KR20200076275A - Electrode for Electrolysis - Google Patents
Electrode for Electrolysis Download PDFInfo
- Publication number
- KR20200076275A KR20200076275A KR1020180165218A KR20180165218A KR20200076275A KR 20200076275 A KR20200076275 A KR 20200076275A KR 1020180165218 A KR1020180165218 A KR 1020180165218A KR 20180165218 A KR20180165218 A KR 20180165218A KR 20200076275 A KR20200076275 A KR 20200076275A
- Authority
- KR
- South Korea
- Prior art keywords
- compound
- ruthenium
- electrolysis
- electrode
- platinum
- Prior art date
Links
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 77
- 229910052751 metal Inorganic materials 0.000 claims abstract description 38
- 239000002184 metal Substances 0.000 claims abstract description 38
- 239000011247 coating layer Substances 0.000 claims abstract description 12
- 150000001875 compounds Chemical class 0.000 claims description 57
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 42
- 239000000758 substrate Substances 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 22
- 239000010410 layer Substances 0.000 claims description 20
- 229910052759 nickel Inorganic materials 0.000 claims description 20
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 18
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 16
- 229910052707 ruthenium Inorganic materials 0.000 claims description 16
- FBEIPJNQGITEBL-UHFFFAOYSA-J tetrachloroplatinum Chemical compound Cl[Pt](Cl)(Cl)Cl FBEIPJNQGITEBL-UHFFFAOYSA-J 0.000 claims description 15
- 150000003058 platinum compounds Chemical class 0.000 claims description 14
- 150000003304 ruthenium compounds Chemical class 0.000 claims description 14
- 150000002601 lanthanoid compounds Chemical class 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 12
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 11
- -1 amine compound Chemical class 0.000 claims description 11
- 150000001412 amines Chemical class 0.000 claims description 11
- 239000004202 carbamide Substances 0.000 claims description 11
- 239000008199 coating composition Substances 0.000 claims description 10
- 229910052684 Cerium Inorganic materials 0.000 claims description 9
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 9
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- 229910052700 potassium Inorganic materials 0.000 claims description 6
- 239000011591 potassium Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- BIXNGBXQRRXPLM-UHFFFAOYSA-K ruthenium(3+);trichloride;hydrate Chemical compound O.Cl[Ru](Cl)Cl BIXNGBXQRRXPLM-UHFFFAOYSA-K 0.000 claims description 5
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 claims description 4
- WYRXRHOISWEUST-UHFFFAOYSA-K ruthenium(3+);tribromide Chemical compound [Br-].[Br-].[Br-].[Ru+3] WYRXRHOISWEUST-UHFFFAOYSA-K 0.000 claims description 4
- LJZVDOUZSMHXJH-UHFFFAOYSA-K ruthenium(3+);triiodide Chemical compound [Ru+3].[I-].[I-].[I-] LJZVDOUZSMHXJH-UHFFFAOYSA-K 0.000 claims description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 3
- 229910052691 Erbium Inorganic materials 0.000 claims description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 3
- 229910052689 Holmium Inorganic materials 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052773 Promethium Inorganic materials 0.000 claims description 3
- 229910052772 Samarium Inorganic materials 0.000 claims description 3
- 229910052771 Terbium Inorganic materials 0.000 claims description 3
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 3
- DOSXDVYWNFUSBU-UHFFFAOYSA-N [O-][N+](=O)[Pt][N+]([O-])=O Chemical compound [O-][N+](=O)[Pt][N+]([O-])=O DOSXDVYWNFUSBU-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 150000004985 diamines Chemical class 0.000 claims description 3
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 claims description 3
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 3
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 3
- 150000004687 hexahydrates Chemical class 0.000 claims description 3
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 claims description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 3
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 claims description 3
- NHWBVRAPBLSUQQ-UHFFFAOYSA-H ruthenium hexafluoride Chemical compound F[Ru](F)(F)(F)(F)F NHWBVRAPBLSUQQ-UHFFFAOYSA-H 0.000 claims description 3
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 claims description 3
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 3
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 claims description 3
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052775 Thulium Inorganic materials 0.000 claims description 2
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 claims description 2
- OJLCQGGSMYKWEK-UHFFFAOYSA-K ruthenium(3+);triacetate Chemical compound [Ru+3].CC([O-])=O.CC([O-])=O.CC([O-])=O OJLCQGGSMYKWEK-UHFFFAOYSA-K 0.000 claims 2
- PMMMCGISKBNZES-UHFFFAOYSA-K ruthenium(3+);tribromide;hydrate Chemical compound O.Br[Ru](Br)Br PMMMCGISKBNZES-UHFFFAOYSA-K 0.000 claims 2
- 229910052693 Europium Inorganic materials 0.000 claims 1
- 238000000354 decomposition reaction Methods 0.000 claims 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims 1
- 239000003054 catalyst Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 16
- 239000000203 mixture Substances 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 238000001994 activation Methods 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000012267 brine Substances 0.000 description 6
- 150000002602 lanthanoids Chemical class 0.000 description 6
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 6
- 229910052747 lanthanoid Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003014 ion exchange membrane Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- IBMCQJYLPXUOKM-UHFFFAOYSA-N 1,2,2,6,6-pentamethyl-3h-pyridine Chemical compound CN1C(C)(C)CC=CC1(C)C IBMCQJYLPXUOKM-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910002492 Ce(NO3)3·6H2O Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- QQZMWMKOWKGPQY-UHFFFAOYSA-N cerium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O QQZMWMKOWKGPQY-UHFFFAOYSA-N 0.000 description 1
- MEXSQFDSPVYJOM-UHFFFAOYSA-J cerium(4+);disulfate;tetrahydrate Chemical compound O.O.O.O.[Ce+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O MEXSQFDSPVYJOM-UHFFFAOYSA-J 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000003843 chloralkali process Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004502 linear sweep voltammetry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003303 ruthenium Chemical class 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- KPZSTOVTJYRDIO-UHFFFAOYSA-K trichlorocerium;heptahydrate Chemical compound O.O.O.O.O.O.O.Cl[Ce](Cl)Cl KPZSTOVTJYRDIO-UHFFFAOYSA-K 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C25B11/0489—
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/095—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/34—Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
-
- C25B11/0405—
-
- C25B11/0415—
-
- C25B11/0494—
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/052—Electrodes comprising one or more electrocatalytic coatings on a substrate
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/097—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
본 발명은 종래의 전기분해용 전극에 비해 두꺼운 금속 와이어를 사용함으로써 코팅층의 표면적이 증가되어 과전압을 개선할 수 있는 전기분해용 전극을 제공한다.The present invention provides an electrode for electrolysis that can improve overvoltage by increasing the surface area of a coating layer by using a thick metal wire as compared to a conventional electrode for electrolysis.
Description
본 발명은 전기분해용 전극 및 이의 제조방법에 관한 것으로, 전극의 금속 기재층의 와이어 구조의 직경이 180 내지 250㎛인 전기분해용 전극 및 이의 제조방법에 관한 것이다.The present invention relates to an electrode for electrolysis and a method for manufacturing the same, and relates to an electrode for electrolysis having a diameter of a wire structure of a metal base layer of an electrode of 180 to 250 μm and a method for manufacturing the same.
