KR20210093696A - 뇌동맥류 파열 예측 시스템 - Google Patents
뇌동맥류 파열 예측 시스템 Download PDFInfo
- Publication number
- KR20210093696A KR20210093696A KR1020200007623A KR20200007623A KR20210093696A KR 20210093696 A KR20210093696 A KR 20210093696A KR 1020200007623 A KR1020200007623 A KR 1020200007623A KR 20200007623 A KR20200007623 A KR 20200007623A KR 20210093696 A KR20210093696 A KR 20210093696A
- Authority
- KR
- South Korea
- Prior art keywords
- cerebral
- rupture
- cerebral aneurysm
- neural network
- convolutional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 201000008450 Intracranial aneurysm Diseases 0.000 title claims abstract description 88
- 238000013528 artificial neural network Methods 0.000 claims abstract description 48
- 230000003902 lesion Effects 0.000 claims abstract description 48
- 238000002585 cerebral angiography Methods 0.000 claims abstract description 28
- 230000003190 augmentative effect Effects 0.000 claims abstract description 15
- 238000013434 data augmentation Methods 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 18
- 238000002583 angiography Methods 0.000 claims description 11
- 238000011176 pooling Methods 0.000 claims description 10
- 206010002329 Aneurysm Diseases 0.000 claims description 8
- 230000000116 mitigating effect Effects 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 8
- 230000000740 bleeding effect Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000001788 irregular Effects 0.000 claims description 3
- 208000021138 brain aneurysm Diseases 0.000 abstract description 8
- 230000000694 effects Effects 0.000 description 9
- 238000012549 training Methods 0.000 description 9
- 210000004204 blood vessel Anatomy 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000003745 diagnosis Methods 0.000 description 7
- 230000002490 cerebral effect Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 208000014644 Brain disease Diseases 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 208000032843 Hemorrhage Diseases 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000003416 augmentation Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 208000026106 cerebrovascular disease Diseases 0.000 description 2
- 238000002790 cross-validation Methods 0.000 description 2
- 238000002059 diagnostic imaging Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 206010008111 Cerebral haemorrhage Diseases 0.000 description 1
- 208000016988 Hemorrhagic Stroke Diseases 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- 210000001627 cerebral artery Anatomy 0.000 description 1
- 206010008118 cerebral infarction Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 208000020658 intracerebral hemorrhage Diseases 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/02007—Evaluating blood vessel condition, e.g. elasticity, compliance
- A61B5/02014—Determining aneurysm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/481—Diagnostic techniques involving the use of contrast agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/504—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/507—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G06N3/0427—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Theoretical Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- High Energy & Nuclear Physics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Physiology (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Cardiology (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
상기 증강된 학습 데이터를 학습하는 심층 신경망 학습모델을 포함하며, 입력되는 3차원 뇌혈관 조영술 영상 이미지에서 상기 심층 신경망 학습모델에 기초해 전순환계에 위치하는 특정 크기 이하의 병변을 자동 탐지해 뇌동맥류의 파열 위험도를 예측하여 출력하는 뇌동맥류 파열 위험도 예측부;를 포함함을 특징으로 한다.
Description
도 2는 본 발명의 실시예에 따른 학습 데이터 증강을 부연 설명하기 위한 도면.
도 3은 본 발명의 실시예에 따른 심층 신경망 학습 모델의 네트워크 구조 예시도.
도 4 및 도 5는 본 발명의 실시예에 따른 뇌동맥류 파열 예측 시스템의 동작을 부연 설명하기 위한 뇌동맥류 파열 예측 흐름 예시도.
도 6은 파열 위험도가 높은 뇌동맥류 혈관 조영술 영상 예시도.
Claims (7)
- 전문의에 의해 병변 영역 및 파열 위험도 정보가 마킹된 3차원 뇌혈관 조영술 영상 이미지에서 상기 병변 영역을 중심으로 하는 바운딩 박스의 크기를 가변시키면서 각 가변된 바운딩 박스를 크롭핑 및 플리핑하는 방식으로 학습 데이터를 증강시키는 학습 데이터 증강부와;
상기 증강된 학습 데이터를 학습하는 심층 신경망 학습모델을 포함하며, 입력되는 3차원 뇌혈관 조영술 영상 이미지에서 상기 심층 신경망 학습모델에 기초해 특정 크기 이하의 병변을 자동 탐지해 뇌동맥류의 파열 위험도를 예측하여 출력하는 뇌동맥류 파열 위험도 예측부;를 포함함을 특징으로 하는 뇌동맥류 파열 예측 시스템. - 청구항 1에 있어서, 상기 심층 신경망 학습모델은,
노이즈 완화를 위해 풀링층과 반복되는 컨벌루션층 중 어느 하나의 컨벌루션층에서 컨벌루션 연산과 디컨버루션 연산을 병렬 처리하는 일군의 컨벌루션층과 일군의 디컨벌루션층을 포함하고, 상기 일군의 컨벌루션층과 디컨벌루션층을 각각 통과한 특성맵들을 하나로 합쳐 완전 연결층으로 전달하는 합산층을 포함함을 특징으로 하는 뇌동맥류 파열 예측 시스템. - 청구항 1 또는 청구항 2에 있어서, 상기 특정 크기 이하의 병변은 전순환계에 위치하는 7mm 이하의 병변임을 특징으로 하는 뇌동맥류 파열 예측 시스템.
- 청구항 1 또는 청구항 2에 있어서, 상기 뇌동맥류 파열 위험도 예측부는,
입력되는 3차원 뇌혈관 조영술 영상 이미지 중 50% 이상의 이미지에서 출혈이라고 판단되는 경우 뇌동맥류의 파열이라 예측하고,
미파열 뇌동맥류 중에서 탐지된 병변에 대해 외부 벽의 모양이 불규칙하거나 다엽성이거나 동맥류내의 변형을 포함하는 경우 고위험군 미파열 동맥류로 예측함을 특징으로 하는 뇌동맥류 파열 예측 시스템. - 전문의에 의해 병변 영역 및 파열 위험도 정보가 마킹된 3차원 뇌혈관 조영술 영상 이미지를 학습하는 심층 신경망 학습모델과;
입력되는 3차원 뇌혈관 조영술 영상 이미지에서 상기 심층 신경망 학습모델에 기초해 특정 크기 이하의 병변을 자동 탐지해 뇌동맥류의 파열 위험도를 예측하여 출력하는 뇌동맥류 파열 위험도 예측부;를 포함하되, 상기 심층 신경망 학습모델은,
풀링층과 반복되는 컨벌루션층 중 어느 하나의 컨벌루션층에서 노이즈 완화를 위해, 컨벌루션 연산과 디컨버루션 연산을 각각 병렬 처리하는 일군의 컨벌루션층과 일군의 디컨벌루션층을 포함하고, 상기 일군의 컨벌루션층과 디컨벌루션층을 각각 통과한 특성맵들을 하나로 합쳐 완전 연결층으로 전달하는 합산층을 포함함을 특징으로 하는 뇌동맥류 파열 예측 시스템. - 청구항 2 또는 청구항 5에 있어서, 상기 일군의 컨벌루션층과 디컨벌루션층 각각은 동수의 컨벌루션층과 디컨벌루션층이 연속되는 구조이며, 동일 층을 형성하는 컨벌루션층과 디컨벌루션층은 같은 커널 크기로 컨벌루션 연산과 디컨벌루션 연산을 수행함을 특징으로 하는 뇌동맥류 파열 예측 시스템.
- 청구항 1 또는 청구항 5에 있어서, 상기 뇌동맥류 파열 위험도 예측부는,
상기 3차원 뇌혈관 조영술 영상 이미지에서 상기 심층 신경망 학습모델에 기초해 특정 크기 이하의 병변을 자동 탐지하고, 자동 탐지된 병변에 최적화된 바운딩 박스의 사이즈를 결정하여 크로핑한 후, 크롭된 부분의 뇌동맥류 파열 위험도를 예측함을 특징으로 하는 뇌동맥류 파열 예측 시스템.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200007623A KR102359860B1 (ko) | 2020-01-20 | 2020-01-20 | 뇌동맥류 파열 예측 시스템 |
PCT/KR2020/006229 WO2021149875A1 (ko) | 2020-01-20 | 2020-05-12 | 뇌동맥류 파열 예측 시스템 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200007623A KR102359860B1 (ko) | 2020-01-20 | 2020-01-20 | 뇌동맥류 파열 예측 시스템 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210093696A true KR20210093696A (ko) | 2021-07-28 |
KR102359860B1 KR102359860B1 (ko) | 2022-02-09 |
Family
ID=76993047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200007623A Active KR102359860B1 (ko) | 2020-01-20 | 2020-01-20 | 뇌동맥류 파열 예측 시스템 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102359860B1 (ko) |
WO (1) | WO2021149875A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118505806A (zh) * | 2024-05-31 | 2024-08-16 | 东莞市东南部中心医院(东莞市东南部中医医疗服务中心) | 基于数字化的颅内动脉瘤定位方法及装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114170143A (zh) * | 2021-11-11 | 2022-03-11 | 复旦大学 | 数字减影血管造影中的动脉瘤检测和破裂风险预测方法 |
CN115115656A (zh) * | 2022-06-30 | 2022-09-27 | 中国科学院宁波材料技术与工程研究所 | 基于多中心tof-mra影像的脑血管分割方法及神经网络分割模型 |
KR20240018722A (ko) * | 2022-08-02 | 2024-02-14 | 니어브레인(주) | 뇌혈류 데이터를 연산하는 방법 및 뇌혈류 데이터를 연산하기 위한 신경망 모델의 학습 방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101974786B1 (ko) | 2018-08-17 | 2019-05-31 | (주)제이엘케이인스펙션 | 뇌동맥류 병변의 특성을 이용한 중증도 및 예후 예측 방법 및 시스템 |
KR102015223B1 (ko) * | 2018-08-17 | 2019-10-21 | (주)제이엘케이인스펙션 | 3차원 자기공명영상과 다평면 혈관투영영상을 활용한 뇌질환 진단 방법 및 장치 |
KR20190143785A (ko) * | 2018-06-07 | 2019-12-31 | 베이징 쿠앙쉬 테크놀로지 씨오., 엘티디. | 영상 처리 방법 및 장치, 및 전자 디바이스 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6390746B2 (ja) * | 2016-09-01 | 2018-09-19 | カシオ計算機株式会社 | 診断支援装置、及び診断支援装置における画像処理方法、並びにプログラム |
KR102043672B1 (ko) * | 2019-03-29 | 2019-11-12 | 주식회사 딥노이드 | 딥러닝 기반의 병변 판독 시스템 및 방법 |
-
2020
- 2020-01-20 KR KR1020200007623A patent/KR102359860B1/ko active Active
- 2020-05-12 WO PCT/KR2020/006229 patent/WO2021149875A1/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190143785A (ko) * | 2018-06-07 | 2019-12-31 | 베이징 쿠앙쉬 테크놀로지 씨오., 엘티디. | 영상 처리 방법 및 장치, 및 전자 디바이스 |
KR101974786B1 (ko) | 2018-08-17 | 2019-05-31 | (주)제이엘케이인스펙션 | 뇌동맥류 병변의 특성을 이용한 중증도 및 예후 예측 방법 및 시스템 |
KR102015223B1 (ko) * | 2018-08-17 | 2019-10-21 | (주)제이엘케이인스펙션 | 3차원 자기공명영상과 다평면 혈관투영영상을 활용한 뇌질환 진단 방법 및 장치 |
Non-Patent Citations (2)
Title |
---|
논문(HC Kim 외, Machine Learning Application for Rupture Risk Assessment in Small-Sized Intracranial Aneurysm. Journal of Clinical Medicine. 2019 May 8(5): 683. 2019.05.15.공개.)* * |
논문(Shorten, C., Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J Big Data 6, 60 (2019). 2019.07.06.공개)* * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118505806A (zh) * | 2024-05-31 | 2024-08-16 | 东莞市东南部中心医院(东莞市东南部中医医疗服务中心) | 基于数字化的颅内动脉瘤定位方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
KR102359860B1 (ko) | 2022-02-09 |
WO2021149875A1 (ko) | 2021-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102359860B1 (ko) | 뇌동맥류 파열 예측 시스템 | |
US11869184B2 (en) | Method and device for assisting heart disease diagnosis | |
US11790645B2 (en) | Diagnosis assistance system and control method thereof | |
US10565707B2 (en) | 3D anisotropic hybrid network: transferring convolutional features from 2D images to 3D anisotropic volumes | |
US11751832B2 (en) | CTA large vessel occlusion model | |
CN111986181B (zh) | 基于双注意力机制的血管内支架图像分割方法和系统 | |
KR20200005407A (ko) | 안구 이미지 기반의 진단 보조 이미지 제공 장치 | |
KR102421110B1 (ko) | 뇌질환 판단을 위한 딥러닝 기반의 pet 영상 분류 장치 및 그 방법 | |
CN110858399B (zh) | 用于提供虚拟断层扫描中风后续检查图像的方法和装置 | |
KR20230104083A (ko) | 안구 이미지 기반의 진단 보조 이미지 제공 장치 | |
KR102301058B1 (ko) | 진단 보조 시스템 및 그 제어 방법 | |
WO2021014584A1 (ja) | プログラム、情報処理方法及び情報処理装置 | |
US11244455B2 (en) | Apparatus, method, and program for training discriminator discriminating disease region, discriminator discriminating disease region, disease region discrimination apparatus, and disease region discrimination program | |
KR102183847B1 (ko) | 안저 사진에서 녹내장 진단을 위해 cam에서 추출된 roi를 중간 입력자로 사용하는 2단계 랭킹 컨볼루셔널 뉴럴 네트워크 | |
US11915414B2 (en) | Medical image processing apparatus, method, and program | |
KR20200082660A (ko) | 머신러닝 기반 병리 진단 방법 및 장치 | |
KR20210016862A (ko) | 관상동맥 혈관조영술 기반의 기계 학습을 통한 허혈 병변 정보 제공 장치, 정보 제공 방법 및 이의 기록매체 | |
Wang et al. | Automatic real-time CNN-based neonatal brain ventricles segmentation | |
KR20200067052A (ko) | 안저 사진을 이용한 뇌동맥류 예측 장치 및 뇌동맥류 예측 결과 제공 방법 | |
US20240312015A1 (en) | Apparatus for lesion diagnosis and method thereof | |
US20230377151A1 (en) | Aortic aneurysm growth rate prediction from geometric analysis | |
KR20200052123A (ko) | 혈관 나이 진단 장치, 혈관 나이 진단 방법 및 상기 방법을 실행하기 위한 컴퓨터 프로그램 | |
CN116664842A (zh) | 血管介入手术安全监测分析方法、系统及计算机程序产品 | |
KR102325963B1 (ko) | 갑상선 암의 림프절 전이 진단에 필요한 정보를 제공하는 방법 및 장치 | |
CN114267420B (zh) | 一种癫痫抗药性智能预测方法、装置、设备和介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20200120 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20210611 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20220126 |
|
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20220203 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20220204 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20250107 Start annual number: 4 End annual number: 4 |