[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20210089808A - Urine test method using deep learning - Google Patents

Urine test method using deep learning Download PDF

Info

Publication number
KR20210089808A
KR20210089808A KR1020200002468A KR20200002468A KR20210089808A KR 20210089808 A KR20210089808 A KR 20210089808A KR 1020200002468 A KR1020200002468 A KR 1020200002468A KR 20200002468 A KR20200002468 A KR 20200002468A KR 20210089808 A KR20210089808 A KR 20210089808A
Authority
KR
South Korea
Prior art keywords
urine test
image data
deep learning
taken
urine
Prior art date
Application number
KR1020200002468A
Other languages
Korean (ko)
Other versions
KR102354702B1 (en
Inventor
권장우
권순원
이선우
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020200002468A priority Critical patent/KR102354702B1/en
Publication of KR20210089808A publication Critical patent/KR20210089808A/en
Application granted granted Critical
Publication of KR102354702B1 publication Critical patent/KR102354702B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • A61B10/007Devices for taking samples of body liquids for taking urine samples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14539Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring pH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7465Arrangements for interactive communication between patient and care services, e.g. by using a telephone network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
    • A61B2010/0003Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements including means for analysis by an unskilled person
    • A61B2010/0006Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements including means for analysis by an unskilled person involving a colour change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physiology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Primary Health Care (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Evolutionary Computation (AREA)
  • Emergency Medicine (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Data Mining & Analysis (AREA)
  • Immunology (AREA)
  • Nursing (AREA)
  • Hematology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Disclosed is a urine test method using deep learning, which is accurate by minimizing human factors. According to one embodiment of the present invention, a urine test method executed by a urine test system comprises the following steps: generating image data by taking a urine test sheet changed through a urine test performed by using the urine test sheet; obtaining a result value for converting the image data on the basis of reference data as the generated image data is input to a deep learning model to train the deep learning model; and matching color information determined by using the obtained result value with health state information and color data stored in a database to provide an examination result.

Description

딥러닝을 활용한 소변검사 방법{URINE TEST METHOD USING DEEP LEARNING}Urine test method using deep learning {URINE TEST METHOD USING DEEP LEARNING}

아래의 설명은 소변 검사 기술에 관한 것이다. The description below relates to urinalysis techniques.

기존에는 특수한 소변 검사 시트를 제작하거나, 소변 검사 결과를 측정 가능하게 하는 별도의 제품을 활용하는 방법으로 소변검사의 정확성과 편리성을 높이려는 시도들이 있었다. 하지만 특수 제작 되었고, 측정 결과 확인을 위한 추가적인 제품 구매가 필수적이기 때문에 추가적인 비용이 소모되며 불편하다. In the past, there have been attempts to increase the accuracy and convenience of urinalysis by making a special urine test sheet or using a separate product that can measure urine test results. However, since it is specially manufactured and it is necessary to purchase an additional product to check the measurement result, additional costs are consumed and inconvenient.

또한, 기존의 다른 연구에서는 QR코드와 같은 마킹 기법을 활용하여 이러한 문제를 해결하려고 하였지만 앞서 언급한대로 추가적인 옵션 제품 구매가 필요하기 때문에 불편하다.In addition, other existing studies have tried to solve this problem by using a marking technique such as a QR code, but as mentioned above, it is inconvenient because it requires the purchase of additional optional products.

최근 딥러닝 기술의 발전으로 컴퓨터 비전의 영역은 인간보다 컴퓨터가 더욱 뛰어난 인식 및 판별 정확도를 보여준다. 이에 따라 딥러닝 기술을 적용하여 소변 검사 시트의 색상 변화를 감지하여 검사 결과를 도출하는 기술이 제안될 필요가 있다. With the recent development of deep learning technology, in the field of computer vision, computers show better recognition and discrimination accuracy than humans. Accordingly, there is a need to propose a technology for deriving test results by detecting the color change of a urine test sheet by applying deep learning technology.

본 발명에서는 딥러닝 기술을 활용하여 소변 검사 시트지를 촬영하였을 때 발생되는 외부적 요인에 의한 오차를 줄여 소변검사에 의해 발생되는 시트지의 색변화를 정확히 감지하고 해당 색변화가 나타내는 정보를 알려주는 방법을 제안한다.In the present invention, a method for accurately detecting the color change of the sheet caused by the urine test and notifying the information indicated by the color change by reducing the error caused by external factors that occur when the urine test sheet is photographed by using the deep learning technology suggest

소변 검사 시스템에 의해 수행되는 소변 검사 방법은, 소변 검사 시트를 이용하여 실시된 소변 검사를 통하여 변화된 소변 검사 시트를 촬영함에 따라 이미지 데이터를 생성하는 단계; 상기 생성된 이미지 데이터를 딥러닝 모델에 입력하여 학습시킴에 따라 기준 데이터에 기반하여 상기 이미지 데이터를 변환하기 위한 결과값을 획득하는 단계; 및 상기 획득된 결과값을 이용하여 판단된 색상 정보를 데이터베이스에 저장된 건강 상태 정보 및 색상 데이터를 매칭하여 검사 결과를 제공하는 단계를 포함할 수 있다. The urine test method performed by the urine test system includes: generating image data by taking a urine test sheet changed through a urine test performed using the urine test sheet; obtaining a result value for converting the image data based on reference data as the generated image data is input to a deep learning model and trained; and matching color information determined using the obtained result value with health state information and color data stored in a database to provide a test result.

상기 획득하는 단계는, 소변 검사를 위한 딥러닝 모델을 구성하고, 상기 구성된 딥러닝 모델에 기초하여 상기 소변 검사를 통하여 변화된 소변 검사 시트를 촬영한 이미지를 기준 데이터를 이용하여 입력하는 단계를 포함할 수 있다. The acquiring may include constructing a deep learning model for a urine test, and inputting an image of a urine test sheet changed through the urine test based on the configured deep learning model using reference data. can

상기 딥러닝 모델은, 딥러닝 네트워크를 통하여 이미지에 포함된 그림자와 조명 효과를 포함하는 잡음을 제거하고, 기준이 되는 소변 검사 데이터로 상기 촬영된 이미지 데이터를 변환하기 위한 커널값을 반환할 수 있다. The deep learning model removes noise including shadows and lighting effects included in an image through a deep learning network, and may return a kernel value for converting the photographed image data into urine test data as a reference. .

상기 획득하는 단계는, 상기 획득된 결과값을 활용하여 상기 이미지 데이터에 대한 기준 데이터와의 연산을 통하여 이미지 필터링을 수행하고, 상기 이미지 필터링이 수행된 이미지 데이터에 구성된 소변 검사 시트의 각각이 나타내는 색상 정보를 판단하는 단계를 포함할 수 있다. In the obtaining step, image filtering is performed through operation with reference data for the image data by using the obtained result value, and the color indicated by each of the urine test sheets configured in the image data on which the image filtering is performed It may include determining information.

상기 소변 검사 방법은, 동일한 사용자에 의하여 소변 검사를 실시하기 전에 소변 검사 시트가 촬영됨에 따라 생성된 이미지 데이터를 기준 데이터로 설정하는 단계를 더 포함하고, 상기 소변 검사를 실시하기 전에 소변 검사 시트를 촬영한 이미지 데이터와 상기 소변 검사를 실시한 소변 검사 시트를 촬영한 이미지 데이터는 동일한 환경에서 촬영된 것일 수 있다.The urine test method further comprises the step of setting the image data generated as the urine test sheet is photographed as reference data before performing the urine test by the same user, wherein the urine test sheet is used before performing the urine test The photographed image data and the photographed image data of the urine test sheet subjected to the urine test may be photographed in the same environment.

상기 소변 검사 방법은, 서로 다른 사용자에 의하여 소변 검사를 실시하기 전에 소변 검사 시트가 촬영됨에 따라 생성된 이미지 데이터를 기준 데이터로서 데이터베이스에 저장하는 단계를 더 포함하고, 상기 소변 검사를 실시하기 전에 소변 검사 시트를 촬영한 이미지 데이터와 상기 소변 검사를 실시한 소변 검사 시트를 촬영한 이미지 데이터는 동일한 환경에서 촬영된 것일 수 있다. The urine test method further comprises the step of storing image data generated as a urine test sheet is photographed in a database as reference data before performing a urine test by different users, wherein the urine test is performed before the urine test is performed. The image data obtained by photographing the test sheet and the image data obtained by photographing the urine test sheet on which the urine test is performed may be photographed in the same environment.

상기 제공하는 단계는, 상기 기준 데이터의 소변 검사 시트에 구성된 손잡이 영역의 RGB 값을 이용하여 상기 이미지 데이터의 손잡이 영역의 색상값을 일치시키는 단계를 포함하고, 상기 RGB 값은 255, 255, 255의 흰색을 나타낼 수 있다. The providing includes matching the color values of the handle area of the image data using the RGB values of the handle area configured in the urine test sheet of the reference data, and the RGB values are 255, 255, 255. can represent white.

소변 검사 시스템은, 소변 검사 시트를 이용하여 실시된 소변 검사를 통하여 변화된 소변 검사 시트를 촬영함에 따라 이미지 데이터를 생성하는 생성부; 상기 생성된 이미지 데이터를 딥러닝 모델에 입력하여 학습시킴에 따라 기준 데이터에 기반하여 상기 이미지 데이터를 변환하기 위한 결과값을 획득하는 획득부; 및 상기 획득된 결과값을 이용하여 판단된 색상 정보를 데이터베이스에 저장된 건강 상태 정보 및 색상 데이터를 매칭하여 검사 결과를 제공하는 제공부를 포함할 수 있다. The urine test system includes: a generator configured to generate image data by taking a urine test sheet changed through a urine test performed using the urine test sheet; an acquisition unit that obtains a result value for converting the image data based on reference data as the generated image data is input to a deep learning model and trained; and a providing unit configured to match color information determined using the obtained result value with health state information and color data stored in a database to provide a test result.

상기 획득부는, 소변 검사를 위한 딥러닝 모델을 구성하고, 상기 구성된 딥러닝 모델에 기초하여 상기 소변 검사를 통하여 변화된 소변 검사 시트를 촬영한 이미지를 기준 데이터를 이용하여 입력할 수 있다. The acquisition unit may configure a deep learning model for a urine test, and input an image obtained by photographing a urine test sheet changed through the urine test based on the configured deep learning model using reference data.

상기 딥러닝 모델은, 딥러닝 네트워크를 통하여 이미지에 포함된 그림자와 조명 효과를 포함하는 잡음을 제거하고, 기준이 되는 소변 검사 데이터로 상기 촬영된 이미지 데이터를 변환하기 위한 커널값을 반환할 수 있다. The deep learning model removes noise including shadows and lighting effects included in an image through a deep learning network, and may return a kernel value for converting the photographed image data into urine test data as a reference. .

상기 획득부는, 상기 획득된 결과값을 활용하여 상기 이미지 데이터에 대한 기준 데이터와의 연산을 통하여 이미지 필터링을 수행하고, 상기 이미지 필터링이 수행된 이미지 데이터에 구성된 소변 검사 시트의 각각이 나타내는 색상 정보를 판단할 수 있다. The acquisition unit performs image filtering through operation with reference data for the image data by using the obtained result value, and color information indicated by each of the urine test sheets configured in the image data on which the image filtering is performed can judge

상기 소변 검사 시스템은, 동일한 사용자에 의하여 소변 검사를 실시하기 전에 소변 검사 시트가 촬영됨에 따라 생성된 이미지 데이터를 기준 데이터로 설정하는 설정부를 더 포함하고, 상기 소변 검사를 실시하기 전에 소변 검사 시트를 촬영한 이미지 데이터와 상기 소변 검사를 실시한 소변 검사 시트를 촬영한 이미지 데이터는 동일한 환경에서 촬영된 것일 수 있다.The urine test system further includes a setting unit for setting the image data generated as the urine test sheet is photographed as reference data before performing the urine test by the same user, the urine test sheet before performing the urine test The photographed image data and the photographed image data of the urine test sheet subjected to the urine test may be photographed in the same environment.

상기 소변 검사 시스템은, 서로 다른 사용자에 의하여 소변 검사를 실시하기 전에 소변 검사 시트가 촬영됨에 따라 생성된 이미지 데이터를 기준 데이터로서 데이터베이스에 저장하는 저장부를 더 포함하고, 상기 소변 검사를 실시하기 전에 소변 검사 시트를 촬영한 이미지 데이터와 상기 소변 검사를 실시한 소변 검사 시트를 촬영한 이미지 데이터는 동일한 환경에서 촬영된 것일 수 있다. The urine test system further includes a storage unit for storing image data generated as a urine test sheet is photographed in a database as reference data before performing a urine test by different users, and the urine test before performing the urine test The image data of the test sheet and the image data of the urine test sheet on which the urine test is performed may be taken in the same environment.

상기 제공부는, 상기 기준 데이터의 소변 검사 시트에 구성된 손잡이 영역의 RGB 값을 이용하여 상기 이미지 데이터의 손잡이 영역의 색상값을 일치시키는 것을 포함하고, 상기 RGB 값은 255, 255, 255의 흰색을 나타낼 수 있다. The providing unit includes matching the color value of the handle area of the image data by using the RGB value of the handle area configured in the urine test sheet of the reference data, wherein the RGB value represents a white color of 255, 255, 255 can

본 발명은 추가적인 제품 구매 없이 약국이나 온라인을 통해 쉽게 구할 수 있는 일반적인 소변검사 키트를 활용하기 때문에 경제적이며, 사용자가 전문가의 도움 없이도 스스로 몸 상태를 판별할 수 있도록 하기 때문에 편리하다.The present invention is economical because it utilizes a general urine test kit that can be easily obtained through pharmacies or online without additional product purchase, and is convenient because it allows the user to determine the body condition by himself without the help of a specialist.

또한, 컴퓨터 자원을 활용하기 때문에 사용자의 색맹 유무, 지식의 오류, 자의적 판단 등 소변 검사를 통해 파악하려고 하는 정보에 오류를 발생시킬 수 있는 인적 요인을 최소화하여 더욱 정확하다.In addition, since it utilizes computer resources, it is more accurate by minimizing human factors that can cause errors in the information to be grasped through urine test, such as the user's color blindness, error in knowledge, and arbitrary judgment.

본 발명을 활용해 더욱 정확하고, 편리하며, 저렴하게 소변 검사를 실시할 수 있다.A urine test can be performed more accurately, conveniently, and inexpensively by utilizing the present invention.

도 1은 일 실시예에 따른 소변 검사 시스템의 개괄적인 동작을 설명하기 위한 도면이다.
도 2는 일 실시예에 따른 소변 검사 시스템의 구성을 설명하기 위한 블록도이다.
도 3은 일 실시예에 따른 소변 검사 시스템에서 딥러닝 모델을 활용한 소변 검사 방법을 설명하기 위한 흐름도이다.
도 4는 일 실시예에 따른 소변 검사 시스템에서 딥러닝을 활용하여 이미지 변환 방법을 설명하기 위한 흐름도이다.
도 5는 일 실시예에 따른 소변 검사 시스템의 데이터베이스에 저장된 기준 데이터의 예를 설명하기 위한 도면이다.
도 6은 일 실시예에 따른 소변 검사 시스템에서 기준 데이터에 따른 이미지의 색상을 변환한 예를 설명하기 위한 도면이다.
도 7은 일 실시예에 따른 소변 검사 시스템에서 이미지를 변환한 예를 설명하기 위한 도면이다.
도 8은 일 실시예에 따른 소변 검사 시스템에서 건강 상태 정보를 출력하는 예를 설명하기 위한 도면이다.
1 is a view for explaining the general operation of the urine test system according to an embodiment.
2 is a block diagram for explaining the configuration of a urine test system according to an embodiment.
3 is a flowchart illustrating a urine test method using a deep learning model in a urine test system according to an embodiment.
4 is a flowchart illustrating an image conversion method using deep learning in a urine test system according to an embodiment.
5 is a diagram for explaining an example of reference data stored in a database of a urine test system according to an embodiment.
6 is a view for explaining an example of converting the color of the image according to the reference data in the urine test system according to an embodiment.
7 is a view for explaining an example of converting an image in the urine test system according to an embodiment.
8 is a diagram for explaining an example of outputting health state information in a urine test system according to an embodiment.

이하, 실시예를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, embodiments will be described in detail with reference to the accompanying drawings.

도 1은 일 실시예에 따른 소변 검사 시스템의 개괄적인 동작을 설명하기 위한 도면이다. 1 is a view for explaining the general operation of the urine test system according to an embodiment.

실시예에 따른 소변 검사 시스템(100)은 컴퓨터로 구현된 컴퓨터 시스템이 구성될 수 있다. 이때, 소변 검사 시스템(100)은 스마트폰(smart phone), 휴대폰, 내비게이션, 컴퓨터, 노트북, 디지털방송용 단말, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 태블릿 PC, 게임 콘솔(game console), 웨어러블 디바이스(wearable device), IoT(internet of things) 디바이스, VR(virtual reality) 디바이스, AR(augmented reality) 디바이스를 포함하는 전자 기기일 수 있다. 일례로, 소변 검사 시스템은 독립적으로 동작하는 프로그램 형태로 구현되거나, 혹은 특정 어플리케이션의 인-앱(in-app) 형태로 구성되어 상기 특정 어플리케이션 상에서 동작이 가능하도록 구현될 수 있고 경우에 따라 서버와의 연동을 통해 소변 검사 서비스를 제공할 수 있다.The urine test system 100 according to the embodiment may be a computer system implemented as a computer. At this time, the urine test system 100 is a smart phone, a mobile phone, a navigation system, a computer, a laptop computer, a digital broadcasting terminal, a PDA (Personal Digital Assistants), a PMP (Portable Multimedia Player), a tablet PC, a game console (game console) ), a wearable device, an Internet of things (IoT) device, a virtual reality (VR) device, and an augmented reality (AR) device. For example, the urine test system may be implemented in the form of a program that operates independently, or is configured in the form of an in-app of a specific application to be able to operate on the specific application, and in some cases, with the server It is possible to provide a urine test service through the linkage of

소변 검사가 실시될 수 있다(110). 사용자는 일반적인 소변 검사와 동일하게 소변 검사를 실시한다. 소변 검사 시스템(100)은 소변 검사가 실시됨에 따라 촬영된 이미지 데이터를 입력받을 수 있다(120). 예를 들면, 스마트 폰 카메라를 통하여 소변 검사 시트가 촬영될 수 있다. 이때, 소변 검사 시트는 다양한 형태(예를 들면, 크기, 색상, 배열 등)가 존재할 수 있으며, 실시예에서는 설명의 편의를 위하여 소변 검사 스틱을 예를 들어 설명하기로 한다. 또한, 평평한 장소에 놓고 이미지 데이터(사진)가 촬영될 수 있다.A urine test may be performed (110). The user performs a urine test in the same way as a general urine test. The urine test system 100 may receive image data captured as a urine test is performed ( 120 ). For example, a urine test sheet may be photographed through a smartphone camera. At this time, the urine test sheet may have various forms (eg, size, color, arrangement, etc.), and in the embodiment, for convenience of description, a urine test stick will be described as an example. Also, image data (photo) can be taken by placing it on a flat place.

소변 검사 시스템(100)은 촬영된 이미지 데이터를 기반으로 하여 컴퓨터 비전 기술과 데이터베이스를 활용해 사용자의 건강 상태 정보를 디스플레이 장치를 통해 출력할 수 있다. 이때, 이미지를 촬영하는 과정에서 조명이나 그림자에 의한 색상 왜곡이 발생될 수 있는 문제점을 해결하기 위하여, 컴퓨터 비전 기술을 활용하여 색상을 정확히 감지하더라도 왜곡된 색상 정보가 마찬가지로 사용자에게 전달될 수 있다. The urine test system 100 may output the user's health status information through the display device using computer vision technology and a database based on the captured image data. In this case, in order to solve the problem that color distortion may occur due to lighting or shadow in the process of photographing an image, even if a color is accurately detected using computer vision technology, distorted color information may be transmitted to the user as well.

구체적으로, 소변 검사 시스템(100)은 촬영된 이미지 데이터의 변환 프로세스를 수행할 수 있다(130). 소변 검사 시스템(100)은 촬영된 이미지 데이터를 입력으로 하여 딥러닝을 활용하는 이미지 변환 프로세스를 수행할 수 있다. Specifically, the urine test system 100 may perform a conversion process of the captured image data ( 130 ). The urine test system 100 may perform an image conversion process utilizing deep learning by receiving the photographed image data as an input.

소변 검사 시스템(100)은 변환된 이미지 데이터를 분석할 수 있다(140). 소변 검사 시스템은 변환된 깨끗한 이미지 데이터에 대하여 컴퓨터 비전 기술을 통해 정확한 색상 정보를 파악하고, 데이터베이스에 저장된 각종 건강 상태 정보 및 색상 데이터들을 매칭하여 가장 정확한 상태 정보를 반환할 수 있다.The urine test system 100 may analyze the converted image data (140). The urine test system may determine accurate color information through computer vision technology on the converted clean image data, and may return the most accurate state information by matching various health state information and color data stored in the database.

구체적으로, 도 4를 참고하면, 딥러닝을 활용하여 이미지 변환 방법을 설명하기 위한 흐름도이다. 소변 검사 시스템은 입력된 이미지 데이터를 딥러닝 네트워크에 입력하여 예측을 수행할 수 있다. 이때, 입력된 이미지는 소변 검사를 실시함에 따라 촬영된 이미지를 의미할 수 있다. 소변 검사 시스템은 기존에 훈련된 딥러닝 네트워크를 활용하여 입력으로 들어온 이미지 데이터에 대하여 그림자와 조명 효과를 제거할 수 있다. 소변 검사 시스템은 그림자와 조명 효과를 제거한 이미지 데이터에 대하여 데이터베이스에 저장된 기준이 되는 기준 데이터로 변환하는데 필요한 변환 커널값을 반환할 수 있다. Specifically, referring to FIG. 4 , it is a flowchart for explaining an image conversion method using deep learning. The urine test system can perform prediction by inputting the input image data into a deep learning network. In this case, the input image may mean an image taken as a urine test is performed. The urine test system can remove shadows and lighting effects from the image data received as input by using an existing trained deep learning network. The urine test system may return a conversion kernel value necessary for converting image data from which shadows and lighting effects are removed into reference data stored in a database.

소변 검사 시스템(100)은 사용자의 건강 상태 정보를 제공할 수 있다. 소변 검사 시스템(100)은 이미지 데이터의 분석을 통해 반환된 사용자의 건강 상태 정보를 디스플레이를 통해 출력할 수 있다. 예를 들면, 소변 검사 시스템(100)은 사용자의 건강 상태 정보를 텍스트 데이터 또는 음성 데이터 중 어느 하나 이상의 데이터를 통하여 전달할 수 있다. The urine test system 100 may provide health status information of the user. The urine test system 100 may output the user's health status information returned through the analysis of the image data through the display. For example, the urine test system 100 may transmit the user's health status information through any one or more of text data and voice data.

도 2는 일 실시예에 따른 소변 검사 시스템의 구성을 설명하기 위한 블록도이고, 도 3은 일 실시예에 따른 소변 검사 시스템에서 딥러닝 모델을 활용한 소변 검사 방법을 설명하기 위한 흐름도이다.2 is a block diagram for explaining the configuration of a urine test system according to an embodiment, and FIG. 3 is a flowchart for explaining a urine test method using a deep learning model in the urine test system according to an embodiment.

소변 검사 시스템(100)에 포함된 프로세서는 이미지 생성부(210), 획득부(220) 및 제공부(230)를 포함할 수 있다. 이러한 프로세서 및 프로세서의 구성요소들은 도 3의 딥러닝 모델을 활용한 소변 검사 방법이 포함하는 단계들(310 내지 330)을 수행하도록 소변 검사 시스템을 제어할 수 있다. 이때, 프로세서 및 프로세서의 구성요소들은 메모리가 포함하는 운영체제의 코드와 적어도 하나의 프로그램의 코드에 따른 명령(instruction)을 실행하도록 구현될 수 있다. 여기서, 프로세서의 구성요소들은 소변 검사 시스템(100)에 저장된 프로그램 코드가 제공하는 제어 명령에 따라 프로세서에 의해 수행되는 서로 다른 기능들(different functions)의 표현들일 수 있다. The processor included in the urine test system 100 may include an image generating unit 210 , an acquiring unit 220 , and a providing unit 230 . Such a processor and components of the processor may control the urine test system to perform steps 310 to 330 included in the urine test method using the deep learning model of FIG. 3 . In this case, the processor and components of the processor may be implemented to execute instructions according to the code of the operating system and the code of at least one program included in the memory. Here, the components of the processor may be expressions of different functions performed by the processor according to a control command provided by the program code stored in the urine test system 100 .

프로세서는 딥러닝 모델을 활용한 소변 검사 방법을 위한 프로그램의 파일에 저장된 프로그램 코드를 메모리에 로딩할 수 있다. 예를 들면, 소변 검사 시스템(100)에서 프로그램이 실행되면, 프로세서는 운영체제의 제어에 따라 프로그램의 파일로부터 프로그램 코드를 메모리에 로딩하도록 소변 검사 시스템을 제어할 수 있다. The processor may load the program code stored in the file of the program for the urine test method using the deep learning model into the memory. For example, when the program is executed in the urine test system 100, the processor may control the urine test system to load the program code from the program file into the memory according to the control of the operating system.

단계(310)에서 이미지 생성부(210)는 소변 검사 시트를 이용하여 실시된 소변 검사를 통하여 변화된 소변 검사 시트를 촬영함에 따라 이미지를 생성할 수 있다. 사전에, 설정부(미도시됨)는 동일한 사용자에 의하여 소변 검사를 실시하기 전에 소변 검사 시트가 촬영됨에 따라 생성된 이미지 데이터를 기준 데이터로 설정할 수 있다. 소변 검사를 실시하기 전에 소변 검사 시트를 촬영한 이미지 데이터와 소변 검사를 실시한 소변 검사 시트를 촬영한 이미지 데이터는 동일한 환경에서 촬영된 것을 의미할 수 있다. 또는, 저장부(미도시됨)는 서로 다른 사용자에 의하여 소변 검사를 실시하기 전에 소변 검사 시트가 촬영됨에 따라 생성된 이미지 데이터를 기준 데이터로서 데이터베이스에 저장할 수 있다. 이때, 소변 검사를 실시하기 전에 소변 검사 시트를 촬영한 이미지 데이터와 소변 검사를 실시한 소변 검사 시트를 촬영한 이미지 데이터는 동일한 환경에서 촬영된 것을 의미할 수 있다. In step 310 , the image generating unit 210 may generate an image by photographing a urine test sheet changed through a urine test performed using the urine test sheet. In advance, the setting unit (not shown) may set the image data generated as the urine test sheet is photographed as reference data before the urine test is performed by the same user. Image data obtained by photographing a urine test sheet before performing a urine test and image data obtained by photographing a urine test sheet on which a urine test is performed may mean that they are photographed in the same environment. Alternatively, the storage unit (not shown) may store, as reference data, image data generated as the urine test sheet is photographed before the urine test is performed by different users in the database. In this case, the image data of the urine test sheet photographed before the urine test and the image data of the urine test sheet on which the urine test is performed may mean that they were photographed in the same environment.

단계(320)에서 획득부(220)는 생성된 이미지 데이터를 딥러닝 모델에 입력하여 학습시킴에 따라 기준 데이터에 기반하여 이미지 데이터를 변환하기 위한 결과값을 획득할 수 있다. 획득부(220)는 소변 검사를 위한 딥러닝 모델을 구성하고, 구성된 딥러닝 모델에 기초하여 소변 검사를 통하여 변화된 소변 검사 시트를 촬영한 이미지를 기준 데이터를 이용하여 입력할 수 있다. 이때, 딥러닝 모델은 딥러닝 네트워크를 통하여 이미지에 포함된 그림자와 조명 효과를 포함하는 잡음을 제거하고, 기준이 되는 소변 검사 데이터로 촬영된 이미지 데이터를 변환하기 위한 커널값을 반환할 수 있다. 획득부(220)는 획득된 결과값을 활용하여 이미지 데이터에 대한 기준 데이터와의 연산을 통하여 이미지 필터링을 수행하고, 이미지 필터링이 수행된 이미지 데이터에 구성된 소변 검사 시트의 각각이 나타내는 색상 정보를 판단할 수 있다. In step 320, the acquisition unit 220 may acquire a result value for converting the image data based on the reference data as the generated image data is input to the deep learning model and trained. The acquisition unit 220 may configure a deep learning model for a urine test, and input an image obtained by photographing a urine test sheet changed through a urine test based on the configured deep learning model using reference data. In this case, the deep learning model removes noise including shadows and lighting effects included in the image through the deep learning network, and may return a kernel value for converting the photographed image data into urine test data as a reference. Acquisition unit 220 performs image filtering through operation with reference data for image data using the obtained result value, and determines color information indicated by each of the urine test sheets configured in image data on which image filtering is performed can do.

단계(330)에서 제공부(230)는 획득된 결과값을 이용하여 판단된 색상 정보를 데이터베이스에 저장된 건강 상태 정보 및 색상 데이터를 매칭하여 검사 결과를 제공할 수 있다. 제공부(230)는 기준 데이터의 소변 검사 시트에 구성된 손잡이 영역의 RGB 값을 이용하여 이미지 데이터의 손잡이 영역의 색상값을 일치시킬 수 있다. RGB 값은 255, 255, 255의 흰색을 나타낼 수 있다. In operation 330 , the providing unit 230 may provide the test result by matching the color information determined using the obtained result value with the health state information and color data stored in the database. The providing unit 230 may match the color value of the handle area of the image data by using the RGB values of the handle area configured in the urine test sheet of the reference data. RGB values can represent 255, 255, or 255 of white.

도 5는 일 실시예에 따른 소변 검사 시스템의 데이터베이스에 저장된 기준 데이터의 예를 설명하기 위한 도면이다.5 is a diagram for explaining an example of reference data stored in a database of a urine test system according to an embodiment.

도 5를 참고하면, 데이터베이스에 저장된 소변 검사를 실시하기 전의 소변 검사 스틱의 이미지 데이터를 나타낸 것이다. 예를 들면, 동일한 환경(예를 들면, 동일한 병원, 동일한 위치, 동일한 사용자 등)에서 소변 검사를 실시하기 전에 사용자에 의하여 동일한 전자 기기를 이용하여 소변 검사 스틱이 촬영될 수 있다. 이때, 동일한 환경은 소변 검사가 실시되기 전의 환경과 소변 검사가 실시된 후의 환경이 동일한 조건을 의미할 수 있다. 소변 검사 시스템은 전자 기기를 이용하여 촬영된 소변 검사 스틱에 대한 이미지 데이터를 데이터베이스에 저장할 수 있다. 소변 검사 시스템은 데이터베이스에 저장된 이미지 데이터를 기준 데이터로 설정할 수 있다. Referring to Figure 5, it shows the image data of the urine test stick before the urine test stored in the database. For example, the urine test stick may be photographed by the user using the same electronic device before the urine test is performed in the same environment (eg, the same hospital, the same location, the same user, etc.). In this case, the same environment may mean the same condition in which the environment before the urine test is performed and the environment after the urine test is performed. The urine test system may store image data for the urine test stick photographed using an electronic device in a database. The urine test system may set the image data stored in the database as reference data.

다른 예로서, 사전에 소변 검사를 실시하기 전에 소변 검사 스틱이 촬영되어 있을 수 있다. 예를 들면, 동일한 환경(예를 들면, 동일한 병원, 동일한 위치 등)에서 복수의 사용자에 의하여 소변 검사를 실시하기 전에 소변 검사 스틱이 촬영될 수 있고, 촬영된 이미지 데이터에 대한 별도의 처리 과정을 수행함으로써 기준 데이터가 생성될 수 있다. 이때, 소변 검사 시스템은 생성된 기준 데이터를 데이터베이스에 저장할 수 있다. As another example, a urine test stick may be photographed prior to performing a urine test in advance. For example, a urine test stick may be photographed before a urine test is performed by a plurality of users in the same environment (eg, the same hospital, the same location, etc.), and a separate processing process for the photographed image data may be performed. By performing the reference data can be generated. In this case, the urine test system may store the generated reference data in a database.

도 6은 일 실시예에 따른 소변 검사 시스템에서 기준 데이터에 따른 이미지의 색상을 변환한 예를 설명하기 위한 도면이다.6 is a view for explaining an example of converting the color of the image according to the reference data in the urine test system according to an embodiment.

도 6을 참고하면, 기준 데이터에 따른 이미지 데이터의 색상 정보를 변환한 것이다. 소변 검사 시스템은 소변 검사를 실시한 후에 촬영된 소변 검사 스틱에 대한 이미지 데이터를 획득할 수 있다. 소변 검사 시스템은 소변 검사를 위하여 구성된 딥러닝 모델을 활용하여 소변 검사를 실시함에 따라 촬영된 이미지 데이터를 기준 데이터에 기초하여 색상 정보를 변환시킬 수 있다. Referring to FIG. 6 , color information of image data according to reference data is converted. The urine test system may acquire image data for the urine test stick photographed after the urine test is performed. The urine test system may convert color information based on reference data of image data taken as a urine test is performed using a deep learning model configured for a urine test.

도 7은 일 실시예에 따른 소변 검사 시스템에서 이미지를 변환한 예를 설명하기 위한 도면이다.7 is a view for explaining an example of converting an image in the urine test system according to an embodiment.

소변 검사 시스템은 기준 데이터를 기반으로 하여 소변 검사를 실시함에 따라 촬영된 이미지 데이터를 변환할 수 있다. 소변 검사 시스템은 기준 데이터인 소변 검사를 실시하기 전의 소변 검사 스틱을 기반으로 하여 소변 검사를 실시함에 따라 촬영된 이미지 데이터를 변환하여, 기준 데이터의 소변 검사 스틱의 손잡이 영역(소변 검사 스틱의 손잡이 흰색 부분)과 색상값이 일치하도록 소변 검사를 실시함에 따라 촬영된 이미지 데이터를 변환할 수 있다. 도 7을 참고하면, 왼쪽 상단의 도면은 기준 데이터(소변 검사 스틱)을 나타낸 것이고, 왼쪽 하단의 도면은 소변 검사가 실시됨에 따라 촬영된 이미지 데이터를 나타낸 것이다.The urine test system may convert the image data taken as a urine test is performed based on the reference data. The urine test system converts the image data taken as the urine test is performed based on the urine test stick before the urine test, which is the reference data, and the handle area of the urine test stick of the reference data (the handle of the urine test stick is white The captured image data can be converted by performing a urine test so that the color value matches the part). Referring to FIG. 7 , the upper left figure shows reference data (urine test stick), and the lower left figure shows image data taken as a urine test is performed.

예를 들면, 기준 데이터에서 소변 검사 스틱에 존재하는 상단 또는 하단의 손잡이 영역이 흰색일 수 있다. 이러한 흰색의 RGB 값은 (255, 255, 255)이다. 소변 검사 시스템은 기준 데이터에서 소변 검사 스틱에 존재하는 손잡이 영역의 RGB 값과 일치하도록 소변 검사를 실시함에 따라 촬영된 이미지 데이터의 전체를 변환할 수 있다. 다시 말해서, 소변 검사 시스템은 기준 데이터에서 소변 검사 스틱에 존재하는 손잡이 영역의 흰색 RGB값과 일치하도록 소변 검사를 실시함에 따라 촬영된 이미지 데이터의 전체를 변환할 수 있다. 이에 따라, 소변 검사 시스템은 이미지 데이터를 변환한 결과 이미지를 오른쪽 도면과 같이 나타낼 수 있다. For example, in the reference data, the upper or lower handle area of the urine test stick may be white. The RGB values of these whites are (255, 255, 255). The urine test system may convert the entire captured image data as the urine test is performed to match the RGB value of the handle region present on the urine test stick in the reference data. In other words, the urine test system may convert the entire captured image data as the urine test is performed to match the white RGB value of the handle region present on the urine test stick in the reference data. Accordingly, the urine test system may display an image as a result of converting image data as shown in the figure on the right.

도 8은 일 실시예에 따른 소변 검사 시스템에서 건강 상태 정보를 출력하는 예를 설명하기 위한 도면이다.8 is a diagram for explaining an example of outputting health state information in a urine test system according to an embodiment.

소변 검사 시스템은 데이터베이스에 기반하여 건강 상태 정보를 출력할 수 있다. 예를 들면, 전자 기기를 통하여 건강 상태 정보가 출력될 수 있다. 소변 검사 시스템은 판단된 색상 정보를 데이터베이스에 저장된 건강 상태 정보 및 색상 데이터를 매칭하여 검사 결과를 제공할 수 있다. 데이터베이스에 건강 상태 정보 및 색상 데이터의 매칭을 수행하기 위한 기준 정보가 저장되어 있을 수 있다. 여기서, 기준 정보란, 소변 검사를 실시한 소변 검사 스틱에 변화된 항목들이 정상 범위에 존재하는지 여부를 식별하기 위한 정상 데이터일 수 있다. 이때, 데이터베이스에 소변 검사 스틱에 구성된 각각의 항목에 대한 정상 데이터를 함하는 기준 정보에 기초하여 판단된 색상 정보가 비교되어 검사 결과가 획득될 수 있다. The urine test system may output health status information based on the database. For example, health state information may be output through the electronic device. The urine test system may provide the test result by matching the determined color information with the health state information and color data stored in the database. Reference information for matching health state information and color data may be stored in the database. Here, the reference information may be normal data for identifying whether the items changed in the urine test stick on which the urine test has been performed exist within a normal range. In this case, color information determined based on reference information including normal data for each item configured in the urine test stick in the database may be compared to obtain a test result.

소변 검사 시스템은 소변 검사 스틱에 구성된 각각의 항목에 대한 건강 상태 정보를 제공할 수 있다. 소변 검사 스틱이 복수 개의 항목으로 구성될 수 있다. 이때, 복수 개의 항목 각각은 서로 다른 건강 상태 정보를 파악하기 위한 검사 항목일 수 있다. 도 8에 도시된 바와 같이, 소변 검사 스틱이 6개의 항목으로 구성되어 있을 경우, 각각의 항목에 대한 건강 상태 정보를 제공할 수 있다. 예를 들면, "제1 항목에서 Glucose가 60일 경우, 정상 범위보다 많은 당이 검출되었습니다. 당뇨병일 확률이 높습니다. 이 검사만으로는 진단을 확정할 수 없으니, 가까운 병원에서 혈당 검사를 받으시길 바랍니다"와 같은 건강 상태 정보가 출력될 수 있다. 다른 예를 들면, "제4항목에서 pH가 5.0일 경우, 정상 기준 5.0~6.5와 비교하였을 때 정상입니다"와 같은 건강 상태 정보가 출력될 수 있다. 이때, 각각의 항목에 대한 검사 결과의 정확도가 함께 제공될 수 있다. The urine test system may provide health status information for each item configured in the urine test stick. The urine test stick may consist of a plurality of items. In this case, each of the plurality of items may be an examination item for identifying different health state information. As shown in FIG. 8 , when the urine test stick consists of six items, health status information for each item may be provided. For example, "If Glucose is 60 in item 1, more sugar than the normal range was detected. There is a high probability of diabetes. This test alone cannot confirm the diagnosis, so please get a blood sugar test at a nearby hospital." Health state information such as As another example, health status information such as "If the pH is 5.0 in item 4, it is normal compared to the normal standard of 5.0 to 6.5" may be output. In this case, the accuracy of the inspection result for each item may be provided together.

소변 검사 시스템은 건강 상태 정보를 각각의 항목에 대한 위험 정도에 따라 다르게 표시할 수 있다. 소변 검사 시스템은 각각의 항목에 대한 결과값의 위험 정도를 판단하기 위한 위험 복수 개의 범위를 분류할 수 있고, 분류된 복수 개의 범위에 사용자의 건강 상태 정보가 어느 범위에 해당되는지 판단할 수 있다. 이때, 가장 위험한 범위에 속하는 것으로 판단될 경우, 빨간색으로 건강 상태가 위험한 것을 표시함으로써 최대한 빨리 병원에 가서 진료를 받을 수 있도록 경각심을 불러일으킬 수 있다. 또는, 각각의 항목과 연관된 병원 정보를 함께 제공함으로써, 병원에 예약을 진행할 수 있도록 한다. 이때, 사용자로부터 선택된 병원 정보에 대한 예약 절차가 제공됨으로써 사용자가 원하는 날짜에 예약을 신청할 수 있고, 또는, 사용자로부터 선택된 병원 정보에 대한 전화가 연결됨으로써 병원을 통하여 사용자가 원하는 날짜에 예약을 신청하도록 제공할 수 있다. The urine test system may display health status information differently according to the degree of risk for each item. The urine test system may classify a plurality of risk ranges for determining the degree of risk of the result value for each item, and determine which range the user's health status information corresponds to in the plurality of classified ranges. At this time, when it is determined that it belongs to the most dangerous range, it is possible to raise awareness to go to the hospital and receive treatment as soon as possible by displaying that the health condition is dangerous in red. Alternatively, by providing hospital information associated with each item together, it is possible to proceed with a reservation to the hospital. In this case, the user can apply for a reservation on a desired date by providing a reservation procedure for hospital information selected by the user, or by connecting a phone call for hospital information selected by the user to apply for a reservation on a desired date through the hospital can provide

이상에서 설명된 장치는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.The device described above may be implemented as a hardware component, a software component, and/or a combination of the hardware component and the software component. For example, devices and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable gate array (FPGA). , a programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions, may be implemented using one or more general purpose or special purpose computers. The processing device may execute an operating system (OS) and one or more software applications running on the operating system. The processing device may also access, store, manipulate, process, and generate data in response to execution of the software. For convenience of understanding, although one processing device is sometimes described as being used, one of ordinary skill in the art will recognize that the processing device includes a plurality of processing elements and/or a plurality of types of processing elements. It can be seen that can include For example, the processing device may include a plurality of processors or one processor and one controller. Other processing configurations are also possible, such as parallel processors.

소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치에 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.The software may comprise a computer program, code, instructions, or a combination of one or more thereof, which configures a processing device to operate as desired or is independently or collectively processed You can command the device. The software and/or data may be any kind of machine, component, physical device, virtual equipment, computer storage medium or device, to be interpreted by or to provide instructions or data to the processing device. may be embodied in The software may be distributed over networked computer systems, and stored or executed in a distributed manner. Software and data may be stored in one or more computer-readable recording media.

실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. The method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer-readable medium. The computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination. The program instructions recorded on the medium may be specially designed and configured for the embodiment, or may be known and available to those skilled in the art of computer software. Examples of the computer-readable recording medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic such as floppy disks. - includes magneto-optical media, and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like. Examples of program instructions include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.

이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.As described above, although the embodiments have been described with reference to the limited embodiments and drawings, various modifications and variations are possible from the above description by those skilled in the art. For example, the described techniques are performed in a different order than the described method, and/or the described components of the system, structure, apparatus, circuit, etc. are combined or combined in a different form than the described method, or other components Or substituted or substituted by equivalents may achieve an appropriate result.

그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.Therefore, other implementations, other embodiments, and equivalents to the claims are also within the scope of the following claims.

Claims (14)

소변 검사 시스템에 의해 수행되는 소변 검사 방법에 있어서,
소변 검사 시트를 이용하여 실시된 소변 검사를 통하여 변화된 소변 검사 시트를 촬영함에 따라 이미지 데이터를 생성하는 단계;
상기 생성된 이미지 데이터를 딥러닝 모델에 입력하여 학습시킴에 따라 기준 데이터에 기반하여 상기 이미지 데이터를 변환하기 위한 결과값을 획득하는 단계; 및
상기 획득된 결과값을 이용하여 판단된 색상 정보를 데이터베이스에 저장된 건강 상태 정보 및 색상 데이터를 매칭하여 검사 결과를 제공하는 단계
를 포함하는 소변 검사 방법.
A urinalysis method performed by a urinalysis system, comprising:
Generating image data by taking a urine test sheet changed through a urine test conducted using the urine test sheet;
obtaining a result value for converting the image data based on reference data as the generated image data is input to a deep learning model and trained; and
Matching color information determined using the obtained result value with health state information and color data stored in a database to provide an examination result
A urine test method comprising a.
제1항에 있어서,
상기 획득하는 단계는,
소변 검사를 위한 딥러닝 모델을 구성하고, 상기 구성된 딥러닝 모델에 기초하여 상기 소변 검사를 통하여 변화된 소변 검사 시트를 촬영한 이미지를 기준 데이터를 이용하여 입력하는 단계
를 포함하는 소변 검사 방법.
According to claim 1,
The obtaining step is
Constructing a deep learning model for a urine test, and inputting an image of a urine test sheet changed through the urine test based on the configured deep learning model using reference data
A urine test method comprising a.
제2항에 있어서,
상기 딥러닝 모델은,
딥러닝 네트워크를 통하여 이미지에 포함된 그림자와 조명 효과를 포함하는 잡음을 제거하고, 기준이 되는 소변 검사 데이터로 상기 촬영된 이미지 데이터를 변환하기 위한 커널값을 반환하는
것을 특징으로 하는 소변 검사 방법.
3. The method of claim 2,
The deep learning model is
Removes noise including shadows and lighting effects included in the image through a deep learning network, and returns a kernel value for converting the photographed image data into a standard urine test data
A urine test method, characterized in that.
제1항에 있어서,
상기 획득하는 단계는,
상기 획득된 결과값을 활용하여 상기 이미지 데이터에 대한 기준 데이터와의 연산을 통하여 이미지 필터링을 수행하고, 상기 이미지 필터링이 수행된 이미지 데이터에 구성된 소변 검사 시트의 각각이 나타내는 색상 정보를 판단하는 단계
를 포함하는 소변 검사 방법.
According to claim 1,
The obtaining step is
Performing image filtering through operation with reference data for the image data using the obtained result value, and determining color information indicated by each of the urine test sheets configured in the image data on which the image filtering is performed
A urine test method comprising a.
제1항에 있어서,
동일한 사용자에 의하여 소변 검사를 실시하기 전에 소변 검사 시트가 촬영됨에 따라 생성된 이미지 데이터를 기준 데이터로 설정하는 단계
를 더 포함하고,
상기 소변 검사를 실시하기 전에 소변 검사 시트를 촬영한 이미지 데이터와 상기 소변 검사를 실시한 소변 검사 시트를 촬영한 이미지 데이터는 동일한 환경에서 촬영된 것을 특징으로 하는 소변 검사 방법.
According to claim 1,
Step of setting the image data generated as the urine test sheet is taken as the reference data before the urine test is performed by the same user
further comprising,
Urinalysis method, characterized in that the image data of the urine test sheet taken before the urine test and the image data of the urine test sheet on which the urine test was taken are taken in the same environment.
제1항에 있어서,
서로 다른 사용자에 의하여 소변 검사를 실시하기 전에 소변 검사 시트가 촬영됨에 따라 생성된 이미지 데이터를 기준 데이터로서 데이터베이스에 저장하는 단계
를 더 포함하고,
상기 소변 검사를 실시하기 전에 소변 검사 시트를 촬영한 이미지 데이터와 상기 소변 검사를 실시한 소변 검사 시트를 촬영한 이미지 데이터는 동일한 환경에서 촬영된 것을 특징으로 하는 소변 검사 방법.
According to claim 1,
Storing the image data generated as a urine test sheet is taken in a database as reference data before performing a urine test by different users
further comprising,
Urinalysis method, characterized in that the image data of the urine test sheet taken before the urine test and the image data of the urine test sheet on which the urine test was taken are taken in the same environment.
제1항에 있어서,
상기 제공하는 단계는,
상기 기준 데이터의 소변 검사 시트에 구성된 손잡이 영역의 RGB 값을 이용하여 상기 이미지 데이터의 손잡이 영역의 색상값을 일치시키는 단계
를 포함하고,
상기 RGB 값은 255, 255, 255의 흰색을 나타내는
것을 특징으로 하는 소변 검사 방법.
According to claim 1,
The providing step is
Matching the color value of the handle area of the image data using the RGB values of the handle area configured in the urine test sheet of the reference data
including,
The RGB values represent white values of 255, 255, and 255.
A urine test method, characterized in that.
소변 검사 시스템에 있어서,
소변 검사 시트를 이용하여 실시된 소변 검사를 통하여 변화된 소변 검사 시트를 촬영함에 따라 이미지 데이터를 생성하는 생성부;
상기 생성된 이미지 데이터를 딥러닝 모델에 입력하여 학습시킴에 따라 기준 데이터에 기반하여 상기 이미지 데이터를 변환하기 위한 결과값을 획득하는 획득부; 및
상기 획득된 결과값을 이용하여 판단된 색상 정보를 데이터베이스에 저장된 건강 상태 정보 및 색상 데이터를 매칭하여 검사 결과를 제공하는 제공부
를 포함하는 소변 검사 시스템.
In the urine test system,
a generator for generating image data as the urine test sheet changed through the urine test performed using the urine test sheet is photographed;
an acquisition unit that acquires a result value for converting the image data based on reference data as the generated image data is input to a deep learning model and trained; and
A providing unit that matches color information determined using the obtained result value with health state information and color data stored in a database to provide a test result
A urine test system comprising a.
제8항에 있어서,
상기 획득부는,
소변 검사를 위한 딥러닝 모델을 구성하고, 상기 구성된 딥러닝 모델에 기초하여 상기 소변 검사를 통하여 변화된 소변 검사 시트를 촬영한 이미지를 기준 데이터를 이용하여 입력하는
것을 특징으로 하는 소변 검사 시스템.
9. The method of claim 8,
The acquisition unit,
Constructing a deep learning model for a urine test, and inputting an image of a urine test sheet changed through the urine test based on the configured deep learning model using reference data
A urine test system, characterized in that.
제9항에 있어서,
상기 딥러닝 모델은,
딥러닝 네트워크를 통하여 이미지에 포함된 그림자와 조명 효과를 포함하는 잡음을 제거하고, 기준이 되는 소변 검사 데이터로 상기 촬영된 이미지 데이터를 변환하기 위한 커널값을 반환하는
것을 특징으로 하는 소변 검사 시스템.
10. The method of claim 9,
The deep learning model is
Removes noise including shadows and lighting effects included in the image through a deep learning network, and returns a kernel value for converting the photographed image data into a standard urine test data
A urine test system, characterized in that.
제8항에 있어서,
상기 획득부는,
상기 획득된 결과값을 활용하여 상기 이미지 데이터에 대한 기준 데이터와의 연산을 통하여 이미지 필터링을 수행하고, 상기 이미지 필터링이 수행된 이미지 데이터에 구성된 소변 검사 시트의 각각이 나타내는 색상 정보를 판단하는
것을 특징으로 하는 소변 검사 시스템.
9. The method of claim 8,
The acquisition unit,
Using the obtained result value to perform image filtering through operation with reference data for the image data, and to determine color information indicated by each of the urine test sheets configured in the image data on which the image filtering is performed
A urine test system, characterized in that.
제8항에 있어서,
동일한 사용자에 의하여 소변 검사를 실시하기 전에 소변 검사 시트가 촬영됨에 따라 생성된 이미지 데이터를 기준 데이터로 설정하는 설정부를 더 포함하고,
상기 소변 검사를 실시하기 전에 소변 검사 시트를 촬영한 이미지 데이터와 상기 소변 검사를 실시한 소변 검사 시트를 촬영한 이미지 데이터는 동일한 환경에서 촬영된 것을 특징으로 하는 소변 검사 시스템.
9. The method of claim 8,
Further comprising a setting unit for setting the image data generated as the urine test sheet is taken as reference data before performing the urine test by the same user,
The urine test system, characterized in that the image data of the urine test sheet taken before the urine test and the image data of the urine test sheet on which the urine test was taken are taken in the same environment.
제8항에 있어서,
서로 다른 사용자에 의하여 소변 검사를 실시하기 전에 소변 검사 시트가 촬영됨에 따라 생성된 이미지 데이터를 기준 데이터로서 데이터베이스에 저장하는 저장부를 더 포함하고,
상기 소변 검사를 실시하기 전에 소변 검사 시트를 촬영한 이미지 데이터와 상기 소변 검사를 실시한 소변 검사 시트를 촬영한 이미지 데이터는 동일한 환경에서 촬영된 것을 특징으로 하는 소변 검사 시스템.
9. The method of claim 8,
Further comprising a storage unit for storing the image data generated as the urine test sheet is taken as reference data in the database before the urine test by different users,
The urine test system, characterized in that the image data of the urine test sheet taken before the urine test and the image data of the urine test sheet on which the urine test was taken are taken in the same environment.
제8항에 있어서,
상기 제공부는,
상기 기준 데이터의 소변 검사 시트에 구성된 손잡이 영역의 RGB 값을 이용하여 상기 이미지 데이터의 손잡이 영역의 색상값을 일치시키는 것을 포함하고,
상기 RGB 값은 255, 255, 255의 흰색을 나타내는
것을 특징으로 하는 소변 검사 시스템.
9. The method of claim 8,
The providing unit,
Using the RGB values of the handle area configured in the urine test sheet of the reference data to match the color value of the handle area of the image data,
The RGB values represent white values of 255, 255, and 255.
A urine test system, characterized in that.
KR1020200002468A 2020-01-08 2020-01-08 Urine test method using deep learning KR102354702B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200002468A KR102354702B1 (en) 2020-01-08 2020-01-08 Urine test method using deep learning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200002468A KR102354702B1 (en) 2020-01-08 2020-01-08 Urine test method using deep learning

Publications (2)

Publication Number Publication Date
KR20210089808A true KR20210089808A (en) 2021-07-19
KR102354702B1 KR102354702B1 (en) 2022-01-25

Family

ID=77126083

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200002468A KR102354702B1 (en) 2020-01-08 2020-01-08 Urine test method using deep learning

Country Status (1)

Country Link
KR (1) KR102354702B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160052442A (en) * 2014-11-04 2016-05-12 삼성전자주식회사 Method and apparatus for measuring biometric information
CN106295139A (en) * 2016-07-29 2017-01-04 姹ゅ钩 A kind of tongue body autodiagnosis health cloud service system based on degree of depth convolutional neural networks
KR20180038958A (en) * 2016-10-07 2018-04-17 주식회사 에코메트론 A strip for urine analyzing and method for urine analyzing using the same
JP2018108327A (en) * 2016-12-28 2018-07-12 サイマックス株式会社 Health monitoring system, health monitoring method and health monitoring program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160052442A (en) * 2014-11-04 2016-05-12 삼성전자주식회사 Method and apparatus for measuring biometric information
CN106295139A (en) * 2016-07-29 2017-01-04 姹ゅ钩 A kind of tongue body autodiagnosis health cloud service system based on degree of depth convolutional neural networks
KR20180038958A (en) * 2016-10-07 2018-04-17 주식회사 에코메트론 A strip for urine analyzing and method for urine analyzing using the same
JP2018108327A (en) * 2016-12-28 2018-07-12 サイマックス株式会社 Health monitoring system, health monitoring method and health monitoring program

Also Published As

Publication number Publication date
KR102354702B1 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
US11610394B2 (en) Neural network model training method and apparatus, living body detecting method and apparatus, device and storage medium
CN107680684B (en) Method and device for acquiring information
JP6868119B2 (en) Holographic anti-counterfeit code inspection method and equipment
CN106462572A (en) Techniques for distributed optical character recognition and distributed machine language translation
KR101955919B1 (en) Method and program for providing tht region-of-interest in image by deep-learing algorithm
CN111008957A (en) Medical information processing method and device
TWI853122B (en) Method of determining a concentration of an analyte in a bodily fluid
CN111124863B (en) Intelligent device performance testing method and device and intelligent device
WO2018233520A1 (en) Method and device for generating predicted image
CN110826646A (en) Robot vision testing method and device, storage medium and terminal equipment
WO2024074921A1 (en) Distinguishing a disease state from a non-disease state in an image
CN108776943B (en) Data transmission method and device, storage medium and electronic device
CN111914841B (en) CT image processing method and device
KR102455536B1 (en) Receipt recognition device, a method for automatically recognizing medical items from scanned images of receipts, and computer programs
KR102354702B1 (en) Urine test method using deep learning
JP2020057361A (en) Method and apparatus for detecting model reliability
CN109493243A (en) A kind of disease score value method of calibration neural network based and calculate equipment
CN115426947A (en) SP02 applet: AI-assisted SP02 measurement APP
KR102123598B1 (en) Apparatus and system for skin diagnosis and method thereof
TWI640898B (en) Augmented reality with realtime interactive analysis method and system thereof
CN114155567A (en) Target detection method and device, storage medium and electronic equipment
KR102410848B1 (en) De-identification method of electronic apparatus for de-identifying personal identification information in images
EP4289353A1 (en) Artificial-intelligence-based blood glucose prediction system and method
Kavitha et al. Review paper on COVID-19 Patient Isolation Detector
KR20240014121A (en) An apparatus and method for identifying the characteristics of a visual AI-based rapid diagnostic kit

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant