KR20200124152A - Current compensation device - Google Patents
Current compensation device Download PDFInfo
- Publication number
- KR20200124152A KR20200124152A KR1020200003875A KR20200003875A KR20200124152A KR 20200124152 A KR20200124152 A KR 20200124152A KR 1020200003875 A KR1020200003875 A KR 1020200003875A KR 20200003875 A KR20200003875 A KR 20200003875A KR 20200124152 A KR20200124152 A KR 20200124152A
- Authority
- KR
- South Korea
- Prior art keywords
- current
- compensation
- unit
- amplification
- amplifying
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/30—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
- H03F1/302—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in bipolar transistor amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Abstract
Description
본 발명의 실시예들은 전류 보상 장치에 관한 것으로, 두 장치를 연결하는 둘 이상의 대전류 경로 상에 공통 모드로 입력되는 전류를 능동적으로 보상하는 전류 보상 장치에 관한 것이다.Embodiments of the present invention relate to a current compensating device, and to a current compensating device for actively compensating a current input in a common mode on two or more large current paths connecting two devices.
일반적으로 가전용, 산업용 전기 제품이나 전기 자동차와 같은 전기 기기들은 동작하는 동안 노이즈를 방출한다. 가령 전기 기기 내부의 스위칭 동작으로 인해 노이즈가 발생될 수 있다. 이러한 노이즈는 인체에 유해할 뿐만 아니라 연결된 다른 전자 기기의 오동작 또는 고장을 야기한다. In general, electrical devices such as home appliances, industrial electrical appliances, and electric vehicles emit noise during operation. For example, noise may be generated due to the switching operation inside the electric device. Such noise is not only harmful to the human body, but also causes malfunction or failure of other connected electronic devices.
전자 기기가 다른 기기에 미치는 전자 장해를, EMI(Electromagnetic Interference)라고 하며, 그 중에서도, 와이어 및 기판 배선을 경유하여 전달되는 노이즈를 전도성 방출(Conducted Emission, CE) 노이즈라고 한다. Electromagnetic interference from an electronic device to other devices is referred to as EMI (Electromagnetic Interference), and among them, noise transmitted through wires and board wiring is referred to as Conducted Emission (CE) noise.
전자 기기가 주변 부품 및 다른 기기에 고장을 일으키지 않고 동작하도록 하기 위해서, 모든 전자 제품에서 EMI 노이즈 방출량을 엄격히 규제하고 있다. 따라서 대부분의 전자 제품들은, 노이즈 방출량에 대한 규제를 만족하기 위해, EMI 노이즈를 저감시키는 EMI 필터와 같은 전류 보상 장치를 필수적으로 포함한다. In order to ensure that electronic devices operate without causing breakdowns in peripheral components and other devices, EMI noise emission levels are strictly regulated in all electronic products. Accordingly, most electronic products essentially include a current compensating device such as an EMI filter that reduces EMI noise in order to satisfy the regulation on the amount of noise emission.
예를 들면, 에어컨과 같은 백색 가전, 전기차, 항공, 에너지 저장 시스템(Energy Storage System, ESS) 등에서, 전류 보상 장치는 필수적으로 포함된다. 종래의 전류 보상 장치는, 전도성 방출(CE) 노이즈 중 공통 모드(Common Mode, CM) 노이즈를 저감시키기 위해 공통 모드 초크(CM choke)를 이용한다.For example, in white goods such as air conditioners, electric vehicles, aviation, energy storage systems (ESS), and the like, a current compensation device is essentially included. A conventional current compensating device uses a common mode choke to reduce common mode (CM) noise among conductive emission (CE) noise.
한편, 고전력 제품들이 출시됨에 따라 고전력 시스템용 전류 보상 장치에 대한 니즈(needs)가 증가하고 있는 실정이다. 그런데 고전력/고전류 시스템에서 공통 모드(CM) 초크는, 자기 포화 현상에 의해 노이즈 저감 성능이 급격히 떨어지게 된다. 따라서 고전력/고전류 시스템에서 자기 포화를 방지하며 노이즈 저감 성능을 유지하기 위해서, 종래에는 공통 모드 초크의 사이즈를 키우거나 개수를 늘려야 하는데, 이로 인해 고전력 제품을 위한 전류 보상 장치의 크기와 가격이 매우 증가하는 문제점이 발생하였다.Meanwhile, as high-power products are released, the needs for current compensation devices for high-power systems are increasing. However, in a high power/high current system, the common mode (CM) choke rapidly deteriorates noise reduction performance due to self-saturation. Therefore, in order to prevent magnetic saturation and maintain noise reduction performance in high power/high current systems, conventionally, the size and number of common mode chokes have to be increased or the number of common mode chokes has to be increased. There was a problem.
특히, 고전력/고전류 시스템에서는 전류가 흐르는 경로(또는 권선)를 버스 바(bus bar) 형태의 두꺼운 구리판을 사용한다. 이 경우, 능동적인 노이즈 제거를 위해 권선에 흐르는 전류를 감지하는 센싱부에 권선을 여러 차례 감는 것이 제한적이다. 또한, 두꺼운 구리판을 여러 차례 감는 경우, 센싱부의 크기가 증가하게 되며 전류 보상 장치의 전체적인 크기가 매우 증가한다는 문제가 있다. In particular, in a high power/high current system, a thick copper plate in the form of a bus bar is used for the path (or winding) through which the current flows. In this case, it is limited to wind the winding several times in the sensing unit that senses the current flowing through the winding in order to actively remove noise. In addition, when the thick copper plate is wound several times, there is a problem that the size of the sensing unit increases and the overall size of the current compensating device is greatly increased.
본 발명은 상기와 같은 문제점을 개선하기 위한 것으로, 공통 모드(CM) 노이즈를 저감시키는 능동형 전류 보상 장치를 제공하고자 한다. The present invention is to improve the above problems, and to provide an active current compensation device that reduces common mode (CM) noise.
또한, 본 발명은 상기와 같은 문제점을 개선하기 위한 것으로, 센싱부의 크기를 감소시키고, 생산성이 증가된 능동형 전류 보상 장치를 제공하고자 한다.In addition, the present invention is to improve the above problems, to reduce the size of the sensing unit, and to provide an active current compensation device with increased productivity.
그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.However, these problems are exemplary, and the scope of the present invention is not limited thereby.
본 발명의 일 실시예에 따른 제1 장치와 연결되는 적어도 둘 이상의 대전류 경로 각각에 공통 모드(Common Mode)로 입력되는 제1 전류를 능동적으로 보상하는 전류 보상 장치는, 제2 장치에 의해 공급되는 제2 전류를 상기 제1 장치에 전달하는 적어도 둘 이상의 대전류 경로; 관통 개구를 구비하고, 상기 적어도 둘 이상의 대전류 경로가 상기 관통 개구에 삽입되고, 상기 적어도 둘 이상의 대전류 경로 상의 상기 제1 전류를 감지하여, 상기 제1 전류에 대응되는 출력 신호를 생성하는 센싱부; 상기 출력 신호를 증폭하여 증폭 신호를 생성하는 증폭부; 상기 증폭 신호에 기초하여 보상 전류를 생성하는 보상부; 및 상기 보상 전류가 상기 적어도 둘 이상의 대전류 경로 각각으로 흐르는 경로를 제공하는 보상 커패시터부;를 포함할 수 있다. A current compensating device for actively compensating for a first current input in a common mode to each of at least two or more high current paths connected to a first device according to an embodiment of the present invention is provided by the second device. At least two or more high current paths for passing a second current to the first device; A sensing unit having a through opening, the at least two large current paths being inserted into the through opening, sensing the first current on the at least two large current paths, and generating an output signal corresponding to the first current; An amplification unit for amplifying the output signal to generate an amplified signal; A compensation unit that generates a compensation current based on the amplified signal; And a compensation capacitor unit providing a path through which the compensation current flows through each of the at least two large current paths.
또한, 상기 센싱부는 상기 관통 개구를 구비하고, 상기 적어도 둘 이상의 대전류 경로 상의 상기 제1 전류에 의해 생성된 자속 밀도에 기초하여 상기 출력 신호를 생성하는 코어;를 포함하는 센싱 변압기로 구성될 수 있다.In addition, the sensing unit may be configured as a sensing transformer including a core having the through opening and generating the output signal based on a magnetic flux density generated by the first current on the at least two high current paths. .
또한, 상기 코어는 개폐 가능한 클램프 구조로, 개방 상태에서 상기 적어도 둘 이상의 대전류 경로 각각이 내측에 삽입될 수 있다. In addition, the core has a clamp structure capable of opening and closing, and each of the at least two or more high current paths may be inserted into the inner side in an open state.
또한, 상기 증폭부는, 양의 신호를 증폭하는 제1 증폭 소자; 음의 신호를 증폭하는 제2 증폭 소자; 및 상기 제1 증폭 소자 및 상기 제2 증폭 소자의 증폭 비율을 조절하는 적어도 하나의 임피던스;를 포함할 수 있다. In addition, the amplification unit may include a first amplifying element for amplifying a positive signal; A second amplifying element for amplifying a negative signal; And at least one impedance controlling an amplification ratio of the first amplifying element and the second amplifying element.
또한, 상기 제1 증폭 소자 및 상기 제2 증폭 소자 각각은 BJT(bipolar junction transistor)를 포함하고, 상기 적어도 하나의 임피던스는 상기 제1 증폭 소자 및 상기 제2 증폭 소자의 BJT의 에미터 단자에 연결되는 제1 임피던스(Z1); 및 상기 제1 증폭 소자 및 상기 제2 증폭 소자의 BJT의 베이스 단자에 연결되는 제2 임피던스(Z2);를 포함하고, 상기 제1 임피던스(Z1) 및 제2 임피던스(Z2)는 상기 센싱부 및 보상부의 전류 증폭도를 기초로 상기 제1 증폭 소자 및 제2 증폭 소자의 증폭 비율을 조절할 수 있다. In addition, each of the first amplifying element and the second amplifying element includes a bipolar junction transistor (BJT), and the at least one impedance is connected to the emitter terminal of the BJT of the first amplifying element and the second amplifying element. A first impedance (Z1); And a second impedance Z2 connected to the base terminal of the BJT of the first amplifying element and the second amplifying element, wherein the first impedance Z1 and the second impedance Z2 are the sensing unit and The amplification ratio of the first amplifying element and the second amplifying element may be adjusted based on the current amplification degree of the compensation unit.
또한, 상기 센싱부의 전류 증폭도는 1/F1이고, 상기 보상부의 전류 증폭도는 1/F2인 경우, 상기 제1 임피던스(Z1) 및 상기 제2 임피던스(Z2)는 상기 증폭부의 전류 증폭도가 F1*F2가 되도록 상기 1 증폭 소자 및 제2 증폭 소자의 증폭 비율을 조절할 수 있다.In addition, when the current amplification degree of the sensing unit is 1/F1 and the current amplification degree of the compensation unit is 1/F2, the first impedance Z1 and the second impedance Z2 are F1*F2 It is possible to adjust the amplification ratio of the first amplifying element and the second amplifying element to be.
전술한 것 외의 다른 측면, 특징, 이점은 이하의 발명을 실시하기 위한 구체적인 내용, 청구범위 및 도면으로부터 명확해질 것이다.Other aspects, features, and advantages other than those described above will become apparent from the detailed content, claims and drawings for carrying out the following invention.
상술한 바와 같이 이루어진 본 발명의 다양한 실시예에 따르면, 고전력 시스템에서도 가격, 면적, 부피, 무게가 크게 증가하지 않는 전류 보상 장치를 제공할 수 있다. According to various embodiments of the present invention made as described above, it is possible to provide a current compensation device that does not significantly increase in price, area, volume, and weight even in a high power system.
본 발명의 다양한 실시예에 따른 전류 보상 장치는, CM 초크를 포함하는 수동 보상 장치에 비하여 가격, 면적, 부피, 무게가 감소될 수 있다. The current compensating device according to various embodiments of the present disclosure may reduce price, area, volume, and weight compared to a passive compensating device including a CM choke.
또한, 본 발명의 다양한 실시예에 따른 전류 보상 장치는, CM 초크에 기생하지 않고 독립적으로 동작할 수 있는 능동형 전류 보상 장치를 제공할 수 있다. In addition, the current compensating device according to various embodiments of the present disclosure may provide an active current compensating device capable of independently operating without parasitic to a CM choke.
또한, 본 발명의 다양한 실시예에 따른 전류 보상 장치는, 전력선으로부터 전기적으로 절연되는 능동 회로단을 가짐으로써, 능동 회로단에 포함된 소자들을 안정적으로 보호할 수 있다. In addition, the current compensation device according to various embodiments of the present disclosure may have an active circuit terminal electrically insulated from a power line, thereby stably protecting elements included in the active circuit stage.
특히 본 발명에 따르면, 권선(또는 대전류 경로)을 코어(또는 센싱 변압기)에 감을 필요 없이 단순히 코어에 권선을 통과시킴으로써, 권선이 코어를 통과하는 횟수(또는 턴 수)를 크게 줄일 수 있고 이에 따라 센싱부의 크기를 크게 감소시킬 수 있다. 특히, 3상 4선의 전력 시스템에서는 더욱 획기적으로 센싱부의 크기가 감소할 수 있다.In particular, according to the present invention, by simply passing the winding through the core without having to wind the winding (or high current path) around the core (or sensing transformer), the number of times (or turns) that the winding passes through the core can be greatly reduced, and thus The size of the sensing unit can be greatly reduced. In particular, in a three-phase, four-wire power system, the size of the sensing unit can be further drastically reduced.
본 발명에 따르면, 권선이 코어를 통과하는 횟수를 크게 줄임으로써 고전력/고전류 시스템을 이용하는 제품의 생산성을 획기적으로 증가시킬 수 있다. According to the present invention, the productivity of a product using a high power/high current system can be dramatically increased by significantly reducing the number of times the winding passes through the core.
본 발명에 따르면, 전력선 쪽 턴수 및 인덕턴스가 작아지면서 자기 포화의 위험 크게 감소하며, 전력 증가에 따른 코어 사이즈 증가량 역시 크게 감소할 수 있다. According to the present invention, as the number of turns and inductance toward the power line decreases, the risk of magnetic saturation is greatly reduced, and the amount of increase in the core size according to the increase in power can also be greatly reduced.
상술한 효과는 예시적으로 나열한 것으로, 이에 의해 본 발명의 효과가 한정되는 것은 아니다.The above-described effects are listed by way of example, and the effects of the present invention are not limited thereto.
도 1은 본 발명의 일 실시예에 따른 전류 보상 장치(100)를 포함하는 시스템의 구성을 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따라 제2 선 시스템에 사용되는 전류 보상 장치(100A)의 구성을 개략적으로 도시한 도면이다.
도 3a 및 3b는 본 발명의 일 실시예에 따른 센싱부(120)가 센싱 변압기(120A)로 구현된 경우의 동작을 설명하기 위한 도면이다.
도 4a 및 도 4b는 본 발명의 일 실시예에 따른 센싱부(120)가 대전류 경로가 1회 권취된 센싱 변압기(120A)로 구현된 것을 설명하기 위한 도면이다.
도 5a 및 5b는 본 발명의 일 실시예에 따른 증폭부(130A)가 BJT(Bipolar Junction Transistor) 및 복수의 수동 소자들로 구현된 것을 설명하기 위한 도면이다.
도 6a 및 6b는 본 발명의 일 실시예에 따른 증폭도를 자유롭게 설계할 수 있는 피드백(feedback) 증폭기를 설명하기 위한 도면이다.
도 7은 보상 커패시터부(150A)를 통해 흐르는 전류(IL1, IL2)를 설명하기 위한 도면이다.
도 8은 본 발명의 다른 일 실시예에 따른 전류 보상 장치(100B)의 구성을 개략적으로 도시한 도면이다.
도 9는 본 발명의 또 다른 일 실시예에 따른 전류 보상 장치(100C)의 구성을 개략적으로 도시한 도면이다.
도 10은 도 8에 도시된 실시예에 따른 전류 보상 장치(100B)가 사용되는 시스템의 구성을 구략적으로 도시한 도면이다.1 is a diagram schematically showing a configuration of a system including a current compensating
2 is a diagram schematically showing a configuration of a
3A and 3B are diagrams for explaining an operation when the
4A and 4B are diagrams for explaining that the
5A and 5B are diagrams for explaining that the amplifying
6A and 6B are diagrams for explaining a feedback amplifier capable of freely designing an amplification degree according to an embodiment of the present invention.
7 is a diagram for explaining the currents IL1 and IL2 flowing through the
8 is a diagram schematically showing a configuration of a
9 is a diagram schematically showing the configuration of a current compensating
10 is a diagram schematically showing the configuration of a system in which the
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다. Since the present invention can apply various transformations and can have various embodiments, specific embodiments are illustrated in the drawings and will be described in detail in the detailed description. Effects and features of the present invention, and a method of achieving them will be apparent with reference to the embodiments described later in detail together with the drawings. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various forms.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, and when describing with reference to the drawings, the same or corresponding components are assigned the same reference numerals, and redundant descriptions thereof will be omitted. .
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다. 이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다. 도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 형태는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. In the following embodiments, terms such as first and second are not used in a limiting meaning, but are used for the purpose of distinguishing one component from another component. In the following examples, the singular expression includes the plural expression unless the context clearly indicates otherwise. In the following embodiments, terms such as include or have means that the features or elements described in the specification are present, and do not preclude the possibility of adding one or more other features or elements in advance. In the drawings, components may be exaggerated or reduced in size for convenience of description. For example, the size and shape of each component shown in the drawings are arbitrarily shown for convenience of description, and thus the present invention is not necessarily limited to what is shown.
도 1은 본 발명의 일 실시예에 따른 전류 보상 장치(100)를 포함하는 시스템의 구성을 개략적으로 도시한 도면이다. 1 is a diagram schematically showing a configuration of a system including a current compensating
본 발명의 일 실시예에 따른 전류 보상 장치(100)는 제1 장치(300)와 연결되는 적어도 둘 이상의 대전류 경로(111, 112) 각각에 공통 모드(Common Mode)로 입력되는 제1 전류(I11, I12)를 능동적으로 보상할 수 있다. 이를 위해 본 발명의 일 실시예에 따른 전류 보상 장치(100)는 적어도 둘 이상의 대전류 경로(111, 112), 센싱부(120), 증폭부(130), 보상부(140) 및 보상 커패시터부(150)를 포함할 수 있다.The
둘 이상의 대전류 경로(111, 112)는 전류 보상 장치(100) 내에서 제2 장치(200)에 의해 공급되는 제2 전류(I21, I22)를 제1 장치(300)에 전달하는 경로일 수 있는 데, 예컨대 전력선일 수 있다. 일 실시예에 따르면, 둘 이상의 대전류 경로(111, 112) 각각은 라이브선(Live line)과 중성선(Neutral line)일 수 있다. 예를 들어, 대전류 경로(111, 112)는 고전압/고전력 시스템(예컨대 전기 자동차)에서는 두꺼운 구리판 등을 통해 구현될 수 있다. Two or more high
본 명세서에서 제2 장치(200)는 제1 장치(300)에 전원을 전류 및/또는 전압의 형태로 공급하기 위한 다양한 형태의 장치일 수 있다. 가령 제2 장치(200)는 전원을 생산하여 공급하는 장치일 수도 있고, 다른 장치에 의해 생성된 전원을 공급하는 장치(예컨대 전기 자동차 충전 장치)일 수도 있다. 물론 제2 장치(200)는 저장된 에너지를 공급하는 장치일 수도 있다. 다만, 이는 예시적인 것으로 본 발명의 사상이 이에 한정되는 것은 아니다.In the present specification, the
본 명세서에서 제1 장치(300)는 전술한 제2 장치(200)가 공급하는 전원을 사용하는 다양한 형태의 장치일 수 있다. 가령 제1 장치(300)는 제2 장치(200)가 공급하는 전원을 이용하여 구동되는 부하일 수 있다. 또한, 제1 장치(300)는 제2 장치(200)가 공급하는 전원을 이용하여 에너지를 저장하고, 저장된 에너지를 이용하여 구동되는 부하(예컨대 전기 자동차)일 수 있다. 다만, 이는 예시적인 것으로 본 발명의 사상이 이에 한정되는 것은 아니다.In this specification, the
전술한 바와 같이 둘 이상의 대전류 경로(111, 112) 각각은 제2 장치(200)에 의해 공급되는 전원, 즉 제2 전류(I21, I22)를 제1 장치(300)에 전달하는 경로일 수 있는 데, 일 실시예에 따르면, 제2 전류(I21, I22)는 제2 주파수 대역의 주파수를 갖는 교류 전류일 수 있다. 이때 제2 주파수 대역은 가령 50Hz 내지 60Hz의 범위를 갖는 대역일 수 있다.As described above, each of the two or more high
또한, 둘 이상의 대전류 경로(111, 112) 각각은 제1 장치(300)에서 발생한 노이즈, 즉 제1 전류(I11, I12)의 적어도 일부가 제2 장치(200)에 전달되는 경로일 수도 있다. 이때 제1 전류(I11, I12)는 둘 이상의 대전류 경로(111, 112) 각각에 대해 공통 모드(Common Mode)로 입력 될 수 있다. In addition, each of the two or more high
제1 전류(I11, I12)는 다양한 원인에 의해 제1 장치(300)에서 의도치 않게 발생되는 전류일 수 있다. 가령 제1 전류(I11, I12)는 제1 장치(300)와 주변 환경 사이의 가상의 커패시턴스(Capacitance)에 의해 발생되는 노이즈 전류일 수 있다. The first currents I11 and I12 may be currents unintentionally generated in the
제1 전류(I11, I12)는 제1 주파수 대역의 주파수를 갖는 전류일 수 있다. 이때 제1 주파수 대역은 전술한 제2 주파수 대역보다 높은 주파수 대역을 가질 수 있는 데, 예컨대 150KHz 내지 30MHz의 범위를 갖는 대역일 수 있다. The first currents I11 and I12 may be currents having a frequency in the first frequency band. In this case, the first frequency band may have a higher frequency band than the aforementioned second frequency band, for example, may be a band having a range of 150 KHz to 30 MHz.
한편, 둘 이상의 대전류 경로(111, 112)는 도 1에 도시된 바와 같이 두 개의 경로를 포함할 수도 있고, 도 8 및 도 9에 도시된 바와 같이 세 개의 경로 또는 네 개의 경로를 포함할 수도 있다. 대전류 경로(111, 112)의 수는 제1 장치(300) 및/또는 제2 장치(200)가 사용하는 전원의 종류 및/또는 형태에 따라 달라질 수 있다.Meanwhile, two or more high
한편, 센싱부(120)는 둘 이상의 대전류 경로(111, 112) 상의 제1 전류(I11, I12)를 감지하고, 제1 전류(I11, I12)에 대응되는 출력 신호를 생성할 수 있다. 바꾸어 말하면 센싱부(120)는 대전류 경로(111, 112) 상의 제1 전류(I11, I12)를 감지하는 수단을 의미할 수 있다. Meanwhile, the
일 실시예에 따르면, 센싱부(120)는 적어도 둘 이상의 대전류 경로가 삽입되는 관통 개구를 구비할 수 있다. 센싱부(120)는 삽입된 둘 이상의 대전류 경로 상의 제1 전류를 감지하여, 감지된 제1 전류에 대응되는 출력 신호를 생성할 수 있다.According to an embodiment, the
일 실시예에서, 센싱부(120)는 관통 개구를 구비하고, 적어도 둘 이상의 대전류 경로 상의 제1 전류에 의해 생성된 자속 밀도에 기초하여 출력 신호를 생성하는 코어를 포함하는 센싱 변압기로 구현될 수 있다. 이때 코어는 개폐 가능한 클램프 구조로, 개방 상태에서 적어도 둘 이상의 대전류 경로 각각이 내측에 삽입되도록 구현될 수 있다. In one embodiment, the
본 발명에서 '클램프(clamp) 구조'는, 코어의 외측 일부분이 개폐 가능하도록 구성된 구조를 의미할 수 있다. 예를 들어, 클램프 구조의 코어 외측 일부분은 개방 상태에서 대전류 경로(111, 112)가 관통 개구에 삽입되도록 구성될 수 있다. 이후, 개방된 코어의 외측 일부분은 폐쇄되어 삽입된 대전류 경로(111, 112)가 이탈하지 못하도록 할 수 있다. In the present invention, the'clamp structure' may mean a structure configured to open and close an outer part of the core. For example, the outer portion of the core of the clamp structure may be configured such that the high
다만, 전술한 바와 같은 센싱부(120)에 대한 설명은 예시적인 것으로, 본 발명의 사상이 이에 한정되는 것은 아니다. 따라서 감지하고자 하는 전류가 흐르는 경로(또는 도선)가 '삽입'되는 형태로 경로(또는 도선)와 결합되는 전류 감지 수단은 본 발명의 센싱부(120)로 제한 없이 사용될 수 있다. However, the description of the
일 실시예에 따르면, 센싱부(120)는 후술하는 증폭부(130)의 입력단과 차동(Differential)으로 연결될 수 있다. According to an embodiment, the
증폭부(130)는 센싱부(120)가 출력한 출력 신호를 증폭하여, 증폭 신호를 생성할 수 있다. 본 발명에서 증폭부(130)에 의한 '증폭'은 증폭 대상의 크기 및/또는 위상을 조절하는것을 의미할 수 있다. The
증폭부(130)의 증폭에 의해, 전류 보상 장치(100)는 제1 전류(I11, I12)와 크기가 동일하고 위상이 반대인 보상 전류(IC1, IC2)를 생성하여 대전류 경로(111, 112) 상의 제1 전류(I11, I12)를 보상할 수 있다.By the amplification of the
증폭부(130)는 다양한 수단으로 구현될 수 있다. 일 실시예에에서 증폭부(130)는 OP-AMP를 포함할 수 있다. 다른 실시예에에서 증폭부(130)는 OP-AMP 이외에 저항과 커패시터 등 복수의 수동 소자들을 포함할 수 있다. 또 다른 실시예서, 증폭부(130)는 BJT(Bipolar Junction Transistor)를 포함하는 적어도 하나의 증폭 소자 및 수동 소자(예를 들면, 저항, 커패시터 등)를 포함할 수 있다. 예를 들어, 본 발명의 증폭부(130)는 npn타입 BJT 및 pnp타입 BJT를 직렬로 연결한 push-pull 증폭기를 포함할 수 있다.The
본 발명의 일 실시예에 따르면, 증폭부(130)는 증폭 소자의 증폭 비율을 조절하기 위한 적어도 하나의 임피던스를 포함할 수 있다. 다만 증폭부(130)의 위와 같은 구현 방식은 예시적인 것으로 본 발명의 사상이 이에 한정되는 것은 아니며, 본 발명에서 설명하는 '증폭'을 위한 수단은 본 발명의 증폭부(130)로 제한 없이 사용될 수 있다. 증폭부(130)에 대한 상세한 설명은 도 6a 내지 도 6b를 참조하여 후술한다.According to an embodiment of the present invention, the amplifying
한편, 증폭부(130)는 제1 장치(300) 및/또는 제2 장치(200)와 구분되는 제3 장치(400)로부터 전원을 공급받아, 센싱부가 출력한 출력신호를 증폭하여 증폭 전류를 생성할 수 있다. 이때 제3 장치(400)는 제1 장치(300) 및 제2 장치(200)와 무관한 전원으로부터 전원을 공급받아 증폭부(130)의 입력 전원을 생성하는 장치일 수 있다. 선택적으로 제3 장치(400)는 제1 장치(300) 및 제2 장치(200) 중 어느 하나의 장치로부터 전원을 공급받아 증폭부(130)의 입력 전원을 생성하는 장치일 수 있고, 예를 들어 제3 장치(400)는 직류 전원을 인가하는 장치일 수 있다. .On the other hand, the
보상부(140)는 증폭부(130)에 전기적으로 연결되고, 전술한 증폭부(130)에 의해 증폭된 출력 신호에 기초하여 보상 전류를 생성할 수 있다.The
보상부(140)는 증폭부(130)의 출력단과 증폭부(130)의 기준전위(기준전위 2)를 연결하는 경로와 전기적으로 연결되어 보상 전류를 생성할 수 있다. 보상부(140)는 보상 커패시터부(150) 및 전류 보상 장치(100)의 기준전위(기준전위 1)를 연결하는 경로와 전기적으로 연결될 수 있다. 증폭부(130)의 기준전위(기준전위 2)와 전류 보상 장치(100)의 기준전위(기준전위 1)는 서로 구분되는 전위일 수 있다.The
보상 커패시터부(150)는 보상부(140)에 의해 생성된 보상 전류가 둘 이상의 대전류 경로 각각으로 흐르는 경로를 제공할 수 있다.The
일 실시예에 따르면, 보상 커패시터부(150)는 보상부(140)에 의해 생성된 전류가 둘 이상의 대전류 경로(111, 112) 각각으로 흐르는 경로를 제공하는 보상 커패시터부(150)로 구현될 수 있다. 이때 보상 커패시터부(150)는 전류 보상 장치(100)의 기준전위(기준전위 1)와 둘 이상의 대전류 경로(111, 112) 각각을 연결하는 적어도 둘 이상의 보상 커패시터를 포함할 수 있다.According to an embodiment, the
상기와 같이 구성된 전류 보상 장치(100)는 둘 이상의 대전류 경로(111, 112) 상의 특정 조건의 전류를 감지하고 이를 능동적으로 보상할 수 있고, 장치(100)의 소형화에도 불구하고 고전류, 고전압 및/또는 고전력 시스템에 적용될 수 있다.The current compensating
이하에서는 도 2 내지 도 10을 도 1과 함께 참조하여, 다양한 실시예에 따른 전류 보상 장치(100)를 설명한다.Hereinafter, a
도 2는 본 발명의 일 실시예에 따른 제2 선 시스템에 사용되는 전류 보상 장치(100A)의 구성을 개략적으로 도시한 도면이다. 2 is a diagram schematically showing the configuration of a current compensating
본 발명의 일 실시예에 따른 전류 보상 장치(100A)는 제1 장치(300A)와 연결되는 두 개의 대전류 경로(111A, 112A) 각각에 공통 모드로 입력되는 제1 전류(I11, I12)를 능동적으로 보상할 수 있다. The current compensating
이를 위해 본 발명의 일 실시예에 따른 전류 보상 장치(100A)는 두 개의 대전류 경로(111A, 112A), 센싱 변압기(120A), 증폭부(130A), 보상 변압기(140A) 및 보상 커패시터부(150A)를 포함할 수 있다.To this end, the
일 실시예에서, 전술한 센싱부(120)는 센싱 변압기(120A)를 포함할 수 있다. 이때 센싱 변압기(120A)는 대전류 경로(111A, 112A)와 절연된 상태에서 대전류 경로(111A, 112A) 상의 제1 전류(I11, I12)를 감지하기 위한 수단일 수 있다. In one embodiment, the above-described
센싱 변압기(120A)는 대전류 경로(111A, 112A) 상에 배치되는 제1 차 측(121A)에서, 제1 전류(I11, I12)에 의해 유도되는 제1 자속 밀도에 기초하여 제2 차 측(122A)에 제1 유도 전류를 생성할 수 있다. 이때 센싱 변압기(120A)의 제2 차 측(122A)은 후술하는 증폭부(130)의 입력단과 차동(Differential)으로 연결될 수 있다. The
도 3a 및 3b는 본 발명의 일 실시예에 따른 센싱부(120)가 센싱 변압기(120A)로 구현된 경우의 동작을 설명하기 위한 도면이다.3A and 3B are views for explaining an operation when the
특히, 도 3a는 센싱 변압기(120A)가 제1 유도 전류(ID1)를 생성하는 원리를 설명하기 위한 도면이다.In particular, FIG. 3A is a diagram for explaining a principle in which the
설명의 편의를 위하여 센싱 변압기(120A)의 제1 차측(121A)과 제2 차 측(122A)이 도 3a에 도시된 바와 같이 구성됨을 전제로 설명한다. 바꾸어 말하면 센싱 변압기(120A)의 코어(123A)에 대전류 경로(111A, 112A) 및 제2 차측(122A) 권선이 자속 및/또는 자속 밀도의 생성 방향을 고려하여 권취되어 있음을 전제로 설명한다.For convenience of explanation, it is assumed that the
대전류 경로(111A)에 제1 전류(I11)가 입력됨에 따라 코어(123A)에는 자속 밀도(B11)가 유도될 수 있다. 이와 유사하게, 대전류 경로(112A)에 제1 전류(I12)가 입력 됨에 따라 코어(123A)에는 자속 밀도(B12)가 유도될 수 있다. As the first current I11 is input to the high
유도된 자속 밀도(B11, B12)에 의해 제2 차측(122A) 권선에는 제1 유도 전류(ID1)가 유도될 수 있다.The first induced current ID1 may be induced in the winding of the second
이와 같이 센싱 변압기(120A)는 제1 전류(I11, I12)에 의해 유도되는 제1 자속 밀도(B11, B12)가 서로 중첩될 수 있게(또는 서로 보강할 수 있게) 구성되어, 둘 이상의 대전류 경로(111A, 112A)와 절연된 제2 차 측(122A)에서 제1 전류(I11, I12)와 대응되는 제1 유도 전류(ID1)를 생성할 수 있다.In this way, the
한편, 센싱 변압기(120A)는 둘 이상의 대전류 경로(111A, 112A) 각각에 흐르는 제2 전류(I21, I22)에 의해 유도되는 제2 자속 밀도가 소정의 자속 밀도 조건을 만족하도록 구성될 수 있다.Meanwhile, the
도 3b는 제2 전류(I21, I22)에 의해 센싱 변압기(120A)에 유도되는 제2 자속 밀도(B21, B22)를 설명하기 위한 도면이다.3B is a diagram for describing second magnetic flux densities B21 and B22 induced in the
도 3a에서와 마찬가지로, 센싱 변압기(120A)의 제1 차측(121A)과 제2 차 측(122A)이 도 3b에 도시된 바와 같이 구성됨을 전제로 설명한다. 바꾸어 말하면 센싱 변압기(120A)의 코어(123A)에 둘 이상의 대전류 경로(111A, 112A) 및 제2 차측(122A) 권선이 자속 및/또는 자속 밀도의 생성 방향을 고려하여 권취되어 있음을 전제로 설명한다.As in FIG. 3A, a description will be made on the premise that the
대전류 경로(111A)에 제2 전류(I21)가 입력됨에 따라 코어(123A)에는 자속 밀도(B21)가 유도될 수 있다. 이와 유사하게, 대전류 경로(112A)에 제2 전류(I22)가 입력(또는 출력) 됨에 따라 코어(123A)에는 자속 밀도(B22)가 유도될 수 있다. As the second current I21 is input to the high
센싱 변압기(120A)는 제2 전류(I21, I22)(둘 이상의 대전류 경로(111A, 112A) 각각에 흐르는)에 의해 유도되는 제2 자속 밀도(B21, B22)가 소정의 자속 밀도 조건을 만족하도록 구성될 수 있다. 이때 소정의 자속 밀도 조건은 도 3b에 도시된 바와 같이 서로 상쇄되는 조건일 수 있다.The
바꾸어 말하면, 센싱 변압기(120A)는 둘 이상의 대전류 경로(111A, 112A) 각각에 흐르는 제2 전류(I21, I22)에 의해 유도되는 제2 유도 전류(ID2)가 소정의 제2 유도 전류 조건을 만족하도록 구성될 수 있다. 이때 소정의 제2 유도 전류 조건은 제2 유도 전류(ID2)의 크기가 소정의 임계 크기 미만인 조건일 수 있다.In other words, in the
이와 같이 센싱 변압기(120A)는 제2 전류(I21, I22)에 의해 유도되는 제2 자속 밀도(B21, B22)가 서로 상쇄될 수 있게 구성되어, 제1 전류(I11, I12)만이 감지되도록 할 수 있다.In this way, the
센싱 변압기(120A)는 제1 주파수 대역(예를 들어 150KHz 내지 30MHz의 범위를 갖는 대역)의 제1 전류(I11, I12)에 의해 유도되는 제1 자속 밀도(B11, B12)의 크기가 제2 주파수 대역(예를 들어 50Hz 내지 60Hz의 범위를 갖는 대역)의 제2 전류(I21, I22)에 의해 유도되는 제2 자속 밀도(B21, B22)의 크기보다 크도록 구성될 수 있다. The
본 발명에서 A 구성요소가 B 하도록 '구성'되는 것은, A 구성요소의 디자인 파라미터가 B 하기에 적절하도록 설정되는 것을 의미할 수 있다. 가령 센싱 변압기(120A)가 특정 주파수 대역의 전류에 의해 유도되는 자속의 크기가 크도록 구성되는 것은, 센싱 변압기(120A)의 크기, 코어의 직경, 권취 수, 인덕턴스의 크기 상호 인덕턴스의 크기와 같은 파라미터가 특정 주파수 대역의 전류에 의해 유도되는 자속의 크기가 강하도록 적절하게 설정된 것을 의미할 수 있다.In the present invention, when component A is'configured' to be B, it may mean that the design parameter of component A is set to be appropriate for B. For example, the
센싱 변압기(120A)의 제2 차 측(122A)은 증폭부(130A)에 제1 유도 전류를 공급하기 위해, 도 2에 도시된 바와 같이 증폭부(130A)의 입력단과 차동(Differential)으로 연결될 수 있다. 또한 증폭부(130A)의 구성에 따라, 센싱 변압기(120A)의 제2 차 측(122A)은 증폭부(130A)의 입력단과 증폭부(130A)의 기준전위(기준전위 2)를 연결하는 경로상에 배치될 수도 있다.The
한편, 위에서 바와 같이 센싱부(120)가 센싱 변압기(120A)로 구현되는 것은 예시적인 것으로 본 발명의 사상이 이에 한정되는 것은 아니다. 따라서 대전류 경로(111A, 112A) 상에서 공통 모드로 입력되는 제1 전류(I11, I12)만을 감지할 수 있는 수단은 센싱부(120)로 제한 없이 사용될 수 있다.Meanwhile, as described above, the
다만, 이는 예시적인 것으로 본 발명의 사상이 이에 한정되는 것은 아니다. 즉, 대전류 경로(111A, 112A) 및 제2 차측(122A) 권선이 코어(123A)에 권취되는 수는 전류 보상 장치(100A)가 사용되는 시스템의 요구 조건에 따라 적절하게 결정될 수 있다.However, this is an example and the spirit of the present invention is not limited thereto. That is, the number of windings of the high
본 발명의 일 실시예에 따르면, 센싱 변압기(120A)는 관통 개구를 구비하고, 적어도 둘 이상의 대전류 경로 상의 제1 전류에 의해 생성된 자속 밀도에 기초하여 출력 신호를 생성하는 코어를 포함할 수 있다. 이때 코어는 개폐 가능한 클램프 구조로, 개방 상태에서 적어도 둘 이상의 대전류 경로(111A, 112A) 각각이 내측에 삽입될 수 있다. According to an embodiment of the present invention, the
도 4a 및 도 4b는 개폐 가능한 클램프 구조의 코어(123A)를 포함하는 센싱 변압기(120A)를 설명하기 위한 도면이다. 4A and 4B are views for explaining a
도 4a를 참조하면, 센싱부(120)는 클램프 구조의 코어(123A)를 포함하는 센싱 변압기(120A)로 구현될 수 있다. 센싱 변압기(120A)의 개구에는 도시된 바와 같이 대전류 경로(111A, 112A)가 삽입될 수 있다. Referring to FIG. 4A, the
이하에서는 센싱 변압기(120A)의 코어(123A)에 대전류 경로(111A, 112A) 및 제2 차측(122A) 권선이 자속 및/또는 자속 밀도의 생성 방향을 고려하여 삽입(또는 권취)되어 있음을 전제로 설명한다. Hereinafter, it is assumed that the high
대전류 경로(111A)에 제1 전류(I11)가 입력됨에 따라 코어(123A)에는 자속 밀도(B11)가 유도될 수 있다. 이와 유사하게, 대전류 경로(112A)에 제1 전류(I12)가 입력됨에 따라 코어(123A)에는 자속 밀도(B12)가 유도될 수 있다. 유도된 자속 밀도(B11, B12)에 의해 제2 차측(122A) 권선에는 제1 유도 전류(ID1)가 유도될 수 있다.As the first current I11 is input to the high
이와 같이 센싱 변압기(120A)는 제1 전류(I11, I12)에 의해 유도되는 제1 자속 밀도(B11, B12)가 서로 중첩될 수 있게(또는 서로 보강할 수 있게) 구성되어, 둘 이상의 대전류 경로(111A, 112A)와 절연된 제2 차 측(122A)에서 제1 전류(I11, I12)와 대응되는 제1 유도 전류(ID1)를 생성할 수 있다.In this way, the
한편, 센싱 변압기(120A)는 둘 이상의 대전류 경로(111A, 112A) 각각에 흐르는 제2 전류(I21, I22)에 의해 유도되는 제2 자속 밀도가 소정의 자속 밀도 조건을 만족하도록 구성될 수 있다.Meanwhile, the
도 4b는 본 발명의 센싱 변압기(120A)의 제1 차측(121A)에 대전류 경로(111A, 112A)가 1회 권취된 경우, 제2 전류(I21, I22)에 의해 센싱 변압기(120A)에 유도되는 제2 자속 밀도(B21, B22)를 설명하기 위한 도면이다.4B is a case in which the high
도 4b를 참조하면, 센싱부(120)는 클램프 구조의 코어(123A)를 포함하는 센싱 변압기(120A)로 구현될 수 있다. 도 4a에서와 마찬가지로, 센싱 변압기(120A)의 개구에는 도시된 바와 같이 대전류 경로(111A, 112A)가 삽입될 수 있다. Referring to FIG. 4B, the
도 3b와 마찬가지로 센싱 변압기(120A)는 둘 이상의 대전류 경로(111A, 112A) 각각에 흐르는 제2 전류(I21, I22)에 의해 유도되는 제2 유도 전류(ID2)가 소정의 제2 유도 전류 조건을 만족하도록 구성될 수 있다. 이때 소정의 제2 유도 전류 조건은 제2 유도 전류(ID2)의 크기가 소정의 임계 크기 미만인 조건일 수 있다.As in FIG. 3B, the
이와 같이 센싱 변압기(120A)는 제2 전류(I21, I22)에 의해 유도되는 제2 자속 밀도(B21, B22)가 서로 상쇄될 수 있게 구성되어, 제1 전류(I11, I12)만이 감지되도록 할 수 있다.In this way, the
다만, 이는 예시적인 것으로 본 발명의 사상이 이에 한정되는 것은 아니다. However, this is an example and the spirit of the present invention is not limited thereto.
본 발명의 일 실시예에 따른 센싱 변압기(120A)는 대전류 경로(111A, 112A) 및 제2 차측(122A) 권선 모두 코어(123A)에 삽입될 수 있다. 이러한 경우 대전류 경로(111A, 112A) 및 제2 차측(122A) 권선이 단지 코어(123A)의 개구를 통과하는 형태로 센싱 변압기(120A)가 구성될 수 있다. In the
도 4a 및 도 4b에 개시된 본 발명의 실시예에 따르면, 코어(123A)는 대전류 경로(111A, 112A)를 중앙 개구에 통과 또는 삽입하기 위해 일 부분이 개폐 가능한 클램프(clamp) 구조일 수 있다. According to the embodiment of the present invention disclosed in FIGS. 4A and 4B, the
본 발명의 클램프 형 코어(123A)는 개방된 상태에서 중앙 관통 개구에 대전류 경로(111A, 112A)가 통과하여 지나갈 수 있도록 구성될 수 있고, 대전류 경로(111A, 112A)가 삽입된 이후 코어(123A)의 개방된 부분을 패쇄될 수 있다. 다만 이는 일 예에 불과하고, 코어(123A)는 대전류 경로(111A, 112A)가 관통 개구에 삽입 될 수 있는 다양한 형상으로 구현될 수 있다. 예를 들면, 코어(123A)는 도 4a 및 도 4b에 도시된 바와 같은 원형 외에, 사각형의 형태로 구현될 수 있다. The clamp-
이와 같이 본 발명은 코어(123A)에 대전류 경로(111A, 112A)가 단순히 삽입(또는 단순히 통과) 하도록 구성되어, 코어(123A)에 대전류 경로(111A, 112A)를 수번 권취하는 센싱부(120)와 비교했을 때 그 크기를 획기적으로 감소시킬 수 있다. As described above, the present invention is configured to simply insert (or simply pass) the high
특히, 고전력/고전류 시스템에서는 대전류 경로(111A, 112A)로써, 두꺼운 구리 도선과 같이 가공이 용이하기 않은 소재를 사용하기 때문에, 대전류 경로(111A, 112A)가 코어(123A)에 단순히 삽입되도록 함으로써, 고전력/고전류 시스템을 이용하는 제품의 생산성 및 조립성을 향상시킬 수 있다.In particular, in a high power/high current system, since a material that is not easy to process such as a thick copper conductor is used as the high
증폭부(130A)는 전술한 센싱부(120)가 출력한 출력 신호를 증폭하여, 증폭된 출력 신호를 생성할 수 있다. The amplifying
일 실시예에서, 증폭부(130)는 센싱 변압기(120A)에 의해 생성된 제1 유도 전류를 증폭하여 증폭 전류를 생성하는 증폭부(130A)로 구현될 수 있다.In one embodiment, the amplifying
본 발명에서 증폭부(130)에 의한 '증폭'은 증폭 대상의 크기 및/또는 위상을 조절하는 것을 의미할 수 있다. 가령 증폭부(130A)는 제1 유도 전류의 위상을 180도 변경하고, 크기를 K배(K>=1) 만큼 증가시켜 증폭 전류를 생성할 수 있다.In the present invention,'amplification' by the amplifying
이와 같은 증폭부(130A)의 증폭에 의해, 전류 보상 장치(100A)는 제1 전류(I11, I12)와 크기가 동일하고 위상이 반대인 보상 전류(IC1, IC2)를 생성하여 대전류 경로(111A, 112A) 상의 제1 전류(I11, I12)를 보상할 수 있다.By the amplification of the amplifying
증폭부(130A)는 전술한 센싱 변압기(120A)의 변압 비율 및 후술하는 보상부 (140) 의 변압 비율을 고려하여 증폭 전류를 생성할 수 있다. 즉, 증폭부(130A)는 센싱부(120)에 포함된 센싱 변압기(120A)의 변압비에 따른 전류 증폭도와 보상부(140)에 포함된 보상 변압기(140A)의 변압비에 따른 전류 증폭도를 기초로 증폭도를 설정할 수 있다.The
구체적으로 센싱 변압기(120A)가 크기가 1인 제1 전류(I11, I12)를 크기가 1/F1인 제1 유도 전류로 변환하고, 보상부(140)가 크기가 1인 증폭 전류를 크기가 1/F2인 보상 전류로 변환하는 보상 변압기(140A)로 구현되는 경우, 증폭부(130A)는 센싱 변압기(120A)의 전류 증폭도와 보상 변압기(140A)의 전류 증폭도를 고려하여 제1 유도 전류의 F1xF2배인 증폭 전류를 생성할 수 있다. 이때 증폭부(130A)는 증폭 전류의 위상이 제1 유도 전류의 위상과 반대가 되도록 증폭 전류를 생성할 수 있다.Specifically, the
증폭부(130A)는 다양한 수단으로 구현될 수 있다. 가령 증폭부(130A)는 OP-AMP를 포함할 수 있다. 선택적으로 상기 증폭부(130A)는 OP-AMP 이외에 저항과 커패시터 등 복수의 수동 소자들을 포함할 수 있다. 또한 증폭부(130A)는 BJT(Bipolar Junction Transistor)를 포함할 수 있다. 선택적으로 상기 증폭부(130A)는 BJT 외에 복수의 수동 소자 및 추가적인 임피던스를 포함할 수 있다. 다만 증폭부(130A)의 위와 같은 구현 방식은 예시적인것으로 본 발명의 사상이 이에 한정되는 것은 아니며, 본 발명에서 설명하는 '증폭'을 위한 수단은 본 발명의 증폭부(130A)로 제한 없이 사용될 수 있다.The
도 5a 및 5b는 본 발명의 일 실시예에 따른 증폭부(130A)가 BJT(Bipolar Junction Transistor) 및 복수의 수동 소자들로 구현된 것을 설명하기 위한 도면이다. 5A and 5B are diagrams for explaining that the amplifying
도 5a를 참조하면, 증폭부(130A)는 양의 신호를 증폭하는 제1 증폭 소자 및 음의 신호를 증폭하는 제2 증폭 소자를 포함할 수 있다. 가령, 증폭부(130A)는 npn타입 BJT, pnp타입 BJT를 포함하는 증폭 소자를 활용한 push-pull 증폭기로 구현될 수 있다. Referring to FIG. 5A, the amplifying
구체적으로, 노이즈로 인한 전압이 0보다 큰 포지티브 스윙(positive swing)의 경우, npn타입 BJT를 포함하는 증폭 소자가 동작할 수 있다. 이때 동작 전류는 npn타입 BJT 경로를 통해 흐를 수 있다. 노이즈로 인한 전압이 0보다 작은 네거티브 스윙(negative swing)의 경우, pnp타입 BJT를 포함하는 증폭 소자가 동작할 수 있다. 이 때 동작 전류는 pnp타입 BJT 경로를 통해 흐를 수 있다.Specifically, in the case of a positive swing in which a voltage due to noise is greater than 0, an amplifying element including an npn-type BJT may operate. At this time, the operating current may flow through the npn-type BJT path. In the case of a negative swing in which the voltage due to noise is less than 0, an amplifying element including a pnp type BJT can operate. At this time, the operating current can flow through the pnp type BJT path.
증폭부(130A)의 push-pull 증폭기는 npn타입 BJT, pnp타입 BJT, BJT 각각의 에미터(Emitter) 단의 커패시터(Ce), BJT 각각의 베이스(Base) 단의 커패시터(Cb), BJT 각각의 콜렉터(Collector) 단의 저항(Rnpn, Rpnp), 두 개의 BJT의 에미터 단의 저항(Re), 두 개의 BJT의 베이스 단의 저항(Rbb)을 포함할 수 있다. The push-pull amplifier of the
두 개의 BJT 각각의 에미터(Emitter) 단의 커패시터(Ce)의 제1 단은 센싱 변압기(120A)의 제2 차측(122A)과 연결되고, 제2 단은 BJT 각각의 에미터(Emitter) 단에 연결된 것일 수 있다. The first end of the capacitor C e of the emitter end of each of the two BJTs is connected to the
BJT 각각의 콜렉터(Collector) 단의 저항(Rnpn, Rpnp), 두 개의 BJT의 에미터 단의 저항(Re), 두 개의 BJT의 베이스 단의 저항(Rbb)은 각각 BJT의 DC 동작점을 설계하기 위한 구성일 수 있다. Each BJT's collector end resistance (R npn , R pnp ), two BJT's emitter end's resistance (R e ), and two BJT's base end's resistance (R bb ) are each BJT's DC operation It may be a configuration for designing a point.
증폭부(130A)의 push-pull 증폭기는 추가적으로 CDC를 더 포함할 수 있으며, CDC는 제3 장치(400)로부터의 VDC 전압을 위한 감결합(decoupling) 커패시터일 수 있으며, npn타입 BJT, pnp타입 BJT의 콜렉터(Collector)와 연결되어 AC 신호만을 선택적으로 결합(coupling)시킬 수 있다. Push-pull amplifier of the amplifier unit (130A) may further comprise a further C DC, C DC may be a decoupling (decoupling) capacitors for V DC voltage from the third device (400), npn type BJT , It is connected to the collector of the pnp type BJT so that only the AC signal can be selectively coupled (coupling).
본 발명의 일 실시예에 따르면, push-pull 증폭기는 증폭 신호 또는 증폭 전류를 증폭 소자에 포함된 BJT의 베이스(base)로 다시 입력하는 피드백(feedback) 시스템으로 구현될 수 있다. According to an embodiment of the present invention, the push-pull amplifier may be implemented as a feedback system for inputting an amplified signal or amplified current back to the base of the BJT included in the amplifying element.
구체적으로 증폭부(130A)가 생성한 증폭 전류는 제3 자속 밀도에 기초하여 보상 전류를 제2 차 측(142A)에 유도한 후, 보상 변압기(140A)의 제1 차측(141A)을 지나 다시 센싱 변압기(120A)의 제2 차 측(122A)으로 입력될 수 있다. 즉, 센싱 변압기(120A)의 제2 차 측(122A)으로 증폭 전류가 피드백됨에 따라 push-pull 증폭기는 능동 EMI 필터 동작을 위한 일정한 전류 이득을 안정적으로 얻을 수 있다.Specifically, the amplified current generated by the amplifying
도 5b는 도 5a의 증폭기를 단순화한 도면이다. 5B is a simplified diagram of the amplifier of FIG. 5A.
도 5b를 참조하면, 센싱 변압기(120A)의 제2 차 측(122A)에 생성된 유도 전류 Ii는 증폭부(130A)에 입력되는 제1 유도 전류 또는 제1 유도 전류를 포함하는 출력 신호일 수 있다. 또한, IOBJT 는 보상 변압기(140A)의 제1 차측(141A)을 지나는 IOBJT는 증폭부(130A)에서 출력된 증폭 전류 또는 증폭 신호일 수 있다. 5B, the induced current I i generated in the
β는 BJT 소자 자체가 가지는 전류 이득으로, Ii를 IOBJT의 함수로 나타내면 수학식 1과 같다. β is the current gain of the BJT device itself, and I i is expressed as a function of I OBJT as shown in
따라서, 증폭부(130A)의 증폭도 Ai,amp는 수학식 2과 같이 나타낼 수 있다.Accordingly, the amplification degree A i,amp of the amplifying
BJT의 전류이득 β는 1보다 매우 큰 값을 가지므로(β>>1), Ai,amp는 -1로 근사될 수 있다. Since the current gain β of the BJT has a value much larger than 1 (β>>1), A i,amp can be approximated to -1.
따라서, 전류 보상 장치(100A)는 NsenNinj = 1을 만족하도록 설계됨으로써, 보상 전류로 노이즈 전류를 상쇄할 수 있다. 이때, NSEN는 센싱 변압기(120A)의 권취 수 비율 또는 변압비일 수 있고, NINJ는 보상 변압기(140A)에서 권취 수 비율 또는 변압비 일 수 있다. Accordingly, the current compensating
본 실시예의 증폭기는 출력 전류를 다시 입력으로 귀환시켜 피드백 시스템을 형성함으로써, 보다 안정적인 전류 이득을 얻을 수 있다The amplifier of this embodiment can obtain a more stable current gain by returning the output current back to the input to form a feedback system.
도 6a 및 6b는 본 발명의 다른 실시예에 따른 증폭부(130A)를 설명하기 위한 도면이다. 6A and 6B are diagrams for explaining an
도 5a와 대비하여 도 6a를 살펴보면, 본 발명의 다른 실시예에 따른 증폭부(130A)는, 전술한 제1 증폭 소자 및 제2 증폭 소자 외에, 제1 증폭 소자 및 제2 증폭 소자의 증폭 비율을 조절하는 적어도 하나의 임피던스(Z1, Z2)를 포함할 수 있다. Referring to FIG. 6A compared to FIG. 5A, the
예를 들어 증폭부(130A) 는 npn타입 BJT, pnp타입 BJT, BJT 각각의 에미터(Emitter) 단의 커패시터(Ce), BJT 각각의 베이스(Base) 단의 커패시터(Cb), BJT 각각의 콜렉터(Collector) 단의 저항(Rnpn, Rpnp), 두 개의 BJT의 에미터 단의 저항(Re), 두 개의 BJT의 베이스 단의 저항(Rbb)을 포함할 수 있다. 두 개의 BJT 각각의 에미터(Emitter) 단의 커패시터(Ce)의 제1 단은 센싱 변압기(120A)의 제2 차측(122A)과 연결되고, 제2 단은 BJT 각각의 에미터(Emitter) 단에 연결된 것일 수 있다. BJT 각각의 콜렉터(Collector) 단의 저항(Rnpn, Rpnp), 두 개의 BJT의 에미터 단의 저항(Re), 두 개의 BJT의 베이스 단의 저항(Rbb)은 각각 BJT의 DC 동작점을 설계하기 위한 구성일 수 있다. For example, the
도 5a에서 설명한 증폭부(130A)와 대비하여 살펴보면, 도 6a의 증폭기는 제1 증폭 소자 및 제2 증폭 소자의 증폭 비율을 조절하는 적어도 하나의 임피던스(Z1, Z2)를 포함할 수 있다. 제1 임피던스(Z1)와 제2 임피던스(Z2)는 각각 저항(R) 소자, 커패시터(C) 소자 또는 인덕터(L) 소자를 하나 또는 그 이상을 복합적으로 사용하여 구현된 것일 수 있다. In contrast to the
예를 들면, 제1 임피던스(Z1)와 제2 임피던스(Z2)는 각각 RC 직렬 또는 RLC 직렬로 구현될 수 있으며, 주파수에 따른 전류 보상의 위상 및 크기를 더 정교하게 보상하도록 설계될 수 있다. For example, the first impedance Z1 and the second impedance Z2 may be implemented in RC series or RLC series, respectively, and may be designed to more precisely compensate the phase and magnitude of current compensation according to frequency.
제1 임피던스(Z1)의 제1 단은 보상 변압기(140A)의 제1 차측(141A)에 연결된 것일 수 있고, 제2 단은 두 개의 BJT 각각의 에미터(Emitter) 단과 연결될 수 있다. 또한, 제2 임피던스의 제1 단은 보상 변압기(140A)의 제1 차측(141A)에 연결된 것일 수 있고, 제2 단은 BJT 각각의 베이스(Base) 단의 커패시터(Cb)에 연결된 것일 수 있다. The first end of the first impedance Z1 may be connected to the first
본 발명의 다른 실시예에 따른 증폭부(130A)의 증폭도(Aiamp)는 전술한 적어도 하나의 임피던스(Z1, Z2) 값에 따라 조절될 수 있다. 가령, 제1 임피던스(Z1)는 R1이고, 제2 임피던스(Z2)는 (n-1)R1인 경우, 증폭도(Aiamp)는 -n(n>1)로 설계가 가능할 수 있다. 이 때, n의 설계값은 소자의 특성 오차를 고려하여 튜닝이 가능하다.The amplification degree A iamp of the amplifying
도 6b는 도 6a의 증폭기를 단순화한 도면이다. 6B is a simplified diagram of the amplifier of FIG. 6A.
도 6b를 참조하면, 센싱 변압기(120A)의 제2 차 측(122A)에 생성된 제1 유도 전류 Ii는 증폭부(130A)에 입력되는 입력 전류일 수 있다. 또한, IOBJT 는 보상 변압기(140A)의 제1 차측(141A)을 지나는 증폭 전류 IOBJT는 증폭부(130A)에서 출력된 출력 전류일 수 있다.Referring to FIG. 6B, the first induced current I i generated in the second
증폭부(130A)의 증폭도 Ai,amp는 수학식 3과 같이 나타낼 수 있다.The amplification degree A i,amp of the
(β>>1, Z2 >> rπ/β, Z1 = R1, Z2 = (n-1) Z-1)(β>>1, Z2 >> rπ/β, Z1 = R 1, Z2 = (n-1) Z-1)
수학식 3과 같이, 본 발명의 증폭기는 전류 증폭도(Ai,amp) = -n (n>1)로 설계가 가능할 수 있다. 위의 예시에 따르면, 증폭도(Ai,amp)를 Nsen*Ninj 으로 설계할 수 있고, 오차를 고려하여 위의 Z1, Z2를 설정함으로써 전류 증폭도의 정밀한 튜닝이 가능할 수 있다. As shown in Equation 3, the amplifier of the present invention may be designed with a current amplification degree (Ai,amp) = -n (n>1). According to the above example, the amplification degree (Ai,amp) can be designed as Nsen*Ninj, and precise tuning of the current amplification degree can be possible by setting the above Z1 and Z2 in consideration of the error.
특히 전류 보상 장치가 도 4a 내지 도 4b에서 설명한 클램프 구조의 센싱부(120A)를 포함하는 경우 제1 전류의 센싱 이득이 크지 않으므로, 적어도 하나의 임피던스(Z1, Z2)를 적절히 조절함으로써 센싱부(120A)에 의한 이득의 저하를 보완할 수 있다.In particular, when the current compensating device includes the
한편 증폭부(130A)는 전술한 바와 같이 제3 장치(400A)로부터 전원을 공급받아 제1 유도 전류를 증폭하여 증폭 전류를 생성할 수 있다.Meanwhile, as described above, the amplifying
보상부(140)는 전술한 증폭부(130)에 의해 증폭된 출력 신호에 기초하여 보상 전류를 생성할 수 있다.The
일 실시예에서, 보상부(140)는 보상 변압기(140A)를 포함할 수 있다. 이때 보상 변압기(140A)는 전술한 대전류 경로(111A, 112A)와 절연된 상태에서, 증폭 전류에 기초하여 대전류 경로(111A, 112A) 측에(또는 후술하는 제2 차 측(142A)에) 보상 전류를 생성하기 위한 수단일 수 있다.In one embodiment, the
보다 구체적으로, 보상 변압기(140A)는 증폭부(130A)의 출력단과 차동으로 연결되는 제1 차 측(141A)에서, 증폭부(130A)가 생성한 증폭 전류에 의해 유도되는 제3 자속 밀도에 기초하여 제2 차 측(142A)에 보상 전류를 생성할 수 있다. 이때 제2 차 측(142A)은 후술하는 보상 커패시터부(150A)와 전류 보상 장치의 기준전위(기준전위 1)를 연결하는 경로상에 배치될 수 있다.More specifically, the
한편, 보상 변압기(140A)의 제1 차 측(141A), 증폭부(130A) 및 센싱 변압기(120A)의 제2 차 측(122A)은 전류 보상 장치(100A)의 나머지 구성요소들과 구분되는 기준전위(기준전위 2)와 연결될 수 있다. On the other hand, the primary side (141A) of the compensation transformer (140A), the amplification unit (130A), and the secondary side (122A) of the sensing transformer (120A) are separated from the remaining components of the current compensation device (100A). It can be connected to the reference potential (reference potential 2).
이와 같이 본 발명은 보상 전류를 생성하는 구성요소에 대해서 나머지 구성요소와 상이한 기준전위를 사용하고, 별도의 전원을 사용함으로써 보상 전류를 생성하는 구성요소가 절연된 상태에서 동작하도록 할 수 있으며, 이로써 전류 보상 장치(100A)의 신뢰도를 향상시킬 수 있다.As described above, the present invention uses a reference potential different from the remaining components for the component generating the compensation current, and by using a separate power source, the component generating the compensation current can operate in an insulated state. It is possible to improve the reliability of the current compensating
일 실시예에서, 보상 커패시터부(150)는 전술한 바와 같이 보상 변압기(140A)에 의해 생성된 전류가 두 개의 대전류 경로(111A, 112A) 각각으로 흐르는 경로를 제공하는 보상 커패시터부(150A)로 구현될 수 있다. In one embodiment, the
도 7은 보상 커패시터부(150A)를 통해 흐르는 전류(IL1, IL2)를 설명하기 위한 도면이다.7 is a diagram for explaining the currents IL1 and IL2 flowing through the
보상 커패시터부(150A)는 보상 커패시터를 통해 두 개의 대전류 경로(111A, 112A) 사이에 흐르는 전류(IL1)가 소정의 제1 전류 조건을 만족하도록 구성될 수 있다. 이때 소정의 제1 전류 조건은 전류(IL1)의 크기가 소정의 제1 임계 크기 미만인 조건일 수 있다.The
또한, 보상 커패시터부(150A)는 보상 커패시터를 통해 두 개의 대전류 경로(111A, 112A) 각각과 전류 보상 장치(100A)의 기준전위(기준전위 1) 사이에 흐르는 전류(Il2)가 소정의 제2 조건을 만족하도록 구성될 수 있다. 이때 소정의 제2 전류 조건은 전류(IL2)의 크기가 소정의 제2 임계 크기 미만인 조건일 수 있다.In addition, the
보상 커패시터부(150A)를 따라 두 개의 대전류 경로(111A, 112A) 각각으로 흐르는 보상 전류는 대전류 경로(111A, 112A) 상의 제1 전류(I11, I22)를 상쇄시켜, 제1 전류(I11, I22)가 제2 장치(200A)로 전달되는 것을 방지할 수 있다. 이때 제1 전류(I11, I22)와 보상 전류는 동일한 크기에 위상이 서로 반대인 전류일 수 있다.The compensation current flowing in each of the two large
이로써 본 발명의 일 실시예에 따른 전류 보상 장치(100A)는 제1 장치(300A)와 연결되는 두 개의 대전류 경로(111A, 112A) 각각에 공통 모드로 입력되는 제1 전류(I11, I12)를 능동적으로 보상하여, 제2 장치(200A)의 오동작이나 파손을 방지할 수 있다.Accordingly, the current compensating
도 8은 본 발명의 다른 일 실시예에 따른 전류 보상 장치(100B)의 구성을 개략적으로 도시한 도면이다. 이하에서는 도 1 내지 도 7을 참조하여 설명한 내용과 중복되는 내용의 설명은 생략한다.8 is a diagram schematically showing a configuration of a
본 발명의 다른 일 실시예에 따른 전류 보상 장치(100B)는 제1 장치(300B)와 연결되는 대전류 경로(111B, 112B, 113B) 각각에 공통 모드로 입력되는 제1 전류(I11, I12, I13)를 능동적으로 보상할 수 있다. The
이를 위해 본 발명의 다른 일 실시예에 따른 전류 보상 장치(100B)는 세 개의 대전류 경로(111B, 112B, 113B), 센싱 변압기(120B), 증폭부(130B), 보상 변압기(140B), 보상 커패시터부(150B)를 포함할 수 있다.To this end, the
도 2 내지 도 7에서 설명한 실시예에 따른 전류 보상 장치(100A)와 대비하여 살펴보면, 도 8에 도시된 실시예에 따른 전류 보상 장치(100B)는 세 개의 대전류 경로(111B, 112B, 113B)를 포함하고, 이에 따라 센싱 변압기(120B) 및 보상 커패시터부(150B)의 차이점이 있다. 따라서 이하에서는 상술한 차이점을 중심으로 전류 보상 장치(100B)에 대해 설명한다. Looking in comparison with the current compensating
본 발명의 다른 일 실시예에 따른 전류 보상 장치(100B)는 서로 구분되는 제1 대전류 경로(111B), 제2 대전류 경로(112B) 및 제3 대전류 경로(113B)를 포함할 수 있다. 일 실시예에 따르면, 상기 제1 대전류 경로(111B)는 R상, 상기 제2 대전류 경로(112B)는 S상, 상기 제3 대전류 경로(113B)는 T상의 전력선일 수 있다. 제1 전류(I11, I12, I13)는 제1 대전류 경로(111B), 제2 대전류 경로(112B) 및 제3 대전류 경로(113B) 각각에 공통 모드로 입력될 수 있다.The
본 발명의 다른 일 실시예에 따른 센싱 변압기(120B)의 제1 차 측(121B)은 제1 대전류 경로(111B), 제2 대전류 경로(112B) 및 제3 대전류 경로(113B) 각각에 배치되어 제1 유도 전류를 생성할 수 있다. 세 개의 대전류 경로(111B, 112B, 113B) 상의 제1 전류(I11, I12, I13)에 의해 센싱 변압기(120B)에 생성되는 자속 밀도는 서로 보강될 수 있다. 제1 전류(I11, I12, I13)에 의해 제1 유도 전류가 생성되는 과정은 도 3a 에서 설명하였으므로, 이에 대한 상세한 설명은 생략한다.The
한편, 도 8과 같이 전류 보상 장치(100B)가 세 개의 대전류 경로(111B, 112B, 113B)를 포함하는 경우, 도 4a 및 4b와 같은 클램프 형 센싱부를 사용하면 종래의 센싱 변압기를 사용할 때에 비하여 센싱부 크기 및 전류 보상 장치(100B) 크기의 감소 효과를 극대화할 수 있다. On the other hand, when the current compensating
한편, 본 발명의 다른 일 실시예에 따른 보상 커패시터부(150B)는 보상 변압기에 의해 생성된 보상 전류(IC1, IC2, IC3)가 제1 대전류 경로(111B), 제2 대전류 경로(112B) 및 제3 대전류 경로(113B) 각각으로 흐르는 경로를 제공할 수 있다.Meanwhile, in the
이와 같은 실시예에 따른 전류 보상 장치(100B)는 3상 3선의 전력 시스템의 부하에서 전원으로 이동하는 제1 전류(I11, I12, I13)를 상쇄시키기 위해(또는 차단하기 위해)사용될 수 있다.The current compensating
도 9는 본 발명의 또 다른 일 실시예에 따른 전류 보상 장치(100C)의 구성을 개략적으로 도시한 도면이다. 이하에서는 도 1 내지 도 8을 참조하여 설명한 내용과 중복되는 내용의 설명은 생략한다.9 is a diagram schematically showing the configuration of a current compensating
실시예에 따른 전류 보상 장치(100C)는 제1 장치(300C)와 연결되는 대전류 경로(111C, 112C, 113C, 114C) 각각에 공통 모드로 입력되는 제1 전류(I11, I12, I13, I14)를 능동적으로 보상할 수 있다. The current compensating
이를 위해 실시예에 따른 전류 보상 장치(100C)는 네 개의 대전류 경로(111C, 112C, 113C, 114C), 센싱 변압기(120C), 증폭부(130C), 보상 변압기(140C), 보상 커패시터부(150C)를 포함할 수 있다.To this end, the
도 2 내지 도 7에서 설명한 실시예에 따른 전류 보상 장치(100A) 및 도 5에서 설명한 실시예에 따른 전류 보상 장치(100B)와 대비하여 살펴보면, 도 9에 도시된 실시예에 따른 전류 보상 장치(100C)는 네 개의 대전류 경로(111C, 112C, 113C, 114C)를 포함하고, 이에 따라 센싱 변압기(120C) 및 보상 커패시터부(150C)부 상의 차이점이 있다. 따라서 이하에서는 상술한 차이점을 중심으로 전류 보상 장치(100C)에 대해 설명한다. Looking at the current compensating
먼저, 실시예에 따른 전류 보상 장치(100C)는 서로 구분되는 제1 대전류 경로(111C), 제2 대전류 경로(112C), 제3 대전류 경로(113C) 및 제4 대전류 경로(114C)를 포함할 수 있다. 일 실시예에 따르면, 상기 제1 대전류 경로(111C)는 R상, 상기 제2 대전류 경로(112C)는 S상, 상기 제3 대전류 경로(113C는 T상, 상기 제4 대전류 경로(114C)는 N상의 전력선일 수 있다. 제1 전류(I11, I12, I13, I14)는 제1 대전류 경로(111C), 제2 대전류 경로(112C), 제3 대전류 경로(113C) 및 제4 대전류 경로(114C) 각각에 공통 모드로 입력될 수 있다.First, the
실시예에 따른 센싱 변압기(120C)의 제1 차 측(121C)은 제1 대전류 경로(111C), 제2 대전류 경로(112C), 제3 대전류 경로(113C) 및 제4 대전류 경로(114C) 각각에 배치되어 제1 유도 전류를 생성할 수 있다. 네 개의 대전류 경로(111C, 112C, 113C, 114C) 상의 제1 전류(I11, I12, I13, I14)에 의해 센싱 변압기(120C)에 생성되는 자속 밀도는 서로 보강될 수 있다. 제1 전류(I11, I12, I13, I14)에 의해 제1 유도 전류가 생성되는 과정은 도 4a 에서 설명하였으므로, 이에 대한 상세한 설명은 생략한다.The
한편, 실시예에 따른 보상 커패시터부(150C)는 보상 변압기에 의해 생성된 보상 전류(IC1, IC2, IC3, IC4)가 제1 대전류 경로(111C), 제2 대전류 경로(112C), 제3 대전류 경로(113C) 및 제4 대전류 경로(114C) 각각으로 흐르는 경로를 제공할 수 있다.Meanwhile, in the
이와 같은 실시예에 따른 전류 보상 장치(100C)는 3상 4선의 전력 시스템의 부하에서 전원으로 이동하는 제1 전류(I11, I12, I13, I14)를 상쇄시키기 위해(또는 차단하기 위해)사용될 수 있다.The
이 경우에도, 도 4a 및 4b와 같은 클램프 형 센싱부를 사용하면 종래의 센싱 변압기를 사용할 때에 비하여 센싱부 크기 및 전류 보상 장치(100C) 크기의 감소 효과를 더 극대화할 수 있다. Even in this case, when the clamp-type sensing unit as shown in FIGS. 4A and 4B is used, the effect of reducing the size of the sensing unit and the size of the current compensating
도 10은 도 8에 도시된 실시예에 따른 전류 보상 장치(100B)가 사용되는 시스템의 구성을 구략적으로 도시한 도면이다.10 is a diagram schematically showing the configuration of a system in which the
실시예에 따른 전류 보상 장치(100B)는 제2 장치(200B)와 제1 장치(300B)를 연결하는 대전류 경로 상에서 하나 이상의 다른 보상 장치(500)와 사용될 수 있다.The
가령 실시예에 따른 전류 보상 장치(100B)는 공통 모드(Common Mode)로 입력되는 제1 전류를 보상하는 보상 장치 1(510)과 함께 사용될 수 있다. 이때 보상 장치 1(510)은 보상 장치(100B)와 유사하게 능동 소자로 구현될 수도 있고, 수동 소자로만 구현될 수도 있다.For example, the current compensating
또한, 실시예에 따른 전류 보상 장치(100B)는 차동 모드(Differential Mode)로 입력되는 제3 전류를 보상하는 보상 장치 2(520)과 함께 사용될 수도 있다. 이때 보상 장치 2(520) 또한 능동 소자로 구현될 수도 있고, 수동 소자로만 구현될 수도 있다.In addition, the current compensating
또한, 실시예에 따른 전류 보상 장치(100B)는 전압을 보상하는 보상 장치 n(530)과 함께 사용될 수도 있다. 이때 보상 장치 n(530) 또한 능동 소자로 구현될 수도 있고, 수동 소자로만 구현될 수도 있다.Also, the current compensating
한편도 10에서 설명하는 보상 장치(500)의 종류나 수량, 배치 순서는 예시적인 것으로 본 발명의 사상이 이에 한정되는 것은 아니다. 따라서 시스템의 설계에 따라 다양한 수량과 종류의 보상 장치가 시스템에 더 포함될 수 있다. 또한, 선택적으로 도 10에 도시된 실시예는 본 명세서의 다른 모든 실시예들에도 동일하게 적용될 수 있음은 물론이다.Meanwhile, the type, quantity, and arrangement order of the
본 발명에서 설명하는 특정 실행들은 일 실시 예들로서, 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다. 명세서의 간결함을 위하여, 종래 전자적인 구성들, 제어 시스템들, 소프트웨어, 상기 시스템들의 다른 기능적인 측면들의 기재는 생략될 수 있다. 또한, 도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재들은 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로서 나타내어질 수 있다. 또한, "필수적인", "중요하게" 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.The specific implementations described in the present invention are examples and do not limit the scope of the present invention in any way. For brevity of the specification, descriptions of conventional electronic configurations, control systems, software, and other functional aspects of the systems may be omitted. In addition, the connection or connection members of the lines between the components shown in the drawings exemplarily represent functional connections and/or physical or circuit connections. Connections, or circuit connections, may be represented. In addition, if there is no specific mention such as "essential", "important", etc., it may not be an essential component for the application of the present invention.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 청구범위뿐만 아니라 이 청구범위와 균등한 또는 이로부터 등가적으로 변경된 모든 범위는 본 발명의 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention is limited to the above-described embodiments and should not be defined, and not only the claims to be described later, but also all ranges equivalent to or equivalently changed from the claims are within the scope of the spirit of the present invention. I would say.
100: 전류 보상 장치
111, 112: 대전류 경로
120: 센싱부
130: 증폭부
140: 보상부
150: 보상 커패시터부
200: 제2 장치
300: 제1 장치100: current compensation device
111, 112: high current path
120: sensing unit
130: amplification unit
140: compensation unit
150: compensation capacitor unit
200: second device
300: first device
Claims (4)
제2 장치에 의해 공급되는 제2 전류를 상기 제1 장치에 전달하는 적어도 둘 이상의 대전류 경로;
관통 개구를 구비하고, 상기 적어도 둘 이상의 대전류 경로가 상기 관통 개구에 삽입되고, 상기 적어도 둘 이상의 대전류 경로 상의 상기 제1 전류를 감지하여, 상기 제1 전류에 대응되는 출력 신호를 생성하는 센싱부;
상기 출력 신호를 증폭하여 증폭 신호를 생성하는 증폭부;
상기 증폭 신호에 기초하여 보상 전류를 생성하는 보상부; 및
상기 보상 전류가 상기 적어도 둘 이상의 대전류 경로 각각으로 흐르는 경로를 제공하는 보상 커패시터부;를 포함하고,
상기 센싱부는 상기 관통 개구를 구비하고, 상기 적어도 둘 이상의 대전류 경로상의 상기 제1 전류에 의해 생성된 자속 밀도에 기초하여 상기 출력 신호를 생성하는 코어;를 포함하는 센싱 변압기로 구성되고,
상기 코어는 개폐 가능한 클램프 구조로, 각각의 상기 적어도 둘 이상의 대전류 경로가 각각 1회씩 권취되어 내측에 통과되는 전류 보상 장치.A current compensating device for actively compensating for a first current input in a common mode to each of at least two or more large current paths connected to the first device,
At least two or more high current paths for passing a second current supplied by a second device to the first device;
A sensing unit having a through opening, the at least two large current paths being inserted into the through opening, sensing the first current on the at least two large current paths, and generating an output signal corresponding to the first current;
An amplification unit for amplifying the output signal to generate an amplified signal;
A compensation unit that generates a compensation current based on the amplified signal; And
Compensation capacitor unit for providing a path through which the compensation current flows through each of the at least two large current paths; Including,
The sensing unit includes a core having the through opening and generating the output signal based on the magnetic flux density generated by the first current on the at least two or more high current paths,
The core has a clamp structure that can be opened and closed, and each of the at least two large current paths is wound once and passed through the current compensation device.
상기 증폭부는,
양의 신호를 증폭하는 제1 증폭 소자;
음의 신호를 증폭하는 제2 증폭 소자; 및
상기 제1 증폭 소자 및 상기 제2 증폭 소자의 증폭 비율을 조절하는 적어도 하나의 임피던스;를 포함하는, 전류 보상 장치.The method of claim 1,
The amplification unit,
A first amplifying element for amplifying a positive signal;
A second amplifying element for amplifying a negative signal; And
At least one impedance for controlling an amplification ratio of the first amplifying element and the second amplifying element; including, a current compensation device.
상기 제1 증폭 소자 및 상기 제2 증폭 소자 각각은 BJT(bipolar junction transistor)를 포함하고,
상기 적어도 하나의 임피던스는
상기 제1 증폭 소자 및 상기 제2 증폭 소자의 BJT의 에미터 단자에 연결되는 제1 임피던스(Z1); 및
상기 제1 증폭 소자 및 상기 제2 증폭 소자의 BJT의 베이스 단자에 연결되는 제2 임피던스(Z2);를 포함하고,
상기 제1 임피던스(Z1) 및 제2 임피던스(Z2)는 상기 센싱부 및 보상부의 전류 증폭도를 기초로 상기 제1 증폭 소자 및 제2 증폭 소자의 증폭 비율을 조절하는, 전류 보상 장치. According to claim 2
Each of the first amplifying element and the second amplifying element includes a bipolar junction transistor (BJT),
The at least one impedance is
A first impedance Z1 connected to the emitter terminal of the BJT of the first amplifying element and the second amplifying element; And
Including; a second impedance (Z2) connected to the base terminal of the BJT of the first amplifying element and the second amplifying element,
The first impedance Z1 and the second impedance Z2 control an amplification ratio of the first and second amplifying elements based on current amplification degrees of the sensing unit and the compensating unit.
상기 센싱부의 전류 증폭도는 1/F1이고, 상기 보상부의 전류 증폭도는 1/F2인 경우, 상기 제1 임피던스(Z1) 및 상기 제2 임피던스(Z2)는 상기 증폭부의 전류 증폭도가 F1*F2가 되도록 상기 1 증폭 소자 및 제2 증폭 소자의 증폭 비율을 조절하는, 전류 보상 장치.The method of claim 3,
When the current amplification degree of the sensing unit is 1/F1, and the current amplification degree of the compensating unit is 1/F2, the first impedance Z1 and the second impedance Z2 are determined so that the current amplification degree of the amplification unit is F1*F2. A current compensation device for adjusting an amplification ratio of the first amplifying element and the second amplifying element.
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200003875A KR102377534B1 (en) | 2019-04-23 | 2020-01-10 | Current compensation device |
DE112020002025.8T DE112020002025T5 (en) | 2019-04-17 | 2020-04-17 | Device for compensation of current or voltage |
JP2021561606A JP7252376B2 (en) | 2019-04-17 | 2020-04-17 | Devices for compensating for voltage or current |
PCT/KR2020/005180 WO2020213997A1 (en) | 2019-04-17 | 2020-04-17 | Device for compensating for voltage or current |
CN202410455904.7A CN118312006A (en) | 2019-04-17 | 2020-04-17 | Arrangements for compensating voltage or current |
CN202410455760.5A CN118409623A (en) | 2019-04-17 | 2020-04-17 | Arrangements for compensating voltage or current |
CN202080035330.8A CN113906660B (en) | 2019-04-17 | 2020-04-17 | Arrangements for compensating voltage or current |
US17/450,361 US11901832B2 (en) | 2019-04-17 | 2021-10-08 | Device for compensating for voltage or current |
KR1020220033567A KR102453661B1 (en) | 2020-01-10 | 2022-03-17 | Current compensation device |
KR1020220127502A KR102561578B1 (en) | 2020-01-10 | 2022-10-06 | Current compensation device |
JP2023046556A JP2023078385A (en) | 2019-04-17 | 2023-03-23 | Device for compensating for voltage or current |
KR1020230097298A KR102636646B1 (en) | 2020-01-10 | 2023-07-26 | Current compensation device |
US18/396,750 US20240186910A1 (en) | 2019-04-17 | 2023-12-27 | Device for compensating for current or voltage |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190047518A KR102071480B1 (en) | 2019-04-23 | 2019-04-23 | Current compensation device |
KR1020200003875A KR102377534B1 (en) | 2019-04-23 | 2020-01-10 | Current compensation device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190047518A Division KR102071480B1 (en) | 2019-04-17 | 2019-04-23 | Current compensation device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220033567A Division KR102453661B1 (en) | 2020-01-10 | 2022-03-17 | Current compensation device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200124152A true KR20200124152A (en) | 2020-11-02 |
KR102377534B1 KR102377534B1 (en) | 2022-03-23 |
Family
ID=80963395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200003875A KR102377534B1 (en) | 2019-04-17 | 2020-01-10 | Current compensation device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102377534B1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030002685A (en) * | 2001-06-29 | 2003-01-09 | 설승기 | Active Common Mode EMI Filter for Eliminating Conducted Electromagnetic Interference |
JP2003174777A (en) * | 2001-12-06 | 2003-06-20 | Sanken Electric Co Ltd | Noise reducing device and power conversion device |
KR20120098283A (en) * | 2011-02-28 | 2012-09-05 | 한국전력공사 | Potable leakage current measurement screening magnetic flux |
KR20150078133A (en) * | 2013-12-30 | 2015-07-08 | 강원대학교산학협력단 | Emi filter apparatus and method for driving thereof |
JP2018157747A (en) * | 2017-03-17 | 2018-10-04 | シャフナー・エーエムファウ・アクチェンゲゼルシャフト | Active filter |
KR101945463B1 (en) * | 2018-05-02 | 2019-02-07 | 울산과학기술원 | A Transformer-Isolated Common-Mode Active EMI Filter without Additional Components on Power Line, and Method for reducing EMI noise using it |
-
2020
- 2020-01-10 KR KR1020200003875A patent/KR102377534B1/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030002685A (en) * | 2001-06-29 | 2003-01-09 | 설승기 | Active Common Mode EMI Filter for Eliminating Conducted Electromagnetic Interference |
JP2003174777A (en) * | 2001-12-06 | 2003-06-20 | Sanken Electric Co Ltd | Noise reducing device and power conversion device |
KR20120098283A (en) * | 2011-02-28 | 2012-09-05 | 한국전력공사 | Potable leakage current measurement screening magnetic flux |
KR20150078133A (en) * | 2013-12-30 | 2015-07-08 | 강원대학교산학협력단 | Emi filter apparatus and method for driving thereof |
JP2018157747A (en) * | 2017-03-17 | 2018-10-04 | シャフナー・エーエムファウ・アクチェンゲゼルシャフト | Active filter |
KR101945463B1 (en) * | 2018-05-02 | 2019-02-07 | 울산과학기술원 | A Transformer-Isolated Common-Mode Active EMI Filter without Additional Components on Power Line, and Method for reducing EMI noise using it |
Also Published As
Publication number | Publication date |
---|---|
KR102377534B1 (en) | 2022-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102071480B1 (en) | Current compensation device | |
CN113906660B (en) | Arrangements for compensating voltage or current | |
KR102580800B1 (en) | Active current compensation device | |
KR102453661B1 (en) | Current compensation device | |
KR102131263B1 (en) | Current compensation device | |
KR102129578B1 (en) | Current compensation device | |
KR102500177B1 (en) | Current compensation device | |
KR102377534B1 (en) | Current compensation device | |
KR102242048B1 (en) | Current compensation device | |
KR102611381B1 (en) | Current compensation device | |
KR102268163B1 (en) | Active compensation device for compensating voltage and current | |
KR102258197B1 (en) | Current compensation device | |
KR102258198B1 (en) | Current compensation device | |
KR102607200B1 (en) | Voltage-Sense Current-Compensation Active Electromagnetic Interference filter | |
KR102208533B1 (en) | Active current compensation device | |
KR102208534B1 (en) | Voltage-Sense Current-Compensation Active Electromagnetic Interference filter | |
KR20230168997A (en) | Voltage-Sense Current-Compensation Active Electromagnetic Interference filter | |
KR20230136095A (en) | Active current compensation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
X091 | Application refused [patent] | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) |