해수 등의 저가의 염수(Brine)를 전기분해하여 수산화물, 수소 및 염소를 생산하는 기술이 널리 알려져 있다. 이러한 전기분해 공정은 통상 클로르-알칼리(chlor-alkali) 공정이라고도 불리며, 이미 수십 년 간의 상업운전으로 성능 및 기술의 신뢰성이 입증된 공정이라 할 수 있다.Technology for producing hydroxide, hydrogen, and chlorine by electrolysis of low-priced brine such as sea water is widely known. Such an electrolysis process is also commonly referred to as a chlor-alkali process, and it can be said that the performance and reliability of technology have been proven through decades of commercial operation.
이러한 염수의 전기분해는 전해조 내부에 이온교환막을 설치하여 전해조를 양이온실과 음이온실로 구분하고, 전해질로 염수를 사용하여 양극에서 염소가스를, 음극에서 수소 및 가성소다를 얻는 이온교환막법이 현재 가장 널리 사용되고 있는 방법이다.The electrolysis of brine is the most widely used ion exchange membrane method that divides the electrolyzer into a cation chamber and an anion chamber by installing an ion exchange membrane inside the electrolyzer, and obtains chlorine gas at the anode and hydrogen and caustic soda at the cathode using brine as the electrolyte. This is the method used.
한편, 염수의 전기분해 공정은 하기 전기화학 반응식에 나타낸 바와 같은 반응을 통해 이루어진다.On the other hand, the electrolysis process of brine is made through a reaction as shown in the following electrochemical reaction formula.
양극(anode) 반응: 2Cl- → Cl2 + 2e- (E0 = +1.36 V)Positive electrode (anode) reaction: 2Cl - → Cl 2 + 2e - (E 0 = +1.36 V)
음극(cathode) 반응: 2H2O + 2e- → 2OH- + H2 (E0 = -0.83 V)A negative electrode (cathode) reaction: 2H 2 O + 2e - → 2OH - + H 2 (E 0 = -0.83 V)
전체 반응: 2Cl- + 2H2O → 2OH- + Cl2 + H2 (E0 = -2.19 V)Total reaction: 2Cl - + 2H 2 O → 2OH - + Cl 2 + H 2 (E 0 = -2.19 V)
염수의 전기분해를 수행함에 있어 전해전압은 이론적인 염수의 전기분해에 필요한 전압에 양극의 과전압, 음극의 과전압, 이온교환막의 저항에 의한 전압 및 양극과 음극 간 거리에 의한 전압을 모두 고려해야 하며, 이들 전압 중 전극에 의한 과전압이 중요한 변수로 작용하고 있다.In performing the electrolysis of the brine, the electrolytic voltage must take into account the voltage required for the theoretical electrolysis of the brine, the overvoltage of the anode, the overvoltage of the cathode, the voltage due to the resistance of the ion exchange membrane, and the voltage due to the distance between the anode and the cathode. Of these voltages, the overvoltage caused by the electrode is an important variable.
이에, 전극의 과전압을 감소시킬 수 있는 방법이 연구되고 있으며, 예컨대 양극으로는 DSA(Dimensionally Stable Anode)라 불리는 귀금속계 전극이 개발되어 사용되고 있으며, 음극에 대해서도 과전압이 낮고 내구성이 있는 우수한 소재의 개발이 요구되고 있다.Accordingly, a method capable of reducing the overvoltage of the electrode is being researched, for example, a noble metal-based electrode called DSA (Dimensionally Stable Anode) has been developed and used as an anode, and an anode with a low overvoltage and excellent durability is developed. This is required.
이러한 음극으로는 스테인레스 스틸 또는 니켈이 주로 사용되었으며, 최근에는 과전압을 감소시키기 위하여 스테인레스 스틸 또는 니켈의 표면을 산화니켈, 니켈과 주석의 합금, 활성탄과 산화물의 조합, 산화 루테늄, 백금 등으로 피복하여 사용하는 방법이 연구되고 있다.Stainless steel or nickel is mainly used as the negative electrode, and recently, in order to reduce overvoltage, the surface of stainless steel or nickel is coated with nickel oxide, an alloy of nickel and tin, a combination of activated carbon and oxide, ruthenium oxide, platinum, etc. Methods of use are being studied.
또한, 활성물질의 조성을 조절하여 음극의 활성을 높이고자 루테늄과 같은 백금족 원소와 세륨과 같은 란탄족 원소를 사용하여 조성을 조절하는 방법도 연구되고 있다. 하지만, 과전압 현상이 발생하고, 역전류에 의한 열화가 일어나는 문제가 발생하였다.In addition, a method of controlling the composition using a platinum group element such as ruthenium and a lanthanide element such as cerium to increase the activity of the negative electrode by adjusting the composition of the active material has been studied. However, an overvoltage phenomenon occurs, and a problem occurs that deterioration occurs due to reverse current.
본 발명의 목적은 증가된 코팅 표면적을 갖고, 과전압이 개선된 전기분해용 전극을 제공하는 것이다.An object of the present invention is to provide an electrode for electrolysis having an increased coating surface area and improved overvoltage.
상기한 과제를 해결하기 위하여, 본 발명은 와이어 구조를 갖는 금속 기재층; 및In order to solve the above problems, the present invention is a metal substrate layer having a wire structure; And
루테늄 화합물, 플래티넘 화합물, 란탄족 화합물, 및 아민계 화합물을 포함하는 코팅층을 포함하고,A coating layer comprising a ruthenium compound, a platinum compound, a lanthanide compound, and an amine-based compound,
상기 코팅층은 상기 기재층의 적어도 일면 상에 형성되며,The coating layer is formed on at least one surface of the base layer,
상기 와이어의 직경은 180 내지 250㎛인 전기분해용 전극을 제공한다.The diameter of the wire provides an electrode for electrolysis of 180 to 250㎛.
또한, 본 발명은 상기 전기분해용 전극의 제조방법을 제공한다.In addition, the present invention provides a method of manufacturing the electrode for electrolysis.
본 발명에 따른 전기분해용 전극은 종래의 전기분해용 전극에 비해 두꺼운 금속 와이어를 사용함으로써 코팅층의 표면적이 증가되어 과전압을 개선할 수 있다.The electrode for electrolysis according to the present invention can improve overvoltage by increasing the surface area of the coating layer by using a thicker metal wire than the electrode for electrolysis.
도 1은 본 발명의 전기분해용 전극에서 와이어의 직경이 지나치게 두꺼워질 경우 발생할 수 있는 가스 트랩을 간략히 표현한 것이다.1 is a simplified representation of a gas trap that may occur when the diameter of the wire is too thick in the electrode for electrolysis of the present invention.
이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the specification and claims should not be interpreted as being limited to the ordinary or dictionary meanings, and the inventor can appropriately define the concept of terms in order to best describe his or her invention. Based on the principle that it should be interpreted as meanings and concepts consistent with the technical idea of the present invention.
