KR20210023127A - 배전계통 고장구간 식별 시스템 - Google Patents
배전계통 고장구간 식별 시스템 Download PDFInfo
- Publication number
- KR20210023127A KR20210023127A KR1020190102868A KR20190102868A KR20210023127A KR 20210023127 A KR20210023127 A KR 20210023127A KR 1020190102868 A KR1020190102868 A KR 1020190102868A KR 20190102868 A KR20190102868 A KR 20190102868A KR 20210023127 A KR20210023127 A KR 20210023127A
- Authority
- KR
- South Korea
- Prior art keywords
- fault
- failure
- section
- current
- voltage
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 claims abstract description 36
- 238000005259 measurement Methods 0.000 claims abstract description 16
- 238000004891 communication Methods 0.000 claims abstract description 15
- 238000012545 processing Methods 0.000 claims abstract description 10
- 230000008859 change Effects 0.000 claims description 55
- 238000000034 method Methods 0.000 claims description 48
- 238000004364 calculation method Methods 0.000 claims description 24
- 238000011144 upstream manufacturing Methods 0.000 claims description 18
- 238000009434 installation Methods 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 4
- 241000195493 Cryptophyta Species 0.000 claims description 2
- 238000007796 conventional method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000004088 simulation Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000005070 sampling Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/081—Locating faults in cables, transmission lines, or networks according to type of conductors
- G01R31/086—Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R25/00—Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/22—Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
- Y04S10/52—Outage or fault management, e.g. fault detection or location
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
본 발명은 배전계통 고장구간 식별 시스템에 관한 것으로, 복수의 원격 제어소 장치(RTU)에서 계측되는 데이터를 주기적으로 전송받아 내부의 운영 DB에 누적 저장하는 배전운영시스템; 및 복수의 PMU(Phasor Measurement Unit)를 통해 계측된 데이터를 지정된 주기에 맞춰 전송받아 처리하는 고장구간 판단 제어기;를 포함하고, 상기 배전운영시스템과 상기 고장구간 판단 제어기는, 통신망으로 서로 연계되어 있으며, 상기 운영 DB에 저장된 RTU 계측데이터를 상기 통신망을 통해 상기 고장구간 판단 제어기에 전송되며, 상기 고장구간 판단 제어기는, 상기 운영 DB에서 배전계통의 개폐기 및 차단기의 개폐상태 정보를 전송받아 모선 정보의 생성 및 PMU간 직선 경로 정보를 처리하는 토폴로지 추정부; 및 배전계통의 고장 발생 및 그 종류를 판별하는 고장종류 판별부, PMU 데이터를 활용하여 메인 피더상의 고장구간을 1차적으로 식별하는 메인 고장구간 판단부, 및 1차 식별 고장구간이 분기선이 연계된 지점일 경우 지정된 고장해석 방식을 활용하여 분기선 내부의 고장구간을 판단하는 분기선 고장구간 판단부를 포함하는 고장구간 판단부;를 포함한다.
Description
본 발명은 배전계통 고장구간 식별 시스템에 관한 것으로, 보다 상세하게는 1주기 파형에 대해 적어도 백회 이상의 샘플링을 연산 처리할 수 있는 PMU(Phasor Measurement Unit)를 이용하여 배전계통에서 발생하는 순간적인 이벤트 및 고장을 감지하여 배전계통의 고장구간을 식별할 수 있도록 하는, 배전계통 고장구간 식별 시스템에 관한 것이다.
종래의 기술1(10-2007-0041097, 공개, 비접지 배전계통에서의 지락고장구간 검출 및 분리장치 및 방법)은 선택지락과전류계전기(SGR)로 단순하게 선로의 지락고장을 검출하여 네트워크를 통해 중앙제어장치로 전송할 수 있도록 하고 중앙제어장치의 지능을 사용하여 최소의 개폐기 동작횟수로 수용가가 최대한 정전을 경험하지 않고 빠른 시간 내에 고장구간을 복구할 수 있는 비접지 배전계통에서의 지락고장구간 검출 및 분리장치 및 방법에 관한 것이다.
그러나 상기 종래의 기술1은 고장구간을 찾기 위해 고장선로에 설치된 개폐기들을 말단에서부터(상시개방점) 전원까지 개방점을 이동시켜 가며 연계선로의 고장검출 발생 정보를 통해 고장구간을 찾는 방식으로서, 개방점을 전원측으로 이동시켜 가며 고장감지신호를 검출하여 고장구간을 판단하므로 설비에 지속적인 부담이 간다. 또한 개폐기 설치가 많은 선로의 경우 고장구간을 찾는데 오랜 시간이 걸리기 때문에 실제 적용하기에는 어려움이 있다.
종래의 기술2(10-2009-0119058, 공개, 배전계통에서 지능형 FRTU 기반의 고장구간 판단 및 자율 분리 방법)는 가공 배전선로의 개폐기에 설치되는 FRTU(Feeder Remote Terminal Unit)에 의해 전압, 전류 센서로부터 계측되는 3상 전압, 전류 파형으로부터 고장/돌입/HIF(High Impedance Fault) 여부를 판단한 후 유비쿼터스 기반의 배전계통 환경하에서 네이버 존(Zone)의 FRTU요소들과 1:1 통신을 통해 3상 전압, 전류 정보를 수집하여 자기 보호구간에 대한 고장 발생여부를 스스로 판단하고, 차단기(CB;Circuit Breaker)나 리클로우저가 영구 개방되기 전에 자율적으로 고장구간을 분리하도록 함으로써 고장지역과 정전시간을 줄여 사고파급효과를 최소화하는 배전계통에서 지능형 FRTU 기반의 고장구간 판단 및 자율 분리 방법에 관한 것이다.
종래의 기술3(10-1514999, 등록, 배전계통에서 스마트 보호기기를 이용한 자율적 고장구간 확인 및 분리 방법 및 그 시스템)은 새로운 분산전원을 가지는 스마트 배전 그리드 시스템에서 임의의 스마트 보호기기가 고장전류를 감지하면, 스마트 배전 그리드 시스템의 양방향 통신 기능을 이용하여 보호기기 스스로 고장구간을 판단하고, 해당 고장구간을 배전 시스템에서 분리할 수 있는 자율적 고장구간 확인 및 분리 방법 및 그 시스템에 관한 것이다.
그러나 상기 종래의 기술2 및 종래의 기술3은, RTU의 양방향 통신과 고장검출신호 등을 활용하여 고장구간을 판단한다. 하지만, 통신방안을 통해 고장검출을 수행하는 방식의 경우 별도의 고속 통신망 구축, 현장상황에 따른 다양한 예외사항(통신 오류 등)의 문제로 인해 실제 계통에서 고장검출을 판단하는데 어려움이 있다.
본 발명의 일 측면에 따르면, 본 발명은 상기와 같은 문제점을 해결하기 위해 창작된 것으로서, 1주기 파형에 대해 적어도 백회 이상의 샘플링을 연산 처리할 수 있는 PMU(Phasor Measurement Unit)를 이용하여 배전계통에서 발생하는 순간적인 이벤트 및 고장을 감지하여 배전계통의 고장구간을 식별할 수 있도록 하는, 배전계통 고장구간 식별 시스템을 제공하는 데 그 목적이 있다.
본 발명의 일 측면에 따른 배전계통 고장구간 식별 시스템은, 복수의 원격 제어소 장치(RTU)에서 계측되는 데이터를 주기적으로 전송받아 내부의 운영 DB에 누적 저장하는 배전운영시스템; 및 복수의 PMU(Phasor Measurement Unit)를 통해 계측된 데이터를 지정된 주기에 맞춰 전송받아 처리하는 고장구간 판단 제어기;를 포함하고, 상기 배전운영시스템과 상기 고장구간 판단 제어기는, 통신망으로 서로 연계되어 있으며, 상기 운영 DB에 저장된 RTU 계측데이터를 상기 통신망을 통해 상기 고장구간 판단 제어기에 전송되며, 상기 고장구간 판단 제어기는, 상기 운영 DB에서 배전계통의 개폐기 및 차단기의 개폐상태 정보를 전송받아 모선 정보의 생성 및 PMU간 직선 경로 정보를 처리하는 토폴로지 추정부; 및 배전계통의 고장 발생 및 그 종류를 판별하는 고장종류 판별부, PMU 데이터를 활용하여 메인 피더상의 고장구간을 1차적으로 식별하는 메인 고장구간 판단부, 및 1차 식별 고장구간이 분기선이 연계된 지점일 경우 지정된 고장해석 방식을 활용하여 분기선 내부의 고장구간을 판단하는 분기선 고장구간 판단부를 포함하는 고장구간 판단부;를 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 복수의 원격 제어소 장치(RTU)로부터 전송되는 현장 데이터 정보들을 상기 배전운영시스템의 운영 DB에 인터페이스 하는 전위 처리기(FEP : Front End Processor);를 더 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 운영 DB는, 고장구간 판단 정보를 위해 필요한 토폴로지 정보를, 상기 전위 처리기(FEP)와 상기 고장구간 판단 제어기로부터 주기적으로 전송받아 저장하며, 또한 상기 고장구간 판단부에서 판단된 결과를 저장하는 것을 특징으로 한다.
본 발명에 있어서, 상기 고장구간 판단 제어기로부터 전송받는 정보는, 계통의 상태정보로서, 보호기기, 개폐기 상태정보, 노드의 연결 관계와 각 노드에 연계된 부하 및 분산전원에 대한 정보; 고장구간 판단 정보로서, 고장구간 판단 제어기(24)에서 식별된 배전계통의 고장구간 위치 정보; 및 단말장치의 위치 정보로서, 고장구간을 판단하기 위해 설치된 PMU와 RTU의 설치 위치 정보; 중 적어도 하나 이상을 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 토폴로지 추정부는, 메인 피더상의 고장구간을 판단하기 위해 PMU가 설치된 메인피더의 직선 경로를 탐색 및 저장하며, 분기선 고장구간 판단을 위한 고장해석 수행을 위해 노드-설비 기준의 연결 관계를 버스-설비 기준의 데이터로 변경하고, 또한 배전계통의 재구성 및 설비의 투입 및 개방에 따른 계통 구조 변경시 관할하는 지역의 토폴로지 데이터를 재구성하는 것을 특징으로 한다.
본 발명에 있어서, 상기 고장종류 판단부는, 상기 고장구간 판단 제어기가 관할하는 PMU의 데이터를, 설정된 주기에 맞춰 데이터를 취득하고, 피더 시작점에 설치된 PMU의 전압, 전류 데이터를 통해, 전압의 계측치가 설정된 값보다 작아질 경우, 및 전류가 설정된 전류보다 커질 경우 계통의 고장을 인지하며, 또한 고장 전후의 전압 변화량을 기반으로 고장종류를 판단하는 것을 특징으로 한다.
본 발명에 있어서, 상기 고장종류 판단부는, 고장 종류 및 구간을 판단하기 위하여, 아래의 수학식 1 및 수학식 2를 이용하여 고장 전후의 전압 및 전류 변화량을 산출하는 것을 특징으로 한다.
(수학식 1)
(수학식 2)
본 발명에 있어서, 상기 고장종류 판단부는, 아래의 수학식 3을 이용해 평형 고장을 구분하고, 아래의 수학식 4를 이용해 불평형 고장을 구분하는 것을 특징으로 한다.
(수학식 3)
(수학식 4)
여기서, 는 고장인지 단계에서 전압 범위를 벗어난 상들의 고장발생 후 전압 변화를 나타내며, 는 건전상, 는 불평형 고장을 구분하기 위해 건전상과 고장상간의 변화 범위를 나타낸다.
본 발명에 있어서, 상기 메인 고장구간 판단부는, 메인 피더상의 시작점과 말단지점에 설치된 PMU 구간내의 1차적인 고장구간을 판단하기 위하여, 고장종류 판단부에서 얻어진 고장 전 후의 전압 및 전류 변화량과 고장종류에 따라 PMU 시작점부터 말단 방향(downstream), 및 말단 방향에서 시작점방향(upstream)으로 각 모선의 전압 및 전류의 변화를 계산하며, 메인 피더상의 말단 방향(downstream)과 시작점 방향(upstream)의 모든 모선에 대한 전압, 전류 변화량의 계산이 완료되면, 메인 피더상의 고장을 검출하기 위하여 두 방향간의 전압편차를 계산하고, 회로이론의 보상이론(Compensation Theorem)에 기초하여, 말단 방향(downstream)과 시작점 방향(upstream)의 편차가 가장 작은 구간을 식별하여 1차 고장구간으로 판별하나는 것을 특징으로 한다.
본 발명에 있어서, 상기 고장종류 판단부의 결과가 평형 고장일 경우, 아래의 수학식 5와 수학식 6을 이용해 각 구간의 전압 및 전류 변화량을 계산하는 것을 특징으로 한다.
(수학식 5)
(수학식 6)
여기서, , 고장 전후 각 모선의 전압, 전류 변화량, n은 메인 피더의 각 모선 번호를 나타내며, 피더 시작점 , 과 피더 말단 , 는 해당지점 PMU에서 계측된 전압, 전류 변화량을 초기값으로 설정한다. 은 계산되는 모선과 직전 모선사이의 선로 임피던스를 나타내며, 는 구간 부하를 나타낸다.
본 발명에 있어서, 상기 고장종류 판단부의 결과가 1선 지락 고장일 경우, 아래의 수학식 7 내지 수학식 9을 이용하여 고장 상의 각 버스에 대한 전압 및 전류 변화량을 계산하는 것을 특징으로 한다.
(수학식 7)
(수학식 8)
(수학식 9)
여기서, n은 메인피더의 각 모선 번호를 나타내고, 는 각 상에 대한 모선 전류변화량, 는 고장 상에 대한 고장 전후 각 모선의 전압, 전류 변화량을 나타내며, 위의 평형해석과 동일하게 초기 값은 PMU의 계측값을 활용한다. 그리고 a = , , , 고장 상에 대한 각 모선의 정상, 역상, 영상 전류 변화량, , , 는 n번째 모선과 그 직전 모선사이 선로의 정상, 영상, 역상분의 임피던스를 나타낸다.
본 발명에 있어서, 상기 계통에 분산전원이 연계되어 고장이 발생된 경우, 아래의 수학식 10 및 수학식 11을 이용하여 분산전원(PV)에 대한 전류 변화량을 계산하는 것을 특징으로 한다.
(수학식 10)
(수학식 11)
여기서, , 는 분기선 시작점 설치된 RTU에 취득된 고장 전후의 전류 크기이며, , 는 고장 전후 피더시작점 PMU에서 계측된 전압위상, , 는 고장 전후 RTU에서 취득된 전압-전류 위상차를 나타낸다.
본 발명에 있어서, 상기 분기선 고장구간 판단부는, PMU가 설치되지 않은 분기선 내부의 고장구간을 식별하기 위해 분산전원(PV)의 일사량, 최대 출력, 부하 조건 등을 입력받고, 분기선 내부 각 모선에서의 고장 가정 시 고장해석을 통해 피더 시작점에 흐르는 전류 크기를 계산하고, 고장발생 후 피더 시작점에 설치된 PMU에서 취득한 계측 전류 값과 고장해석 결과값 간의 비교를 통해 가장 편차가 작은 구간을 고장구간으로 판단하는 것을 특징으로 한다.
본 발명에 있어서, 상기 분기선 고장구간 판단부는, 고장계산을 위해 분기선의 모선 중에서 고장발생 모선을 정의하고 고장종류 판단부에서 고장을 인지하여 배전계통의 어드미턴스 행렬을 계산하며, 계통에서의 모선의 종류를 분류하고 초기치를 설정하되, 상기 초기치는 모선 전압과 앞에서 입력된 PV의 일사량, 및 부하 조건으로 설정하고, 3상 조류계산을 통해 각 모선에서의 전압 값이 수렴 될 때까지 조류계산을 실행하며, 상기 조류계산을 실행한 후 분산전원(PV) 인버터의 최대 출력을 고려하기 위해, 분산전원(PV)의 출력 전류를 계산하여 분산전원(PV)의 지정된 최대 전류 출력가 초과되는지 체크하고, 상기 체크 결과, 분산전원(PV)의 전류 크기가 제한 값보다 클 경우에 분산전원(PV)의 고장전류의 크기를 제한하여 다시 3상 조류계산을 실행하며, 모든 분산전원(PV)이 지정된 출력 범위 이내일 경우, 수렴된 모선 전압과 선로 임피던스를 통해 고장전류를 계산하는 것을 특징으로 한다.
본 발명의 일 측면에 따르면, 본 발명은 1주기 파형에 대해 적어도 백회 이상의 샘플링을 연산 처리할 수 있는 PMU(Phasor Measurement Unit)를 이용하여 배전계통에서 발생하는 순간적인 이벤트 및 고장을 감지하여 배전계통의 고장구간을 식별할 수 있도록 한다.
도 1은 본 발명의 일 실시예에 따른 배전계통 고장구간 식별 시스템의 개략적인 구성을 보인 예시도.
도 2는 상기 도 1에 있어서, 토폴로지 추정부의 동작을 설명하기 위하여 보인 예시도.
도 3은 상기 도 1에 있어서, 고장구간 판단부의 고장종류 판단부의 동작을 설명하기 위한 흐름도.
도 4는 상기 도 3에 있어서, 고장 발생 시 전압변화 특성을 보인 예시도.
도 5는 상기 도 1에 있어서, 메인 고장구간 판단부의 동작을 설명하기 위한 흐름도.
도 6은 상기 도 5에 있어서, 분산전원이 연계된 계통의 계통 해석 방법을 설명하기 위하여, 분산전원이 포함된 계통을 예시적으로 보인 예시도.
도 7은 상기 도 1에 있어서, 분기선 고장구간 판단부의 동작을 설명하기 위한 흐름도.
도 8은 상기 도 7에 있어서, S83 단계에서 분기선 고장구간 판단부가 고장해석을 위한 계산 과정을 좀 더 구체적으로 설명하기 위한 흐름도.
도 9는 상기 도 1에 있어서, 고장구간 판단 제어기의 효과를 검증하기 위한 시험계통을 보인 예시도.
도 10과 도 11은 본 실시예에 따른 종래의 방법과 본 실시예의 제안 방식에 따른 대한 메인 피더상의 전압 편차 계산 및 시뮬레이션 결과를 비교하기 위하여 보인 예시도.
도 2는 상기 도 1에 있어서, 토폴로지 추정부의 동작을 설명하기 위하여 보인 예시도.
도 3은 상기 도 1에 있어서, 고장구간 판단부의 고장종류 판단부의 동작을 설명하기 위한 흐름도.
도 4는 상기 도 3에 있어서, 고장 발생 시 전압변화 특성을 보인 예시도.
도 5는 상기 도 1에 있어서, 메인 고장구간 판단부의 동작을 설명하기 위한 흐름도.
도 6은 상기 도 5에 있어서, 분산전원이 연계된 계통의 계통 해석 방법을 설명하기 위하여, 분산전원이 포함된 계통을 예시적으로 보인 예시도.
도 7은 상기 도 1에 있어서, 분기선 고장구간 판단부의 동작을 설명하기 위한 흐름도.
도 8은 상기 도 7에 있어서, S83 단계에서 분기선 고장구간 판단부가 고장해석을 위한 계산 과정을 좀 더 구체적으로 설명하기 위한 흐름도.
도 9는 상기 도 1에 있어서, 고장구간 판단 제어기의 효과를 검증하기 위한 시험계통을 보인 예시도.
도 10과 도 11은 본 실시예에 따른 종래의 방법과 본 실시예의 제안 방식에 따른 대한 메인 피더상의 전압 편차 계산 및 시뮬레이션 결과를 비교하기 위하여 보인 예시도.
이하, 첨부된 도면을 참조하여 본 발명에 따른 배전계통 고장구간 식별 시스템의 일 실시예를 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 본 발명의 일 실시예에 따른 배전계통 고장구간 식별 시스템의 개략적인 구성을 보인 예시도이다.
도 1에 도시된 바와 같이, 복수의 원격 제어소 장치(RTU : remote terminal unit)에서 계측되는 데이터는 외부의 배전운영시스템(distribution management system, DMS)(20)으로 전송되며, 주기적으로 운영 DB(21)상에 누적되어 저장된다.
또한 복수의 PMU(Phasor Measurement Unit)를 통해 계측된 데이터는 설정된 주기(초당 10~60회)에 맞춰 중간 처리 및 제어기 역할을 수행하는 고장구간 판단 제어기(PDC : Phasor Data Concentrator)(24)로 전송된다.
또한 필요에 따라 DMS(20)의 운영 DB(21) 또는 메모리(미도시) 상의 RTU 계측데이터는 상기 배전운영시스템(DMS, 20)과 상기 고장구간 판단 제어기(PDC, 24)간 연계된 통신망을 통해 전송되며, 계통 토폴로지 및 파라메터 데이터 역시 필요에 따라 상기 배전운영시스템(DMS, 20)의 운영 DB(21)에서 상기 고장구간 판단 제어기(PDC, 24)로 전송될 수 있다.
이때 상기 고장구간 판단 제어기(PDC, 24)의 토폴로지 추정부(22)는 운영 DB(21)에서 계통의 개폐기 및 차단기의 개폐상태 정보를 전송받아 모선 정보의 생성 및 PMU간 직선 경로 정보 처리 등을 수행한다.
또한 상기 고장구간 판단 제어기(PDC, 24)의 고장구간 판단부(23)는 배전계통의 고장 발생 및 그 종류를 판별하는 고장종류 판별부(231), PMU 데이터를 활용하여 메인 피더상의 고장구간을 1차적으로 식별하는 메인 고장구간 판단부(232), 1차 식별 고장구간이 분기선이 연계된 지점일 경우 고장해석방식을 활용하여 분기선 내부의 고장구간을 판단하는 분기선 고장구간 판단부(233)로 구성되어 있다.
참고로 도 1에서 구체적인 설명이 생략된 전위 처리기(FEP : Front End Processor)는 상기 복수의 원격 제어소 장치(RTU)로부터 올라오는 현장 데이터 정보(예 : 상태, 제어, 계측 등)들을 상기 배전운영시스템(DMS, 20)의 운영 DB(21)에 인터페이스 한다.
보다 구체적으로, 상기 운영 DB(21)는 고장구간 판단 정보를 위해 필요한 토폴로지 정보(예 : 개폐기 상태정보 및 연결 관계)와 같은 데이터들을 상기 전위 처리기(FEP)와 상기 고장구간 판단 제어기(PDC, 24)로부터 주기적으로 전송받아 저장한다. 또한, 상기 운영 DB(21)는 상기 고장구간 판단부(23)에서 판단된 결과를 저장하여 계통 복구 및 계통 상태를 표시하기 위해 사용한다.
예컨대 상기 고장구간 판단 제어기(PDC, 24)로부터 필요한 정보(Data)는, (1)계통의 상태정보로서, 보호기기, 개폐기 상태정보, 노드의 연결 관계와 각 노드에 연계된 부하 및 분산전원에 대한 정보, (2)고장구간 판단 정보로서, 고장구간 판단 제어기(24)에서 식별된 배전계통의 고장구간 위치 정보, 및 (3)단말장치의 위치 정보로서, 고장구간을 판단하기 위해 설치된 PMU와 RTU의 설치 위치 정보이다.
도 2는 상기 도 1에 있어서, 토폴로지 추정부의 동작을 설명하기 위하여 보인 예시도로서, 보다 구체적으로, 상기 토폴로지 추정부(22)는 메인 피더상의 고장구간을 판단하기 위해 PMU가 설치된 메인피더의 직선 경로를 탐색 및 저장한다.
또한 상기 토폴로지 추정부(22)는 분기선 고장구간 판단을 위한 고장해석 수행을 위해 노드-설비 기준의 연결 관계를 버스-설비 기준의 데이터로 변경하고, 배전계통의 재구성 및 설비의 투개방(즉, 투입 및 개방)에 따른 계통 구조 변경시 관할하는 지역의 토폴로지 데이터를 재구성한다.
또한 상기 토폴로지 추정부(22)는, (1)노드간 연결관계를 통한 배전계통의 모선화 동작으로서, 상기 운영 DB(21)로 부터 계통의 현재 상태데이터와 계통의 노드 간 연결정보, 각 노드에 연계된 부하 및 분산전원, 스위치의 상태, 변압기, 및 노드 사이 선로와 그 임피던스 등의 데이터를 수집한다. 또한 상기 토폴로지 추정부(22)는 계폐기의 투개방(즉, 투입 및 개방) 상태와 노드 간 연결 관계를 통해 개폐기가 투입된 노드는 하나의 버스로 취합하며, 도 2(a)에 도시된 바와 같이 노드-설비 기준의 데이터를 버스-설비 기준의 토폴로지 형태로 변경한다.
또한 상기 토폴로지 추정부(22)는, (2)PMU 설치구간에 대한 직선 경로를 식별하는 동작으로서, 본 실시예에서 PMU 기반의 고장구간 판단(1차 메인피더)을 수행하기 위해 도 2(b)에 도시된 바와 같이 피더 시작점의 PMU 설치 위치에 대한 정보를 통해 선로말단에 있는 PMU 위치를 추적해 가며, PMU가 존재하지 않는 분기선은 별도의 식별처리를 통해 메인 고장구간 판단부(232)에서 해당 구간에 대한 연산을 수행하지 않도록 한다.
도 3은 상기 도 1에 있어서, 고장구간 판단부(23)의 고장종류 판단부(231)의 동작을 설명하기 위한 흐름도이다.
보다 구체적으로, 상기 고장종류 판단부(231)는 상기 고장구간 판단 제어기(PDC, 24)가 관할하는 PMU의 데이터를, 설정된 주기에 맞춰 데이터를 취득(또는 수집)하고(S41), 피더 시작점에 설치된 PMU의 전압, 전류 데이터를 통해, 전압의 계측치가 설정된 값보다 작아질 경우, 및 전류가 설정된 전류보다 커질 경우 계통의 고장을 인지한다. 또한 상기 고장종류 판단부(231)는 고장 전후의 전압 변화량을 기반으로 고장종류를 판단한다.
도 4는 상기 도 3에 있어서, 고장 발생 시 전압변화 특성을 보인 예시도로서, 본 실시예는 고장 종류에 따른 전압특성을 활용하여 배전계통에서 가장 자주 발생하는 불평형 고장과 평형 고장에 대한 분류를 수행하며, 고장의 종류에 도 4에 도시된 바와 같이 전압 변화를 볼 수 있다.
이때 본 실시예에서 고장 종류 및 구간을 판단하기 위해 고장 전후의 전압 및 전류 변화량(또는 변화율)을 활용하며, 이를 산출하기 위한 아래의 수학식 1 및 수학식 2를 이용한다.
고장발생 후 3상의 전압변화의 차가 설정된 범위에 존재 할 경우 해당 고장을 평형 고장(또는 평형 단락 고장)으로 구분한다.
아래의 수학식 3을 이용해 평형 단락 고장을 구분한다(S43).
한편 상기 평형 고장이 아닌 경우 아래의 수학식 4를 이용해 불평형 고장을 구분한다(S44).
도 5는 상기 도 1에 있어서, 메인 고장구간 판단부(232)의 동작을 설명하기 위한 흐름도이다.
도 5에 도시된 바와 같이, 메인 고장구간 판단부(232)는 메인 피더상의 시작점과 말단지점에 설치된 PMU 구간내의 1차적인 고장구간을 판단하기 위해 고장종류 판단부(231)에서 얻어진 고장 전 후의 전압 및 전류 변화량과 고장종류에 따라 PMU 시작점부터 말단 방향(downstream), 및 말단 방향에서 시작점방향(upstream)으로 각 모선의 전압 및 전류의 변화를 계산한다(S61).
이때 메인피더상의 말단 방향(downstream)과 시작점방향(upstream)의 모든 모선에 대한 전압, 전류 변화량의 계산이 완료되면 메인피더상의 고장을 검출하기 위해 두 방향간의 전압편차를 계산한다(S63).
상기 방식은 회로이론의 보상이론(Compensation Theorem)에 기반하여 말단 방향(downstream)과 시작점방향(upstream)의 편차가 가장 작은 구간을 식별하여(S64) 1차 고장구간으로 판별(또는 식별)한다(S65). 이후 만약 메인 피더상 고장구간에 분기선이 연계되어 있을 경우(S66의 예) 분기선 고장구간 판단부(233)가 수행되며(S67), 고장 구간이, 분기선이 연계되어 있지 않은, 메인피더일 경우 고장구간 판단 제어기(24)를 종료한다.
한편 상기 고장종류 판단부(231)의 결과가 평형 고장일 때 아래의 수학식 5와 수학식 6과 같이 각 구간의 전압 및 전류 변화량을 계산한다.
여기서, , 고장 전후 각 모선의 전압, 전류 변화량, n은 메인 피더의 각 모선 번호를 나타내며, 피더 시작점 , 과 피더 말단 , 는 해당지점 PMU에서 계측된 전압, 전류 변화량을 초기값으로 설정한다. 은 계산되는 모선과 직전 모선사이의 선로 임피던스를 나타내며, 는 구간 부하를 나타낸다.
본 실시예에서는 각 구간의 부하량을 알고 있다고 가정한다.
만약 발생한 고장이 1선 지락일 경우 아래의 수학식 7 내지 수학식 9을 이용하여 고장 상의 각 버스에 대한 전압 및 전류의 변화량을 계산한다.
여기서, n은 메인피더의 각 모선 번호를 나타낸다.
그리고 는 각 상에 대한 모선 전류변화량, 는 고장 상에 대한 고장 전후 각 모선의 전압, 전류 변화량을 나타내며, 위의 평형해석과 동일하게 초기 값은 PMU의 계측값을 활용한다. 그리고 a = , , , 고장 상에 대한 각 모선의 정상, 역상, 영상 전류 변화량, , , 는 n번째 모선과 그 직전 모선사이 선로의 정상, 영상, 역상분의 임피던스를 나타낸다.
만약 계통에 분기선이 연계된 경우 고장발생시 분산전원(PV)의 고장기여분을 고려하기 위하여, 본 실시예는 아래의 수학식 10 및 수학식 11을 이용하여, 피더 시작점에 설치된 PMU의 전압 위상과 분기선 시작점에 설치된 RTU의 전류 크기 및 전압-전류의 위상차를 활용하였다(S62).
참고로 도 6은 상기 도 5에 있어서, 분산전원이 연계된 계통의 계통 해석 방법을 설명하기 위하여, 분산전원이 포함된 계통을 예시적으로 보인 예시도이다.
여기서, , 는 분기선 시작점 설치된 RTU에 취득된 고장 전후의 전류 크기이며, , 는 고장 전후 피더시작점 PMU에서 계측된 전압위상, , 는 고장 전후 RTU에서 취득된 전압-전류 위상차를 나타낸다. 상기 계측 정보를 통해 , 를 계산하여 분산전원에 대한 전류 변화량을 계산한다.
도 7은 상기 도 1에 있어서, 분기선 고장구간 판단부의 동작을 설명하기 위한 흐름도이다.
도 7에 도시된 바와 같이, 분기선 고장구간 판단부(233)는 PMU가 설치되지 않은 분기선 내부의 고장구간을 식별하기 위해 PV의 일사량, 최대 출력, 부하 조건 등을 입력받고(S81), PMU를 통해 피더 시작점 고장 전류 취득한다(S82).
본 실시예에서는 고장해석방식을 통해 분기선 내부 각 모선(자동 및 수동 개폐기 단위)의 고장을 가정(또는 설정)하고 고장해석을 통해 피더 시작점의 고장전류를 계산한다(S83).
참고로 고장전류 계산 시 PV의 일사량에 따른 출력 변동과 인버터에 의한 출력 제한을 고려하기 위해 PV를 동적으로 변동하는 모델(PQ 모델 또는 일정 전류원 모델로 상황에 따라 가변됨)로 정의하였다. PV의 인버터는 현재 일사량에 비례하는 전력을 출력하고, 전력 출력을 유지하기 위하여 전압이 강하되면 전류를 증가 시킨다. 단 최대 전류(1.2~2배)를 설정하여, 전류의 증가가 해당 값보다 커질 경우 전류의 크기를 고정시키는 특성을 가진다. 또한 불평형 고장시의 계통 상태를 고려하기 위하여 배전계통을 3상으로 변환하였다. 그 뒤 3상 조류계산을 활용한 고장계산을 수행한다.
도 8은 상기 도 7에 있어서, S83 단계에서 분기선 고장구간 판단부가 고장해석을 위한 계산 과정을 좀 더 구체적으로 설명하기 위한 흐름도로서, 도 8을 참조하면, 고장계산을 위해 분기선의 모선 중에서 고장발생 모선을 정의하고 고장종류 판단부(231)에서 고장을 인지하여 배전계통의 어드미턴스 행렬을 계산한다(S91).
상기 어드미턴스 행렬 계산 시 3상 조류계산을 실행하기 위해서 계통의 요소(선로, 변압기, 발전기)를 3상 데이터로 변환하고, 고장 발생 모선은 대지와 연결된 모선과 연결된 것으로 정의한다.
이때 모선의 고장상은 대지와 접지 된 것으로 처리하고, 건전상은 개방된 것으로 처리한다. 계통에서의 모선의 종류를 분류(예 : Slack(변전소), PQ(부하, PV), PV(동기기) 등)하고 초기치를 설정한다(S92).
이때 상기 초기치는 모선 전압과 앞에서 입력된 PV의 일사량, 부하 조건 등으로 설정하고, 3상 조류계산을 통해 각 모선에서의 전압 값이 수렴 될 때까지 조류계산을 실행한다(S93).
참고로 조류계산시 Slack은 전압의 크기와 위상을 기지 값으로 하는 모델로 설정하고, 부하는 부하모델에 따라 유/무효전력 소비량을 계산하여 PQ모델로 처리한다. PV는 제한 출력 이하일 때는 일정 유/무효전력을 출력하는 PQ모델, 제한 출력 이상일 때는 고정된 크기를 가지는 전류를 출력하는 모델로 처리한다.
또한 동기기는 전압의 크기와 유효전력을 알고 있는 PV(유효전력/전압)모델로 처리한다. 조류계산을 시행한 후 PV 인버터의 최대 출력을 고려하기 위해, PV의 출력 전류를 계산하여 PV의 최대 전류 출력(1.2~2배)가 초과되는지 체크한다(S94).
만약 PV의 전류 크기가 제한 값보다 클 경우에 PV의 고장전류의 크기를 제한하여(S95) 다시 3상 조류계산을 실행한다(S93).
이에 모든 PV가 출력 범위 이내일 경우(S94의 아니오), 수렴된 모선 전압과 선로 임피던스를 통해 고장전류를 계산한다(S96).
상기 도 8에 도시된 바와 같은 과정을 통해 각 모선에서의 고장 발생 시 피더 시작점(PMU 설치점)에 흐르는 전류 크기를 계산하기 위해 고장해석을 실행하고(S83), 고장발생 후 피더 시작점에 설치된 PMU에서 취득한(S82) 계측 전류 값과 고장해석 결과값간의 비교(S84)를 통해 가장 편차가 작은 구간을 고장구간으로 판단하게 된다(S85).
참고로 상기와 같이 본 실시예에 따른 고장해석 방식의 경우 운영 DB(21)를 통해 고장해석에 필요한 부하, 일사량, 및 최대출력량과 같은 운영 데이터를 취득한다.
이상으로 본 실시예에서 종래의 문제점을 해결하기 위하여 적용한 방법에 대해서 정리하면 다음과 같다.
(1)불평형 고장 등에 대한 처리방안으로서, 고장발생시 각 고장에 따른 전압 변화 특성을 활용하여 고장 종류(3상 단락, 1선 지락)를 판별하고, 평형 고장의 경우 전류 및 선로 임피던스의 정상분을 활용한 평형해석을 수행한다. 그리고 불평형 고장의 경우 전원측과 선로 말단에 설치된 PMU를 통해 계측된 각 상의 전압 및 전류 변화분의 계측치를 이용하여 대칭성분(정상, 역상, 영상)의 초기치(계산 시작점의 값)를 계산하며, 이 계산값과 선로의 임피던스(영상, 정상, 역상) 및 부하를 이용하여 각 모선의 Downstream(전원측→선로말단), Upstream(선로말단→전원측) 방향의 해석을 통해 평형 및 불평형 고장 모두에 대한 고장구간 판단을 수행함으로써 종래 기술의 문제점을 해결하는 효과가 있다.
(2)분기선 및 분산전원에 대한 처리방안으로서, PMU가 설치되지 않은 분기선 고장 시의 구간 판별 및 분산전원에 대한 고장 기여를 반영한 고장구간 판별을 수행하기 위해 본 발명에서는 메인 피더상의 시작점과 말단지점에 설치된 PMU 계측값과 더불어, 분기선 시작점에 설치된 기존의 RTU 계측치 및 고장해석 방식을 활용한 고장구간 식별 방안을 제시하였다. 제시한 방안은 크게 두 단계로 구분된다. 첫째, PV의 전류 위상을 개략 계산하여 이를 이용한 메인 피더상의 고장구간 식별을 수행하는 단계이다. 이때 동일 피더 내의 전압 위상차는 크지 않다고 가정하고, 전원측에 설치된 PMU의 전압 위상데이터와 분산전원(PV)이 연계된 지점의 전압-전류 위상차와 PMU의 전압 위상데이터를 이용하여 PV의 전류위상을 계산한다. 또한 메인 피더상 모선의 전압 및 전류 변화량을 계산시 PV의 계산 전류위상을 분산전원이 연계된 메인선로의 모선에 흐르는 전류와 합산함으로써 분산전원의 고장시 기여를 반영하고자 하였다. 둘째, 이렇게 메인 피더상의 고장구간을 식별한 후 그 구간사이에 분기선이 있는 경우, 분기선 내부의 고장지점을 판별하기 위해 PV 일사량 및 최대 출력, 부하 조건을 고려한 조류계산 기반의 고장해석 방식을 활용하여 분기선 내 각 모선(자동 및 수동 개폐기 단위의)의 고장을 가정하고, 전원측(PMU 설치점)에서 흐르는 고장 전류의 크기를 계산하여 PMU 계측 값과의 비교를 통해 계산 결과와 계측값 간의 편차가 가장 작은 구간을 고장구간으로 식별하는 효과가 있다.
상기와 같이 본 실시예에 따르면, 기존 기술에 비해 적어도 세가지 이점을 얻을 수 있다. 첫째, 모든 구간의 시작점과 말단지점에 PMU를 설치해야만 고장구간 식별이 가능하던 기존 방식에 비해 메인 피더상의 양단에 2대의 PMU만 설치하고 나머지는 RTU 측정값 및 고장해석 방식을 활용함으로써 기존의 배전계통 인프라를 유지하면서 고장구간 식별이 가능한 이점이 있다. 둘째, 불평형 고장처리를 수행함으로써 기존 방식에 비해 현실 배전계통에 적용가능한 이점이 있다. 셋째, 위 두 가지 이점을 통해 배전 피더상의 제어기에 의해 기존 자동화개폐기 뿐만 아니라 수동개폐기 단위의 고장구간 판단, 고립 및 복구 등을 수행할 수 있으므로 고장구간의 축소 및 정전시간의 단축 효과를 얻을 수 있는 이점이 있다.
한편 본 실시예에 따른 고장구간 판단 제어기(24)에 대한 효과를 검증하기 위하여, 도 9에 도시된 바와 같은 시험계통(또는 테스트계통)에 대해 검증하였다. 도 9는 상기 도 1에 있어서, 고장구간 판단 제어기의 효과를 검증하기 위한 시험계통을 보인 예시도이다.
도 9에 도시된 바와 같은 테스트 계통의 선로 임피던스는 ACSR 로 구성하였으며, 분산전원이 연계된 분기선의 경우 0.5km, 메인피더분기선 및 Sub4 분기선의 경우 구간길이는 1km로 설정하였다. 또한, 각 태양광의 용량을 1MW로 설정하였으며 분산전원에 연계된 변압기는 분산전원과 동일 용량의 Y/△결선, Y/Y결선으로 설정하였다. 또한, PMU는 피더시작점(1번)과 말단(10번)에 설치하였으며, RTU는 분기선 시작점(Sub1_1, Sub2_1, Sub3_1, Sub4_1)에 설치하였다.
아울러 계통해석 방식에 따른 고장구간을 식별하기 위하여, 기존의 고장해석 방식과 본 실시예에 따른 고장해석 방식의 고장종류 판단에 따른 해석 방식을 비교검증하기 위해 MATLAB Simulink에서 시뮬레이션을 수행하고 각 해석방식의 비교를 수행하였으며, 종래 기술의 문제점을 언급하기 위해 1선 지락 고장을 6-7모선사이, 4-5사이에 모의하였다.
도 10과 도 11은 본 실시예에 따른 종래의 방법과 본 실시예의 제안 방식에 따른 대한 메인 피더상의 전압 편차 계산 및 시뮬레이션 결과를 비교하기 위하여 보인 예시도이다.
도 10과 도 11의 (a)는 종래의 방법에 따른 메인피더의 전압 편차 및 시뮬레이션 전압을 보인 예시도이고, 도 10과 도 11의 (b)는 본 실시예의 제안 방식에 따른 메인피더의 전압 편차 및 시뮬레이션 전압을 보인 예시도이다.
종래 방법의 경우 1선 지락이 발생했을 경우 downstream, upstream방향에서의 전압편차가 발생하므로 고장구간을 찾지 못하는 것을 확인할 수 있다. 하지만, 본 실시예에 따른 방법의 경우 downstream, upstream 방향간의 계산 편차는 실제 고장구간 이후에 벌어져 고장구간을 정확하게 찾는 것을 확인할 수 있었다.
표 1은 고장구간 1에 대한 기존 방식과 본 실시예의 제안 방식에 따른 메인 고장구간 판단 결과를 보인 테이블이다.
아래의 표 1에서는 종래의 방식과 본 실시예에 따른 제안 방식에서의 모든 모선의 전압변화량 및 편차 등의 수치를 나타내고 있으며, 기존 방식의 경우 시뮬레이션 결과와 편차가 심한 것을 확인할 수 있다.
이때 아래의 표 1,2,3,4,5에서 회색 음영부분은 각 방식의 고장구간 판단 결과를 나타내고 있다.
고장구간에 따른 전압편차 | |||||||||||
구분 | |||||||||||
기존 방식 |
Downstream | 0.2843 | 0.3583 | 0.4365 | 0.5158 | 0.5969 | 0.6798 | 0.7630 | 0.8465 | 0.9369 | 1.0276 |
Upstream | 1.0028 | 0.9900 | 0.9772 | 0.9670 | 0.9572 | 0.9475 | 0.9396 | 0.9321 | 0.9315 | 0.9312 | |
변화분 편차 | 0.7275 | 0.6366 | 0.5435 | 0.4527 | 0.3613 | 0.2687 | 0.1777 | 0.0870 | 0.0132 | 0.0968 | |
제안 방식 |
Downstream | 0.2843 | 0.3971 | 0.5191 | 0.6425 | 0.7686 | 0.8974 | 1.0267 | 1.1565 | 1.3058 | 1.4558 |
Upstream | 1.1130 | 1.0807 | 1.0485 | 1.0234 | 0.9988 | 0.9744 | 0.9533 | 0.9328 | 0.9317 | 0.9312 | |
변화분 편차 | 0.8359 | 0.6864 | 0.5305 | 0.3811 | 0.2304 | 0.0777 | 0.0740 | 0.2239 | 0.3743 | 0.5247 | |
Matlab Simulink 모의 결과 전압편차 |
0.2843 | 0.3970 | 0.5189 | 0.6418 | 0.7669 | 0.8999 | 0.9556 | 0.9338 | 0.9321 | 0.9312 |
표 2는 고장구간 2에 대한 기존 방식과 본 실시예의 제안 방식에 따른 메인 고장구간 판단 결과를 보인 테이블이다.
아래의 표 2는 고장구간 2(4-5)에서 1선 지락을 모의한 결과를 나타내고 있다. 고장구간 1의 결과와 같이 기존 방식으로는 1선 지락에 대한 고장구간을 정확하게 식별하기 어려운 것을 확인할 수 있다.
고장구간에 따른 전압편차 | |||||||||||
구분 | |||||||||||
기존 방식 |
Downstream | 0.3844 | 0.4847 | 0.5908 | 0.6984 | 0.8084 | 0.9222 | 1.0364 | 1.1511 | 1.2718 | 1.3930 |
Upstream | 0.9610 | 0.9461 | 0.9313 | 0.9201 | 0.9093 | 0.8986 | 0.8916 | 0.8850 | 0.8844 | 0.8841 | |
변화분 편차 | 0.5882 | 0.4678 | 0.3442 | 0.2239 | 0.1032 | 0.0328 | 0.1460 | 0.2665 | 0.3876 | 0.5090 | |
제안 방식 |
Downstream | 0.3844 | 0.5402 | 0.7089 | 0.8795 | 1.0538 | 1.2373 | 1.4215 | 1.6064 | 1.8088 | 2.0122 |
Upstream | 1.0855 | 1.0468 | 1.0082 | 0.9792 | 0.9508 | 0.9226 | 0.9038 | 0.8856 | 0.8846 | 0.8841 | |
변화분 편차 | 0.7111 | 0.5104 | 0.3006 | 0.1000 | 0.1030 | 0.3148 | 0.5177 | 0.7208 | 0.9243 | 1.1282 | |
Matlab Simulink 모의 결과 전압편차 |
0.3844 | 0.5410 | 0.7109 | 0.8829 | 0.9418 | 0.9242 | 0.9057 | 0.8871 | 0.8852 | 0.8841 |
한편 분기선 고장 발생에 따른 고장구간 식별에 대하여, 본 실시예의 제안 방식에서는 PMU가 설치되지 않은 분기선에 고장이 발생했을 경우 분기선 고장구간 판단부의 결과를 판단하기 위해 Sub2_2-3, Sub3_1-2, Sub4_3-4에 1선 지락 고장을 모의하였다.
표 3은 고장구간 1에 대한 분기선 고장구간 판단 결과를 보인 테이블이고, 표 4는 고장구간 2에 대한 분기선 고장구간 판단 결과를 보인 테이블이며, 표 5는 고장구간 3에 대한 분기선 고장 구간 판단 결과를 보인 예이블이다.
즉, 표 3, 4, 5는 고장구간 1, 2, 3에 대한 고장구간 판단부 결과를 나타내며, 1차 메인 고장구간 판단부 결과는 분기선이 연결된 구간(5-6, 8-9, 4-5)를 식별하는 것을 확인하였다. 분기선 내의 고장구간을 식별하기 위해 고장후 PMU 계측치(1.09, 0.85, 0.863)와 각 분기선 내의 고장해석 결과를 비교하였을 때, 고장모의 위치를 분기선 고장판단부에서 식별하는 것을 확인할 수 있다.
고장구간에 따른 전압편차 | ||||||||||||
구분(1차) | ||||||||||||
Downstream | 0.3087 | 0.4333 | 0.5682 | 0.7046 | 0.8420 | 1.1367 | 1.4322 | 1.7285 | 2.0409 | 2.3544 | ||
Upstream | 1.7156 | 1.5327 | 1.3498 | 1.1746 | 1.0000 | 0.8255 | 0.8084 | 0.7917 | 0.7908 | 0.7904 | ||
변화분 편차 | 1.4168 | 1.1038 | 0.7835 | 0.4707 | 0.1581 | 0.3115 | 0.6241 | 0.9371 | 1.2504 | 1.5643 | ||
전압 편차(모의) | 0.3087 | 0.4337 | 0.5692 | 0.7064 | 0.8475 | 0.8287 | 0.8103 | 0.7925 | 0.7911 | 0.7904 | ||
구분(2차) | Sub2_1 | Sub2_2 | Sub2_3 | |||||||||
고장해석 결과 | 1.24 | 1.14 | 1.05 | |||||||||
최종 결과 | Sub2_2>1.09>Sub2_3 |
고장구간에 따른 전압편차 | ||||||||||||
구분(1차) | ||||||||||||
Downstream | 0.2352 | 0.3260 | 0.4241 | 0.5233 | 0.6232 | 0.7233 | 0.8239 | 0.9250 | 1.0468 | 1.1691 | ||
Upstream | 1.1123 | 1.0827 | 1.0532 | 1.0292 | 1.0058 | 0.9825 | 0.9600 | 0.9381 | 0.9370 | 0.9365 | ||
변화분 편차 | 0.8833 | 0.7591 | 0.6301 | 0.5062 | 0.3827 | 0.2592 | 0.1363 | 0.0164 | 0.1104 | 0.2331 | ||
전압 편차(모의) | 0.2352 | 0.3263 | 0.4248 | 0.5246 | 0.6271 | 0.7304 | 0.8342 | 0.9385 | 0.9372 | 0.9365 | ||
구분(2차) | Sub3_1 | Sub3_2 | ||||||||||
고장해석 결과 | 0.86 | 0.82 | ||||||||||
최종 결과 | Sub3_1>0.85>Sub3_2 |
고장구간3에 따른 전압편차 | ||||||||||||||
구분(1차) | ||||||||||||||
Downstream | 0.2390 | 0.3356 | 0.4404 | 0.5465 | 0.6533 | 0.7604 | 0.8681 | 0.9762 | 1.0942 | 1.2127 | ||||
Upstream | 0.5913 | 0.5742 | 0.5572 | 0.5461 | 0.5353 | 0.5246 | 0.5142 | 0.5041 | 0.5035 | 0.5032 | ||||
변화분 편차 | 0.3601 | 0.2420 | 0.1183 | 0.0044 | 0.1181 | 0.2361 | 0.3543 | 0.4727 | 0.5912 | 0.7101 | ||||
전압 편차(모의) | 0.2390 | 0.3359 | 0.4412 | 0.5479 | 0.5363 | 0.5253 | 0.5146 | 0.5043 | 0.5036 | 0.5032 | ||||
구분(2차) | Sub1_1 | Sub1_2 | Sub1_3 | Sub1_4 | Sub1_5 | |||||||||
고장해석 결과 | 1.2185 | 1.0418 | 0.9116 | 0.8118 | 0.7328 | |||||||||
최종 결과 | Sub1_3>0.863>Sub1_4 |
이상으로 본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다. 또한 본 명세서에서 설명된 구현은, 예컨대, 방법 또는 프로세스, 장치, 소프트웨어 프로그램, 데이터 스트림 또는 신호로 구현될 수 있다. 단일 형태의 구현의 맥락에서만 논의(예컨대, 방법으로서만 논의)되었더라도, 논의된 특징의 구현은 또한 다른 형태(예컨대, 장치 또는 프로그램)로도 구현될 수 있다. 장치는 적절한 하드웨어, 소프트웨어 및 펌웨어 등으로 구현될 수 있다. 방법은, 예컨대, 컴퓨터, 마이크로프로세서, 집적 회로 또는 프로그래밍가능한 로직 디바이스 등을 포함하는 프로세싱 디바이스를 일반적으로 지칭하는 프로세서 등과 같은 장치에서 구현될 수 있다. 프로세서는 또한 최종-사용자 사이에 정보의 통신을 용이하게 하는 컴퓨터, 셀 폰, 휴대용/개인용 정보 단말기(personal digital assistant: "PDA") 및 다른 디바이스 등과 같은 통신 디바이스를 포함한다.
20 : 배전운영시스템 21 : 운영 DB
22 : 토폴로지 추정부 23 : 고장구간 판단부
231 : 고장종류 판별부 232 : 메인 고장구간 판단부
233 : 분기선 고장구간 판단부 24 : 고장구간 판단 제어기
22 : 토폴로지 추정부 23 : 고장구간 판단부
231 : 고장종류 판별부 232 : 메인 고장구간 판단부
233 : 분기선 고장구간 판단부 24 : 고장구간 판단 제어기
Claims (14)
- 복수의 원격 제어소 장치(RTU)에서 계측되는 데이터를 주기적으로 전송받아 내부의 운영 DB에 누적 저장하는 배전운영시스템; 및
복수의 PMU(Phasor Measurement Unit)를 통해 계측된 데이터를 지정된 주기에 맞춰 전송받아 처리하는 고장구간 판단 제어기;를 포함하고,
상기 배전운영시스템과 상기 고장구간 판단 제어기는,
통신망으로 서로 연계되어 있으며, 상기 운영 DB에 저장된 RTU 계측데이터를 상기 통신망을 통해 상기 고장구간 판단 제어기에 전송되며,
상기 고장구간 판단 제어기는,
상기 운영 DB에서 배전계통의 개폐기 및 차단기의 개폐상태 정보를 전송받아 모선 정보의 생성 및 PMU간 직선 경로 정보를 처리하는 토폴로지 추정부; 및
배전계통의 고장 발생 및 그 종류를 판별하는 고장종류 판별부, PMU 데이터를 활용하여 메인 피더상의 고장구간을 1차적으로 식별하는 메인 고장구간 판단부, 및 1차 식별 고장구간이 분기선이 연계된 지점일 경우 지정된 고장해석 방식을 활용하여 분기선 내부의 고장구간을 판단하는 분기선 고장구간 판단부를 포함하는 고장구간 판단부;를 포함하는 것을 특징으로 하는 배전계통 고장구간 식별 시스템.
- 제 1항에 있어서,
상기 복수의 원격 제어소 장치(RTU)로부터 전송되는 현장 데이터 정보들을 상기 배전운영시스템의 운영 DB에 인터페이스 하는 전위 처리기(FEP : Front End Processor);를 더 포함하는 것을 특징으로 하는 배전계통 고장구간 식별 시스템.
- 제 1항에 있어서, 상기 운영 DB는,
고장구간 판단 정보를 위해 필요한 토폴로지 정보를, 상기 전위 처리기(FEP)와 상기 고장구간 판단 제어기로부터 주기적으로 전송받아 저장하며, 또한
상기 고장구간 판단부에서 판단된 결과를 저장하는 것을 특징으로 하는 배전계통 고장구간 식별 시스템.
- 제 3항에 있어서, 상기 고장구간 판단 제어기로부터 전송받는 정보는,
계통의 상태정보로서, 보호기기, 개폐기 상태정보, 노드의 연결 관계와 각 노드에 연계된 부하 및 분산전원에 대한 정보;
고장구간 판단 정보로서, 고장구간 판단 제어기(24)에서 식별된 배전계통의 고장구간 위치 정보; 및
단말장치의 위치 정보로서, 고장구간을 판단하기 위해 설치된 PMU와 RTU의 설치 위치 정보; 중 적어도 하나 이상을 포함하는 것을 특징으로 하는 배전계통 고장구간 식별 시스템.
- 제 1항에 있어서, 상기 토폴로지 추정부는,
메인 피더상의 고장구간을 판단하기 위해 PMU가 설치된 메인피더의 직선 경로를 탐색 및 저장하며, 분기선 고장구간 판단을 위한 고장해석 수행을 위해 노드-설비 기준의 연결 관계를 버스-설비 기준의 데이터로 변경하고, 또한 배전계통의 재구성 및 설비의 투입 및 개방에 따른 계통 구조 변경시 관할하는 지역의 토폴로지 데이터를 재구성하는 것을 특징으로 하는 배전계통 고장구간 식별 시스템.
- 제 1항에 있어서, 상기 고장종류 판단부는,
상기 고장구간 판단 제어기가 관할하는 PMU의 데이터를, 설정된 주기에 맞춰 데이터를 취득하고,
피더 시작점에 설치된 PMU의 전압, 전류 데이터를 통해, 전압의 계측치가 설정된 값보다 작아질 경우, 및 전류가 설정된 전류보다 커질 경우 계통의 고장을 인지하며, 또한
고장 전후의 전압 변화량을 기반으로 고장종류를 판단하는 것을 특징으로 하는 배전계통 고장구간 식별 시스템.
- 제 1항에 있어서, 상기 메인 고장구간 판단부는,
메인 피더상의 시작점과 말단지점에 설치된 PMU 구간내의 1차적인 고장구간을 판단하기 위하여, 고장종류 판단부에서 얻어진 고장 전 후의 전압 및 전류 변화량과 고장종류에 따라 PMU 시작점부터 말단 방향(downstream), 및 말단 방향에서 시작점방향(upstream)으로 각 모선의 전압 및 전류의 변화를 계산하며,
메인 피더상의 말단 방향(downstream)과 시작점 방향(upstream)의 모든 모선에 대한 전압, 전류 변화량의 계산이 완료되면, 메인 피더상의 고장을 검출하기 위하여 두 방향간의 전압편차를 계산하고,
회로이론의 보상이론(Compensation Theorem)에 기초하여, 말단 방향(downstream)과 시작점 방향(upstream)의 편차가 가장 작은 구간을 식별하여 1차 고장구간으로 판별하나는 것을 특징으로 하는 배전계통 고장구간 식별 시스템.
- 제 9항에 있어서, 상기 고장종류 판단부의 결과가 1선 지락 고장일 경우,
아래의 수학식 7 내지 수학식 9을 이용하여 고장 상의 각 버스에 대한 전압 및 전류 변화량을 계산하는 것을 특징으로 하는 배전계통 고장구간 식별 시스템.
(수학식 7)
(수학식 8)
(수학식 9)
여기서, n은 메인피더의 각 모선 번호를 나타내고, 는 각 상에 대한 모선 전류변화량, 는 고장 상에 대한 고장 전후 각 모선의 전압, 전류 변화량을 나타내며, 위의 평형해석과 동일하게 초기 값은 PMU의 계측값을 활용한다. 그리고 a = , , , 고장 상에 대한 각 모선의 정상, 역상, 영상 전류 변화량, , , 는 n번째 모선과 그 직전 모선사이 선로의 정상, 영상, 역상분의 임피던스를 나타낸다.
- 제 1항에 있어서, 상기 분기선 고장구간 판단부는,
PMU가 설치되지 않은 분기선 내부의 고장구간을 식별하기 위해 분산전원(PV)의 일사량, 최대 출력, 부하 조건 등을 입력받고,
분기선 내부 각 모선에서의 고장 가정 시 고장 해석을 통해 피더 시작점에 흐르는 전류 크기를 계산하고,
고장발생 후 피더 시작점에 설치된 PMU에서 취득한 계측 전류 값과 고장해석 결과값 간의 비교를 통해 가장 편차가 작은 구간을 고장구간으로 판단하는 것을 특징으로 하는 배전계통 고장구간 식별 시스템.
- 제 13항에 있어서, 상기 분기선 고장구간 판단부는,
고장계산을 위해 분기선의 모선 중에서 고장발생 모선을 정의하고 고장종류 판단부에서 고장을 인지하여 배전계통의 어드미턴스 행렬을 계산하며,
계통에서의 모선의 종류를 분류하고 초기치를 설정하되, 상기 초기치는 모선 전압과 앞에서 입력된 PV의 일사량, 및 부하 조건으로 설정하고, 3상 조류계산을 통해 각 모선에서의 전압 값이 수렴 될 때까지 조류계산을 실행하며,
상기 조류계산을 실행한 후 분산전원(PV) 인버터의 최대 출력을 고려하기 위해, 분산전원(PV)의 출력 전류를 계산하여 분산전원(PV)의 지정된 최대 전류 출력가 초과되는지 체크하고,
상기 체크 결과, 분산전원(PV)의 전류 크기가 제한 값보다 클 경우에 분산전원(PV)의 고장전류의 크기를 제한하여 다시 3상 조류계산을 실행하며,
모든 분산전원(PV)이 지정된 출력 범위 이내일 경우, 수렴된 모선 전압과 선로 임피던스를 통해 고장전류를 계산하는 것을 특징으로 하는 배전계통 고장구간 식별 시스템.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190102868A KR20210023127A (ko) | 2019-08-22 | 2019-08-22 | 배전계통 고장구간 식별 시스템 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190102868A KR20210023127A (ko) | 2019-08-22 | 2019-08-22 | 배전계통 고장구간 식별 시스템 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20210023127A true KR20210023127A (ko) | 2021-03-04 |
Family
ID=75174360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190102868A KR20210023127A (ko) | 2019-08-22 | 2019-08-22 | 배전계통 고장구간 식별 시스템 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20210023127A (ko) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113281675A (zh) * | 2021-05-14 | 2021-08-20 | 李冰鑫 | 一种配电线路相间短路故障类型的识别方法 |
CN113595073A (zh) * | 2021-07-30 | 2021-11-02 | 西安交通大学 | 基于故障信息获取的不平衡配电网负荷恢复方法及系统 |
CN113724101A (zh) * | 2021-08-30 | 2021-11-30 | 北京市腾河科技有限公司 | 台区的箱表关系识别方法及系统、设备、存储介质 |
CN114942399A (zh) * | 2022-04-14 | 2022-08-26 | 国网上海市电力公司 | 一种利用三相不平衡度辨识台区变压器二次回路表计故障的方法 |
CN114966308A (zh) * | 2022-04-29 | 2022-08-30 | 国网上海市电力公司 | 一种环型配电网故障区段定位方法 |
CN115166418A (zh) * | 2022-07-04 | 2022-10-11 | 国网湖南省电力有限公司 | 物联网配电网小电流接地选线定位方法及系统 |
CN115308536A (zh) * | 2022-09-29 | 2022-11-08 | 西华大学 | 一种基于μPMU的含DG的配电网故障区段识别方法 |
KR20230030807A (ko) * | 2021-08-26 | 2023-03-07 | 한전케이디엔주식회사 | 엣지 컴퓨팅과 마이크로 pmu를 활용한 배전 보호협조 시스템 및 그 방법 |
CN115965770A (zh) * | 2022-12-29 | 2023-04-14 | 国网北京市电力公司 | 低压线路故障异常三维可视化方法、装置、设备及介质 |
KR20230064453A (ko) * | 2021-11-03 | 2023-05-10 | 목포대학교산학협력단 | 슬랙 제어를 이용한 인버터형 분산 발전기 |
KR20230068486A (ko) * | 2021-11-10 | 2023-05-18 | 전남대학교산학협력단 | 아크 모델링 방법, 아크를 동반한 단선 결함 검출 방법 및 이를 적용한 장치 |
CN116521489A (zh) * | 2023-07-04 | 2023-08-01 | 深圳市同泰怡信息技术有限公司 | 一种计算机用服务器故障预警方法 |
CN116540012A (zh) * | 2023-04-03 | 2023-08-04 | 国网湖北省电力有限公司荆门供电公司 | 适用于5g通信的新能源接入配电网相间故障区段定位方法 |
CN116722658A (zh) * | 2023-08-11 | 2023-09-08 | 北京智芯微电子科技有限公司 | 低压台区拓扑识别方法、装置、存储介质和芯片设备 |
CN117310384A (zh) * | 2023-11-02 | 2023-12-29 | 国网河北省电力有限公司电力科学研究院 | 一种智能配电网内故障区域分析方法及装置 |
CN117741333A (zh) * | 2023-11-23 | 2024-03-22 | 国网冀北电力有限公司智能配电网中心 | 基于大数据驱动的配电网故障感知系统 |
CN118091330A (zh) * | 2024-04-25 | 2024-05-28 | 国网山东省电力公司巨野县供电公司 | 一种具有分布式电源的配电网的故障定位方法及系统 |
CN118137682A (zh) * | 2024-05-10 | 2024-06-04 | 国网山西省电力公司晋城供电公司 | 配电自动化主站硬件故障主动检测系统及方法 |
CN118444073A (zh) * | 2024-04-30 | 2024-08-06 | 国网江苏省电力有限公司镇江供电分公司 | 基于监控信息事件化系统的220kV及以下局域电网故障判别方法 |
-
2019
- 2019-08-22 KR KR1020190102868A patent/KR20210023127A/ko not_active Application Discontinuation
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113281675A (zh) * | 2021-05-14 | 2021-08-20 | 李冰鑫 | 一种配电线路相间短路故障类型的识别方法 |
CN113595073A (zh) * | 2021-07-30 | 2021-11-02 | 西安交通大学 | 基于故障信息获取的不平衡配电网负荷恢复方法及系统 |
KR20230030807A (ko) * | 2021-08-26 | 2023-03-07 | 한전케이디엔주식회사 | 엣지 컴퓨팅과 마이크로 pmu를 활용한 배전 보호협조 시스템 및 그 방법 |
CN113724101A (zh) * | 2021-08-30 | 2021-11-30 | 北京市腾河科技有限公司 | 台区的箱表关系识别方法及系统、设备、存储介质 |
CN113724101B (zh) * | 2021-08-30 | 2023-12-22 | 北京市腾河科技有限公司 | 台区的箱表关系识别方法及系统、设备、存储介质 |
KR20230064453A (ko) * | 2021-11-03 | 2023-05-10 | 목포대학교산학협력단 | 슬랙 제어를 이용한 인버터형 분산 발전기 |
KR20230068486A (ko) * | 2021-11-10 | 2023-05-18 | 전남대학교산학협력단 | 아크 모델링 방법, 아크를 동반한 단선 결함 검출 방법 및 이를 적용한 장치 |
CN114942399A (zh) * | 2022-04-14 | 2022-08-26 | 国网上海市电力公司 | 一种利用三相不平衡度辨识台区变压器二次回路表计故障的方法 |
CN114966308B (zh) * | 2022-04-29 | 2024-06-04 | 国网上海市电力公司 | 一种环型配电网故障区段定位方法 |
CN114966308A (zh) * | 2022-04-29 | 2022-08-30 | 国网上海市电力公司 | 一种环型配电网故障区段定位方法 |
CN115166418A (zh) * | 2022-07-04 | 2022-10-11 | 国网湖南省电力有限公司 | 物联网配电网小电流接地选线定位方法及系统 |
CN115308536A (zh) * | 2022-09-29 | 2022-11-08 | 西华大学 | 一种基于μPMU的含DG的配电网故障区段识别方法 |
CN115965770A (zh) * | 2022-12-29 | 2023-04-14 | 国网北京市电力公司 | 低压线路故障异常三维可视化方法、装置、设备及介质 |
CN116540012A (zh) * | 2023-04-03 | 2023-08-04 | 国网湖北省电力有限公司荆门供电公司 | 适用于5g通信的新能源接入配电网相间故障区段定位方法 |
CN116521489B (zh) * | 2023-07-04 | 2024-03-15 | 深圳市同泰怡信息技术有限公司 | 一种计算机用服务器故障预警方法 |
CN116521489A (zh) * | 2023-07-04 | 2023-08-01 | 深圳市同泰怡信息技术有限公司 | 一种计算机用服务器故障预警方法 |
CN116722658A (zh) * | 2023-08-11 | 2023-09-08 | 北京智芯微电子科技有限公司 | 低压台区拓扑识别方法、装置、存储介质和芯片设备 |
CN116722658B (zh) * | 2023-08-11 | 2023-12-29 | 北京智芯微电子科技有限公司 | 低压台区拓扑识别方法、装置、存储介质和芯片设备 |
CN117310384A (zh) * | 2023-11-02 | 2023-12-29 | 国网河北省电力有限公司电力科学研究院 | 一种智能配电网内故障区域分析方法及装置 |
CN117310384B (zh) * | 2023-11-02 | 2024-05-28 | 国网河北省电力有限公司电力科学研究院 | 一种智能配电网内故障区域分析方法及装置 |
CN117741333A (zh) * | 2023-11-23 | 2024-03-22 | 国网冀北电力有限公司智能配电网中心 | 基于大数据驱动的配电网故障感知系统 |
CN118091330A (zh) * | 2024-04-25 | 2024-05-28 | 国网山东省电力公司巨野县供电公司 | 一种具有分布式电源的配电网的故障定位方法及系统 |
CN118091330B (zh) * | 2024-04-25 | 2024-07-12 | 国网山东省电力公司巨野县供电公司 | 一种具有分布式电源的配电网的故障定位方法及系统 |
CN118444073A (zh) * | 2024-04-30 | 2024-08-06 | 国网江苏省电力有限公司镇江供电分公司 | 基于监控信息事件化系统的220kV及以下局域电网故障判别方法 |
CN118137682A (zh) * | 2024-05-10 | 2024-06-04 | 国网山西省电力公司晋城供电公司 | 配电自动化主站硬件故障主动检测系统及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20210023127A (ko) | 배전계통 고장구간 식별 시스템 | |
Dashti et al. | A survey of fault prediction and location methods in electrical energy distribution networks | |
CN109507526B (zh) | 基于同步相量测量和协方差矩阵理论配电网故障诊断方法 | |
Mirsaeidi et al. | An analytical literature review of the available techniques for the protection of micro-grids | |
Buigues et al. | Microgrid Protection: Technical challenges and existing techniques | |
Yin et al. | An improved iterative method for assessment of multi-swing transient stability limit | |
Zare et al. | Communication-constrained regionalization of power systems for synchrophasor-based wide-area backup protection scheme | |
Mabaning et al. | Optimal PMU placement for distribution networks | |
CN110783946A (zh) | 用于定位微电网中相故障的方法 | |
Mirsaeidi et al. | Review and analysis of existing protection strategies for micro-grids | |
Dua et al. | Fault detection technique for distribution networks and microgrids using synchrophasor data | |
US11128128B2 (en) | Directional over-current ground relay (DOCGR) using sampled value and method for operating the DOCGR | |
Ghaedi et al. | Modified WLS three-phase state estimation formulation for fault analysis considering measurement and parameter errors | |
KR102628055B1 (ko) | 배전계통의 전압 및 구간 부하 추정 시스템 및 방법 | |
Singh et al. | A novel multi-objective PMU placement method for power system state estimation | |
Sykes et al. | IEEE/PES PSRC report on design and testing of selected system integrity protection schemes | |
Gargoom et al. | Enhancing the operation of smart inverters with PMU and data concentrators | |
EP3460935B1 (en) | Method and system for feeder protection in electrical power network | |
Papic et al. | Overview of common mode outages in power systems | |
Brosinsky et al. | HVAC/HVDC Control Center-Test and Demonstrator System | |
Puhan et al. | Optimal PMU placement using Fuzzy Logic and WAMS based PMU measurement for Faulted Zone Identification | |
Onoshakpor et al. | Smart grid reliability computation-a solution to ageing infrastructure in power grid networks | |
Wu et al. | Monitoring power system transient stability using synchrophasor data | |
Jupe et al. | Controlling a 33 kV flexible power link in GB's distribution network | |
Zhao | A short-term voltage stability index and case studies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal |