KR20200127966A - Method for manufacturing an open pore molded article made of metal and a molded article manufactured using the method - Google Patents
Method for manufacturing an open pore molded article made of metal and a molded article manufactured using the method Download PDFInfo
- Publication number
- KR20200127966A KR20200127966A KR1020207011232A KR20207011232A KR20200127966A KR 20200127966 A KR20200127966 A KR 20200127966A KR 1020207011232 A KR1020207011232 A KR 1020207011232A KR 20207011232 A KR20207011232 A KR 20207011232A KR 20200127966 A KR20200127966 A KR 20200127966A
- Authority
- KR
- South Korea
- Prior art keywords
- metal
- particles
- semi
- finished product
- open pore
- Prior art date
Links
- 239000011148 porous material Substances 0.000 title claims abstract description 64
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 60
- 239000002184 metal Substances 0.000 title claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 4
- 238000000034 method Methods 0.000 title claims description 31
- 239000002245 particle Substances 0.000 claims abstract description 82
- 239000011265 semifinished product Substances 0.000 claims abstract description 63
- 238000010438 heat treatment Methods 0.000 claims abstract description 39
- 150000001875 compounds Chemical class 0.000 claims abstract description 26
- 238000000576 coating method Methods 0.000 claims abstract description 21
- 239000012298 atmosphere Substances 0.000 claims abstract description 17
- 238000002144 chemical decomposition reaction Methods 0.000 claims abstract description 13
- 238000006722 reduction reaction Methods 0.000 claims abstract description 12
- 238000005979 thermal decomposition reaction Methods 0.000 claims abstract description 11
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 7
- 239000007858 starting material Substances 0.000 claims abstract description 3
- 239000000843 powder Substances 0.000 claims description 55
- 239000011230 binding agent Substances 0.000 claims description 39
- 239000011248 coating agent Substances 0.000 claims description 19
- 239000000725 suspension Substances 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 16
- 239000002923 metal particle Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 14
- 229910052709 silver Inorganic materials 0.000 claims description 13
- 239000002270 dispersing agent Substances 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 150000002739 metals Chemical class 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 238000005507 spraying Methods 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 238000007598 dipping method Methods 0.000 claims description 3
- 229910019142 PO4 Inorganic materials 0.000 claims description 2
- 150000001408 amides Chemical class 0.000 claims description 2
- 150000001412 amines Chemical class 0.000 claims description 2
- 150000001540 azides Chemical class 0.000 claims description 2
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 150000004678 hydrides Chemical class 0.000 claims description 2
- 150000001247 metal acetylides Chemical class 0.000 claims description 2
- 150000002823 nitrates Chemical class 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 235000021317 phosphate Nutrition 0.000 claims description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 2
- 150000003568 thioethers Chemical class 0.000 claims description 2
- 150000003842 bromide salts Chemical class 0.000 claims 1
- 150000003841 chloride salts Chemical class 0.000 claims 1
- 150000004673 fluoride salts Chemical class 0.000 claims 1
- 150000004694 iodide salts Chemical class 0.000 claims 1
- -1 oxides Chemical class 0.000 claims 1
- 239000002861 polymer material Substances 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 22
- 238000005245 sintering Methods 0.000 description 17
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 10
- 239000006260 foam Substances 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 210000003739 neck Anatomy 0.000 description 8
- 239000010949 copper Substances 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 229940037312 stearamide Drugs 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 229910052729 chemical element Inorganic materials 0.000 description 5
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 5
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 5
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229920005830 Polyurethane Foam Polymers 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229910001923 silver oxide Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/002—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/08—Alloys with open or closed pores
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/08—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1229—Composition of the substrate
- C23C18/1241—Metallic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1262—Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
- C23C18/127—Preformed particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C20/00—Chemical coating by decomposition of either solid compounds or suspensions of the coating forming compounds, without leaving reaction products of surface material in the coating
- C23C20/02—Coating with metallic material
- C23C20/04—Coating with metallic material with metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C20/00—Chemical coating by decomposition of either solid compounds or suspensions of the coating forming compounds, without leaving reaction products of surface material in the coating
- C23C20/06—Coating with inorganic material, other than metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/05—Light metals
- B22F2301/052—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/10—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/15—Nickel or cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
- B22F2301/205—Titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/25—Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
- B22F2301/255—Silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/35—Iron
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
- C23C24/082—Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/10—Moulds; Masks; Masterforms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/54—Electroplating of non-metallic surfaces
- C25D5/56—Electroplating of non-metallic surfaces of plastics
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Nanotechnology (AREA)
- Electrochemistry (AREA)
- Powder Metallurgy (AREA)
- Chemically Coating (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
본 발명은 금속으로 제조 된 개방 기공 성형체의 제조 방법에 관한 것이다. 금속으로 제조되고, 반제품으로 사용되는, 상기 개방 기공 성형체의 표면은 상기 반제품이 제조되는 것과 동일한 금속의 입자 또는 상기 반제품이 제조되는 금속의 화학적 화합물의 입자로 코팅된다. 상기 화합물은 열 처리에서 환원되거나 열적 또는 화학적으로 분해될 수 있고, 각각의 금속의 입자는 열 처리에 의해 제조되며, 상기 입자는 화학적 환원 또는 열적 또는 화학적 분해에 의해 획득된다. 코팅 공정 후, 입자가 반제품의 표면 및 / 또는 인접한 입자에 연결되어, 획득된 개방 기공 성형체의 비 표면적이 적어도 30m²/l까지 증가되도록 및 / 또는 출발 물질과 비교하여 적어도 5배까지 증가되도록 열처리가 수행된다. 코팅된 개방 기공 성형체의 열 처리 동안, 적합한 분위기가 유지된다.The present invention relates to a method of manufacturing an open pore molded article made of metal. The surface of the open-pore molded body, made of metal and used as a semi-finished product, is coated with particles of the same metal from which the semi-finished product is produced or particles of a chemical compound of the metal from which the semi-finished product is produced. The compound can be reduced in heat treatment or thermally or chemically decomposed, each particle of metal is prepared by heat treatment, and the particles are obtained by chemical reduction or thermal or chemical decomposition. After the coating process, heat treatment is performed so that the particles are connected to the surface of the semi-finished product and/or adjacent particles, so that the specific surface area of the obtained open pore compact is increased by at least 30 m²/l and/or by at least 5 times compared to the starting material. Performed. During the heat treatment of the coated open pore green body, a suitable atmosphere is maintained.
Description
본 발명은 개방 기공 성형체 또는 금속을 포함하는 성형체의 제조방법 및 상기 방법에 의해 제조된 성형체에 관한 것이다.The present invention relates to a method for manufacturing an open pore molded article or a molded article containing a metal, and to a molded article manufactured by the method.
특히, 특성을 개선시키기 위해 다공성 금속 성형체를 표면에 코팅하는 것이 공지되어 있다. 이를 위해, 바인더 또는 현탁액을 사용하여 성형체 표면에 미분 물질(pulverulent material)을 통상적으로 사용하고, 유기 성분은 열처리에서 제거되고, 성형체가 제조된 물질과 상이한 화학적 조성을 갖는 코팅 또는 표면 영역은 이어서 성형체의 표면 상에 고온에서 형성될 수 있다.In particular, it is known to coat the surface with a porous metal compact in order to improve its properties. To this end, a pulverulent material is usually used on the surface of the molded body using a binder or suspension, the organic component is removed from the heat treatment, and the coating or surface area having a chemical composition different from the material from which the molded body is manufactured is then It can be formed at high temperatures on the surface.
성형체의 비 표면적은 또한 이러한 공지된 가능성에 의해 증가될 수 있지만, 이는 공지된 가능성에 의해 제한된 정도로만 가능하였다.The specific surface area of the shaped body can also be increased by this known possibility, but this was only possible to a limited extent by the known possibilities.
그러나, 매우 큰 비 표면적은 많은 산업 응용에 유리하며, 예를 들어 촉매 보조 공정, 여과 또는 전기 화학 응용에서의 전극에서 매우 바람직하다.However, very large specific surface areas are advantageous for many industrial applications and are very desirable, for example in catalytic assisted processes, filtration or electrodes in electrochemical applications.
따라서, 본 발명의 목적은 금속 재료로 구성되고 증가된 비 표면적을 갖는 개방 기공 성형체를 제공하는 것이다.Accordingly, it is an object of the present invention to provide an open pore formed body composed of a metallic material and having an increased specific surface area.
이 목적은 청구항 1의 특징을 갖는 방법에 의해 본 발명에 따라 달성된다. 청구항 10은 방법에 의해 제조된 성형체에 관한 것이다. 유리한 실시 예 및 추가 개발은 종속 항에 지시된 특징에 의해 실현될 수있다.This object is achieved according to the invention by a method having the features of claim 1. Claim 10 relates to a molded article produced by the method. Advantageous embodiments and further developments can be realized by the features indicated in the dependent claims.
본 발명에서, 금속 재료로 구성된 개방 기공체가 반제품(semifinished part)으로 사용된다. 이들은 금속 그리드, 금속 메쉬, 직조 금속 직물, 금속 발포체(metal foam), 금속 울 또는 금속 섬유를 포함하는 반제품 일 수있다.In the present invention, an open pore body made of a metallic material is used as a semifinished part. They may be semi-finished products comprising metal grids, metal meshes, woven metal fabrics, metal foams, metal wool or metal fibers.
그러나, 반제품은 또한 중합체 물질이 금속으로 전기 화학적으로 코팅된 개방 기공 성형체일 수있다. 이러한 방식으로 제조된 반제품은 열분해의 결과로 이 중합체의 유기 및 휘발성 성분이 제거되는 열 처리가 될 수 있다. 그러나, 중합체의 유기 성분의 이러한 제거는 또한 다른 유기 또는 휘발성 성분의 동시 제거에서 나중에 발생할 수 있으며, 이는 아래에서보다 상세하게 논의될 것이다.However, the semi-finished product may also be an open pore molded body in which a polymeric material is electrochemically coated with a metal. Semi-finished products made in this way can be subjected to heat treatment in which organic and volatile components of this polymer are removed as a result of pyrolysis. However, this removal of the organic component of the polymer can also occur later in the simultaneous removal of other organic or volatile components, which will be discussed in more detail below.
본 발명의 일 실시예에서, 이 열처리는 개방 기공 반제품이 제조된 동일한 금속 재료로 구성된 금속 입자로 개방 기공체를 코팅하는 것에 선행하거나 이어서 수행된다. 여기서, 입자는 또한 성형체의 내부, 즉 반제품의 기공 또는 공극으로 도입되어야 한다.In one embodiment of the present invention, this heat treatment is performed prior to or subsequent to coating the open pore body with metal particles composed of the same metal material from which the open pore semi-finished product was produced. Here, the particles must also be introduced into the interior of the shaped body, ie into the pores or voids of the semi-finished product.
본 발명의 추가의 실시예에서, 반제품으로서 개방 기공 성형체에 존재하는 화학 원소의 화학적 화합물의 입자는 이러한 열처리 전 또는 후에 코팅에 의해 적용된다. 상기 입자는 화학적 환원 또는 열적 또는 화학적 분해에 의해 열처리에서 반제품이 만들어진 각각의 화학적 원소로 전환될 수있는 화학적 화합물로 구성된다.In a further embodiment of the invention, particles of chemical compounds of chemical elements present in the open pore molded body as semi-finished products are applied by coating before or after such heat treatment. The particles are composed of chemical compounds that can be converted into respective chemical elements from which a semi-finished product is made in heat treatment by chemical reduction or thermal or chemical decomposition.
개방 기공 반제품이 제조된 동일한 금속 재료의 금속 입자 또는 반제품으로서 개방 기공 성형체가 제조된 화학 원소로 변환될 수 있는 화학 원소의 화학적 화합물의 입자는 분말, 분말 혼합물, 현탁액 또는 코팅 작업을 위한 분산제로 사용될 수 있다. 반제품의 표면을 분말, 분말 혼합물 및 / 또는 현탁액 / 분산제로 코팅하는 것은 디핑(dipping), 스프레잉(spraying), 압력 보조 방식, 정전기 및 / 또는 자기에 의해 수행될 수 있다.Metal particles of the same metal material from which the open pore semi-finished product is made, or particles of chemical compounds of chemical elements that can be converted into the chemical elements from which the open pore molded article is made as semi-finished products are used as powders, powder mixtures, suspensions or dispersants for coating operations I can. Coating the surface of the semi-finished product with powders, powder mixtures and/or suspensions/dispersants can be carried out by dipping, spraying, pressure assisted methods, electrostatic and/or magnetism.
본 발명에 따른 다른 대안에서, 개방 기공 반제품을 코팅하는데 사용되는 분말, 분말 혼합물, 현탁액 또는 분산제는 금속 입자 또는 금속의 화학적 화합물의 입자뿐만 아니라, 분말, 분말 혼합물, 현탁액 또는 분산제 내로 고체 분말로서 미세하게 분할된 형태로 혼합된 무기 및 / 또는 유기 바인더를 함유할 수 있거나, 용액의 액상, 금속 입자의 현탁액 / 분산제 또는 금속의 화학적 화합물의 입자에 용해되어 존재한다.In another alternative according to the invention, the powder, powder mixture, suspension or dispersant used to coat the open pore semi-finished product is fine as a solid powder into a powder, powder mixture, suspension or dispersant, as well as particles of metal particles or chemical compounds of metals. It may contain mixed inorganic and/or organic binders in a divided form, or it is dissolved in a liquid phase of a solution, a suspension/dispersant of metal particles, or a particle of a chemical compound of a metal.
용액 또는 현탁액 / 분산제 형태의 바인더로 반제품의 표면을 코팅하는 것은 디핑(dipping) 또는 스프레잉(spraying)에 의해 수행될 수 있다. 바인더로 습윤된 개방 기공 반제품은 이어서 분말 또는 금속 입자의 분말 혼합물로 코팅된다.Coating the surface of the semi-finished product with a binder in the form of a solution or suspension/dispersant can be carried out by dipping or spraying. The open pore semi-finished product moistened with a binder is then coated with a powder or a powder mixture of metal particles.
액체 바인더로 습윤된 표면상의 분말 입자의 분포 및 표면에 대한 입자의 접착은 기계적 에너지, 특히 진동의 작용에 의해 개선될 수 있다.The distribution of the powder particles on the surface moistened with the liquid binder and the adhesion of the particles to the surface can be improved by the action of mechanical energy, in particular vibration.
분말, 분말 혼합물 및 / 또는 현탁액 / 분산제로서 입자의 적용은 여러 번, 바람직하게는 적어도 3 회, 특히 바람직하게는 적어도 5 회 반복될 수 있다. 이것은 각 경우에 수행되는 진동 및 선택적으로 바인더의 적용에도 적용된다.The application of the particles as powders, powder mixtures and/or suspensions/dispersants can be repeated several times, preferably at least 3 times, particularly preferably at least 5 times. This also applies to the vibration carried out in each case and, optionally, to the application of the binder.
반제품의 표면의 코팅은 또한 반제품이 제조된 중합체 물질의 유기 성분이 제거되는 열 처리 전에 수행될 수 있다. 입자 함유 재료의 적용 후, 중합체 재료의 유기 및 휘발성 성분 및 사용된 임의의 바인더가 동시에 제거되는 열 처리가 수행된다.The coating of the surface of the semi-finished product can also be carried out prior to heat treatment in which the organic components of the polymeric material from which the semi-finished product is made are removed. After application of the particle-containing material, a heat treatment is performed in which the organic and volatile components of the polymeric material and any binder used are simultaneously removed.
열처리 및 입자의 적용 후, 금속 입자 사이 또는 열적 또는 화학적 분해, 즉 화학적 환원에 의해 획득된 금속 입자로부터 개방 기공 금속 성형체의 금속 표면까지 형성되는 소결 목(sinter neck) 또는 소결 브릿지(sinter bridge)가 형성되는 소결이 수행된다.After heat treatment and application of the particles, a sinter neck or sinter bridge is formed between the metal particles or from the metal particles obtained by thermal or chemical decomposition, i.e. by chemical reduction, to the metal surface of the open pore metal compact. The sintering to be formed is carried out.
여기서, 이러한 방식으로 코팅되고 소결된 개방 기공 성형체의 비 표면적은 적어도 30 m²/l까지 증가되어야 하지만, 반제품으로서 코팅되지 않은 금속 성형체의 출발 물질과 비교하여 적어도 5 배만큼 증가되어야한다.Here, the specific surface area of the open pore compact coated and sintered in this way should be increased to at least 30 m²/l, but by at least 5 times compared to the starting material of the uncoated metal compact as a semi-finished product.
여기서, 기공 크기가 450㎛ 내지 6000㎛이고 비 표면적이 1m²/l 내지 30m²/l 인 다공성 기본 골격은 적용에 따라 한쪽 (다공도 구배)으로부터 또는 완전히 입자 (0.1㎛ 내지 250㎛ 범위의 입자 크기 d50)로 채워 져야하거나, 또는 다공성 금속 성형체의 스트럿이 표면에 코팅되어 있어야 한다.Here, the porous basic skeleton with a pore size of 450 μm to 6000 μm and a specific surface area of 1 m²/l to 30 m²/l is from one side (porosity gradient) or completely particles (particle size in the range of 0.1 μm to 250 μm) d 50 ), or a strut of a porous metal molded body must be coated on the surface.
입자의 코팅은, 각각의 경우에 다른 다공도, 기공 크기 및 / 또는 비 표면적을 얻기 위해서, 표면의 서로 다른 측면, 특히 서로 반대로 배열 된 반제품의 표면에서 서로 다른 양을 사용하여 수행될 수 있다. 이는, 예를 들어 상이한 측면 상에 배열된 표면에서 바인더를 사용하거나 사용하지 않고 분말, 분말 혼합물 또는 현탁액 / 분산제로서 입자의 상이한 수의 적용에 의해 달성될 수 있다. 본 발명에 따라 제조된 성형체의 차등 형성(gradated formation)은 또한 이러한 방식으로 달성될 수 있다.The coating of the particles can be carried out using different amounts on different sides of the surface, in particular on the surface of the semi-finished products arranged opposite to each other, in order to obtain in each case different porosity, pore size and/or specific surface area. This can be achieved, for example, by application of different numbers of particles as powders, powder mixtures or suspensions/dispersants with or without a binder on surfaces arranged on different sides. The graded formation of a shaped body made according to the invention can also be achieved in this way.
코팅되고 소결된 개방 기공 성형체의 적용된 입자 층 내의 기공 크기는 사용된 입자 크기의 10,000 배 이하에 상응해야 한다. 확산 및 공극 부피의 감소와 관련된 소결에 의한 물질 전달이 온도 및 유지 시간의 증가와 함께 촉진되기 때문에, 이는 최대 소결 온도 및 이 온도에서의 유지 시간에 의해 추가적으로 영향을 받을 수 있다.The pore size in the applied particle layer of the coated and sintered open pore green body should correspond to not more than 10,000 times the particle size used. Since mass transfer by sintering associated with diffusion and reduction in void volume is promoted with an increase in temperature and holding time, this can be additionally affected by the maximum sintering temperature and the holding time at this temperature.
본 발명에 따라 제조된 성형체가 제조되는 재료는 3 질량 % 이하, 바람직하게는 1 질량 % 이하의 O2를 함유해야 한다. 이러한 목적을 위해, 유기 성분을 제거하기위한 열 처리, 선택적으로 수행되는 화학적 환원 및 / 또는 소결을 수행하는 동안 불활성 또는 환원 분위기가 바람직하다.The material from which the molded article produced according to the invention is produced should contain not more than 3 mass %, preferably not more than 1 mass% O 2 . For this purpose, an inert or reducing atmosphere is preferred during heat treatment to remove organic components, chemical reduction and/or sintering, which are optionally performed.
열적 또는 화학적 분해를 위해, 이 목적을 위해 사용되는 열 처리에서 적절한 분위기(atmosphere)가 선택되어야 한다. 이것은 열적 분해의 경우 불활성 분위기, 예를 들어 아르곤 분위기일 수 있다. 환원의 경우, 예를 들어 수소 분위기를 사용하는 것이 가능하다.For thermal or chemical decomposition, an appropriate atmosphere must be selected in the heat treatment used for this purpose. This can be an inert atmosphere in the case of thermal decomposition, for example an argon atmosphere. In the case of reduction, it is possible, for example, to use a hydrogen atmosphere.
산화에 의한 화학적 분해의 경우, 산소, 불소, 염소, 이들 가스의 혼합물 및 불활성 가스, 예를 들어 질소, 아르곤 또는 크립톤과의 혼합물을 함유한 분위기가 특히 유용하다.In the case of chemical decomposition by oxidation, atmospheres containing oxygen, fluorine, chlorine, mixtures of these gases and mixtures with inert gases, for example nitrogen, argon or krypton, are particularly useful.
화학적 분해의 경우 금속 양이온은 원소 금속을 형성하기 위해 환원 될 수 있다. 그러나, 음이온 성분을 산화시키는 것이 가능하다. 공기 중에, 즉 비교적 산화성 분위기에 원소 금속 (Au, Pt, Pd)을 제공하기 위해 비교적 귀금속의 화합물의 화학적 분해가 또한 고려될 수 있다. 예시적인 방정식(2 GeI <-> Ge (s) + GeI (g))에 따른 불균형은 알루미늄, 티타늄, 지르코늄 및 크롬에 대해서도 가능하다. 금속 중심이 이미 산화 상태 0 인 결정질 금속 유기 착물 또는 이의 염을 사용하는 것도 가능하다.In the case of chemical decomposition, metal cations can be reduced to form elemental metals. However, it is possible to oxidize the anionic component. Chemical decomposition of compounds of relatively noble metals may also be considered in order to provide elemental metals (Au, Pt, Pd) in air, ie in a relatively oxidizing atmosphere. The imbalance according to the exemplary equation (2 GeI <-> Ge (s) + GeI (g)) is also possible for aluminum, titanium, zirconium and chromium. It is also possible to use crystalline metal organic complexes or salts thereof in which the metal center is already in the oxidation state 0.
(i) 여과 분야에서 (ii) 촉매로서 (예를 들어, Ag 입자로 코팅 된 Ag 발포체 촉매를 사용한 에틸렌 옥사이드의 합성에서), (iii) 전극 물질 또는 (iv) 촉매 활성 물질에 대한 지지체로서, 본 발명에 따라 제조된 이러한 개방 기공 성형체를 사용하는 것도 가능하다.(i) in the field of filtration (ii) as a catalyst (e.g. in the synthesis of ethylene oxide using an Ag foam catalyst coated with Ag particles), (iii) an electrode material or (iv) as a support for a catalytically active material, It is also possible to use such open pore shaped bodies produced according to the invention.
비 표면적을 증가 시키면, 적용 (i)의 경우, 흡착 경향 및 흡수 용량이 상당히 증가되기 때문에 여과 성능이 더 우수해진다.Increasing the specific surface area, in the case of application (i), significantly increases the adsorption tendency and absorption capacity, resulting in better filtration performance.
적용 (ii)에서, 비 표면적의 증가는, 활성 중심의 수가 증가 할뿐만 아니라 표면이 또한 뚜렷하게 면화된 구조(faceted structure)를 가지기 때문에 촉매 활성의 비례적 증가보다 더 크다. 결과적으로 증가된 표면 에너지는 개방 기공 출발 성형체의 비면화된 표면(unfaceted surface)과 비교하여 촉매 활성을 상당히 증가시킨다.In application (ii), the increase in specific surface area is greater than a proportional increase in catalytic activity, since not only the number of active centers increases, but the surface also has a distinct faceted structure. The resulting increased surface energy significantly increases the catalytic activity compared to the unfaceted surface of the open pore starting shaped body.
적용 (iii)에서, 비 표면적의 증가는 마찬가지로 활성 중심의 증가로 이어지고, 표면의 면화된 구조와 결합하여 상용 전극 (예 : 니켈 또는 탄소)에 비해 전기 과전압을 크게 감소시킨다. 특정 적용으로서, 예를 들어 Ni 입자 또는 Mo 입자로 코팅 된 Ni 또는 Mo 발포체(foam)을 사용하는 전기 분해가 언급될 수 있다. 본 출원에서 특히, 일 측면에 금속 입자로 코팅된 소결 금속 개방 기공 성형체를 사용하는 것이 유리할 수 있는데,이 경우 기공 크기의 그라데이션(gradation)은 기체 기포가 잘 이동되도록 보장하기 때문이다.In application (iii), an increase in the specific surface area likewise leads to an increase in the active center, which is combined with the cotton structure of the surface to significantly reduce the electrical overvoltage compared to commercial electrodes (eg nickel or carbon). As a specific application, mention may be made of electrolysis using, for example, Ni or Mo foams coated with Ni particles or Mo particles. In the present application, in particular, it may be advantageous to use a sintered metal open-pore molded body coated with metal particles on one side, because in this case, a gradation of the pore size ensures that gas bubbles move well.
적용 (iv)의 경우, 비 표면적의 증가는 활성 성분, 예를 들어 촉매 워시 코트의 지지 표면에 대한 우수한 접착을 유도하여 촉매 물질의 기계적, 열적 및 화학적 안정성을 크게 증가시킨다.For application (iv), the increase in specific surface area leads to good adhesion of the active ingredient, for example to the supporting surface of the catalytic wash coat, which greatly increases the mechanical, thermal and chemical stability of the catalytic material.
본 발명에 따라 제조 된 성형체에 적합한 금속은 Ni, Fe, Cr, Al, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi, Ce 또는 Mg이다. 반제품이 제조되는 각각의 화학 원소에 해당하는 이들 원소의 입자는 따라서 반제품을 코팅하기위한 본 발명의 방법에 사용될 수있다. Metals suitable for the molded body manufactured according to the present invention are Ni, Fe, Cr, Al, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt , Zn, Sn, Bi, Ce or Mg. The particles of these elements, corresponding to each chemical element from which the semi-finished product is made, can thus be used in the method of the present invention for coating semi-finished products.
열처리에서 열적 또는 화학적 분해에 의해 각각의 금속 입자로 변환될 수 있는 금속 Ni, Fe, Cr, Al, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi, Ce, Mg, V의 화학적 화합물로서, 특히 이들의 산화물, 질화물, 수소화물, 탄화물, 황화물, 황산염, 인산염, 플루오라이드, 클로라이드, 브로마이드, 요오드화물, 아지드화물, 질산염, 아민, 아미드, 금속-유기 착물, 금속-유기 착물의 염 또는 입자로 형성된 물질에 대한 분해성 염으로, 반제품으로서 존재하는 개방 기공 성형체의 표면이 본 발명에 따른 제 2 대안에서 코팅되어야 한다. 특히 적합한 화학적 화합물은 Ni, Fe, Ti, Mo, Co, Mn, W, Cu, Ag, Au, Pd 또는 Pt의 화학적 화합물이다.Metals that can be converted into individual metal particles by thermal or chemical decomposition in heat treatment Ni, Fe, Cr, Al, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Chemical compounds of Ag, Au, Pd, Pt, Zn, Sn, Bi, Ce, Mg, V, especially their oxides, nitrides, hydrides, carbides, sulfides, sulfates, phosphates, fluorides, chlorides, bromide, iodine Cargoes, azides, nitrates, amines, amides, metal-organic complexes, salts of metal-organic complexes or decomposable salts for substances formed from particles, wherein the surface of the open pore molded body present as a semi-finished product is a second according to the present invention. Should be coated in the alternative. Particularly suitable chemical compounds are those of Ni, Fe, Ti, Mo, Co, Mn, W, Cu, Ag, Au, Pd or Pt.
각각의 금속을 제공하기 위한 화학적 화합물의 열적 또는 화학적 분해에서, 화학적 화합물의 금속으로의 열적 또는 화학적 분해가 일어날 때까지 불활성, 산화 또는 환원될 수 있는 분해에 적합한 분위기가 유지된다. 화학적 화합물을 각각의 금속으로 화학적 환원시키기 위해, 화학적 환원으로 이어지는 열처리는 바람직하게는 화학적 환원이 수행될 때까지 적어도 일부 시간 동안 환원 분위기, 특히 수소 분위기에서 수행될 수 있다.In thermal or chemical decomposition of a chemical compound to provide each metal, an atmosphere suitable for decomposition that can be inert, oxidized or reduced is maintained until thermal or chemical decomposition of the chemical compound to the metal occurs. In order to chemically reduce the chemical compound to the respective metal, the heat treatment leading to the chemical reduction may preferably be carried out in a reducing atmosphere, in particular a hydrogen atmosphere, for at least some time until the chemical reduction is performed.
다공도, 기공 크기 및 비 표면적은 코팅에 사용된 입자의 형태에 의해 실질적으로 영향을 받을 수 있다. 높은 비 표면적 및 미세 다공성 구조를 달성하기 위해, 작은 크기 및 수지상 형상을 갖는 입자, 예를 들어 전해질 분말이 유리하다. 틈이 없는 배열을 허용하지 않는 불규칙한 기하 구조의 결과로, 인접한 입자는 접촉점과 입자 몸체 사이에 채널을 제공하기 위해 부분적으로 연결된 공극을 형성한다. 또한, 휘발성 성분에 의해 남겨진 추가적인 미세 기공 공간은 화학적 화합물의 입자를 사용할 때 열적 분해 또는 화학적 분해에서 형성된다. 화학적 화합물의 휘발성 성분의 비율이 클수록 총 기공 부피에서 미세 기공 공간의 비율이 높아진다. 따라서, 산화 상태가 높고 결과적으로 높은 비율의 산소를 갖는 산화물의 사용은 금속 산화물 입자로의 코팅에 유리하다. 비 표면적이 증가함에 따라 구조물의 소결 활성이 증가하기 때문에, 재료-의존적 소결 온도는 미세 기공이 현저히 치밀화되지 않으면서 입자들이 기계적으로 안정된 방식으로 서로 및 반제품에 소결되기에 충분히 높도록 선택된다.Porosity, pore size and specific surface area can be substantially influenced by the shape of the particles used in the coating. In order to achieve a high specific surface area and microporous structure, particles having a small size and dendritic shape, for example electrolyte powder, are advantageous. As a result of the irregular geometry that does not allow for a gapless arrangement, adjacent particles form partially connected voids to provide a channel between the contact point and the particle body. In addition, additional microporous spaces left by the volatile components are formed in thermal or chemical decomposition when using particles of chemical compounds. The larger the proportion of volatile components in the chemical compound, the higher the proportion of microporous spaces in the total pore volume. Thus, the use of oxides having a high oxidation state and consequently a high proportion of oxygen is advantageous for coating with metal oxide particles. As the sintering activity of the structure increases with increasing specific surface area, the material-dependent sintering temperature is chosen so that the particles are sufficiently high to sinter to each other and to the semi-finished product in a mechanically stable manner without significantly densifying the micropores.
본 발명은 실시 예의 도움으로 아래에 설명 될 것이다.The invention will be described below with the aid of examples.
<실시예 1><Example 1>
반제품으로, 약 95 %의 다공도 및 70mm x 63mm의 치수, 두께 1.6mm (폴리 우레탄 발포체 상에 Ag의 전해 침착에 의해 생성됨)를 갖고 평균 기공 크기 450㎛의 은으로 구성된 개방 기공 성형체는 유기 성분, 특히 폴리 우레탄의 유기 성분을 제거하기 위해 적어도 400 ℃의 온도에서 열처리된다.As a semi-finished product, an open pore molded body composed of silver with a porosity of about 95% and a dimension of 70 mm x 63 mm, a thickness of 1.6 mm (produced by electrolytic deposition of Ag on a polyurethane foam) and an average pore size of 450 μm, has an organic component, In particular, it is heat treated at a temperature of at least 400 °C to remove the organic components of the polyurethane.
비 표면적을 증가시키기 위해, 3 ㎛ 내지 9 ㎛ 범위의 입자 크기 d50 을 갖는 금속 분말, 즉 Ag 금속 분말이 총 2 g의 양으로 사용된다.In order to increase the specific surface area, a metal powder having a particle size d 50 in the range of 3 μm to 9 μm, that is, Ag metal powder is used in a total amount of 2 g.
반제품으로서 금속 개방 기공 성형체의 표면의 코팅은, 입자 크기가 80 ㎛ 미만인 스테아라마이드 왁스 0.6 g 및 바인더로서 부피가 6 ml 인 폴리비닐피롤리돈의 1 % 강도의 수용액을 사용하여 코팅을 수행하였다.The coating of the surface of the metal open pore molded article as a semi-finished product was coated using 0.6 g of stearamide wax having a particle size of less than 80 µm and a 1% strength aqueous solution of polyvinylpyrrolidone having a volume of 6 ml as a binder. .
반제품의 표면은, 은 분말이 바인더로 코팅된 표면에 적용되기 전에 기공 내부에 포함되는 바인더 용액으로 분무된다.The surface of the semi-finished product is sprayed with a binder solution contained inside the pores before the silver powder is applied to the surface coated with the binder.
은 분말 및 스테아라마이드 왁스를 Turbula 믹서를 사용하여 10 분 동안 혼합하였다.Silver powder and stearamide wax were mixed for 10 minutes using a Turbula mixer.
바인더로 코팅한 후, 개방 기공 코팅된 성형체를 진동 장치에 고정시키고 양쪽면에 은 분말을 뿌렸다. 분말은 진동에 의해 개방 기공 네트워크에서 균일하게 분포된다. 입자는 스트럿 표면에만 부착되므로, 스트럿은 분말 입자로 완전히 덮히고 발포체의 개방 다공도가 유지된다. 절차는 네 번 반복된다.After coating with a binder, the open pore-coated molded body was fixed to a vibration device and silver powder was sprinkled on both sides. The powder is evenly distributed in the open pore network by vibration. Since the particles adhere only to the strut surface, the strut is completely covered with powder particles and the open porosity of the foam is maintained. The procedure is repeated four times.
이어서, 바인더 제거 및 소결을 수행하기 위해, 추가의 열 처리가 수소 분위기에서 수행된다. 이를 위해, 퍼니스(furnace)는 5K/min의 가열 속도로 가열된다. 바인더 제거는 약 300 ℃에서 시작하고 600 ℃ 및 약 30 분의 유지 시간으로 종결된다. 소결 공정은 1 분 내지 60 분의 유지 시간에서 550 ℃ 내지 850 ℃의 온도 범위에서 수행된다.Then, in order to perform binder removal and sintering, an additional heat treatment is performed in a hydrogen atmosphere. To this end, the furnace is heated at a heating rate of 5 K/min. Binder removal begins at about 300° C. and ends with a hold time of 600° C. and about 30 minutes. The sintering process is carried out in a temperature range of 550° C. to 850° C. with a holding time of 1 minute to 60 minutes.
추가의 열처리 동안, 분말 입자가 소결 목 또는 소결 브릿지를 통해 반제품 표면의 스트럿에 견고하게 결합될 때까지, Ag는 분말 입자로부터 스트럿 물질로 확산된다.During further heat treatment, Ag diffuses from the powder particles into the strut material until the powder particles are firmly bonded to the struts of the semi-finished surface through the sintered neck or sintered bridge.
추가의 열처리 후, 개방 기공 성형체는 100 %의 은으로 구성되었다. 다공도는 약 94 %였다.After further heat treatment, the open pore green body consisted of 100% silver. The porosity was about 94%.
스트럿의 표면은 거칠기가 높다. 그 이유는 적용된 분말 입자가 소결 목 또는 소결 브릿지를 통해서만 반제품의 금속 지지 발포체(foam)에 결합되어 원래의 입자 형태가 유지되기 때문이다. 완성된 개방 기공 성형체의 내부 비표면적 (BET 법을 사용하여 측정)은 초기에 (비 코팅 된 상태) 10.8 m²/l로부터 이후에 (코팅 된 상태) 99.3 m²/l로 증가될 수있다.The surface of the strut has high roughness. The reason is that the applied powder particles are bonded to the metal support foam of the semi-finished product only through the sintered neck or sintered bridge, so that the original particle shape is maintained. The internal specific surface area (measured using the BET method) of the finished open pore molded body can be increased from 10.8 m²/l initially (uncoated state) to 99.3 m²/l later (coated state).
<실시예 2><Example 2>
반제품으로, 평균 기공 크기 450㎛, 95 %의 다공도, 70mm x 63mm의 치수, 두께 1.6mm를 갖고, 폴리 우레탄으로 이루어진 다공성 발포체의 전기 화학적 코팅에 의해 획득된, 은으로 구성된 개방 기공 성형체는 실시예 1에서와 같이, 유기 성분을 제거하기 위해 열처리가 수행된다.As a semi-finished product, an open pore molded article composed of silver, having an average pore size of 450 μm, a porosity of 95%, a dimension of 70 mm x 63 mm, a thickness of 1.6 mm, obtained by electrochemical coating of a porous foam made of polyurethane, is an Example As in 1, heat treatment is performed to remove organic components.
유기 성분이 없는 반제품의 표면은 다음 조성을 갖는 현탁액으로 분무함으로써 후속적으로 코팅되었다:The surface of the semi-finished product without organic components was subsequently coated by spraying with a suspension having the following composition:
-48 % Ag2O 금속 산화물 분말 <5μm,-48% Ag 2 O metal oxide powder <5 μm,
-1.5 % 폴리비닐피롤리돈 (PVP) 바인더-1.5% polyvinylpyrrolidone (PVP) binder
-용매로, 49.5 % 물-As a solvent, 49.5% water
-1 % 분산제.-1% dispersant.
이를 위해, 미분 바인더(pulverulent binder)를 먼저 물에 용해시킨 다음, 다른 모든 성분을 첨가하고 2000 rpm에서 2 x 30 초 동안 스피드 믹서에서 혼합하여 현탁액을 형성하였다.To this end, a pulverulent binder was first dissolved in water, then all other ingredients were added and mixed in a speed mixer at 2000 rpm for 2 x 30 seconds to form a suspension.
제조된 분말 현탁액을 반제품에 습식 분말 분무 공정에 의해 양면에 여러 번 분무하였다. 여기서, 현탁액은 분무 장치에서 분무되어 반제품의 양쪽 표면에 적용된다. 스프레이 노즐로부터의 출구 압력에 의해 현탁액은 반제품의 다공성 네트워크에 균일하게 분포된다. 현탁액은 스트럿 표면에만 부착되므로 스트럿이 현탁액으로 완전히 덮히고 반제품의 개방 다공도가 크게 유지된다. 이러한 방식으로 코팅된 반제품은 이후 공기 중에서 실온에서 건조되었다.The prepared powder suspension was sprayed several times on both sides by a wet powder spraying process on the semi-finished product. Here, the suspension is sprayed in a spraying device and applied to both surfaces of the semi-finished product. By the outlet pressure from the spray nozzle, the suspension is evenly distributed over the porous network of semi-finished products. Since the suspension adheres only to the strut surface, the strut is completely covered with the suspension and the open porosity of the semi-finished product is kept large. The semi-finished product coated in this way was then dried in air at room temperature.
바인더 제거, 환원 및 소결을 위해, 열처리는 수소 분위기하에 그리고 이어서 퍼니스(furnace)에서 수행되었다. 이를 위해, 퍼니스는 5 K/min의 가열 속도로 가열되었다. 산화은의 환원은 100 ℃ 미만에서 시작하여 200 ℃ 및 수소 하에서 약 30 분의 유지 시간으로 완료되었다. 그 후, 잔류 바인더 제거 및 소결 공정은 산소 함유 분위기에서, 예를 들어 대기 시간 1 분 ~ 180 분에서 200°C ~ 800°C의 온도 범위의 공기에서 수행될 수 있다.For binder removal, reduction and sintering, heat treatment was carried out under a hydrogen atmosphere and then in a furnace. For this purpose, the furnace was heated at a heating rate of 5 K/min. The reduction of silver oxide started at less than 100° C. and completed at 200° C. and holding time of about 30 minutes under hydrogen. Thereafter, the residual binder removal and sintering process may be performed in an oxygen-containing atmosphere, for example, in air in a temperature range of 200°C to 800°C at a waiting time of 1 minute to 180 minutes.
추가의 열처리 동안, 산화은은 먼저 나노 결정 형태로 존재하는 금속성 은으로 환원되었다. 잔류 바인더의 제거 및 금속성 은 입자를 은 발포체 스트럿 상에 부분 소결한 결과로, 입자는 더 크고 더 조악한 결정성 집합체를 형성하도록 성장하고, 둘째로, Ag는 또한 분말 입자가 개방 기공 성형체 표면의 스트럿에 형성되는 소결 목 또는 소결 브릿지를 통해 견고하게 결합될 때까지 분말 입자로부터 스트럿 물질로 확산된다.During further heat treatment, silver oxide was first reduced to metallic silver, which is present in nanocrystalline form. As a result of removal of residual binder and partial sintering of metallic silver particles onto silver foam struts, the particles grow to form larger and coarser crystalline aggregates, and secondly, Ag also allows powder particles to form struts on the surface of the open pore compact. It diffuses from the powder particles into the strut material until it is firmly bonded through the sintered neck or sintered bridge that is formed in the.
추가의 열 처리 후, 100 %은에 의해 형성된 동질의 개방 기공 성형체가 존재한다. 다공도는 약 93 %이다. 스트럿의 표면은 높은 거칠기를 갖는다. 그 이유는 적용된 분말 입자가 소결 목 / 소결 브리지를 통해서만 반제품의 표면에 결합되어, 원래의 입자 형태가 유지되기 때문이다. 완성된 개방 기공 성형체의 내부 비표면적 (BET 법에 의해 측정 됨)은 수행된 공정에 의해 초기(비 코팅 된 상태) 10.8 m²/l에서 이후(코팅된 상태) 82.5 m²/l로 증가될 수 있었다.After further heat treatment, there is a homogeneous open pore shaped body formed by 100% silver. The porosity is about 93%. The surface of the strut has a high roughness. The reason is that the applied powder particles are bonded to the surface of the semi-finished product only through the sintered wood/sintered bridge, so that the original particle shape is maintained. The internal specific surface area (measured by the BET method) of the finished open-pore molded body could be increased from the initial (uncoated state) 10.8 m²/l to the later (coated state) 82.5 m²/l by the process performed. .
<실시예 3><Example 3>
구리로 구성되고 평균 기공 크기가 800 ㎛이고, 다공도가 약 95 %이고, 치수가 200 mm x 80 mm이고, 두께가 1.6 mm (PU 발포체 상에 Cu의 전해 침착에 의해 생성됨)를 갖는 개방 기공 성형체는 반제품으로 사용된다.Open pore molded body composed of copper and having an average pore size of 800 μm, a porosity of about 95%, a dimension of 200 mm x 80 mm and a thickness of 1.6 mm (generated by electrolytic deposition of Cu on PU foam) Is used as a semi-finished product.
반제품의 표면을 코팅하기 위한 분말로서, 수지상 형태, 63 ㎛미만의 평균 입자 크기 및 질량 20 g을 갖는 FFL 유형의 전해 구리 분말을 사용하였다.As the powder for coating the surface of the semi-finished product, an electrolytic copper powder of the FFL type having a dendritic form, an average particle size of less than 63 μm and a mass of 20 g was used.
부피가 20 ml 인 폴리비닐피롤리돈의 1 % 강도의 수용액을 바인더로 사용 하였다.A 1% strength aqueous solution of polyvinylpyrrolidone having a volume of 20 ml was used as a binder.
구리로 구성된 반제품은 양쪽면에 바인더 용액으로 분무되었다. 바인더-코팅된 반제품은 이후 진동 장치에 고정되고 구리 분말로 양쪽면에 뿌려졌다. 분말은 진동에 의해 반제품의 다공성 네트워크에 분포된다. 기공 공간이 완전히 채워지도록 바인더 및 분말 코팅을 3 회 반복하였다.The semi-finished product composed of copper was sprayed with a binder solution on both sides. The binder-coated semi-finished product was then fixed in a vibrating device and sprinkled on both sides with copper powder. The powder is distributed in the porous network of the semi-finished product by vibration. The binder and powder coating were repeated 3 times so that the pore space was completely filled.
바인더 제거 및 소결은 수소 분위기 하에서 열처리에서 수행되었다. 이를 위해, 퍼니스를 5 K/min 의 가열 속도로 가열하였다. 바인더 제거는 약 300 ℃에서 시작하고 600 ℃ 및 약 30 분의 유지 시간으로 완료된다. 이어서, 가열을 950 ℃의 소결 온도까지 계속하고이 온도를 30 분 동안 유지시켰다.Binder removal and sintering were performed in a heat treatment under a hydrogen atmosphere. To this end, the furnace was heated at a heating rate of 5 K/min. Binder removal starts at about 300[deg.] C. and completes at 600[deg.] C. and a hold time of about 30 minutes. Then, heating was continued until the sintering temperature of 950° C. and this temperature was maintained for 30 minutes.
열처리 동안, 분말 입자가 반제품의 표면에 형성되는 소결 목(sinter neck) 또는 소결 브릿지 (sinter bridge)를 통해 단단히 결합될 때까지, 구리로 구성되는 분말 입자는 서로 및 스트럿 재료에 소결되고, 높은 다공성이 유지되고 비 표면적의 증가가 달성된다. 이러한 방식으로 처리된 개방 기공 성형체의 다공도는 54 %이고 비 표면적은 67 m²/l이다.During heat treatment, the powder particles composed of copper are sintered to each other and to the strut material until the powder particles are firmly bonded through a sinter neck or sinter bridge formed on the surface of the semi-finished product, and the high porosity Is maintained and an increase in specific surface area is achieved. The open pore compact treated in this way has a porosity of 54% and a specific surface area of 67 m²/l.
<실시예 4><Example 4>
코발트로 이루어지고 평균 기공 크기가 580 ㎛이고, 다공도가 약 95 %이고, 치수가 70 mm x 65 mm이고, 두께가 1.9 mm 인 (PU 발포체 상에 Co의 전해 침착에 의해 생성됨) 개방 기공 성형체가 반제품으로 사용되었고, 평균 입자 크기가 45 ㎛ 미만이고 질량 10 g을 갖는 Co 금속 분말 및 또한 입자 크기가 80 ㎛ 미만이고 질량 0.1 g을 갖는 스테아라마이드 왁스가 분말로서 사용되었고, 6ml 부피를 갖는 폴리비닐피롤리돈의 1 % 강도 수용액이 바인더로 사용되었다.An open pore molded body consisting of cobalt, having an average pore size of 580 μm, a porosity of about 95%, a dimension of 70 mm x 65 mm and a thickness of 1.9 mm (generated by electrolytic deposition of Co on PU foam) Co metal powder having an average particle size of less than 45 μm and a mass of 10 g and also a stearamide wax having a particle size of less than 80 μm and a mass of 0.1 g was used as a semi-finished product, and poly A 1% strength aqueous solution of vinylpyrrolidone was used as the binder.
코발트 분말 및 스테아라마이드 왁스를 Turbula 믹서를 사용하여 10 분 동안 혼합하였다.The cobalt powder and stearamide wax were mixed for 10 minutes using a Turbula mixer.
코발트로 구성된 반제품은 한쪽면에 바인더 용액으로 분무되었다. 이어서 진동 장치에 고정시키고 코발트 분말로 양쪽면에 뿌렸다. 진동의 결과로, 분말은 반제품의 다공성 네트워크에 균일하게 분포된다. 입자는 스트럿 표면에만 부착되므로, 스트럿은 분말 입자로 완전히 덮히고 발포체의 개방 다공도가 초기에 유지된다. 제 2 단계에서, 반제품의 표면은 제 1 측면에 바인더 용액으로 분무되어, 이전의 개방 기공이 바인더에 의해 한쪽면에서 폐쇄되고, 표면에 근접한 기공 공간은 이후의 추가 분말 적용에 의해 완전히 채워진다. 반제품의 반대쪽에는 스트럿만 표면에 코팅된다. 결과적으로, 분말 로딩 및 이에 따른 발포체의 다공성은 반제품의 제 1 측면으로부터 반대쪽으로 그라데이션된다.The semi-finished product composed of cobalt was sprayed with a binder solution on one side. Then, it was fixed to the vibrating device and sprinkled on both sides with cobalt powder. As a result of the vibration, the powder is evenly distributed in the porous network of the semi-finished product. Since the particles adhere only to the strut surface, the strut is completely covered with powder particles and the open porosity of the foam is initially maintained. In a second step, the surface of the semi-finished product is sprayed with a binder solution on the first side, so that the previously open pores are closed on one side by the binder, and the pore space close to the surface is completely filled by the subsequent application of additional powder. On the opposite side of the semi-finished product, only struts are coated on the surface. As a result, the powder loading and thus the porosity of the foam gradients from the first side of the semi-finished product to the opposite side.
바인더 제거 및 소결을 위해, 수소 분위기에서 열처리가 수행되었다. 이를 위해, 퍼니스는 5K/min의 가열 속도로 가열되었다. 바인더 제거는 약 300 ℃에서 시작하고 600 ℃ 및 약 30 분의 유지 시간으로 완료된다. 이어서 1300 ℃의 소결 온도까지 가열하고이 온도를 30 분 동안 유지시켰다.To remove the binder and sinter, heat treatment was performed in a hydrogen atmosphere. For this purpose, the furnace was heated at a heating rate of 5 K/min. Binder removal starts at about 300[deg.] C. and completes at 600[deg.] C. and a hold time of about 30 minutes. It was then heated to a sintering temperature of 1300° C. and held this temperature for 30 minutes.
열처리하는 동안, Co는 분말 입자가 스트럿과 (완전히 채워진 영역에서) 서로를 형성하는 소결 목 또는 소결 브릿지를 통해 단단히 결합 될 때까지 분말 입자로부터 반제품의 스트럿 재료로 확산된다. 완성된 개방 기공 성형체의 Co 함량은 100 %였다. 다공도는 성형체의 총 두께에 걸쳐 제 1 측면으로부터 제 1 측면의 반대쪽에 이르는 측면으로 그라데이션되고 한쪽 측면에서 약 54 %, 다른 발포체 측면에서 약 93 %이다. 완성된 개방 기공 성형체의 비 표면적은 69 m²/l이다.During heat treatment, Co diffuses from the powder particles into the semi-finished strut material until the powder particles are tightly bonded through the struts and sintered necks or sintered bridges that form each other (in the fully filled area). The Co content of the finished open pore molded body was 100%. The porosity is gradated from the first side to the side opposite the first side over the total thickness of the molded body and is about 54% on one side and about 93% on the other foam side. The specific surface area of the finished open pore compact is 69 m²/l.
<실시예 5> (Ni 확장 금속 메쉬 + Ni 분말 → 균일 코팅 + 소결)<Example 5> (Ni expanded metal mesh + Ni powder → uniform coating + sintering)
1. 재료1. Material
셀 크기가 약 0.7mm x 2mm이고, 치수가 75mm x 75mm, 약 1mm의 두께 (원래 0.25mm 두께의 슬롯 형 Ni 시트를 연신함으로써 생성됨)를 갖는 개방 기공 니켈 팽창 금속 메쉬를 반제품으로 사용하였고, 평균 입자 크기가 10 μm미만이고 질량이 8 g 인 Ni 금속 분말, 평균 입자 크기가 80 μm미만이고 질량이 0.2 g 인 스테아라마이드 왁스가 금속 분말로서 사용되었고, 부피가 4 ml 인 폴리비닐피롤리돈의 1 % 강도의 수용액을 바인더로 사용하였다.An open pore nickel expanded metal mesh having a cell size of about 0.7 mm x 2 mm, dimensions of 75 mm x 75 mm, and a thickness of about 1 mm (originally created by stretching a 0.25 mm thick slotted Ni sheet) was used as a semi-finished product. Ni metal powder with a particle size of less than 10 μm and a mass of 8 g, stearamide wax with an average particle size of less than 80 μm and a mass of 0.2 g was used as the metal powder, and a volume of 4 ml polyvinylpyrrolidone An aqueous solution of 1% strength was used as a binder.
분말 및 스테아라마이드 왁스를 Turbula 믹서를 사용하여 10 분 동안 혼합하였다.The powder and stearamide wax were mixed for 10 minutes using a Turbula mixer.
니켈 팽창 금속 메시는 2 개의 반대면으로부터 바인더 용액으로 분무되었다. 이어서 메시를 진동 장치에 고정시키고 양쪽면에 니켈 분말을 뿌렸다. 진동의 결과로, 니켈 분말이 메쉬 상에 균일하게 분포된다. 입자는 메쉬 스트럿 표면에만 부착되므로, 메쉬 스트럿은 분말 입자로 완전히 덮히고 팽창된 금속 메쉬의 개방 다공도는 유지된다. 절차는 5 회 반복되었다.The nickel expanded metal mesh was sprayed with a binder solution from two opposite sides. The mesh was then fixed to the vibrating device and nickel powder was sprinkled on both sides. As a result of the vibration, the nickel powder is evenly distributed on the mesh. Since the particles adhere only to the surface of the mesh strut, the mesh strut is completely covered with the powder particles and the open porosity of the expanded metal mesh is maintained. The procedure was repeated 5 times.
바인더 제거 및 소결은 수소 분위기 하에서 열처리에서 수행되었다. 이를 위해, 퍼니스가 5 K/min의 가열 속도로 가열되었다. 바인더 제거는 약 300 ℃에서 시작하고 600 ℃ 및 약 30 분의 유지 시간으로 완료된다. 이어서, 가열을 1280 ℃의 소결 온도까지 계속하고이 온도를 30 분 동안 유지시켰다.Binder removal and sintering were performed in a heat treatment under a hydrogen atmosphere. For this purpose, the furnace was heated at a heating rate of 5 K/min. Binder removal starts at about 300[deg.] C. and completes at 600[deg.] C. and a hold time of about 30 minutes. Then, heating was continued until the sintering temperature of 1280° C. was maintained and this temperature was maintained for 30 minutes.
열처리하는 동안, 분말 입자가 메쉬 스트럿을 형성하는 소결 목 또는 소결 브릿지를 통해 단단히 결합될 때까지, Ni는 분말 입자로부터 메쉬 스트럿 물질 내로 확산된다.During heat treatment, Ni diffuses from the powder particles into the mesh strut material until the powder particles are firmly bonded through the sintered neck or sintered bridge forming the mesh strut.
이러한 방식으로 획득된 개방 기공 성형체는 100 %의 니켈로 구성되었다.The open pore compact obtained in this way consisted of 100% nickel.
스트럿의 표면은 적용된 분말 입자가 소결 목 또는 소결 브릿지를 통해서만 반제품의 지지 메쉬에 그리고 서로 결합되어 원래의 입자 형태가 크게 유지되기 때문에 거칠기가 높다. 스트럿 상에 적용된 고 다공성 니켈 층의 두께는 1 ㎛ 내지 300 ㎛이다. 적용된 층 내의 다공도는 40 %이다.The surface of the strut has a high roughness since the applied powder particles are bonded to the support mesh of the semi-finished product and to each other only through a sintered neck or sintered bridge, so that the original particle shape remains large. The thickness of the highly porous nickel layer applied on the strut is between 1 μm and 300 μm. The porosity in the applied layer is 40%.
Claims (12)
반제품으로서 금속을 포함하는 개방 기공 성형체는 그 표면에 상기 반제품이 형성된 상기 동일한 금속의 입자로 코팅되거나, 상기 반제품이 제조된 상기 금속의 화학적 화합물의 입자로 코팅되고, 화학적 화합물은 열 처리에서 환원되거나 열적 또는 화학적으로 분해될 수 있고 화학적 환원 또는 열적 또는 화학적 분해에 의해 획득된 각각의 상기 금속의 입자에 의해 형성될 수 있고; 및
상기 코팅 후에 상기 입자가 소결 목(sinter neck) 또는 소결 브릿지(sinter bridges)를 통해 상기 반제품 및 / 또는 인접 입자의 표면에 결합되는 적어도 하나의 열처리가 수행되어, 획득된 상기 개방 기공 성형체의 비 표면적이 적어도 30 m²/l까지 증가하도록 하고 및 / 또는 코팅되지 않은 금속 반제품의 출발 물질과 비교하여 적어도 5배 증가되도록 하고, 금속 환원 분위기 또는 분해에 적합한 분위기는, 적어도 상기 금속을 형성하기 위한 상기 화학적 화합물의 환원 또는 열적 또는 화학적 분해가 완료 될 때까지, 상기 반제품이 제조된 상기 금속의 환원성 또는 열적 또는 화학적으로 분해 가능한 화학적 화합물의 입자로 코팅된 개방 기공 성형체의 상기 열처리에서 유지되는, 방법.In the method of manufacturing an open pore molded article containing a metal,
The open pore molded body containing metal as a semi-finished product is coated with particles of the same metal on which the semi-finished product is formed, or is coated with particles of a chemical compound of the metal from which the semi-finished product has been prepared, and the chemical compound is reduced in heat treatment or Can be thermally or chemically decomposed and formed by particles of each of the above metals obtained by chemical reduction or thermal or chemical decomposition; And
After the coating, at least one heat treatment in which the particles are bonded to the surface of the semi-finished product and/or adjacent particles through a sinter neck or sinter bridges is performed, and the specific surface area of the obtained open pore molded body Is increased to at least 30 m²/l and/or is increased by at least 5 times compared to the starting material of the uncoated metal semi-finished product, and the metal reducing atmosphere or an atmosphere suitable for decomposition is at least the chemical composition for forming the metal. The method, wherein until the reduction or thermal or chemical decomposition of the compound is complete, the semi-finished product is maintained in the heat treatment of an open pore molded body coated with particles of a reducing or thermally or chemically degradable chemical compound of the metal produced.
금속의 상기 입자 또는 상기 금속의 화학적 화합물 입자가 분말, 분말 혼합물 및 / 또는 현탁액 / 분산제로서 사용되는 것을 특징으로하는 방법.In claim 1,
A method, characterized in that said particles of metal or particles of chemical compounds of said metal are used as powders, powder mixtures and/or suspensions/dispersants.
분말, 분말 혼합물, 현탁액 및 / 또는 분산제으로서 상기 금속의 입자 또는 상기 금속의 화학적 화합물의 입자의 적용은 디핑(dipping), 스프레잉(spraying), 압력 보조 방식, 정전기 및 / 또는 자기에 의해 수행되는 것을 특징으로 하는 방법.The method according to claim 1 or 2,
The application of particles of the metal or particles of chemical compounds of the metal as powders, powder mixtures, suspensions and/or dispersants is carried out by dipping, spraying, pressure assisted methods, electrostatic and/or magnetic The method characterized in that.
유기 및 / 또는 무기 바인더가 입자의 접착력을 향상시키기 위해 용액, 현탁액 / 분산제에서 또는 분말로 사용되는 것을 특징으로하는 방법.According to any one of claims 1 to 3,
A method, characterized in that organic and/or inorganic binders are used in a solution, suspension/dispersant or as a powder to improve the adhesion of the particles.
상기 금속 입자 또는 상기 금속의 특정 화학적 화합물의 입자의 적용이 여러 번, 특히 적어도3 회 반복되는 것을 특징으로하는 방법.The method according to any one of claims 1 to 4,
A method, characterized in that the application of the metal particles or particles of the specific chemical compound of the metal is repeated several times, in particular at least three times.
상기 금속 입자 또는 상기 금속의 화학적 화합물의 입자로 다중 코팅하는 경우, 바인더가 사용될 때 상기 바인더의 적용은 여러 번, 특히 적어도 3 회 반복되는 것을 특징으로 하는 방법.The method according to any one of claims 1 to 5,
In the case of multiple coatings with the metal particles or particles of the metal chemical compound, the application of the binder is repeated several times, in particular at least three times, when the binder is used.
바인더의 적용 및 상기 금속의 입자 또는 상기 금속의 화학적 화합물의 입자의 적용은 상기 표면의 다른 측면에서 수행되고, 특히 상이한 다공도, 기공 크기 및 / 또는 비 표면적을 얻기 위해 서로 다른 양을 사용하여 상기 반제품의 서로 반대쪽에 위치한 표면에서 수행되는 것을 특징으로 하는 방법.The method according to any one of claims 1 to 6,
The application of the binder and the application of the particles of the metal or the particles of the chemical compound of the metal are carried out on different sides of the surface, in particular the semi-finished products using different amounts to obtain different porosities, pore sizes and/or specific surface areas. A method, characterized in that it is carried out on surfaces located opposite each other.
Ni, Fe, Cr, Al, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi, Ce 또는 Mg는 반제품 및 적용될 입자에 대한 금속으로 사용되거나,
Ni, Fe, Cr, Al, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi, Ce 또는 Mg 의 화학적 화합물, 특히 염, 산화물, 질화물, 수소화물, 탄화물, 황화물, 황산염, 불화물, 염화물, 브롬화물, 요오드화물, 인산염, 아 지드, 질산염, 아민, 아미드, 금속-유기 착물 또는 금속-유기 착물의 염이 상기 반제품 및 이 금속의 환원성, 열적 또는 화학적 분해성 화합물의 입자에 대한 금속으로서 사용되는 것을 특징으로 하는 방법.The method according to any one of claims 1 to 7,
Ni, Fe, Cr, Al, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi, Ce or Mg Used as a metal for semi-finished products and particles to be applied, or
Ni, Fe, Cr, Al, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi, Ce or Mg Of chemical compounds, in particular salts, oxides, nitrides, hydrides, carbides, sulfides, sulfates, fluorides, chlorides, bromides, iodides, phosphates, azides, nitrates, amines, amides, metal-organic complexes or metal-organic complexes A method, characterized in that the salt is used as a metal for said semi-finished product and for particles of a reducing, thermally or chemically degradable compound of this metal.
중합체 물질의 개방 기공체를 각각의 금속으로 전기 화학 코팅하여 획득한 반제품이 반제품으로 사용되는 것을 특징으로 하는 방법.The method according to any one of claims 1 to 8,
A method, characterized in that a semi-finished product obtained by electrochemical coating the open pores of a polymer material with respective metals is used as a semi-finished product.
코팅 및 소결된 개방 기공 성형체 내의 기공 크기는 사용된 입자 크기의 10,000 배 이하에 해당하는 것을 특징으로 하는 성형체.In claim 10,
A molded article, characterized in that the pore size in the coated and sintered open pore molded article corresponds to 10,000 times or less of the particle size used.
성형체의 재료에 3 질량 % 이하, 바람직하게는 1 질량 % 이하의 산소가 존재하는 것을 특징으로하는 성형체.In claim 10 or 11,
A shaped article, characterized in that 3% by mass or less, preferably 1% by mass or less of oxygen is present in the material of the shaped article.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017216569.3A DE102017216569A1 (en) | 2017-09-19 | 2017-09-19 | A process for producing an open-pore shaped body formed with a metal and a molded body produced by the process |
DE102017216569.3 | 2017-09-19 | ||
PCT/EP2018/074882 WO2019057624A1 (en) | 2017-09-19 | 2018-09-14 | Method for producing an open-pore molded body which is made of a metal, and a molded body produced using said method |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20200127966A true KR20200127966A (en) | 2020-11-11 |
Family
ID=63592734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207011232A KR20200127966A (en) | 2017-09-19 | 2018-09-14 | Method for manufacturing an open pore molded article made of metal and a molded article manufactured using the method |
Country Status (9)
Country | Link |
---|---|
US (1) | US20200263306A1 (en) |
EP (1) | EP3684532A1 (en) |
JP (1) | JP2020534433A (en) |
KR (1) | KR20200127966A (en) |
CN (1) | CN111432961A (en) |
CA (1) | CA3076512A1 (en) |
DE (1) | DE102017216569A1 (en) |
RU (1) | RU2020111275A (en) |
WO (1) | WO2019057624A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112170862A (en) * | 2020-09-30 | 2021-01-05 | 桂林金格电工电子材料科技有限公司 | Preparation method of silver-tungsten contact material |
CN113427002B (en) * | 2021-06-25 | 2022-06-21 | 哈尔滨工业大学 | A kind of pressureless sintering preparation method of three-dimensional porous structure |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1275457A (en) * | 2000-06-22 | 2000-12-06 | 天津和平海湾电源集团有限公司 | Metal strip coated with foamed nickel material and manufacturing method thereof |
DE10150948C1 (en) * | 2001-10-11 | 2003-05-28 | Fraunhofer Ges Forschung | Process for the production of sintered porous bodies |
DE10297544B4 (en) * | 2001-12-18 | 2015-10-29 | Asahi Kasei Kabushiki Kaisha | Process for producing a metal thin film |
US7458991B2 (en) * | 2002-02-08 | 2008-12-02 | Howmedica Osteonics Corp. | Porous metallic scaffold for tissue ingrowth |
DE10301175B4 (en) * | 2003-01-08 | 2006-12-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Process for the powder metallurgical production of components |
JP2004346358A (en) * | 2003-05-21 | 2004-12-09 | Toyota Motor Corp | Method for producing sintered metal body having micropores |
DE10346281B4 (en) * | 2003-09-30 | 2006-06-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for producing components with a nickel-based alloy and components produced therewith |
DE102005010248B4 (en) * | 2005-02-28 | 2006-10-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Process for producing an open-pored metal foam body, a metal foam body produced in this way and its uses |
DE102007027837A1 (en) * | 2007-06-13 | 2008-12-18 | Eads Deutschland Gmbh | Method for producing a metallic microstructure for a microreactor |
DE102009015176B4 (en) * | 2009-03-20 | 2017-02-09 | Alantum Corporation | Process for producing open-pore metal foam bodies |
PL2764916T3 (en) * | 2013-02-06 | 2017-12-29 | Alantum Europe Gmbh | Surface modified metallic foam body, process for its production and use thereof |
DK2883632T3 (en) * | 2013-12-10 | 2017-10-16 | Alantum Europe Gmbh | Metallic foam body with controlled grain size on the surface, method of production and use thereof |
DE102014205623B4 (en) * | 2014-03-26 | 2020-06-10 | Glatt Gmbh | METHOD FOR PRODUCING OPEN-CELLED BODIES |
-
2017
- 2017-09-19 DE DE102017216569.3A patent/DE102017216569A1/en not_active Ceased
-
2018
- 2018-09-14 WO PCT/EP2018/074882 patent/WO2019057624A1/en unknown
- 2018-09-14 US US16/648,028 patent/US20200263306A1/en not_active Abandoned
- 2018-09-14 RU RU2020111275A patent/RU2020111275A/en not_active Application Discontinuation
- 2018-09-14 EP EP18770004.2A patent/EP3684532A1/en not_active Withdrawn
- 2018-09-14 CA CA3076512A patent/CA3076512A1/en not_active Abandoned
- 2018-09-14 KR KR1020207011232A patent/KR20200127966A/en unknown
- 2018-09-14 CN CN201880060988.7A patent/CN111432961A/en active Pending
- 2018-09-14 JP JP2020516562A patent/JP2020534433A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
RU2020111275A (en) | 2021-10-20 |
CA3076512A1 (en) | 2019-03-28 |
WO2019057624A1 (en) | 2019-03-28 |
CN111432961A (en) | 2020-07-17 |
EP3684532A1 (en) | 2020-07-29 |
DE102017216569A1 (en) | 2019-03-21 |
JP2020534433A (en) | 2020-11-26 |
US20200263306A1 (en) | 2020-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100578178B1 (en) | Method for producing porous sintered body and manufactured porous sintered body | |
KR101212786B1 (en) | Open-porous metal foam body and a method of fabricating the same | |
CA2569322C (en) | Method for manufacturing open porous metallic foam body | |
KR102612696B1 (en) | Method for producing an open pore molded body formed of metal with a modified surface and a molded body manufactured using the method | |
KR20200127966A (en) | Method for manufacturing an open pore molded article made of metal and a molded article manufactured using the method | |
CA3106485C (en) | Method for producing an open-pored metal body having an oxide layer and metal body produced by said method | |
RU2772522C2 (en) | Method for producing an open-pore shaped body which has a modified surface and is made of metal, and a shaped body obtained by said method | |
JP3180553B2 (en) | Method for manufacturing three-dimensional network structure | |
KR20110122276A (en) | Fe-Cr-Al alloy porous body and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0105 | International application |
Patent event date: 20200417 Patent event code: PA01051R01D Comment text: International Patent Application |
|
PG1501 | Laying open of application | ||
PC1203 | Withdrawal of no request for examination |