전기분해용 전극Electrolysis electrode
본 발명은 와이어 구조를 갖는 금속 기재층; 및The present invention is a metal substrate layer having a wire structure; And
루테늄 화합물, 플래티넘 화합물, 란탄족 화합물, 및 아민계 화합물을 포함하는 코팅층을 포함하고,A coating layer comprising a ruthenium compound, a platinum compound, a lanthanide compound, and an amine-based compound,
상기 코팅층은 상기 기재층의 적어도 일면 상에 형성되며,The coating layer is formed on at least one surface of the base layer,
상기 와이어의 직경은 180 내지 250㎛인 전기분해용 전극을 제공한다.The diameter of the wire provides an electrode for electrolysis of 180 to 250㎛.
상기 금속 기재는 니켈, 티타늄, 탄탈, 알루미늄, 하프늄, 지르코늄, 몰리브덴, 텅스텐, 스테인레스 스틸 또는 이들의 합금일 수 있고, 이 중 니켈인 것이 바람직하다.The metal substrate may be nickel, titanium, tantalum, aluminum, hafnium, zirconium, molybdenum, tungsten, stainless steel or alloys thereof, and nickel is preferred.
상기 금속 기재는 와이어 구조를 가지며, 와이어의 직경은 180 내지 250㎛인 것이 바람직하다. 금속 와이어가 상기 범위의 직경을 가질 경우, 기존의 전기분해용 전극에 비해 개선된 과전압을 나타내며, 금속 와이어의 직경이 이보다 클 경우에는 전해조에서의 가스 트랩(gas trap)이 증가하여 기체 탈착에 문제를 야기할 수 있다. 도 1에서와 같이 가스 트랩이 증가할 경우, 이는 저항으로 작용하여 전기분해 공정시 사용전력을 증가시킨다는 문제점이 있다. 또한, 금속 와이어의 직경이 지나치게 큰 경우에 와이어 간 교차 지점의 두께 역시 두꺼워져 전극의 높낮이 차이를 발생시키고, 이는 전극의 평탄도에 악영향을 미칠 수 있다.The metal substrate has a wire structure, it is preferable that the diameter of the wire is 180 to 250㎛. When the metal wire has a diameter in the above range, it shows an improved overvoltage compared to the conventional electrode for electrolysis, and when the diameter of the metal wire is larger than this, gas trap in the electrolytic cell increases, which causes problems in gas desorption. Can cause As shown in FIG. 1, when the gas trap increases, this acts as a resistance, which increases the power used in the electrolysis process. In addition, when the diameter of the metal wire is too large, the thickness of the intersection point between the wires is also thick, which causes a difference in height of the electrode, which may adversely affect the flatness of the electrode.
상기 루테늄 화합물은 전기분해용 음극의 촉매층에 활성물질인 루테늄을 제공하는 물질이다. 상기 루테늄 화합물은 루테늄헥사플루오라이드(RuF6), 루테늄(Ⅲ) 클로라이드(RuCl3), 루테늄(Ⅲ) 클로라이드 하이드레이트(RuCl3·xH2O), 루테늄(Ⅲ) 브로마이드(RuBr3), 루테늄(Ⅲ) 브로마이드 하이드레이트(RuBr3·xH2O), 루테늄 아이오디드(RuI3), 루테늄 아이오디드(RuI3) 및 초산 루테늄염으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 루테늄(Ⅲ) 클로라이드 하이드레이트가 바람직하다.The ruthenium compound is a material that provides ruthenium as an active material to the catalyst layer of the cathode for electrolysis. Wherein the ruthenium compound is ruthenium hexafluoride (RuF 6), ruthenium (Ⅲ) chloride (RuCl 3), ruthenium (Ⅲ) chloride hydrate (RuCl 3 · xH 2 O) , ruthenium (Ⅲ) bromide (RuBr 3), ruthenium ( Ⅲ) bromide hydrate (RuBr 3 ·xH 2 O), ruthenium iodide (RuI 3 ), ruthenium iodide (RuI 3 ) and ruthenium salt may be one or more selected from the group consisting of ruthenium (III) Chloride hydrate is preferred.
상기 플래티넘 화합물은 전기분해용 음극의 촉매층에 플래티넘을 제공하는 물질이다. 상기 플래티넘은 전기분해용 음극의 과전압 현상을 개선시킬 수 있다. 또한, 상기 플래티넘은 전기분해용 음극의 초기 성능과 일정시간 경과한 후의 성능의 편차를 최소화시킬 수 있고, 결과적으로 전기분해용 음극이 별도의 활성화 공정을 수행하지 않게 되거나 최소화시킬 수 있다. The platinum compound is a material that provides platinum to the catalyst layer of the cathode for electrolysis. The platinum may improve the overvoltage phenomenon of the cathode for electrolysis. In addition, the platinum can minimize variations in the initial performance of the cathode for electrolysis and performance after a certain period of time has passed, and as a result, the cathode for electrolysis may not perform or minimize a separate activation process.
상기 플래티넘 화합물은 클로로플래티닉산 헥사하이드레이트(H2PtCl6·6H2O), 디아민 디니트로 플래티넘(Pt(NH3)2(NO)2) 및 플래티넘(Ⅳ) 클로라이드(PtCl4), 플래티넘(Ⅱ) 클로라이드(PtCl2), 칼륨 테트라클로로플래티네이트(K2PtCl4), 칼륨 헥사클로로플래티네이트(K2PtCl6)으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 플래티넘(Ⅳ) 클로라이드가 바람직하다.The platinum compound is chloroplatonic acid hexahydrate (H 2 PtCl 6 · 6H 2 O), diamine dinitro platinum (Pt(NH 3 ) 2 (NO) 2 ) and platinum(IV) chloride (PtCl 4 ), platinum (II ) Chloride (PtCl 2 ), potassium tetrachloroplatinate (K 2 PtCl 4 ), potassium hexachloroplatinate (K 2 PtCl 6 ) may be one or more selected from the group consisting of platinum (IV) chloride desirable.
상기 전기분해용 음극용 촉매 조성물은 상기 플래티넘 화합물을 상기 루테늄 화합물 1 몰에 대하여, 0.01 내지 0.7 몰 또는 0.02 내지 0.5 몰로 포함할 수 있으며, 이 중 0.02 내지 0.5 몰로 포함하는 것이 바람직하다.The catalyst composition for a cathodic electrode for electrolysis may include the platinum compound in an amount of 0.01 to 0.7 moles or 0.02 to 0.5 moles per 1 mole of the ruthenium compound, and preferably 0.02 to 0.5 moles.
상술한 범위를 만족하면, 전기분해용 음극의 과전압 현상을 현저하게 개선시킬 수 있다. 또한, 전기분해용 음극의 초기 성능과 일정시간 경과한 후의 성능을 일정하게 유지할 수 있으므로, 전기분해용 음극의 활성화 공정이 불필요하다. 이에 따라, 전기분해용 음극의 활성화 공정에 소요되는 시간 및 비용을 절감시킬 수 있다.If the above-described range is satisfied, the overvoltage phenomenon of the cathode for electrolysis can be remarkably improved. In addition, since the initial performance of the cathode for electrolysis and the performance after a certain period of time can be kept constant, the activation process of the cathode for electrolysis is unnecessary. Accordingly, time and cost required for the activation process of the cathode for electrolysis can be reduced.
상기 란탄족 화합물은 전기분해용 음극의 촉매층에 란탄족 원소를 제공하는 물질이다. The lanthanide compound is a material that provides a lanthanide element to the catalyst layer of the cathode for electrolysis.
상기 란탄족 원소는 전기분해용 음극의 내구성을 개선시켜 활성화 또는 전기분해 시, 전기분해용 전극의 촉매층 내 루테늄의 손실을 최소화시킬 수 있다. 구체적으로 설명하면, 전기분해용 음극의 활성화 또는 전기분해 시, 촉매층 내 루테늄을 포함하는 입자는 구조가 변화하지 않으면서 금속성 Ru(metallic Ru)이 되거나 부분적으로 수화되어 활성종(active species)로 환원된다. 그리고, 촉매층 내 란탄족 원소를 포함하는 입자는 구조가 변화되어 촉매층 내에서 루테늄을 포함하는 입자와 네트워크를 형성하며, 결과적으로 전기분해용 음극의 내구성을 개선시켜 촉매층 내 루테늄의 손실을 방지할 수 있다.The lanthanide element may improve durability of the cathode for electrolysis, thereby minimizing loss of ruthenium in the catalyst layer of the electrode for electrolysis during activation or electrolysis. Specifically, upon activation or electrolysis of the cathode for electrolysis, particles containing ruthenium in the catalyst layer become metallic Ru (metallic Ru) or partially hydrated without reduction in structure, and are reduced to active species. do. In addition, the particles containing the lanthanide group element in the catalyst layer have a structure change to form a network with particles containing ruthenium in the catalyst layer, and as a result, the durability of the cathode for electrolysis can be improved to prevent loss of ruthenium in the catalyst layer. have.
상기 란탄족 화합물은 세륨계 화합물, 플라세오디뮴계 화합물, 네오디뮴계 화합물, 프로메듐계 화합물, 사마륨계 화합물, 유로품계 화합물, 가돌리늄계 화합물, 터븀계 화합물, 디스프로슘계 화합물, 홀뮴계 화합물, 어븀계 화합물, 툴륨계 화합물, 이터븀계 화합물 및 루테튬계 화합물로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 세륨계 화합물이 바람직하다.The lanthanide compound is a cerium-based compound, a placemium-based compound, a neodymium-based compound, a promethium-based compound, a samarium-based compound, a europum-based compound, a gadolinium-based compound, a terbium-based compound, a dysprosium-based compound, a holmium-based compound, an erbium-based compound It may be at least one selected from the group consisting of compounds, thulium-based compounds, ytterbium-based compounds, and ruthenium-based compounds, of which cerium-based compounds are preferred.
상기 세륨계 화합물은 세륨(Ⅲ) 나이트레이트 헥사하이드레이트(Ce(NO3)3·6H2O), 세륨(Ⅳ) 설페이트 테트라하이드레이트(Ce(SO4)2·4H2O) 및 세륨(Ⅲ) 클로라이드 헵타하이드레이트(CeCl3·7H2O)으로 이루어진 군에서 선택되는 1종 이상이고, 이 중 세륨(Ⅲ) 나이트레이트 헥사하이드레이트가 바람직하다.The cerium-based compounds are cerium(III) nitrate hexahydrate (Ce(NO 3 ) 3 · 6H 2 O), cerium(IV) sulfate tetrahydrate (Ce(SO 4 ) 2 ·4H 2 O) and cerium(III) Chloride heptahydrate (CeCl 3 ·7H 2 O) is at least one member selected from the group consisting of cerium (III) nitrate hexahydrate.
상기 전기분해용 음극용 촉매 조성물은 상기 루테늄 화합물 1 몰에 대하여, 상기 란탄족 화합물을 0.01 내지 0.5 몰 또는 0.05 내지 0.35 몰로 포함할 수 있고, 이 중 0.05 내지 0.35 몰로 포함하는 것이 바람직하다.The catalyst composition for an anode for electrolysis may contain 0.01 to 0.5 moles or 0.05 to 0.35 moles of the lanthanide compound with respect to 1 mole of the ruthenium compound, and preferably 0.05 to 0.35 moles.
상술한 범위를 만족하면, 전기분해용 음극의 내구성을 개선시켜 활성화 또는 전기분해 시, 전기분해용 전극의 촉매층 내 루테늄의 손실을 최소화시킬 수 있다.If the above-described range is satisfied, the durability of the cathode for electrolysis may be improved to minimize loss of ruthenium in the catalyst layer of the electrode for electrolysis during activation or electrolysis.
상기 아민계 화합물은 나노 입자 등을 제조할 때 첨가물로 투입하여 입자상을 작게 해주는 역할을 하는 것으로 알려져 있고, 전극 코팅에서도 산화루테늄 결정상을 작게 만들어주는 효과를 보인다. 또한 상기 전기분해용 음극용 촉매 조성물이 아민계 화합물을 포함함으로써, 란탄족 원소, 구체적으로는 세륨의 침상구조의 크기를 증대시켜 형성된 세륨 네트워크 구조가 루테늄 입자를 보다 단단하게 고정시켜주는 역할을 하게 되어 전극의 내구성을 개선시킨다. 그리고, 결과적으로 전극이 오랜 시간 작동 시에도 전극의 박리 현상을 현저히 줄일 수 있는 효과가 있다.The amine-based compound is known to play a role of reducing the particle shape by adding it as an additive when manufacturing nanoparticles, etc., and also has an effect of making the ruthenium crystal phase small in the electrode coating. In addition, the catalyst composition for the electrolysis negative electrode contains an amine compound, so that the lanthanide element, specifically, the cerium network structure formed by increasing the size of the acicular structure of cerium, serves to fix the ruthenium particles more firmly. It improves the durability of the electrode. And, as a result, there is an effect that can significantly reduce the peeling phenomenon of the electrode even when the electrode is operated for a long time.
상기 전기분해용 음극용 촉매 조성물은 상기 루테늄 화합물 1 몰에 대하여, 상기 아민계 화합물을 0.5 내지 1 몰 또는 0.6 내지 0.9 몰로 포함할 수 있고, 이 중 0.6 내지 0.9 몰로 포함하는 것이 바람직하다.The catalyst composition for an anode for electrolysis may contain 0.5 to 1 mole or 0.6 to 0.9 mole of the amine-based compound with respect to 1 mole of the ruthenium compound, and it is preferable to include 0.6 to 0.9 mole of them.
상술한 함량을 만족하면, 상기 아민계 화합물은 전기분해용 음극의 활성화 이후 또는 전기분해 시에, 아민계 화합물을 사용하지 않았을 때보다 란탄족 화합물에서 유래된 란탄족 원소를 포함하는 입자의 구조를 빠르게 변화시켜 촉매층 내에서 네트워크를 형성시킬 수 있고, 결과적으로 음극의 내구성을 개선시킬 수 있다. 구체적으로는 상기 아민계 화합물은 세륨을 포함하는 입자의 침상 구조를 증대시켜 음극의 내구성을 개선시킬 수 있다.When the above-mentioned content is satisfied, the amine-based compound has a structure of particles containing a lanthanide element derived from a lanthanide compound than when an amine-based compound is not used after activation of the cathode for electrolysis or electrolysis. By rapidly changing, a network can be formed in the catalyst layer, and as a result, durability of the cathode can be improved. Specifically, the amine-based compound can improve the durability of the negative electrode by increasing the acicular structure of particles containing cerium.
상기 아민계 화합물은 우레아인 것이 바람직하다. 우레아를 사용할 경우, 다른 아민계 화합물은 사용한 것에 비해, 코팅액의 안정성 및 안전성이 우수하며, 대면적으로 전극을 제조할 때에도 유해물질 및 냄새의 발생이 적다는 장점이 있다.It is preferable that the amine compound is urea. When using urea, other amine-based compounds have advantages in that stability and safety of the coating solution are superior to those used, and the occurrence of harmful substances and odors is small even when manufacturing electrodes in a large area.
전기분해용 전극의 제조방법Method of manufacturing an electrode for electrolysis
본 발명은 와이어 구조를 갖는 금속 기재의 적어도 일면 상에 코팅 조성물을 도포하는 단계; 및The present invention comprises the steps of applying a coating composition on at least one side of a metal substrate having a wire structure; And
코팅 조성물이 도포된 금속 기재를 건조 및 열처리하여 코팅하는 단계를 포함하며,And drying and heat-treating the metal substrate coated with the coating composition to coat it,
상기 코팅 조성물은 루테늄 화합물, 플래티넘 화합물, 란탄족 화합물, 및 아민계 화합물을 포함하고, The coating composition includes a ruthenium compound, a platinum compound, a lanthanide compound, and an amine compound,
상기 금속 와이어의 직경은 180 내지 250㎛인 전기분해용 전극의 제조방법을 제공한다.The metal wire has a diameter of 180 to 250㎛ provides a method of manufacturing an electrode for electrolysis.
본 발명의 제조방법에서 사용되는 금속 기재, 루테늄 화합물, 플래티넘 화합물, 란탄족 화합물 및 아민계 화합물은 상술한 전기분해용 전극에서 사용되는 것과 동일하다.The metal substrate, ruthenium compound, platinum compound, lanthanide compound and amine compound used in the production method of the present invention are the same as those used in the electrode for electrolysis described above.
본 발명의 제조방법에 있어서, 상기 코팅 단계를 수행하기 전에 상기 금속 기재를 전처리하는 단계를 포함할 수 있다. In the manufacturing method of the present invention, it may include the step of pre-treating the metal substrate before performing the coating step.
상기 전처리는 금속 기재를 화학적 식각, 블라스팅 또는 열 용사하여 상기 금속 기재 표면에 요철을 형성시키는 것일 수 있다.The pretreatment may be to form an unevenness on the surface of the metal substrate by chemical etching, blasting or thermal spraying the metal substrate.
상기 전처리는 금속 기재의 표면을 샌드 블라스팅하여 미세 요철을 형성시키고, 염 처리 또는 산처리하여 수행할 수 있다. 예를 들어 금속 기재의 표면을 알루미나로 샌드 블라스팅하여 요철을 형성하고, 황산 수용액에 침지시키고, 세척 및 건조하여 금속 기재의 표면에 세세한 요철이 형성되도록 전처리할 수 있다. The pre-treatment may be performed by sand blasting the surface of the metal substrate to form fine irregularities, and salt treatment or acid treatment. For example, the surface of the metal substrate may be sandblasted with alumina to form irregularities, immersed in an aqueous sulfuric acid solution, washed and dried to pretreat to form fine irregularities on the surface of the metal substrate.
상기 도포는 상기 촉매 조성물이 금속 기재 상에 고르게 도포될 수 있다면 특별히 제한하지 않고 당업계에서 공지된 방법으로 수행할 수 있다.The coating may be performed by a method known in the art without particular limitation as long as the catalyst composition can be applied evenly on a metal substrate.
상기 도포는 닥터 블레이드, 다이캐스팅, 콤마 코팅, 스크린 프린팅, 스프레이 분사, 전기방사, 롤코팅 및 브러슁으로 이루어진 군에서 선택되는 어느 하나의 방법으로 수행될 수 있다.The application may be performed by any one method selected from the group consisting of doctor blade, die casting, comma coating, screen printing, spray spraying, electrospinning, roll coating and brushing.
상기 건조는 50 내지 300℃에서 5 내지 60 분 동안 수행할 수 있으며, 50 내지 200℃에서 5 내지 20 분 동안 수행하는 것이 바람직하다. The drying may be performed at 50 to 300°C for 5 to 60 minutes, and preferably at 50 to 200°C for 5 to 20 minutes.
상술한 조건을 만족하면, 용매는 충분히 제거될 수 있으면서, 에너지 소비는 최소화할 수 있다.If the above conditions are satisfied, the solvent can be sufficiently removed while energy consumption can be minimized.
상기 열처리는 400 내지 600 ℃에서 1시간 이하 동안 수행할 수 있으며, 450 내지 550 ℃에서 5 내지 30 분 동안 수행하는 것이 바람직하다.The heat treatment may be performed at 400 to 600°C for 1 hour or less, and is preferably performed at 450 to 550°C for 5 to 30 minutes.
상술한 조건을 만족하면, 촉매층 내 불순물은 용이하게 제거되면서, 금속 기재의 강도에는 영향을 미치지 않을 수 있다. If the above conditions are satisfied, impurities in the catalyst layer are easily removed, and the strength of the metal substrate may not be affected.
한편, 상기 코팅은 금속 기재의 단위 면적(㎡) 당 루테늄 기준으로 10 g 이상이 되도록 도포, 건조 및 열처리를 순차적으로 반복하여 수행할 수 있다. 즉, 본 발명의 다른 일실시예에 따른 제조방법은 금속 기재의 적어도 일면 상에 상기 촉매 조성물을 도포, 건조 및 열처리한 후, 첫번째 촉매 조성물을 도포한 금속 기재의 일면 상에 다시 도포, 건조 및 열처리하는 코팅을 반복해서 수행할 수 있다.On the other hand, the coating may be carried out by repeating the coating, drying and heat treatment in order to be 10 g or more based on ruthenium per unit area (m 2) of the metal substrate. That is, the manufacturing method according to another embodiment of the present invention is applied to the catalyst composition on at least one surface of the metal substrate, dried and heat-treated, and then applied again on the first surface of the metal substrate coated with the catalyst composition, dried and The heat-treated coating can be repeatedly performed.
이하, 본 발명을 구체적으로 설명하기 위해 실시예 및 실험예를 들어 더욱 상세하게 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다. 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, examples and experimental examples will be described in more detail in order to specifically describe the present invention, but the present invention is not limited by these examples and experimental examples. Embodiments according to the present invention can be modified in many different forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.
재료material
본 실시예에서는 금속 기재로 장인흥저사에서 제조한 니켈 기재(Ni 순도 99% 이상)을 사용하였으며, 루테늄 화합물로는 Heraeus 사의 염화루테늄 수화물, 플래티넘 화합물로는 염화백금(플래티넘(IV) 클로라이드, 99.9%), 란탄족 화합물로는 Sigma-Aldrich 사의 질산세륨 6수화물, 아민계 화합물로는 우레아를 사용하였다. In this example, a nickel base material (Ni purity 99% or more) manufactured by Jang Inheung Co., Ltd. was used as the metal base, and a ruthenium compound was a ruthenium chloride hydrate of Heraeus, and a platinum compound was platinum chloride (platinum(IV) chloride, 99.9%). ), as a lanthanide compound, cerium nitrate hexahydrate from Sigma-Aldrich was used, and urea was used as an amine compound.
또한 코팅 조성물을 위한 용매로는 대정화금 사의 이소프로필 알코올과 2-부톡시 에탄올을 사용하였다.In addition, as a solvent for the coating composition, isopropyl alcohol and 2-butoxy ethanol from Daejung Chemical Co., Ltd. were used.
코팅 조성물의 제조Preparation of coating composition
금속 전구체 RuCl3·nH2O, Ce(NO3)3·6H2O 및 PtCl4를 5:1:0.5의 몰 비율로 혼합하여 이소프로필 알코올과 2-부톡시 에탄올을 1:1의 부피비로 혼합한 용매에 녹였다. 그 후 금속 전구체가 용해되면 아민계 화합물인 우레아를 3.13 몰 비율로 첨가하고, 50℃에서 밤새 교반하여 루테늄 기준 100g/L의 농도를 갖는 코팅 조성물 용액을 제조하였다. The metal precursors RuCl 3 ·nH 2 O, Ce(NO 3 ) 3 ·6H 2 O and PtCl 4 are mixed in a molar ratio of 5:1:0.5 to mix isopropyl alcohol and 2-butoxyethanol in a volume ratio of 1:1. It was dissolved in the mixed solvent. Then, when the metal precursor was dissolved, an amine compound urea was added at a ratio of 3.13 moles and stirred at 50°C overnight to prepare a coating composition solution having a concentration of 100 g/L based on ruthenium.
실시예 1. 직경이 180㎛인 니켈 기재를 사용한 전기분해용 전극 제조Example 1. Preparation of an electrode for electrolysis using a nickel substrate having a diameter of 180 μm
직경이 180㎛인 니켈 기재의 표면을 옥사이드(120 mesh)로 0.4MPa 조건에서 샌드 블라스팅 처리하여 요철이 있는 구조로 가공하였다. 이후 80℃의 5M H2SO4 수용액에 가공된 니켈 기재를 넣어 3분 동안 처리하여 전처리 과정을 완료하였다. 이후 전처리된 니켈 기재에 앞서 제조한 코팅 조성물 용액을 브러쉬 방법으로 코팅하고, 180℃의 대류식 건조 오븐에 넣어 10분동안 건조시킨 후, 500℃의 전기 가열로에 넣어 10분간 열처리하였다. 이러한 코팅, 건조 및 열처리 과정 9회 추가 수행한 후, 최종적으로 500℃로 가열된 전기 가열로에서 1시간 동안 열처리하여 전기분해용 전극을 제조하였다. The surface of the nickel substrate having a diameter of 180 µm was sand blasted under the condition of 0.4 MPa with oxide (120 mesh) and processed into an uneven structure. Thereafter, the processed nickel substrate was added to a 5M H 2 SO 4 aqueous solution at 80° C. for 3 minutes to complete the pretreatment process. Thereafter, the coating composition solution prepared prior to the pre-treated nickel substrate was coated with a brush method, placed in a convection drying oven at 180°C and dried for 10 minutes, and then placed in an electric heating furnace at 500°C for heat treatment for 10 minutes. After the coating, drying, and heat treatment were additionally performed 9 times, an electrode for electrolysis was prepared by finally heat-treating for 1 hour in an electric furnace heated to 500°C.
실시예 2. 직경이 200㎛인 니켈 기재를 사용한 전기분해용 전극 제조Example 2. Preparation of an electrode for electrolysis using a nickel substrate having a diameter of 200 μm
실시예 1에서 직경이 180㎛인 니켈 기재 대신 직경이 200㎛인 니켈 기재를 사용하였다는 점을 제외하고는 모두 동일하게 실시하여 전기분해용 전극을 제조하였다. Electrode for electrolysis was prepared in the same manner as in Example 1, except that a nickel substrate having a diameter of 200 μm was used instead of a nickel substrate having a diameter of 180 μm.
실시예 3. 직경이 250㎛인 니켈 기재를 사용한 전기분해용 전극 제조Example 3. Preparation of an electrode for electrolysis using a nickel substrate having a diameter of 250 μm
실시예 1에서 직경이 180㎛인 니켈 기재 대신 직경이 250㎛인 니켈 기재를 사용하였다는 점을 제외하고는 모두 동일하게 실시하여 전기분해용 전극을 제조하였다. Electrode for electrolysis was prepared in the same manner as in Example 1, except that a nickel substrate having a diameter of 250 μm was used instead of a nickel substrate having a diameter of 180 μm.
비교예 1. 직경이 150㎛인 니켈 기재를 사용한 전기분해용 전극 제조Comparative Example 1. Preparation of an electrode for electrolysis using a nickel substrate having a diameter of 150 μm
실시예 1에서 직경이 180㎛인 니켈 기재 대신 직경이 150㎛인 니켈 기재를 사용하였다는 점을 제외하고는 모두 동일하게 실시하여 전기분해용 전극을 제조하였다. Electrode for electrolysis was prepared in the same manner as in Example 1, except that a nickel substrate having a diameter of 150 μm was used instead of a nickel substrate having a diameter of 180 μm.
비교예 2. 아민계 화합물을 사용하지 않은 전기분해용 전극 제조Comparative Example 2. Preparation of an electrode for electrolysis without using an amine compound
실시예 1에서 우레아를 사용하지 않았다는 점을 제외하고는 모두 동일하게 실시하여 전기분해용 전극을 제조하였다.Electrolysis electrodes were prepared in the same manner as in Example 1, except that urea was not used.
비교예 3. 아민계 화합물과 플래티넘 화합물을 사용하지 않은 전기분해용 전극 제조Comparative Example 3. Preparation of an electrode for electrolysis without using an amine compound and a platinum compound
실시예 1에서 우레아와 플래티넘 화합물을 사용하지 않았다는 점을 제외하고는 모두 동일하게 실시하여 전기분해용 전극을 제조하였다.Electrode for electrolysis was prepared in the same manner as in Example 1, except that urea and a platinum compound were not used.
상기 실시예 1 내지 3, 및 비교예 1 내지 3에서 제조한 전극의 정보를 하기 표 1로 정리하였다.The information of the electrodes prepared in Examples 1 to 3 and Comparative Examples 1 to 3 is summarized in Table 1 below.
(우레아 없음)5:1:0.5:0
(No urea)
(우레아 및 Pt 없음)5:1:0:0
(No urea and Pt)
실험예 1. 제조된 전기분해용 전극의 성능 확인Experimental Example 1. Performance confirmation of the prepared electrode for electrolysis
상기 실시예 1 내지 3, 및 비교예 1 내지 3에서 제조한 전극의 성능을 확인하기 위하여 염수 전기 분해(Chlor-Alkali Electrolysis)에서의 반쪽 셀을 이용한 음극 전압 측정 실험을 수행하였다. 먼저 선형주사전위법(Linear Sweep Voltammetry)을 통해 전류 밀도 -0.62 A/cm2의 조건에서 전압을 측정하여 실시예와 비교예의 전압 값을 측정하였다. 전해액으로는 32% NaOH 수용액을 사용하였으며, 상대 전극은 Pt 와이어를, 기준 전극은 Hg/HgO 전극을 사용하였다. 그 결과를 하기 표 2로 정리하였다.In order to confirm the performance of the electrodes prepared in Examples 1 to 3 and Comparative Examples 1 to 3, a cathode voltage measurement experiment using a half cell in a salt-electrolysis (Chlor-Alkali Electrolysis) was performed. First, the voltage was measured under the condition of current density -0.62 A/cm 2 through Linear Sweep Voltammetry to measure the voltage values of Examples and Comparative Examples. A 32% NaOH aqueous solution was used as the electrolyte solution, a Pt wire as a counter electrode, and an Hg/HgO electrode as a reference electrode. The results are summarized in Table 2 below.
실험예 2. 제조된 전기분해용 전극의 코팅층 조성비 확인Experimental Example 2. Confirmation of the composition ratio of the coating layer of the prepared electrode for electrolysis
상기 실시예 1 내지 3, 및 비교예 1 내지 3에서 제조한 전극의 코팅층 조성비를 확인하기 위하여, 전기분해용 전극을 가로, 세로 0.6m 규격으로 제작하고, 이를 16개의 픽셀로 균등 분할한 후, 각 픽셀별 3개의 지점에 대해 XRF(X-ray fluorescence) 성분 분석을 수행하여 Ru, Ce 및 Pt의 몰%를 측정하였다. 이후 얻어진 각 금속의 몰%로부터 하기 수학식 1 및 2를 이용하여 분산 및 표준편차를 계산하였다. 그 결과를 하기 표 3으로 정리하였다.In order to confirm the composition ratio of the coating layers of the electrodes prepared in Examples 1 to 3 and Comparative Examples 1 to 3, the electrodes for electrolysis were produced in a horizontal and vertical 0.6m standard, and equally divided into 16 pixels, X-ray fluorescence (XRF) component analysis was performed on three points for each pixel to measure the mole percent of Ru, Ce, and Pt. The dispersion and standard deviation were calculated using the following equations 1 and 2 from the mole% of each metal obtained. The results are summarized in Table 3 below.
[수학식 1][Equation 1]
V(x) = E(x2)-[E(x)]2 V(x) = E(x 2 )-[E(x)] 2
상기 수학식 1에서 E(x2)는 9개의 픽셀 내 Ru 몰% 제곱의 평균값을 나타내고, [E(x)]2는 9개의 픽셀 내 Ru 몰% 평균의 제곱값을 나타낸다.In Equation 1, E(x 2 ) represents the mean value of the Ru mol% square in 9 pixels, and [E(x)] 2 represents the square value of the Ru mol% average in 9 pixels.
[수학식 2][Equation 2]
σ= σ=
상기 결과로부터, 금속 기재층의 와이어 직경이 두꺼워지더라도, 전극의 구성 성분비는 거의 변하지 않음을 확인하였다.From the above results, it was confirmed that even if the wire diameter of the metal base layer was thick, the component ratio of the electrode hardly changed.
또한, 상기 실험예 1 및 2로부터 금속 기재층의 와이어 직경이 180 내지 250㎛ 범위에서 증가할수록 표면적이 증가함에 따라 촉매 활성이 증가하여 과전압이 감소함을 확인할 수 있었으며, 코팅층 조성물에 아민계 화합물이 포함되지 않거나, 금속 성분 중 일부가 포함되지 않는 경우에도 과전압이 커진다는 점을 확인할 수 있었다.In addition, from Experimental Examples 1 and 2, as the wire diameter of the metal base layer increased in the range of 180 to 250 μm, it was confirmed that the catalytic activity increased and the overvoltage decreased as the surface area increased, and the amine compound was added to the coating layer composition. It was confirmed that the overvoltage increases even when not included or some of the metal components are not included.
Claims (12)
루테늄 화합물, 플래티넘 화합물, 란탄족 화합물, 및 아민계 화합물을 포함하는 코팅층을 포함하고,
상기 코팅층은 상기 기재층의 적어도 일면 상에 형성되며,
상기 와이어의 직경은 180 내지 250㎛인 전기분해용 전극.
A metal base layer having a wire structure; And
It includes a coating layer comprising a ruthenium compound, a platinum compound, a lanthanide compound, and an amine-based compound,
The coating layer is formed on at least one surface of the base layer,
Electrode for electrolysis, the diameter of the wire is 180 to 250㎛.
The electrode for electrolysis of claim 1, wherein the metal substrate is nickel.
According to claim 1, The ruthenium compound is ruthenium hexafluoride (RuF 6 ), ruthenium (III) chloride (RuCl 3 ), ruthenium (III) chloride hydrate (RuCl 3 · xH 2 O), ruthenium (III) bromide ( RuBr 3 ), ruthenium (III) bromide hydrate (RuBr 3 xH 2 O), ruthenium iodide (RuI 3 ), ruthenium iodide (RuI 3 ) and at least one selected from the group consisting of ruthenium acetate Decomposition electrode
The method of claim 1, wherein the platinum compound is chloroplatonic acid hexahydrate (H 2 PtCl 6 · 6H 2 O), diamine dinitro platinum (Pt(NH 3 ) 2 (NO) 2 ) and platinum (IV) chloride (PtCl) 4 ), Platinum (II) chloride (PtCl 2 ), potassium tetrachloroplatinate (K 2 PtCl 4 ), potassium hexachloroplatinate (K 2 PtCl 6 ) is at least one member selected from the group consisting of electrode.
The method of claim 1, wherein the lanthanide compound is a cerium-based compound, a placemium-based compound, a neodymium-based compound, a promethium-based compound, a samarium-based compound, a europium-based compound, a gadolinium-based compound, a terbium-based compound, a dysprosium-based compound, An electrode for electrolysis that is at least one member selected from the group consisting of holmium-based compounds, erbium-based compounds, thulium-based compounds, ytterbium-based compounds, and ruthenium-based compounds.
The electrode for electrolysis according to claim 1, wherein the amine compound is urea.
The electrode for electrolysis according to claim 1, wherein the electrode for electrolysis is used for electrolysis in a CA process.
코팅 조성물이 도포된 금속 기재를 건조 및 열처리하여 코팅하는 단계를 포함하며,
상기 코팅 조성물은 루테늄 화합물, 플래티넘 화합물, 란탄족 화합물, 및 아민계 화합물을 포함하고,
상기 금속 와이어의 직경은 180 내지 250㎛인 전기분해용 전극의 제조방법.
Applying a coating composition on at least one side of a metal substrate having a wire structure; And
And drying and heat-treating the metal substrate coated with the coating composition to coat it,
The coating composition includes a ruthenium compound, a platinum compound, a lanthanide compound, and an amine compound,
A method of manufacturing an electrode for electrolysis, wherein the diameter of the metal wire is 180 to 250 μm.
The method of claim 8, wherein the metal substrate is nickel.
상기 플래티넘 화합물은 클로로플래티닉산 헥사하이드레이트(H2PtCl6·6H2O), 디아민 디니트로 플래티넘(Pt(NH3)2(NO)2) 및 플래티넘(Ⅳ) 클로라이드(PtCl4), 플래티넘(Ⅱ) 클로라이드(PtCl2), 칼륨 테트라클로로플래티네이트(K2PtCl4), 칼륨 헥사클로로플래티네이트(K2PtCl6)으로 이루어진 군에서 선택되는 1종 이상이며,
상기 란탄족 화합물은 세륨계 화합물, 플라세오디뮴계 화합물, 네오디뮴계 화합물, 프로메듐계 화합물, 사마륨계 화합물, 유로품계 화합물, 가돌리늄계 화합물, 터븀계 화합물, 디스프로슘계 화합물, 홀뮴계 화합물, 어븀계 화합물, 툴륨계 화합물, 이터븀계 화합물 및 루테튬계 화합물로 이루어진 군에서 선택되는 1종 이상인 것인 전기분해용 전극의 제조방법.
The method of claim 8, wherein the ruthenium compound is ruthenium hexafluoride (RuF 6), ruthenium (Ⅲ) chloride (RuCl 3), ruthenium (Ⅲ) chloride hydrate (RuCl 3 · xH 2 O) , ruthenium (Ⅲ) bromide ( and RuBr 3), ruthenium (ⅲ) bromide hydrate (RuBr 3 · xH 2 O) , ruthenium child ohdideu (RuI 3), ruthenium child ohdideu (RuI 3) and at least one element selected from the group consisting of ruthenium acetate salt,
The platinum compound is chloroplatonic acid hexahydrate (H 2 PtCl 6 · 6H 2 O), diamine dinitro platinum (Pt(NH 3 ) 2 (NO) 2 ) and platinum(IV) chloride (PtCl 4 ), platinum (II ) Chloride (PtCl 2 ), potassium tetrachloroplatinate (K 2 PtCl 4 ), potassium hexachloroplatinate (K 2 PtCl 6 ) is at least one selected from the group consisting of,
The lanthanide compounds are cerium-based compounds, placemium-based compounds, neodymium-based compounds, promethium-based compounds, samarium-based compounds, europum-based compounds, gadolinium-based compounds, terbium-based compounds, dysprosium-based compounds, holmium-based compounds, erbium-based compounds A method of manufacturing an electrode for electrolysis, which is at least one selected from the group consisting of a compound, a thlium-based compound, a ytterbium-based compound, and a ruthenium-based compound.
The method of claim 8, wherein the amine-based compound is urea.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180165218A KR102576668B1 (en) | 2018-12-19 | 2018-12-19 | Electrode for Electrolysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180165218A KR102576668B1 (en) | 2018-12-19 | 2018-12-19 | Electrode for Electrolysis |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200076275A true KR20200076275A (en) | 2020-06-29 |
KR102576668B1 KR102576668B1 (en) | 2023-09-11 |
Family
ID=71400713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180165218A KR102576668B1 (en) | 2018-12-19 | 2018-12-19 | Electrode for Electrolysis |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102576668B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220071738A (en) * | 2020-11-24 | 2022-05-31 | 주식회사 엘지화학 | Method for Preparing Electrode for Electrolysis |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4135995A (en) * | 1978-02-17 | 1979-01-23 | Ppg Industries, Inc. | Method of electrolysis, and electrode for the electrolysis |
JP2003297767A (en) | 2003-03-31 | 2003-10-17 | Toshiba Corp | Semiconductor thin film growing device |
KR20040002977A (en) * | 2002-03-20 | 2004-01-07 | 아사히 가세이 가부시키가이샤 | Electrode for Generation of Hydrogen |
JP2009215580A (en) * | 2008-03-07 | 2009-09-24 | Permelec Electrode Ltd | Cathode for hydrogen generation |
KR20110137750A (en) * | 2010-06-17 | 2011-12-23 | 바이엘 머티리얼사이언스 아게 | Gas diffusion electrode and its manufacturing method |
-
2018
- 2018-12-19 KR KR1020180165218A patent/KR102576668B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4135995A (en) * | 1978-02-17 | 1979-01-23 | Ppg Industries, Inc. | Method of electrolysis, and electrode for the electrolysis |
KR20040002977A (en) * | 2002-03-20 | 2004-01-07 | 아사히 가세이 가부시키가이샤 | Electrode for Generation of Hydrogen |
JP2003297767A (en) | 2003-03-31 | 2003-10-17 | Toshiba Corp | Semiconductor thin film growing device |
JP2009215580A (en) * | 2008-03-07 | 2009-09-24 | Permelec Electrode Ltd | Cathode for hydrogen generation |
KR20110137750A (en) * | 2010-06-17 | 2011-12-23 | 바이엘 머티리얼사이언스 아게 | Gas diffusion electrode and its manufacturing method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220071738A (en) * | 2020-11-24 | 2022-05-31 | 주식회사 엘지화학 | Method for Preparing Electrode for Electrolysis |
CN115956140A (en) * | 2020-11-24 | 2023-04-11 | 株式会社Lg化学 | Method for producing electrode for electrolysis |
EP4253606A4 (en) * | 2020-11-24 | 2024-10-09 | Lg Chem, Ltd. | PROCESS FOR MANUFACTURING ELECTRODE FOR ELECTROLYSIS |
Also Published As
Publication number | Publication date |
---|---|
KR102576668B1 (en) | 2023-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3971328B1 (en) | Electrode for electrolysis | |
KR102503553B1 (en) | Electrode for Electrolysis | |
KR102347983B1 (en) | Cathode for electrolysis and method for preparing the same | |
KR102576668B1 (en) | Electrode for Electrolysis | |
KR102679027B1 (en) | Electrode for Electrolysis | |
KR102404706B1 (en) | Active layer composition of cathode for electrolysis and cathode for electrolysis prepared by the same | |
KR20200136765A (en) | Electrode for Electrolysis | |
KR102687207B1 (en) | Electrode for Electrolysis | |
KR102664290B1 (en) | Method for Preparing Electrode for Electrolysis | |
KR102573145B1 (en) | Electrode for Electrolysis | |
CN114008247B (en) | Electrode for electrolysis | |
KR20200142463A (en) | Electrode for Electrolysis | |
KR20200142464A (en) | Electrode for Electrolysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20181219 |
|
PG1501 | Laying open of application | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20210326 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20181219 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20221101 Patent event code: PE09021S01D |
|
E90F | Notification of reason for final refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Final Notice of Reason for Refusal Patent event date: 20230530 Patent event code: PE09021S02D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20230901 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20230905 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20230906 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |