KR20200145802A - An energy storage system possible for uninterruptible power supply - Google Patents
An energy storage system possible for uninterruptible power supply Download PDFInfo
- Publication number
- KR20200145802A KR20200145802A KR1020200179858A KR20200179858A KR20200145802A KR 20200145802 A KR20200145802 A KR 20200145802A KR 1020200179858 A KR1020200179858 A KR 1020200179858A KR 20200179858 A KR20200179858 A KR 20200179858A KR 20200145802 A KR20200145802 A KR 20200145802A
- Authority
- KR
- South Korea
- Prior art keywords
- converter
- load
- battery
- voltage
- energy storage
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
- Y02B70/3225—Demand response systems, e.g. load shedding, peak shaving
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/222—Demand response systems, e.g. load shedding, peak shaving
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
본 발명은 무순단 전원 공급이 가능한 에너지 저장 시스템에 관한 것이다.The present invention relates to an energy storage system capable of supplying uninterrupted power.
에너지 저장 시스템(Energy Storage System)은 생산된 전력을 발전소, 변전소 및 송전선 등을 포함한 각각의 연계 시스템에 저장한 후, 전력이 필요한 시기에 선택적, 효율적으로 사용하여 에너지 효율을 높이는 시스템이다.The Energy Storage System is a system that increases energy efficiency by storing generated power in each linked system including power plants, substations, and transmission lines, and then selectively and efficiently using the power when it is needed.
에너지 저장 시스템은 시간대 및 계절별 변동이 큰 전기부하를 평준화시켜 전반적인 부하율을 향상시킬 경우, 발전 단가를 낮출 수 있으며 전력설비 증설에 필요한 투자비와 운전비 등을 절감할 수 있어서 전기요금을 인하하고 에너지를 절약할 수 있다.The energy storage system can lower the power generation cost and reduce the investment and operating costs required for power facility expansion, if the overall load ratio is improved by leveling the electric load that fluctuates over time and season, thereby lowering electricity rates and saving energy. can do.
이러한 에너지 저장 시스템은 전력계통에서 발전, 송배전, 수용가에 설치되어 이용되고 있으며, 주파수 조정(Frequency Regulation), 신재생에너지를 이용한 발전기 출력 안정화, 첨두부하 저감(Peak Shaving), 부하 평준화(Load Leveling), 비상 전원 등의 기능으로 사용되고 있다.These energy storage systems are installed and used in power generation, transmission and distribution, and customers in the power system, and frequency regulation, generator output stabilization using renewable energy, peak shaving, and load leveling. , It is used for emergency power and other functions.
또한 에너지 저장 시스템은 저장방식에 따라 크게 물리적 에너지 저장과 화학적 에너지 저장으로 구분된다. 물리적 에너지 저장으로는 양수발전, 압축 공기 저장, 플라이휠 등을 이용한 방법이 있고, 화학적 에너지 저장으로는 리튬이온 배터리, 납축전지, Nas 전지 등을 이용한 방법이 있다.In addition, energy storage systems are largely divided into physical energy storage and chemical energy storage according to the storage method. Physical energy storage includes methods using pumped water power generation, compressed air storage, and flywheel, and chemical energy storage includes methods using lithium ion batteries, lead acid batteries, and Nas batteries.
다만, 에너지 저장 시스템의 무순단 전원 공급을 가능하게 하기 위해 기존의 디젤 발전기로 하여금 비상 발전 기능을 수행하게 하는바, 이 경우, 디젤 발전기의 무순단 절체를 위해 고가의 비상 절체 스위치 및 알고리즘 등이 필요하다는 문제가 있었다.However, in order to enable the uninterrupted power supply of the energy storage system, the existing diesel generator performs an emergency power generation function. In this case, an expensive emergency transfer switch and algorithm, etc. are required for the uninterrupted transfer of the diesel generator. There was a problem that it was necessary.
또한 기존의 에너지 저장 시스템의 경우, 일방향으로 설계되고, 전력 거래 알고리즘이 없는바, 계통과의 전력 거래가 불가능하다는 문제가 있었다. In addition, in the case of the existing energy storage system, since it is designed in one direction and there is no power transaction algorithm, there is a problem that power transaction with the system is impossible.
본 발명은 무순단 전원 공급이 가능하고, 배터리의 상시 충방전 제어를 통해 계통과의 전력 거래가 가능한 에너지 저장 시스템을 제공하는 것을 목적으로 한다.An object of the present invention is to provide an energy storage system capable of supplying uninterrupted power and capable of transacting power with a system through constant charge/discharge control of a battery.
상기의 목적을 달성하기 위해 본 발명의 에너지 저장 시스템은 계통 및 계통에 연계된 DC(Direct Current) 배전망의 전력을 관리하는 에너지 저장 시스템에 있어서, 계통과 DC 배전망 사이에 연결되고, 계통의 교류 전압을 직류 전압으로 변환하여 DC 배전망에 전달하는 제1 컨버터, DC 배전망에 연결되고, DC 배전망의 전압을 제어하는 제2 컨버터, 제2 컨버터에 연결되고, 제2 컨버터에 의해 충방전이 제어되는 배터리, DC 배전망에 연결된 제3 컨버터 및 제3 컨버터에 연결되고, 제3 컨버터에 의해 전압이 제어되는 제1 부하를 포함하되, 제1 컨버터는 배터리의 SOC 정보 및 제1 부하의 소모 전력 정보를 토대로 배터리 및 제1 부하 중 적어도 하나 이상을 제어하기 위한 전력 제어 지령을 생성한다.In order to achieve the above object, the energy storage system of the present invention is an energy storage system that manages power of a grid and a direct current (DC) distribution network connected to the grid, and is connected between the grid and the DC distribution network, A first converter that converts AC voltage to DC voltage and delivers it to the DC distribution network, is connected to the DC distribution network, is connected to the second converter and the second converter that controls the voltage of the DC distribution network, and is charged by the second converter. A battery in which discharge is controlled, a third converter connected to the DC distribution network, and a first load connected to the third converter and whose voltage is controlled by the third converter, wherein the first converter includes SOC information and a first load of the battery A power control command for controlling at least one of the battery and the first load is generated based on the power consumption information of.
상기 제2 컨버터와 제3 컨버터로부터 각각 배터리의 SOC(State of Charge) 정보와 제1 부하의 소모 전력 정보를 수신하여 제1 컨버터에 송신하고, 제1 컨버터로부터 전력 제어 지령을 수신하여 제2 컨버터 및 제3 컨버터 중 적어도 하나 이상에 송신하는 통신부 및 통신부를 통해 제1 내지 제3 컨버터를 제어 및 감시하는 상위 제어기를 더 포함한다.Receives state of charge (SOC) information of the battery and power consumption information of the first load from the second converter and the third converter, respectively, and transmits the information to the first converter, and receives a power control command from the first converter to a second converter. And a communication unit that transmits to at least one of the third converters, and a host controller that controls and monitors the first to third converters through the communication unit.
상기 DC 배전망에 연결된 제4 컨버터 및 제4 컨버터에 연결되고, 제4 컨버터에 의해 전압이 제어되는 제2 부하를 더 포함한다.It further includes a fourth converter connected to the DC distribution network and a second load connected to the fourth converter and whose voltage is controlled by the fourth converter.
상기 제4 컨버터는 제2 부하의 소모 전력 정보를 통신부로 송신하고, 통신부는 제2 부하의 소모 전력 정보를 제1 컨버터로 송신하고, 제1 컨버터는 배터리의 SOC 정보, 제1 부하의 소모 전력 정보 및 제2 부하의 소모 전력 정보를 토대로 배터리, 제1 부하 및, 제2 부하 중 적어도 하나 이상을 제어하기 위한 전력 제어 지령을 생성하고, 통신부는 제1 컨버터로부터 배터리, 제1 부하 및, 제2 부하 중 적어도 하나 이상을 제어하기 위한 전력 제어 지령을 수신하여 제2 내지 제4 컨버터 중 적어도 하나 이상에 송신하고, 상위 제어기는 제4 컨버터를 제어 및 감시한다.The fourth converter transmits power consumption information of the second load to the communication unit, the communication unit transmits power consumption information of the second load to the first converter, and the first converter transmits SOC information of the battery and power consumption of the first load Based on the information and power consumption information of the second load, a power control command for controlling at least one of the battery, the first load, and the second load is generated, and the communication unit generates a battery, a first load, and a second load from the first converter. 2 A power control command for controlling at least one of the loads is received and transmitted to at least one of the second to fourth converters, and the host controller controls and monitors the fourth converter.
상기 제2 컨버터는 DC 배전망으로부터 제공받은 DC 전압을 DC 전압으로 변환하여 배터리에 제공하거나 배터리로부터 제공받은 DC 전압을 DC 전압으로 변환하여 DC 배전망에 제공하고, 제3 컨버터는 DC 배전망으로부터 제공받은 DC 전압을 DC 전압으로 변환하여 제1 부하에 제공하고, 제4 컨버터는 DC 배전망으로부터 제공받은 DC 전압을 AC(Alternating Current) 전압으로 변환하여 제2 부하에 제공한다.The second converter converts the DC voltage provided from the DC distribution network into a DC voltage and provides it to the battery or converts the DC voltage provided from the battery into a DC voltage and provides it to the DC distribution network, and the third converter from the DC distribution network The received DC voltage is converted into a DC voltage and provided to the first load, and the fourth converter converts the DC voltage provided from the DC distribution network into an alternating current (AC) voltage and provides it to the second load.
상기 제1 컨버터는 계통과 연계된 상태에서 배터리 충방전 모드로 구동되는 경우, 통신부로부터 제공받은 배터리의 SOC 정보를 분석하여 배터리의 SOC가 미리 정해진 제한 범위 내에 포함되는지 여부를 판별하고, 판별 결과를 토대로 전력 제어 지령을 생성한다.When the first converter is driven in the battery charge/discharge mode in a state in which the system is connected, the SOC information of the battery provided from the communication unit is analyzed to determine whether the SOC of the battery is within a predetermined limit, and the determination result is determined. Based on this, a power control command is generated.
상기 제1 컨버터는 배터리의 SOC가 미리 정해진 제한 범위 내에 포함되는 경우, 배터리의 충전 또는 방전 전력과 제1 부하의 소모 전력을 고려하여 전력 제어 지령을 생성하고, 생성된 전력 제어 지령을 통신부를 통해 제2 컨버터 및 제3 컨버터에 전달하며, 생성된 전력 제어 지령을 토대로 계통의 전력 제어를 수행한다.When the SOC of the battery is within a predetermined limit range, the first converter generates a power control command in consideration of the charging or discharging power of the battery and the power consumption of the first load, and transmits the generated power control command through the communication unit. It is transmitted to the second converter and the third converter, and power control of the system is performed based on the generated power control command.
상기 제1 컨버터는 배터리의 SOC가 미리 정해진 제한 범위를 벗어나는 경우, 노멀 모드로 구동되어 제1 부하의 소모 전력을 고려한 전력 제어 지령을 생성하고, 생성된 전력 제어 지령을 통신부를 통해 제3 컨버터에 전달하며, 생성된 전력 제어 지령을 토대로 계통의 전력 제어를 수행한다.When the SOC of the battery is out of a predetermined limit range, the first converter is driven in a normal mode to generate a power control command in consideration of power consumption of the first load, and transmits the generated power control command to the third converter through a communication unit. And performs power control of the system based on the generated power control command.
상기 계통에 사고가 발생하는 경우, 제1 컨버터는 구동을 중단하고, 제2 컨버터는 배터리의 전력을 제1 부하에 무순단 상태로 공급한다.When an accident occurs in the system, the first converter stops driving, and the second converter supplies power from the battery to the first load in an uninterrupted state.
전술한 바와 같이, 본 발명에 의하면, 무순단 전원 공급이 가능하고, 배터리의 상시 충방전 제어를 통해 계통과의 전력 거래가 가능한바, 전력 사용량을 효율적으로 조절할 수 있고, 무순단의 고품질 전력 공급이 가능하다는 장점이 있다.As described above, according to the present invention, it is possible to supply uninterrupted power, and to transact power with the system through constant charge/discharge control of the battery, so that power consumption can be efficiently controlled, and non-sequential high-quality power supply is possible. There is an advantage that it is possible.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다. In addition to the above-described effects, specific effects of the present invention will be described together while describing specific details for carrying out the present invention.
도 1은 본 발명의 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다.
도 2는 도 1의 에너지 저장 시스템의 제어 흐름을 설명하는 순서도이다.
도 3은 도 1의 에너지 저장 시스템에 의한 계통 연계시 전력 흐름의 일 예를 설명하는 개략도이다.
도 4는 도 1의 에너지 저장 시스템에 의한 계통 연계시 전력 흐름의 다른 예를 설명하는 개략도이다.
도 5는 도 1의 에너지 저장 시스템에 의한 계통 사고시 전력 흐름을 설명하는 개략도이다. 1 is a schematic diagram illustrating an energy storage system according to an embodiment of the present invention.
2 is a flow chart illustrating a control flow of the energy storage system of FIG. 1.
3 is a schematic diagram illustrating an example of a power flow when a grid is connected by the energy storage system of FIG. 1.
FIG. 4 is a schematic diagram illustrating another example of power flow when a grid is connected by the energy storage system of FIG. 1.
5 is a schematic diagram illustrating a power flow during a system accident by the energy storage system of FIG. 1.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 명세서가 속하는 기술분야에서 통상의 지식을 가진 자가 본 명세서의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 명세서를 설명함에 있어서 본 명세서와 관련된 공지 기술에 대한 구체적인 설명이 본 명세서의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 명세서에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.The above-described objects, features, and advantages will be described later in detail with reference to the accompanying drawings, and accordingly, those of ordinary skill in the art to which the present specification pertains will be able to easily implement the technical idea of the present specification. In describing the present specification, if it is determined that a detailed description of known technologies related to the present specification may unnecessarily obscure the subject matter of the present specification, a detailed description is omitted. Hereinafter, preferred embodiments of the present specification will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals are used to indicate the same or similar elements.
이하에서는, 도 1 내지 도 5를 참조하여 본 발명의 실시예에 따른 에너지 저장 시스템을 설명하도록 한다.Hereinafter, an energy storage system according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5.
도 1은 본 발명의 실시예에 따른 에너지 저장 시스템을 설명하는 개략도이다. 도 2는 도 1의 에너지 저장 시스템의 제어 흐름을 설명하는 순서도이다. 도 3은 도 1의 에너지 저장 시스템에 의한 계통 연계시 전력 흐름의 일 예를 설명하는 개략도이다. 도 4는 도 1의 에너지 저장 시스템에 의한 계통 연계시 전력 흐름의 다른 예를 설명하는 개략도이다. 도 5는 도 1의 에너지 저장 시스템에 의한 계통 사고시 전력 흐름을 설명하는 개략도이다. 1 is a schematic diagram illustrating an energy storage system according to an embodiment of the present invention. 2 is a flow chart illustrating a control flow of the energy storage system of FIG. 1. 3 is a schematic diagram illustrating an example of a power flow when a grid is connected by the energy storage system of FIG. 1. FIG. 4 is a schematic diagram illustrating another example of power flow when a grid is connected by the energy storage system of FIG. 1. 5 is a schematic diagram illustrating a power flow during a system accident by the energy storage system of FIG. 1.
먼저, 도 1을 참조하면, 본 발명의 실시예에 따른 에너지 저장 시스템은 계통(10) 및 계통(10)에 연계된 DC 배전망(즉, DC 계통)의 전력을 관리할 수 있다.First, referring to FIG. 1, the energy storage system according to an embodiment of the present invention may manage power of the
구체적으로, 본 발명의 실시예에 따른 에너지 저장 시스템은 제1 컨버터(100), 제2 컨버터(150), 배터리(180), 제3 컨버터(200), 제1 부하(230), 제4 컨버터(250), 제2 부하(280), 통신부(300), 상위 제어기(350)를 포함할 수 있다.Specifically, the energy storage system according to the embodiment of the present invention includes a
참고로, 에너지 저장 시스템은 계통(10)과 DC 배전망(20) 뿐만 아니라 분산 전원 시스템(미도시)도 더 포함할 수 있고, 제1 부하(230) 및 제2 부하(280) 외에 추가 부하를 더 포함하거나 제1 부하(230) 또는 제2 부하(280) 중 어느 하나의 부하만 포함할 수도 있다.For reference, the energy storage system may further include a distributed power system (not shown) as well as the
다만, 설명의 편의를 위해, 본 발명에서는, 에너지 저장 시스템이 제1 컨버터(100), 제2 컨버터(150), 배터리(180), 제3 컨버터(200), 제1 부하(230), 제4 컨버터(250), 제2 부하(280), 통신부(300), 상위 제어기(350)를 포함하는 것을 예로 들어 설명하기로 한다.However, for convenience of explanation, in the present invention, the energy storage system includes the
제1 컨버터(100)는 계통(10)과 DC 배전망(20) 사이에 연결되고, 계통(10)의 AC 전압을 DC 전압으로 변환하여 DC 배전망(20)에 전달할 수 있다. 물론, 제1 컨버터(100)는 DC 배전망(20)의 DC 전압을 AC 전압으로 변환하여 계통(10)에 전달할 수도 있다. The
이에 따라, 제1 컨버터(100)는 AC-DC 컨버터일 수 있다.Accordingly, the
구체적으로, 제1 컨버터(100)는 배터리(180)의 SOC 정보, 제1 부하(230)의 소모 전력 정보 및, 제2 부하(280)의 소모 전력 정보를 토대로 배터리(180), 제1 부하(230) 및 제2 부하(280) 중 적어도 하나 이상을 제어하기 위한 전력 제어 지령을 생성할 수 있다.Specifically, the
즉, 제1 컨버터(100)는 통신부(300)로부터 배터리(180)의 SOC 정보, 제1 부하(230)의 소모 전력 정보 및, 제2 부하(280)의 소모 전력 정보를 실시간으로 수신하고, 수신한 배터리(180)의 SOC 정보, 제1 부하(230)의 소모 전력 정보 및, 제2 부하(280)의 소모 전력 정보를 토대로 배터리(180), 제1 부하(230) 및 제2 부하(280) 중 적어도 하나 이상을 제어하기 위한 전력 제어 지령을 생성할 수 있다.That is, the
또한 제1 컨버터(100)는 생성한 전력 제어 지령을 통신부(300)에 송신할 수 있다.Also, the
제2 컨버터(150)는 DC 배전망(20)에 연결되고, DC 배전망(20)의 전압을 제어할 수 있다.The
구체적으로, 제2 컨버터(150)는 DC 배전망(20)의 전압뿐만 아니라 배터리(180)의 충방전을 제어할 수 있다.Specifically, the
즉, 제2 컨버터(150)는 DC 배전망(20)으로부터 제공받은 DC 전압을 DC 전압으로 변환하여 배터리(180)에 제공하거나 배터리(180)로부터 제공받은 DC 전압을 DC 전압으로 변환하여 DC 배전망(20)에 제공할 수 있다.That is, the
이에 따라, 제2 컨버터(150)는 DC-DC 컨버터일 수 있다.Accordingly, the
또한 제2 컨버터(150)는 배터리(180)의 SOC를 감지하여 배터리(180)의 SOC 정보를 통신부(300)에 송신할 수 있고, 통신부(300)로부터 제1 컨버터(100)에서 생성된 전력 제어 지령을 수신할 수 있다.In addition, the
또한 제2 컨버터(150)는 수신한 전력 제어 지령을 토대로 배터리(180)의 충방전을 제어할 수 있다. In addition, the
제3 컨버터(200)는 DC 배전망(20)에 연결되고, 제1 부하(230)의 전압을 제어할 수 있다.The
구체적으로, 제3 컨버터(200)는 DC 배전망(20)으로부터 제공받은 DC 전압을 DC 전압으로 변환하여 제1 부하(230)에 제공할 수 있다. 즉, 제3 컨버터(200)는 제1 부하(230)의 전력 상태를 제어할 수 있다.Specifically, the
이에 따라, 제3 컨버터(200)는 DC-DC 컨버터일 수 있고, 제1 부하(230)는 DC 부하일 수 있다.Accordingly, the
또한 제3 컨버터(200)는 제1 부하(230)의 소모 전력(즉, 필요 전력)을 감지하여 제1 부하(230)의 소모 전력 정보를 통신부(300)에 송신할 수 있고, 통신부(300)로부터 제1 컨버터(100)에서 생성된 전력 제어 지령을 수신할 수 있다.In addition, the
또한 제3 컨버터(200)는 수신한 전력 제어 지령을 토대로 제1 부하(230)의 전압 또는 전력을 제어할 수 있다.Also, the
제4 컨버터(250)는 DC 배전망(20)에 연결되고, 제2 부하(280)의 전압을 제어할 수 있다.The
구체적으로, 제4 컨버터(250)는 DC 배전망(20)으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 제2 부하(280)에 제공할 수 있다. 즉, 제4 컨버터(250)는 제2 부하(280)의 전력 상태를 제어할 수 있다.Specifically, the
이에 따라, 제4 컨버터(250)는 DC-AC 컨버터일 수 있고, 제2 부하(280)는 AC 부하일 수 있다.Accordingly, the
또한 제4 컨버터(250)는 제2 부하(280)의 소모 전력(즉, 필요 전력)을 감지하여 제2 부하(280)의 소모 전력 정보를 통신부(300)에 송신할 수 있고, 통신부(300)로부터 제1 컨버터(100)에서 생성된 전력 제어 지령을 수신할 수 있다.In addition, the
또한 제4 컨버터(250)는 수신한 전력 제어 지령을 토대로 제2 부하(280)의 전압 또는 전력을 제어할 수 있다. Also, the
배터리(180)는 제2 컨버터(150)에 연결되고, 제2 컨버터(150)에 의해 충방전이 제어될 수 있다.The
또한 배터리(180)는 적어도 하나 이상의 배터리 셀로 이루어질 수 있으며, 각 배터리 셀은 복수의 베어셀을 포함할 수 있다.Further, the
제1 부하(230)는 제3 컨버터(200)에 연결되고, 제3 컨버터(200)에 의해 전압(즉, 전력)이 제어될 수 있다.The
또한 제1 부하(230)는 예를 들어, DC 부하일 수 있다.Also, the
제2 부하(280)는 제4 컨버터(250)에 연결되고, 제4 컨버터(250)에 의해 전압(즉, 전력)이 제어될 수 있다. The
또한 제2 부하(280)는 예를 들어, AC 부하일 수 있다.Also, the
통신부(300)는 제2 컨버터(150), 제3 컨버터(200), 제4 컨버터(250)로부터 각각 배터리(180)의 SOC 정보, 제1 부하(230)의 소모 전력 정보, 제2 부하(280)의 소모 전력 정보를 수신할 수 있다.The
구체적으로, 통신부(300)는 고속 통신 기반(예를 들어, CAN(Controller Area Network))으로 구현될 수 있고, 제1 내지 제4 컨버터(100, 150, 200, 250) 및 상위 제어기(350)와 유선 또는 무선 방식으로 통신할 수 있다.Specifically, the
또한 통신부(300)는 제2 컨버터(150), 제3 컨버터(200), 제4 컨버터(250)로부터 각각 배터리(180)의 SOC 정보, 제1 부하(230)의 소모 전력 정보, 제2 부하(280)의 소모 전력 정보를 수신하여 제1 컨버터(100)에 송신하고, 제1 컨버터(100)로부터 전력 제어 지령을 수신하여 제2 내지 제4 컨버터(150, 200, 250) 중 적어도 하나 이상에 송신할 수 있다.In addition, the
참고로, 본 발명의 실시예에 따른 에너지 저장 시스템은 통신부(300)를 포함하지 않을 수도 있다. 즉, 별도의 통신부 없이 제1 컨버터(100)와 제2 내지 제4 컨버터(150, 200, 250)가 직접 통신하거나 상위 제어기(350)가 제1 내지 제4 컨버터(100, 150, 200, 250)와 직접 통신할 수도 있다.For reference, the energy storage system according to an embodiment of the present invention may not include the
다만, 설명의 편의를 위해, 본 발명에서는, 에너지 저장 시스템이 통신부(300)를 포함하는 것을 예로 들어 설명하기로 한다. However, for convenience of explanation, in the present invention, the energy storage system including the
상위 제어기(350)는 통신부(300)를 통해 제1 내지 제4 컨버터(100, 150, 200, 250)를 제어 및 감시할 수 있다.The
구체적으로, 상위 제어기(350)는 예를 들어, PLC(Programmable Logic Controller) 또는 EMS(Energy Management System)일 수 있고, 각각의 구성요소(예를 들어, 제1 내지 제4 컨버터(100, 150, 200, 250) 뿐만 아니라 계통(10), 배터리(180), 제1 부하(230), 제2 부하(280) 등)와 통신부(300)를 통해 통신하여 현재 동작 상태를 판단할 수 있다. 또한 상위 제어기(350)는 에너지 저장 시스템의 모든 시퀀스 동작을 관제하며 각각의 상황에 따라 각 구성요소에 지령을 내려 동작을 수행하게 할 수도 있다. Specifically, the
다만, 본 발명에서, 상위 제어기(350)는 제1 내지 제4 컨버터(100, 150, 200, 250)와 중복되는 기능 및 역할은 수행하지 않을 수 있다.However, in the present invention, the
따라서, 상위 제어기(350)의 회로 및 구성요소가 보다 단순해질 수 있고, 통신 연결의 복잡도가 저감됨에 따라 통신 신호에 대한 간섭이 저감될 뿐만 아니라 동작 중 오류가 발생할 확률도 저감될 수 있다.Accordingly, circuits and components of the
이에 따라, 에너지 저장 시스템의 성능 및 신뢰도가 개선될 수 있다.Accordingly, performance and reliability of the energy storage system may be improved.
이어서, 도 2 내지 도 5를 참조하면, 도 1의 에너지 저장 시스템의 제어 흐름 및 에너지 저장 시스템에 의한 전력 흐름이 도시되어 있다.Next, referring to FIGS. 2 to 5, a control flow of the energy storage system of FIG. 1 and a power flow by the energy storage system are illustrated.
구체적으로, 에너지 저장 시스템 내 제1 컨버터(100)의 제어 흐름 및 이에 따른 전력 흐름이 도시되어 있는바, 이를 살펴보면 다음과 같다.Specifically, a control flow of the
먼저, 제1 컨버터(100)는 계통(10)이 연계되어 있는지 여부를 판단한다(S100).First, the
구체적으로, 제1 컨버터(100)는 계통(10)이 연계되어 있는 경우, 배터리 충방전 모드 또는 노멀(Normal) 모드로 구동될 수 있다.Specifically, when the
제1 컨버터(100)가 계통(10)과 연계된 상태에서 배터리 충방전 모드로 구동되는 경우(S120), 제1 컨버터(100)는 배터리(180)의 SOC 정보를 분석한다(S140).When the
구체적으로, 제1 컨버터(100)는 통신부(300)로부터 배터리(180)의 SOC 정보를 실시간으로 수신하여 배터리(180)의 SOC 정보를 분석할 수 있다.Specifically, the
배터리(180)의 SOC 정보가 분석되면(S140), 제1 컨버터(100)는 배터리(180)의 SOC가 미리 정해진 제한 범위 내에 포함되는지 여부를 판별한다(S160).When the SOC information of the
구체적으로, 제1 컨버터(100)는 분석 결과를 토대로 배터리(180)의 SOC가 미리 정해진 제한 범위(즉, SOC 최소값(SOC_Min) ~ SOC 최대값(SOC_Max)) 내에 포함되는지 여부를 판별할 수 있다.Specifically, the
판별 결과, 배터리(180)의 SOC가 미리 정해진 제한 범위 내에 포함되는 경우, 제1 컨버터(100)는 배터리(180)의 충전 또는 방전 전력과 제1 및 제2 부하(230, 280)의 소모 전력을 고려하여 전력 제어 지령(P*)을 생성할 수 있다.As a result of the determination, when the SOC of the
여기에서, 전력 제어 지령(P*)은 예를 들어, 제1 및 제2 부하(230, 280)의 소모 전력량(P_Load)에 배터리(180)의 충전 또는 방전 전력량(P_Battery)을 더한 값을 가리킬 수 있다.Here, the power control command (P*) refers to a value obtained by adding the charging or discharging power amount (P_Battery) of the
또한 제1 컨버터(100)는 생성된 전력 제어 지령(P*)을 통신부(300)를 통해 제2 내지 제4 컨버터(150, 200, 250)에 전달할 수 있다. In addition, the
또한 제1 컨버터(100)는 도 3에 도시된 바와 같이, 생성된 전력 제어 지령(P*)을 토대로 계통(10)의 전력 제어를 수행할 수 있다.In addition, as shown in FIG. 3, the
예를 들어, 배터리(180)의 충전이 필요한 경우, 생성된 전력 제어 지령(P*)을 토대로 계통(10)의 전력을 배터리(180)에 제공할 수 있고, 배터리(180)의 방전이 필요한 경우, 생성된 전력 제어 지령(P*)을 토대로 배터리(180)의 방전된 전력을 계통(10)에 제공할 수 있다. For example, when charging of the
즉, 제1 컨버터(100)는 전술한 바와 같이, 전력 제어 지령(P*)을 토대로 계통(10)과 배터리(180) 간 전력 거래 작업이 이루어질 수 있도록 할 수 있다. In other words, as described above, the
물론, 제2 컨버터(150)는 통신부(300)로부터 제공받은 전력 제어 지령(P*)을 토대로 배터리(180)에 대한 충방전을 제어할 수 있다. Of course, the
또한 제1 컨버터(100)는 생성된 전력 제어 지령(P*)을 토대로 계통(10)의 전력을 제1 및 제2 부하(230, 280)에 공급할 수 있다. In addition, the
물론, 제3 및 제4 컨버터(200, 250)는 통신부(300)로부터 제공받은 전력 제어 지령(P*)을 토대로 제1 및 제2 부하(230, 280)에 대한 전압 제어를 할 수 있다. Of course, the third and
반면에, 판별 결과, 배터리(180)의 SOC가 미리 정해진 제한 범위를 벗어나는 경우, 제1 컨버터(100)는 노멀(Normal) 모드로 구동될 수 있다(S200).On the other hand, as a result of the determination, when the SOC of the
구체적으로, 제1 컨버터(100)는 노멀 모드로 구동되어 제1 및 제2 부하(230, 280)의 소모 전력을 고려한 전력 제어 지령(P*)을 생성할 수 있다.Specifically, the
여기에서, 전력 제어 지령(P*)은 예를 들어, 제1 및 제2 부하(230, 280)의 소모 전력량(P_Load)을 가리킬 수 있다.Here, the power control command P* may indicate, for example, an amount of power consumption P_Load of the first and
또한 제1 컨버터(100)는 생성된 전력 제어 지령(P*)을 통신부(300)를 통해 제2 내지 제4 컨버터(150, 200, 250)에 전달할 수 있다. In addition, the
또한 제1 컨버터(100)는 도 4에 도시된 바와 같이, 생성된 전력 제어 지령(P*)을 토대로 계통(10)의 전력 제어를 수행할 수 있다(S220).Also, as shown in FIG. 4, the
예를 들어, 배터리(180)의 SOC가 미리 정해진 제한 범위를 벗어나는 경우, 배터리(180)의 충방전은 중단이 되고, 제1 컨버터(100)는 생성된 전력 제어 지령(P*)을 토대로 계통(10)의 전력을 제1 및 제2 부하(230, 280)에 공급할 수 있다. For example, when the SOC of the
물론, 제3 및 제4 컨버터(200, 250)는 통신부(300)로부터 제공받은 전력 제어 지령(P*)을 토대로 제1 및 제2 부하(230, 280)에 대한 전압 제어를 할 수 있다. Of course, the third and
다만, 제1 컨버터(100)는 계통(10)이 연계되어 있는지 여부를 판단했을 때(S100), 계통(10)에 사고가 발생한 경우(즉, 계통(10)이 정전되거나 분리된 경우), 제1 컨버터(100)는 게이트 신호를 턴오프(turn-off)하여 구동을 중단하고, 제2 컨버터(150)는 배터리(180)의 전력을 제1 부하(230) 및 제2 부하(280) 중 적어도 하나 이상에 무순단 상태로 공급할 수 있다(S240).However, when the
구체적으로, 계통(10) 사고로 인해 계통(10)과 DC 배전망(20)이 단절(즉, 분리)된다 하더라도, 제2 컨버터(150)가 상시로 DC 배전망(20)의 전압을 제어하는바, 지체 없이(즉, 무순단 상태로) 배터리(180)의 전력을 제1 부하(230) 및 제2 부하(280) 중 적어도 하나 이상에 공급할 수 있다.Specifically, even if the
전술한 바와 같이, 본 발명에 의하면, 무순단 전원 공급이 가능하고, 배터리(180)의 상시 충방전 제어를 통해 계통(10)과의 전력 거래가 가능한바, 전력 사용량을 효율적으로 조절할 수 있고, 무순단의 고품질 전력 공급이 가능하다는 장점이 있다.As described above, according to the present invention, it is possible to supply uninterrupted power and to transact power with the
전술한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.The above-described present invention is capable of various substitutions, modifications, and changes without departing from the technical spirit of the present invention for those of ordinary skill in the technical field to which the present invention belongs. Is not limited by
Claims (11)
상기 계통과 상기 DC 배전망 사이에 연결되고, 상기 계통의 AC(Alternating Current) 전압을 DC 전압으로 변환하여 상기 DC 배전망에 전달하는 제1 컨버터;
상기 DC 배전망에 연결되고, 상기 DC 배전망의 전압을 제어하는 제2 컨버터;
상기 제2 컨버터에 연결되고, 상기 제2 컨버터에 의해 충방전이 제어되는 배터리;
상기 DC 배전망에 연결된 제3 컨버터; 및
상기 제3 컨버터에 연결되고, 상기 제3 컨버터에 의해 전압이 제어되는 제1 부하를 포함하되,
상기 제1 컨버터는 상기 배터리의 SOC 정보 및 상기 제1 부하의 소모 전력 정보를 토대로 상기 배터리 및 상기 제1 부하 중 적어도 하나 이상을 제어하기 위한 전력 제어 지령을 생성하고,
상기 제1 컨버터는 상기 생성된 전력 제어 지령을 토대로 상기 계통과 상기 배터리의 전력 거래에 대한 상기 계통의 전력 제어를 수행하는
에너지 저장 시스템.
In the energy storage system for managing power of a grid and a direct current (DC) distribution network connected to the grid,
A first converter connected between the system and the DC distribution network, converting an alternating current (AC) voltage of the system into a DC voltage and transmitting the converted voltage to the DC distribution network;
A second converter connected to the DC distribution network and controlling a voltage of the DC distribution network;
A battery connected to the second converter and controlling charging and discharging by the second converter;
A third converter connected to the DC distribution network; And
A first load connected to the third converter and whose voltage is controlled by the third converter,
The first converter generates a power control command for controlling at least one of the battery and the first load based on SOC information of the battery and power consumption information of the first load,
The first converter performs power control of the system for power transaction between the system and the battery based on the generated power control command.
Energy storage system.
상기 제2 컨버터는 상기 제1 컨버터로부터 생성된 전력 제어 지령에 기초하여 상기 DC 배전망의 전압을 제어하는
에너지 저장 시스템.
The method of claim 1,
The second converter controls the voltage of the DC distribution network based on a power control command generated from the first converter.
Energy storage system.
상기 제2 컨버터는 상기 제1 컨버터로부터 생성된 전력 제어 지령에 기초하여 상기 배터리의 충방전을 제어하는
에너지 저장 시스템.
The method of claim 1,
The second converter controls charging and discharging of the battery based on a power control command generated from the first converter.
Energy storage system.
상기 제2 컨버터와 상기 제3 컨버터로부터 각각 상기 배터리의 SOC(State of Charge) 정보와 상기 제1 부하의 소모 전력 정보를 수신하여 상기 제1 컨버터에 송신하고, 상기 제1 컨버터로부터 상기 전력 제어 지령을 수신하여 상기 제2 컨버터 및 상기 제3 컨버터 중 적어도 하나 이상에 송신하는 통신부; 및
상기 통신부를 통해 상기 제1 내지 제3 컨버터를 제어 및 감시하는 상위 제어기를 더 포함하는
에너지 저장 시스템.
The method of claim 1,
Receives state of charge (SOC) information of the battery and power consumption information of the first load from the second converter and the third converter, respectively, and transmits the information to the first converter, and the power control command from the first converter A communication unit that receives and transmits the signal to at least one of the second converter and the third converter; And
Further comprising a host controller for controlling and monitoring the first to third converters through the communication unit
Energy storage system.
상기 DC 배전망에 연결된 제4 컨버터; 및
상기 제4 컨버터에 연결되고, 상기 제4 컨버터에 의해 전압이 제어되는 제2 부하를 더 포함하는
에너지 저장 시스템.
The method of claim 4,
A fourth converter connected to the DC distribution network; And
Further comprising a second load connected to the fourth converter, the voltage controlled by the fourth converter
Energy storage system.
상기 제4 컨버터는 상기 제2 부하의 소모 전력 정보를 상기 통신부로 송신하고,
상기 통신부는 상기 제2 부하의 소모 전력 정보를 상기 제1 컨버터로 송신하고,
상기 제1 컨버터는 상기 배터리의 SOC 정보, 상기 제1 부하의 소모 전력 정보 및 상기 제2 부하의 소모 전력 정보를 토대로 상기 배터리, 상기 제1 부하 및, 상기 제2 부하 중 적어도 하나 이상을 제어하기 위한 전력 제어 지령을 생성하고,
상기 통신부는 상기 제1 컨버터로부터 상기 배터리, 상기 제1 부하 및, 상기 제2 부하 중 적어도 하나 이상을 제어하기 위한 전력 제어 지령을 수신하여 상기 제2 내지 제4 컨버터 중 적어도 하나 이상에 송신하고,
상기 상위 제어기는 상기 제4 컨버터를 제어 및 감시하는
에너지 저장 시스템.
The method of claim 5,
The fourth converter transmits power consumption information of the second load to the communication unit,
The communication unit transmits power consumption information of the second load to the first converter,
The first converter controls at least one of the battery, the first load, and the second load based on SOC information of the battery, power consumption information of the first load, and power consumption information of the second load. Generate the power control command for,
The communication unit receives a power control command for controlling at least one of the battery, the first load, and the second load from the first converter and transmits it to at least one of the second to fourth converters,
The host controller controls and monitors the fourth converter
Energy storage system.
상기 제2 컨버터는 상기 DC 배전망으로부터 제공받은 DC 전압을 DC 전압으로 변환하여 상기 배터리에 제공하거나 상기 배터리로부터 제공받은 DC 전압을 DC 전압으로 변환하여 상기 DC 배전망에 제공하고,
상기 제3 컨버터는 상기 DC 배전망으로부터 제공받은 DC 전압을 DC 전압으로 변환하여 상기 제1 부하에 제공하고,
상기 제4 컨버터는 상기 DC 배전망으로부터 제공받은 DC 전압을 AC 전압으로 변환하여 상기 제2 부하에 제공하는
에너지 저장 시스템.
The method of claim 5,
The second converter converts the DC voltage provided from the DC distribution network into a DC voltage and provides it to the battery or converts the DC voltage provided from the battery into a DC voltage and provides it to the DC distribution network,
The third converter converts the DC voltage provided from the DC distribution network into a DC voltage and provides it to the first load,
The fourth converter converts the DC voltage provided from the DC distribution network into an AC voltage and provides it to the second load.
Energy storage system.
상기 제1 컨버터는 상기 계통과 연계된 상태에서 배터리 충방전 모드로 구동되는 경우,
상기 통신부로부터 제공받은 상기 배터리의 SOC 정보를 분석하여 상기 배터리의 SOC가 미리 정해진 제한 범위 내에 포함되는지 여부를 판별하고,
상기 판별 결과를 토대로 상기 전력 제어 지령을 생성하는
에너지 저장 시스템.
The method of claim 4,
When the first converter is driven in a battery charge/discharge mode in a state connected with the system,
By analyzing SOC information of the battery provided from the communication unit, it is determined whether the SOC of the battery is within a predetermined limit range,
Generating the power control command based on the determination result
Energy storage system.
상기 제1 컨버터는 상기 배터리의 SOC가 상기 미리 정해진 제한 범위 내에 포함되는 경우,
상기 배터리의 충전 또는 방전 전력과 상기 제1 부하의 소모 전력을 고려하여 상기 전력 제어 지령을 생성하고,
상기 생성된 전력 제어 지령을 상기 통신부를 통해 상기 제2 컨버터 및 상기 제3 컨버터에 전달하며,
상기 생성된 전력 제어 지령을 토대로 상기 계통의 전력 제어를 수행하는
에너지 저장 시스템.
The method of claim 8,
When the SOC of the battery is within the predetermined limit range, the first converter
Generating the power control command in consideration of charging or discharging power of the battery and power consumption of the first load,
Transferring the generated power control command to the second converter and the third converter through the communication unit,
Performing power control of the system based on the generated power control command
Energy storage system.
상기 제1 컨버터는 상기 배터리의 SOC가 상기 미리 정해진 제한 범위를 벗어나는 경우,
노멀 모드로 구동되어 상기 제1 부하의 소모 전력을 고려한 상기 전력 제어 지령을 생성하고,
상기 생성된 전력 제어 지령을 상기 통신부를 통해 상기 제3 컨버터에 전달하며,
상기 생성된 전력 제어 지령을 토대로 상기 계통의 전력 제어를 수행하는
에너지 저장 시스템.
The method of claim 8,
When the SOC of the battery is out of the predetermined limit range, the first converter
It is driven in a normal mode to generate the power control command in consideration of power consumption of the first load,
Transmits the generated power control command to the third converter through the communication unit,
Performing power control of the system based on the generated power control command
Energy storage system.
상기 계통에 사고가 발생하는 경우,
상기 제1 컨버터는 구동을 중단하고,
상기 제2 컨버터는 상기 배터리의 전력을 상기 제1 부하 및 상기 제2 부하 중 적어도 하나 이상에 무순단 상태로 공급하는
에너지 저장 시스템.The method of claim 5,
If an accident occurs in the above system,
The first converter stops driving,
The second converter supplies power of the battery to at least one of the first load and the second load in an uninterrupted state.
Energy storage system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200179858A KR102338490B1 (en) | 2017-06-14 | 2020-12-21 | An energy storage system possible for uninterruptible power supply |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170074786A KR20180136177A (en) | 2017-06-14 | 2017-06-14 | An energy storage system |
KR1020200179858A KR102338490B1 (en) | 2017-06-14 | 2020-12-21 | An energy storage system possible for uninterruptible power supply |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170074786A Division KR20180136177A (en) | 2017-06-14 | 2017-06-14 | An energy storage system |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200145802A true KR20200145802A (en) | 2020-12-30 |
KR102338490B1 KR102338490B1 (en) | 2021-12-10 |
Family
ID=78865281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200179858A KR102338490B1 (en) | 2017-06-14 | 2020-12-21 | An energy storage system possible for uninterruptible power supply |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102338490B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114243821A (en) * | 2021-12-06 | 2022-03-25 | 上海电气国轩新能源科技有限公司 | Battery energy storage system and management method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060125282A (en) * | 2005-06-02 | 2006-12-06 | 오현택 | The hi-efficiency uninterruptible inverter |
US20090200868A1 (en) * | 2008-02-13 | 2009-08-13 | Liebert Corporation | Uninterruptible power supply with rectifier fast walk in |
KR20100007166A (en) * | 2008-07-11 | 2010-01-22 | 엘에스산전 주식회사 | Invertor system and driving method thereof |
KR101450711B1 (en) * | 2013-01-16 | 2014-10-17 | 건국대학교 산학협력단 | Dc distribution function with energy storage and conversion system |
-
2020
- 2020-12-21 KR KR1020200179858A patent/KR102338490B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060125282A (en) * | 2005-06-02 | 2006-12-06 | 오현택 | The hi-efficiency uninterruptible inverter |
US20090200868A1 (en) * | 2008-02-13 | 2009-08-13 | Liebert Corporation | Uninterruptible power supply with rectifier fast walk in |
KR20100007166A (en) * | 2008-07-11 | 2010-01-22 | 엘에스산전 주식회사 | Invertor system and driving method thereof |
KR101450711B1 (en) * | 2013-01-16 | 2014-10-17 | 건국대학교 산학협력단 | Dc distribution function with energy storage and conversion system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114243821A (en) * | 2021-12-06 | 2022-03-25 | 上海电气国轩新能源科技有限公司 | Battery energy storage system and management method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR102338490B1 (en) | 2021-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113794216B (en) | Parameter configuration method and terminal of optical storage and charging system | |
CN104022527B (en) | Direct current micro-grid system | |
CN110710083B (en) | Energy storage system | |
US20200366101A1 (en) | Energy storage system | |
KR20130017919A (en) | Power supply system | |
KR20190109017A (en) | Energy Management System of Islanded Micro-Grid | |
CN111682569A (en) | Intelligent control's energy storage system | |
KR102222560B1 (en) | An energy storage system | |
KR101863138B1 (en) | Power-controlled energy storage device using lithium battery and supercapacitor | |
KR20130098079A (en) | Apparatus and method for controlling power supply at substation | |
KR102338490B1 (en) | An energy storage system possible for uninterruptible power supply | |
KR102176094B1 (en) | Energy storage system including energy storage device | |
KR102257906B1 (en) | An energy storage system | |
WO2013151133A1 (en) | Power distribution apparatus and power supply system | |
JP2016116428A (en) | Autonomous operation system for distributed power source | |
JP5981632B1 (en) | Energy storage system monitoring system | |
KR101996834B1 (en) | An energy storage system | |
KR101215396B1 (en) | Hybrid smart grid uninterruptible power supply using discharge current control | |
CN116667498A (en) | Charging control method and device of energy storage system and energy storage conversion system | |
US9917473B2 (en) | Power system, power management method, and program | |
CN103368253B (en) | Intelligent back-up source duty control method and system | |
KR102389302B1 (en) | An energy storage system | |
KR20220165977A (en) | Apparatus and method for driving EMS in Microgrid | |
CN111406352B (en) | energy storage system | |
CN219576654U (en) | Micro-grid circuit system sharing battery and energy storage equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |