각기는 기판 온도를 대류식으로 변화시키기 위해, 챔버 내에 기판 표면에 인접하여 위치된다.
기판은 또한, 처리 동안 회전되거나 고정식일 수 있다. 회전하는 기판은 연속적으로 또는 불연속적인 단계들로 회전될 수 있다. 예를 들어, 기판은 전체 프로세스에 걸쳐 회전될 수 있거나, 기판은 상이한 반응성 또는 퍼지 가스들에 대한 노출들 사이에서 적은 양만큼 회전될 수 있다. 처리 동안 기판을 (연속적으로 또는 단계들로) 회전시키는 것은, 예를 들어, 가스 유동 기하형상들에서의 국부적인 변동성의 영향을 최소화함으로써, 더 균일한 증착 또는 식각을 생성하는 것을 도울 수 있다.
본 발명자들은 놀랍게도, 프로세스 단계들 사이에 에어 브레이크가 없는 개시된 방법들의 성능이 에어 브레이크를 수반하는 방법들에 의해 생성되는 막들에 비해 개선된 특성들을 갖는 금속 막들을 제공한다는 것을 발견하였다. 일부 실시예들에서, 개선된 특성은, 비저항, 거칠기, 접착력, 응력, 두께 균일성 및 거칠기 균일성 중 하나 이상으로부터 선택된다.
본 개시내용의 목적들을 위해, "인-시튜" 프로세스는 중간 에어 브레이크 없이 수행된다. 달리 언급하면, 기판은 처리 방법 동안 로드 록 조건들 하에서 유지되고 주변 공기에 노출되지 않는다.
유사하게, "엑스-시튜" 프로세스는 처리 동안 중간 에어 브레이크 또는 주변 분위기에 대한 노출이 있게 수행된다. 일부 실시예들에서, 엑스-시튜 프로세스는 프로세스 단계들 사이에 에어 브레이크로 중단된다. 예를 들어, 엑스-시튜 프로세스는 710에서의 비정질 핵형성 층의 형성 후이지만 720에서의 제1 금속 전구체에 대한 노출 전에 기판을 주변 분위기에 노출시킬 수 있다.
일부 실시예들의 인-시튜 프로세스들은 클러스터 툴 또는 유사한 다중-스테이지 또는 다중-기판 처리 툴 상에서 수행될 수 있다. 본 개시내용에 적응될 수 있는 예시적인 클러스터 툴들은 엔듀라®, 센츄라®, 및 올림피아(Olympia™)를 포함하지만 이에 제한되지 않으며, 이들 모두는 캘리포니아주 산타클라라의 어플라이드 머티어리얼스, 인코포레이티드로부터 입수가능하다.
도 10을 참조하면, 본 개시내용의 추가적인 실시예들은 본원에 설명되는 인-시튜 프로세스들을 실행하기 위한 처리 시스템(900)에 관한 것이다. 도 10은 본 개시내용의 하나 이상의 실시예에 따른, 기판을 처리하는 데 사용될 수 있는 시스템(900)을 예시한다. 시스템(900)은 클러스터 툴로 지칭될 수 있다. 시스템(900)은, 내부에 로봇(912)이 있는 중앙 이송 스테이션(910)을 포함한다. 로봇(912)이 단일 블레이드 로봇으로 예시되지만, 관련 기술분야의 통상의 기술자들은, 다른 로봇(912) 구성들이 본 개시내용의 범위 내에 있다는 것을 인식할 것이다. 로봇(912)은, 중앙 이송 스테이션(910)에 연결된 챔버들 사이에서 하나 이상의 기판을 이동시키도록 구성된다.
적어도 하나의 사전 세정/버퍼 챔버(920)가 중앙 이송 스테이션(910)에 연결된다. 사전 세정/버퍼 챔버(920)는, 가열기, 라디칼 소스, 또는 플라즈마 소스 중 하나 이상을 포함할 수 있다. 사전 세정/버퍼 챔버(920)는, 개별 반도체 기판에 대한 또는 처리를 위한 웨이퍼들의 카세트에 대한 보유 영역으로서 사용될 수 있다. 사전 세정/버퍼 챔버(920)는, 사전 세정 프로세스들을 수행할 수 있거나, 처리를 위해 기판을 사전 가열할 수 있거나, 또는 단순히 프로세스 시퀀스에 대한 스테이징 영역일 수 있다. 일부 실시예들에서, 2개의 사전 세정/버퍼 챔버(920)가 중앙 이송 스테이션(910)에 연결된다.
도 10에 도시된 실시예에서, 사전 세정 챔버들(920)은, 팩토리 인터페이스(905)와 중앙 이송 스테이션(910) 사이의 통과 챔버들로서 작동할 수 있다. 팩토리 인터페이스(905)는, 카세트로부터 사전 세정/버퍼 챔버(920)로 기판을 이동시키기 위한 하나 이상의 로봇(906)을 포함할 수 있다. 이어서, 로봇(912)은, 사전 세정/버퍼 챔버(920)로부터 시스템(900) 내의 다른 챔버들로 기판을 이동시킬 수 있다.
제1 처리 챔버(930)가 중앙 이송 스테이션(910)에 연결될 수 있다. 제1 처리 챔버(930)는 핵형성 층 증착 챔버로서 구성될 수 있고, 제1 처리 챔버(930)에 반응성 가스들의 하나 이상의 유동을 제공하기 위해 하나 이상의 반응성 가스 소스와 유체 연통할 수 있다. 기판은, 격리 밸브(914)를 통과하는 로봇(912)에 의해 처리 챔버(930)로 그리고 그로부터 이동될 수 있다.
처리 챔버(940)가 또한 중앙 이송 스테이션(910)에 연결될 수 있다. 일부 실시예들에서, 처리 챔버(940)는 제1 금속 변환 챔버를 포함하고, 처리 챔버(940)로의 반응성 가스의 유동들을 제공하여 제1 금속 변환 프로세스를 수행하기 위해 하나 이상의 반응성 가스 소스와 유체 연통한다. 기판은, 격리 밸브(914)를 통과하는 로봇(912)에 의해 처리 챔버(940)로 그리고 그로부터 이동될 수 있다.
처리 챔버(945)가 또한 중앙 이송 스테이션(910)에 연결될 수 있다. 일부 실시예들에서, 처리 챔버(945)는, 처리 챔버(940)와 동일한 프로세스를 수행하도록 구성되는 동일한 유형의 처리 챔버(940)이다. 이러한 배열은, 처리 챔버(940)에서 발생하는 프로세스가 처리 챔버(930)에서의 프로세스보다 훨씬 더 오래 걸리는 경우 유용할 수 있다.
일부 실시예들에서, 처리 챔버(960)가 중앙 이송 스테이션(910)에 연결되고, 제2 금속 층 증착 챔버로서 작동하도록 구성된다. 처리 챔버(960)는 하나 이상의 상이한 CVD 또는 ALD 프로세스를 수행하도록 구성될 수 있다.
일부 실시예들에서, 처리 챔버들(930, 940, 945, 및 960) 각각은 개시된 처리 방법의 상이한 부분들을 수행하도록 구성된다. 예를 들어, 처리 챔버(930)는 핵형성 층 형성 프로세스를 수행하도록 구성될 수 있고, 처리 챔버(940)는 제1 금속 변환 프로세스를 수행하도록 구성될 수 있고, 처리 챔버(945)는 계측 스테이션으로서 구성되거나 제1 금속 변환 프로세스를 수행하도록 구성될 수 있고, 처리 챔버(960)는 제2 금속 증착 프로세스를 수행하도록 구성될 수 있다. 통상의 기술자는, 툴 상의 개별 처리 챔버의 수 및 배열이 변경될 수 있고, 도 10에 예시된 실시예는 단지 하나의 가능한 구성을 나타낸다는 것을 인식할 것이다.
일부 실시예들에서, 처리 시스템(900)은 하나 이상의 계측 스테이션을 포함한다. 예를 들어, 계측 스테이션들은, 사전 세정/버퍼 챔버(920) 내에, 중앙 이송 스테이션(910) 내에, 또는 개별 처리 챔버들 중 임의의 챔버 내에 위치될 수 있다. 계측 스테이션은, 기판을 산화 환경에 노출시키지 않고도 함몰부의 거리가 측정될 수 있게 하는, 시스템(900) 내의 임의의 위치에 있을 수 있다.
적어도 하나의 제어기(950)가 중앙 이송 스테이션(910), 사전 세정/버퍼 챔버(920), 처리 챔버들(930, 940, 945, 또는 960) 중 하나 이상에 결합된다. 일부 실시예들에서, 개별 챔버들 또는 스테이션들에 연결되는 하나 초과의 제어기(950)가 존재하며, 일차 제어 프로세서가 별개의 프로세서들 각각에 결합되어 시스템(900)을 제어한다. 제어기(950)는, 다양한 챔버들 및 서브-프로세서들을 제어하기 위해 산업 현장에서 사용될 수 있는 임의의 형태의 범용 컴퓨터 프로세서, 마이크로제어기, 마이크로프로세서 등 중 하나일 수 있다.
적어도 하나의 제어기(950)는, 프로세서(952), 프로세서(952)에 결합되는 메모리(954), 프로세서(952)에 결합되는 입력/출력 디바이스들(956), 및 상이한 전자 구성요소들 사이의 통신을 위한 지원 회로들(958)을 가질 수 있다. 메모리(954)는, 일시적인 메모리(예를 들어, 랜덤 액세스 메모리) 및 비-일시적인 메모리(예를 들어, 저장소) 중 하나 이상을 포함할 수 있다.
프로세서의 메모리(954) 또는 컴퓨터 판독가능 매체는, 랜덤 액세스 메모리(RAM), 판독 전용 메모리(ROM), 플로피 디스크, 하드 디스크, 또는 로컬 또는 원격의, 임의의 다른 형태의 디지털 저장소와 같은, 용이하게 이용가능한 메모리 중 하나 이상일 수 있다. 메모리(954)는, 시스템(900)의 파라미터들 및 구성요소들을 제어하도록 프로세서(952)에 의해 동작가능한 명령어 세트를 보유할 수 있다. 종래의 방식으로 프로세서를 지원하기 위해 지원 회로들(958)이 프로세서(952)에 결합된다. 회로들은, 예를 들어, 캐시, 전력 공급부들, 클록 회로들, 입력/출력 회로, 서브시스템들 등을 포함할 수 있다.
프로세스들은 일반적으로, 프로세서에 의해 실행될 때, 프로세스 챔버로 하여금 본 개시내용의 프로세스들을 수행하게 하는 소프트웨어 루틴으로서 메모리에 저장될 수 있다. 소프트웨어 루틴은 또한, 프로세서에 의해 제어되는 하드웨어로부터 원격으로 위치되는 제2 프로세서(도시되지 않음)에 의해 저장 및/또는 실행될 수 있다. 본 개시내용의 방법 중 일부 또는 전부는 또한 하드웨어로 수행될 수 있다. 그러므로, 프로세스는 소프트웨어로 구현될 수 있고, 컴퓨터 시스템을 사용하여 하드웨어로, 예를 들어 주문형 집적 회로 또는 다른 유형의 하드웨어 구현으로서, 또는 소프트웨어와 하드웨어의 조합으로서 실행될 수 있다. 소프트웨어 루틴은, 프로세서에 의해 실행될 때, 범용 컴퓨터를, 프로세스들이 수행되도록 챔버 동작을 제어하는 특수 목적 컴퓨터(제어기)로 변환한다.
일부 실시예들에서, 제어기(950)는, 방법을 수행하도록 개별 프로세스들 또는 서브-프로세스들을 실행하기 위한 하나 이상의 구성을 갖는다. 제어기(950)는, 중간 구성요소들에 연결되어 방법들의 기능들을 수행하게 그들을 동작시키도록 구성될 수 있다. 예를 들어, 제어기(950)는, 가스 밸브들, 액추에이터들, 모터들, 슬릿 밸브들, 진공 제어부들 등 중 하나 이상에 연결되어 그들을 제어하도록 구성될 수 있다.
일부 실시예들의 제어기(950)는, 복수의 처리 챔버들과 계측 스테이션 사이에서, 로봇 상에서 기판을 이동시키기 위한 구성; 시스템으로부터 기판들을 로딩 및/또는 언로딩하기 위한 구성; 핵형성 층을 형성하기 위한 구성; 핵형성 층을 제1 금속 층으로 변환하기 위한 구성; 및/또는 제2 금속 층을 증착하기 위한 구성으로부터 선택되는 하나 이상의 구성을 갖는다.
예들
다음의 예들 각각에 대해, 비정질 텅스텐 층 상에 텅스텐 층을 증착함으로써 샘플들을 제조하였다. 비정질 규소 층의 변환에 의해 비정질 텅스텐 층을 형성하였다.
디실란을 포함하는 핵형성 전구체에 기판 표면을 노출시킴으로써 비정질 규소(a-Si)를 포함하는 핵형성 층을 기판의 표면 상에 형성하였다. 핵형성 층의 두께는 약 15 Å 내지 약 35 Å 범위 내에 있었다. 기판 표면은, 핵형성 전구체에 대한 노출 전에 실질적으로 장벽 층이 없었다. 핵형성 층을 비정질 텅스텐(a-W)을 포함하는 제1 금속 층으로 변환하기 위해, 약 0.1 Torr 내지 약 0.5 Torr 범위 내의 분압을 갖는 WF6에 핵형성 층을 노출하였다. WF6 및 H2를 사용하는 원자 층 증착에 의해 제1 금속 층 상에 제2 금속 층을 형성하였다.
예 1
위에 식별된 바와 같이 샘플들을 제조하였다. 일부 샘플들을 에어 브레이크 없이 "인-시튜"로 처리하였다. 다른 샘플들을, 핵형성 층의 형성 후이지만 제1 금속 층의 형성 전에 에어 브레이크가 있게 "엑스-시튜"로 처리하였다.
엑스-시튜로 제조된 샘플들은 200 Å에서 약 30 μΩ·cm의 제2 금속 층에 대한 비저항을 나타내었다. 인-시튜로 제조된 샘플들은 200 Å에서 약 17 μΩ·cm의 제2 금속 층에 대한 비저항을 나타내었다.
샘플들의 이미지들을 취하였다. 인-시튜 샘플의 이미지가 도 11a에 도시되는 한편, 엑스-시튜 샘플의 이미지가 도 11b에 도시된다. 이러한 이미지들의 더 어두운 층은 제1 금속 층이다. 이미지들은, 인-시튜로 처리된 샘플들이 엑스-시튜로 처리된 샘플들보다 더 양호한 제1 금속 층의 막 연속성을 갖는다는 것을 보여준다.
이러한 샘플들에 대해 막 접착력 테스트를 또한 수행하였다. 테이프 조각을 샘플들과 접촉하게 배치하고 제거하였다. 시행 결과는 테이프가 제거될 때 그에 의해 샘플로부터 어떠한 막도 제거되지 않았음을 보여준다. 접착력 테스트들로부터 생성된 테이프들의 이미지들이 도 11c에 도시된다. 이미지들에서 보이는 바와 같이, 인-시튜로 처리된 샘플들이 엑스-시튜로 처리된 샘플들보다 더 양호한 접착력(테이프에 의해 막이 덜 제거됨)을 나타내었다.
예 2
CVD OX 및 1K OX 기판들 상에 또한 샘플들을 제조하였다. CVD OX 기판들은, 규소 기판을 CVD 프로세스에 노출시켜 산화규소 층을 증착함으로써 제조하였다. 산화규소 상에 산화알루미늄 층을 증착하였고, 추가의 처리 전에 기판을 스파이크 어닐링하였다.
1K OX 기판들은, 규소 기판을 노 내에서 열 산화시켜 약 1,000 Å의 두께를 갖는 산화규소 층을 형성함으로써 제조하였다. 산화알루미늄 층을 산화규소 층 상에 증착하였다. 추가의 처리 전에 기판을 어닐링하지 않았다.
위에 식별된 바와 같은 샘플들을 제조하기 위해 기판들을 추가로 처리하였다. 일부 샘플들을 에어 브레이크 없이 "인-시튜"로 처리하였다. 다른 샘플들을, 제1 금속 층의 형성 후이지만 제2 금속 층의 형성 전에 에어 브레이크가 있게 "엑스-시튜"로 처리하였다.
샘플들의 제2 금속 층을 200 Å에서의 비저항, 응력, 저항 불균일성, 및 두께 불균일성에 대해 평가하였다. 결과들이 표 1에서 제시된다.
이러한 측정치들은, 유사한 두께의 막이 엑스-시튜가 아니라 인-시튜로 처리될 때 더 낮은 비저항을 갖는다는 것을 나타낸다. 또한, 인-시튜로 처리된 샘플들은 더 많은 압축 응력을 나타냈다. 추가로, 인-시튜로 처리된 샘플들은 또한, 기판 표면에 걸쳐 더 균일한 면 저항 및 두께를 갖는 제2 금속 층을 나타내었다.
본 명세서 전체에 걸친 "일 실시예", "특정 실시예들", "하나 이상의 실시예" 또는 "실시예"에 대한 참조는, 실시예와 관련하여 설명된 특정 피쳐, 구조, 물질, 또는 특성이 본 개시내용의 적어도 하나의 실시예에 포함된다는 것을 의미한다. 따라서, 본 명세서 전체에 걸쳐 다양한 곳들에서 "하나 이상의 실시예에서", "특정 실시예들에서", "일 실시예에서" 또는 "실시예에서"와 같은 구문들의 출현들은, 반드시 본 개시내용의 동일한 실시예를 지칭하는 것은 아니다. 게다가, 특정한 피쳐들, 구조들, 물질들, 또는 특성들은 하나 이상의 실시예에서 임의의 적합한 방식으로 조합될 수 있다.
본원의 개시내용이 특정 실시예들을 참조하여 설명되었지만, 이러한 실시예들은 본 개시내용의 원리들 및 응용들을 단지 예시하는 것임을 이해해야 한다. 본 개시내용의 방법 및 장치에 대해 다양한 수정들 및 변형들이 본 개시내용의 사상 및 범위로부터 벗어나지 않고 이루어질 수 있다는 것이 관련 기술분야의 통상의 기술자에게 명백할 것이다. 따라서, 본 개시내용이, 첨부된 청구항들 및 그들의 등가물들의 범위 내에 있는 수정들 및 변형들을 포함하는 것이 의도된다.
Claims (20)
- 처리 방법으로서,
비정질 붕소 층을 형성하기 위해 기판 표면을 붕소 전구체에 노출시키는 단계 ― 상기 기판 표면은 실질적으로 장벽 층이 없음 ―;
상기 비정질 붕소 층을 제1 금속 층으로 변환하기 위해 상기 비정질 붕소 층을 제1 금속 전구체에 노출시키는 단계; 및
상기 제1 금속 층을 제2 금속 전구체에 노출시킴으로써 상기 제1 금속 층 상에 제2 금속 층을 형성하는 단계를 포함하며,
상기 처리 방법은 상기 기판 표면을 에어 브레이크에 노출시킴이 없이 수행되는, 처리 방법. - 제1항에 있어서,
상기 기판 표면을 에어 브레이크에 노출시키는 것을 포함하는 유사한 처리 방법에 비해 개선된 비저항, 연속성, 또는 접착력을 갖는 제1 금속 층을 제공하는, 처리 방법. - 제1항에 있어서,
개선된 비저항, 응력, 두께 균일성 및/또는 저항 균일성을 갖는 제2 금속 층을 제공하는, 처리 방법. - 제1항에 있어서,
상기 제1 금속 전구체 및 상기 제2 금속 전구체는 WF6, WCl6, W(CO)5, MoF6, MoCl5, 또는 Mo(CO)6 중 하나 이상을 독립적으로 포함하는, 처리 방법. - 제1항에 있어서,
상기 제1 금속 전구체는 본질적으로 W(CO)5로 이루어지는, 처리 방법. - 제1항에 있어서,
상기 제1 금속 전구체는 실질적으로 플루오린을 포함하지 않는, 처리 방법. - 제1항에 있어서,
상기 제1 금속 전구체 및 상기 제2 금속 전구체는 동일한 금속을 포함하는, 처리 방법. - 처리 방법으로서,
비정질 규소 층을 형성하기 위해 기판 표면을 규소 전구체에 노출시키는 단계 ― 상기 기판 표면은 실질적으로 장벽 층이 없음 ―;
상기 비정질 규소 층을 제1 금속 층으로 변환하기 위해 상기 비정질 규소 층을 제1 금속 전구체에 노출시키는 단계; 및
상기 제1 금속 층을 제2 금속 전구체에 노출시킴으로써 상기 제1 금속 층 상에 제2 금속 층을 형성하는 단계를 포함하며,
상기 처리 방법은 상기 기판 표면을 에어 브레이크에 노출시킴이 없이 수행되는, 처리 방법. - 제8항에 있어서,
상기 기판 표면을 에어 브레이크에 노출시키는 것을 포함하는 유사한 처리 방법에 비해 개선된 비저항, 연속성, 또는 접착력을 갖는 제1 금속 층을 제공하는, 처리 방법. - 제8항에 있어서,
개선된 비저항, 응력, 두께 균일성 및/또는 저항 균일성을 갖는 제2 금속 층을 제공하는, 처리 방법. - 제8항에 있어서,
상기 규소 전구체는 SigHhXi의 화학식을 갖는 하나 이상의 종을 포함하고, 여기서 각각의 X는 F, Cl, Br 및 I로부터 독립적으로 선택된 할로겐이고, g는 1 이상의 임의의 정수이고, h 및 i 각각은 2g+2 이하이고, h+i는 2g+2인, 처리 방법. - 제8항에 있어서,
상기 제1 금속 전구체 및 상기 제2 금속 전구체는 WF6, WCl6, W(CO)5, MoF6, MoCl5, 또는 Mo(CO)6 중 하나 이상을 독립적으로 포함하는, 처리 방법. - 제8항에 있어서,
상기 제1 금속 전구체는 본질적으로 W(CO)5로 이루어지는, 처리 방법. - 제8항에 있어서,
상기 제1 금속 전구체는 실질적으로 플루오린을 포함하지 않는, 처리 방법. - 제8항에 있어서,
상기 제1 금속 전구체 및 상기 제2 금속 전구체는 동일한 금속을 포함하는, 처리 방법. - 처리 방법으로서,
규소 및 붕소를 포함하는 비정질 층을 형성하기 위해 기판 표면을 규소 전구체 및 붕소 전구체에 노출시키는 단계 ― 상기 기판 표면은 실질적으로 장벽 층이 없음 ―;
상기 비정질 층을 제1 금속 층으로 변환하기 위해 상기 비정질 층을 제1 금속 전구체에 노출시키는 단계; 및
상기 제1 금속 층을 제2 금속 전구체에 노출시킴으로써 상기 제1 금속 층 상에 제2 금속 층을 형성하는 단계를 포함하며,
상기 처리 방법은 상기 기판 표면을 에어 브레이크에 노출시킴이 없이 수행되는, 처리 방법. - 제16항에 있어서,
상기 기판 표면을 에어 브레이크에 노출시키는 것을 포함하는 유사한 처리 방법에 비해 개선된 비저항, 연속성, 또는 접착력을 갖는 제1 금속 층을 제공하는, 처리 방법. - 제16항에 있어서,
개선된 비저항, 응력, 두께 균일성 및/또는 저항 균일성을 갖는 제2 금속 층을 제공하는, 처리 방법. - 제16항에 있어서,
상기 비정질 층은 5 원자 퍼센트 이하의 규소 또는 5 원자 퍼센트 이하의 붕소를 포함하는, 처리 방법. - 제16항에 있어서,
상기 제1 금속 전구체 및 상기 제2 금속 전구체는 WF6, WCl6, W(CO)5, MoF6, MoCl5, 또는 Mo(CO)6 중 하나 이상을 독립적으로 포함하는, 처리 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/835,279 | 2020-03-30 | ||
US16/835,279 US10991586B2 (en) | 2015-12-19 | 2020-03-30 | In-situ tungsten deposition without barrier layer |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20210122178A true KR20210122178A (ko) | 2021-10-08 |
Family
ID=77868531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210040918A KR20210122178A (ko) | 2020-03-30 | 2021-03-30 | 장벽 층이 없는 인-시튜 텅스텐 증착 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2021167466A (ko) |
KR (1) | KR20210122178A (ko) |
CN (1) | CN113463066A (ko) |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004113585A2 (en) * | 2003-06-18 | 2004-12-29 | Applied Materials, Inc. | Atomic layer deposition of barrier materials |
US8058170B2 (en) * | 2008-06-12 | 2011-11-15 | Novellus Systems, Inc. | Method for depositing thin tungsten film with low resistivity and robust micro-adhesion characteristics |
CN102265383B (zh) * | 2008-12-31 | 2014-06-11 | 应用材料公司 | 用于沉积具有降低电阻率及改良表面形态的钨膜的方法 |
US9159571B2 (en) * | 2009-04-16 | 2015-10-13 | Lam Research Corporation | Tungsten deposition process using germanium-containing reducing agent |
CN102699495B (zh) * | 2011-12-28 | 2015-06-24 | 佳木斯大学 | 一种TiB2金属陶瓷耐磨涂层的制备方法 |
US9330939B2 (en) * | 2012-03-28 | 2016-05-03 | Applied Materials, Inc. | Method of enabling seamless cobalt gap-fill |
KR102291990B1 (ko) * | 2013-08-16 | 2021-08-19 | 어플라이드 머티어리얼스, 인코포레이티드 | 텅스텐 육플루오르화물(wf6) 에치백을 이용하여 텅스텐 막을 증착하기 위한 방법 |
TWI672737B (zh) * | 2013-12-27 | 2019-09-21 | 美商蘭姆研究公司 | 允許低電阻率鎢特徵物填充之鎢成核程序 |
WO2017070634A1 (en) * | 2015-10-23 | 2017-04-27 | Applied Materials, Inc. | Methods for spatial metal atomic layer deposition |
TWI716511B (zh) * | 2015-12-19 | 2021-01-21 | 美商應用材料股份有限公司 | 用於鎢原子層沉積製程作為成核層之正形非晶矽 |
US10480066B2 (en) * | 2015-12-19 | 2019-11-19 | Applied Materials, Inc. | Metal deposition methods |
CN109417048A (zh) * | 2016-06-25 | 2019-03-01 | 应用材料公司 | 用于间隙填充应用的可流动非晶硅膜 |
US20180019165A1 (en) * | 2016-07-14 | 2018-01-18 | Entegris, Inc. | CVD Mo DEPOSITION BY USING MoOCl4 |
US20180094352A1 (en) * | 2016-09-30 | 2018-04-05 | Uchicago Argonne, Llc | Systems and methods for metal layer adhesion |
WO2018111547A1 (en) * | 2016-12-15 | 2018-06-21 | Applied Materials, Inc. | Nucleation-free gap fill ald process |
US10510865B2 (en) * | 2018-04-13 | 2019-12-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Cap layer and anneal for gapfill improvement |
-
2021
- 2021-03-26 JP JP2021052756A patent/JP2021167466A/ja active Pending
- 2021-03-30 CN CN202110343173.3A patent/CN113463066A/zh active Pending
- 2021-03-30 KR KR1020210040918A patent/KR20210122178A/ko unknown
Also Published As
Publication number | Publication date |
---|---|
CN113463066A (zh) | 2021-10-01 |
JP2021167466A (ja) | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10854461B2 (en) | Tungsten deposition without barrier layer | |
US9978685B2 (en) | Conformal amorphous silicon as nucleation layer for W ALD process | |
US20240297075A1 (en) | Low resistivity films containing molybdenum | |
KR20190113580A (ko) | 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조 | |
US12074029B2 (en) | Molybdenum deposition | |
US10851454B2 (en) | Metal deposition methods | |
US11244824B2 (en) | Conformal doped amorphous silicon as nucleation layer for metal deposition | |
US10991586B2 (en) | In-situ tungsten deposition without barrier layer | |
KR20210122178A (ko) | 장벽 층이 없는 인-시튜 텅스텐 증착 | |
KR102489425B1 (ko) | 장벽 층이 없는 텅스텐 증착 | |
TWI857952B (zh) | 在基板上形成電極之方法及包括電極之半導體裝置結構 | |
CN116334576A (zh) | 外延反应器系统及其使用方法 |