KR20200071317A - Feed additive composition for reducing methane emission from ruminants comprising Allium fistulosum and tannic acid - Google Patents
Feed additive composition for reducing methane emission from ruminants comprising Allium fistulosum and tannic acid Download PDFInfo
- Publication number
- KR20200071317A KR20200071317A KR1020180158911A KR20180158911A KR20200071317A KR 20200071317 A KR20200071317 A KR 20200071317A KR 1020180158911 A KR1020180158911 A KR 1020180158911A KR 20180158911 A KR20180158911 A KR 20180158911A KR 20200071317 A KR20200071317 A KR 20200071317A
- Authority
- KR
- South Korea
- Prior art keywords
- methane
- feed
- reducing
- composition
- feed additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 136
- 239000000203 mixture Substances 0.000 title claims abstract description 32
- 241000282849 Ruminantia Species 0.000 title claims abstract description 26
- 230000001603 reducing effect Effects 0.000 title claims abstract description 24
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 239000001263 FEMA 3042 Substances 0.000 title claims abstract description 22
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 title claims abstract description 22
- 235000015523 tannic acid Nutrition 0.000 title claims abstract description 22
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 title claims abstract description 22
- 229940033123 tannic acid Drugs 0.000 title claims abstract description 22
- 229920002258 tannic acid Polymers 0.000 title claims abstract description 22
- 239000003674 animal food additive Substances 0.000 title claims abstract description 17
- 244000257727 Allium fistulosum Species 0.000 title claims description 5
- 235000008553 Allium fistulosum Nutrition 0.000 title claims description 5
- 210000004767 rumen Anatomy 0.000 claims abstract description 32
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 22
- 241000894006 Bacteria Species 0.000 claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 claims abstract description 16
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 11
- 239000004480 active ingredient Substances 0.000 claims abstract description 6
- 239000003527 fibrinolytic agent Substances 0.000 claims abstract description 5
- 230000003480 fibrinolytic effect Effects 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 15
- 241000283690 Bos taurus Species 0.000 claims description 5
- 230000002401 inhibitory effect Effects 0.000 claims description 5
- 240000006108 Allium ampeloprasum Species 0.000 claims description 4
- 235000005254 Allium ampeloprasum Nutrition 0.000 claims description 4
- 241000283726 Bison Species 0.000 claims description 3
- 241000282817 Bovidae Species 0.000 claims description 3
- 241000283707 Capra Species 0.000 claims description 3
- 241000282994 Cervidae Species 0.000 claims description 3
- 241001494479 Pecora Species 0.000 claims description 3
- 244000303258 Annona diversifolia Species 0.000 claims description 2
- 235000002198 Annona diversifolia Nutrition 0.000 claims description 2
- 241000282815 Antilocapra americana Species 0.000 claims description 2
- 241000283724 Bison bonasus Species 0.000 claims description 2
- 241001416153 Bos grunniens Species 0.000 claims description 2
- 241000283700 Boselaphus Species 0.000 claims description 2
- 241000282836 Camelus dromedarius Species 0.000 claims description 2
- 241000283716 Connochaetes Species 0.000 claims description 2
- 244000061458 Solanum melongena Species 0.000 claims description 2
- 235000002597 Solanum melongena Nutrition 0.000 claims description 2
- 241001416177 Vicugna pacos Species 0.000 claims description 2
- 241000282816 Giraffa camelopardalis Species 0.000 claims 1
- 239000003242 anti bacterial agent Substances 0.000 abstract description 16
- 241000234282 Allium Species 0.000 abstract description 15
- 235000002732 Allium cepa var. cepa Nutrition 0.000 abstract description 15
- 230000000694 effects Effects 0.000 abstract description 12
- 244000144972 livestock Species 0.000 abstract description 10
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 abstract description 8
- 235000019463 artificial additive Nutrition 0.000 abstract description 6
- 230000003115 biocidal effect Effects 0.000 abstract description 4
- 235000019260 propionic acid Nutrition 0.000 abstract description 4
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 abstract description 4
- 239000003638 chemical reducing agent Substances 0.000 abstract description 2
- 230000007774 longterm Effects 0.000 abstract description 2
- 238000011282 treatment Methods 0.000 description 43
- 239000007789 gas Substances 0.000 description 24
- 238000000855 fermentation Methods 0.000 description 23
- 230000004151 fermentation Effects 0.000 description 23
- 241001465754 Metazoa Species 0.000 description 16
- 229940088710 antibiotic agent Drugs 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 12
- 230000000813 microbial effect Effects 0.000 description 12
- 239000000126 substance Substances 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 150000004665 fatty acids Chemical class 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 235000019621 digestibility Nutrition 0.000 description 6
- 244000005700 microbiome Species 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 241000605896 Fibrobacter succinogenes Species 0.000 description 5
- 229930000044 secondary metabolite Natural products 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 5
- 208000035473 Communicable disease Diseases 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 241000192029 Ruminococcus albus Species 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000223782 Ciliophora Species 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000003753 real-time PCR Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- 235000015099 wheat brans Nutrition 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 208000031295 Animal disease Diseases 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229930191564 Monensin Natural products 0.000 description 2
- GAOZTHIDHYLHMS-UHFFFAOYSA-N Monensin A Natural products O1C(CC)(C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CCC1C(O1)(C)CCC21CC(O)C(C)C(C(C)C(OC)C(C)C(O)=O)O2 GAOZTHIDHYLHMS-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 150000001720 carbohydrates Chemical group 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000007952 growth promoter Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229960005358 monensin Drugs 0.000 description 2
- GAOZTHIDHYLHMS-KEOBGNEYSA-N monensin A Chemical compound C([C@@](O1)(C)[C@H]2CC[C@@](O2)(CC)[C@H]2[C@H](C[C@@H](O2)[C@@H]2[C@H](C[C@@H](C)[C@](O)(CO)O2)C)C)C[C@@]21C[C@H](O)[C@@H](C)[C@@H]([C@@H](C)[C@@H](OC)[C@H](C)C(O)=O)O2 GAOZTHIDHYLHMS-KEOBGNEYSA-N 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000000419 plant extract Substances 0.000 description 2
- OBMBUODDCOAJQP-UHFFFAOYSA-N 2-chloro-4-phenylquinoline Chemical compound C=12C=CC=CC2=NC(Cl)=CC=1C1=CC=CC=C1 OBMBUODDCOAJQP-UHFFFAOYSA-N 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 241000282832 Camelidae Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 241000282818 Giraffidae Species 0.000 description 1
- 208000012766 Growth delay Diseases 0.000 description 1
- 244000147568 Laurus nobilis Species 0.000 description 1
- 235000017858 Laurus nobilis Nutrition 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 241000192026 Ruminococcus flavefaciens Species 0.000 description 1
- 235000005212 Terminalia tomentosa Nutrition 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000006030 antibiotic growth promoter Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 108010085318 carboxymethylcellulase Proteins 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 229930003935 flavonoid Natural products 0.000 description 1
- 235000017173 flavonoids Nutrition 0.000 description 1
- 150000002215 flavonoids Chemical class 0.000 description 1
- 239000004459 forage Substances 0.000 description 1
- 210000004051 gastric juice Anatomy 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 239000002555 ionophore Substances 0.000 description 1
- 230000000236 ionophoric effect Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000696 methanogenic effect Effects 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000019462 natural additive Nutrition 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- GMBQZIIUCVWOCD-NRBCCYJRSA-N spirostan-3-ol Chemical compound O([C@@H]1[C@@H]([C@]2(CC[C@@H]3[C@@]4(C)CCC(O)CC4CC[C@H]3[C@@H]2C1)C)[C@@H]1C)[C@]11CCC(C)CO1 GMBQZIIUCVWOCD-NRBCCYJRSA-N 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K50/00—Feeding-stuffs specially adapted for particular animals
- A23K50/10—Feeding-stuffs specially adapted for particular animals for ruminants
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/30—Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/111—Aromatic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/20—Capture or disposal of greenhouse gases of methane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/20—Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
- Y02P60/22—Methane [CH4], e.g. from rice paddies
-
- Y02P60/56—
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Animal Husbandry (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Mycology (AREA)
- Physiology (AREA)
- Botany (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Birds (AREA)
- Fodder In General (AREA)
- Feed For Specific Animals (AREA)
Abstract
본 발명은 파 및 탄닌산을 유효성분으로 포함하는 반추동물 메탄 저감용 사료첨가제 조성물에 관한 것으로, 본 발명에서는 파 및 탄닌산이 총 가스 발생량, 메탄 발생량 및 이산화탄소 발생량을 감소시키고, 반추위 내 메탄 생성을 저감시키는 프로피온산을 증가시키며, 메탄 생성균 및 섬유소 분해 박테리아를 감소시키는 것을 확인한 바, 상기와 같은 효과를 가지는 파 및 탄닌산은 가축의 생장을 촉진하고 사료 효율을 증가시킬 수 있고, 장기간 사용하여도 안전한 합성 첨가제 또는 항생제 대체제로 사용될 수 있으며, 메탄가스 생성을 감소시키는 천연 메탄 저감제로서 사료 첨가제로 사용될 수 있다. The present invention relates to a feed additive composition for reducing ruminant methane, which includes green onion and tannic acid as active ingredients. In the present invention, green onion and tannic acid reduce total gas generation, methane generation and carbon dioxide generation, and reduce methane production in rumen. It has been confirmed that it increases propionic acid and reduces methane-producing bacteria and fibrinolytic bacteria. Green onion and tannic acid having the above-mentioned effects can promote the growth of livestock and increase feed efficiency, and are safe synthetic additives for long-term use. Alternatively, it may be used as an antibiotic substitute, and may be used as a feed additive as a natural methane reducing agent that reduces methane gas production.
Description
본 발명은 파 및 탄닌산을 유효성분으로 포함하는 반추동물 메탄 저감용 사료첨가제 조성물에 관한 것으로, 반추동물의 반추위에서 생산되는 메탄가스를 저감하기 위하여 사용되고 있는 합성 첨가제, 항생제를 대체하기 위한 메탄 저감용 사료첨가제 조성물 및 그 활용에 관한 것이다.The present invention relates to a feed additive composition for reducing methane in ruminants containing green onion and tannic acid as an active ingredient, a synthetic additive used to reduce methane gas produced in ruminants of ruminants, for reducing methane to replace antibiotics It relates to a feed additive composition and its use.
항미생물 작용을 가진 천연물질, 반합성물질 혹은 합성물질을 통틀어 항생제라고 하며, 상기 항생제는 경구 혹은 주사제로 투여 혹은 국소적으로 사용하여 미생물에 의한 질병을 치료하거나 예방하는 목적으로 사용된다. 이러한 항생제는 지난 70여년 동안 감염성 질환을 가진 환자를 치료하는데 사용되어 왔으며, 현재는 인간의 질병뿐만 아니라 동물의 질병을 치료 또는 예방하는 목적으로도 사용되고 있다.Natural substances, anti-synthetic substances, or synthetic substances having antimicrobial action are collectively called antibiotics, and the antibiotics are administered orally or by injection or used topically to treat or prevent diseases caused by microorganisms. These antibiotics have been used to treat patients with infectious diseases for the past 70 years, and are currently used for the purpose of treating or preventing human diseases as well as animal diseases.
한편, 항생제는 동물의 질병을 치료 또는 예방하는 목적 이외에도 동물의 성장을 촉진시키기 위한 성장 촉진제로도 사용되고 있다. 우리나라 축산업에 있어서, 모넨신과 같은 이오노포(ionophore)계 항생제, 클로로포름 및 할로겐 화합물 등이 대표적인 항생물질로 이용된다. 항생물질을 생장 촉진제로서 사료에 첨가하여 동물에게 투여하면 동물의 생장을 촉진시키고, 사료 이용 효율(feed utilization)을 개선함과 동시에 집단으로 사육되고 있는 동물들에게서 세균에 의한 감염성 질환의 유병율을 낮출 수 있다. 즉, 항생제는 동물에게서 감염성 질환을 예방하여 감염성 질환에 대한 유병율 및 사망률을 감소시키고, 성장 속도를 증가시킴으로써 육류, 달걀, 우유 등의 가격을 낮출 수 있는 경제적 효과를 가져올 뿐만 아니라 항생제 소비를 증가시켜 제약산업 측면에서도 긍정적인 영향을 미친다. 또한, 성장 촉진제로서 항생물질은 동물의 위장관에서 이로운 미생물을 자극하고 해로운 미생물을 억제함으로써 장내세균에 의한 바람직하지 못한 발효산물 즉, 젖산, 휘발성 지방산, 암모니아, 아민, 메탄 등의 생성을 억제한다. 특히, 메탄(methane)은 지구 온난화 현상의 주범으로써 동물이 일 년에 배출하는 메탄가스의 양이 80~115백 만톤으로, 전 세계 메탄가스 방출량의 15~20%를 차지한다. 동물의 항생제 및 생장 촉진제인 모넨신의 경우 반추위 동물의 위에서 프로피오네이트의 발효를 증가시킴으로써 지구 온난화의 주범인 메탄가스의 생성을 감소시킨다는 것이 보고된 바 있다.On the other hand, antibiotics are also used as growth promoters to promote animal growth in addition to the purpose of treating or preventing animal diseases. In the domestic livestock industry, ionophore-based antibiotics such as monensin, chloroform and halogen compounds are used as typical antibiotics. When an antibiotic is added to the feed as a growth accelerator and administered to animals, it promotes the growth of animals, improves feed utilization, and lowers the prevalence of infectious diseases caused by bacteria in animals kept in groups. Can be. In other words, antibiotics prevent infectious diseases in animals, reduce the prevalence and mortality rate for infectious diseases, and increase the growth rate, thereby lowering the price of meat, eggs, milk, etc. It also has a positive effect on the pharmaceutical industry. In addition, antibiotics as growth promoters inhibit the production of undesirable fermentation products by intestinal bacteria, lactic acid, volatile fatty acids, ammonia, amines, methane, etc., by stimulating beneficial microorganisms and inhibiting harmful microorganisms in the gastrointestinal tract of animals. In particular, methane is the main cause of global warming, and the amount of methane gas emitted by animals per year is 80 to 11.5 million tons, accounting for 15 to 20% of global methane emissions. It has been reported that the animal antibiotic and growth promoter monensin reduces the production of methane, a major culprit of global warming, by increasing the fermentation of propionate in the stomach of rumen animals.
이와 같이, 축산업에 있어서 항생제는 가축의 생산성 향상에 큰 기여를 해왔으나 최근 축산물에 항생제 잔류와 다약제 내성 슈퍼 박테리아의 출현 등의 문제로 인하여 이러한 항생제 사용이 규제되고 있는 실정이다. 특히, 치료의 목적이 아닌 가축 생산성 향상을 위하여 배합 사료 내에 항생제를 포함시키는 것은 전면적으로 금지되고 있다. As described above, in the livestock industry, antibiotics have greatly contributed to improving the productivity of livestock, but the use of such antibiotics has recently been restricted due to problems such as residual antibiotics and emergence of multi-drug resistant super bacteria in livestock products. In particular, the inclusion of antibiotics in the blended feed for the purpose of improving livestock productivity, not for the purpose of treatment, is entirely prohibited.
이에 친환경 축산과 유기 축산물 생산을 위하여 기존의 항생제를 대체할 수 있는 물질의 개발과 관련 기술의 개발이 매우 중요한 과제로 인식되고 있다. 항생제 대체의 가능성이 가장 높게 평가되고 있는 물질로는 식물에서 유래한 천연 추출물이 있다. 식물은 환경으로부터 자신을 보호하기 위하여 이차대사산물을 생산하며, 상기 이차대사산물은 여러 가지 생리활성 작용을 나타내므로 인간이나 동물의 질병을 예방 또는 치료하기 위한 의약품으로 사용될 수 있다. 병원성 미생물에 대한 항균 효과 역시 식물의 이차대사산물이 나타낼 수 있는 생리활성 중의 하나이다. 또한, 식물의 이차대사산물은 반추위 동물에 있어서 반추위 내 발효를 변화시켜 사료 에너지의 이용 효율을 증가시키는 반면 메탄가스 발생을 감소시킨다는 연구 결과들이 보고된 바 있으며, 식물이 생산하는 이차대사산물 중에서 항균작용을 나타내는 대표적인 성분들인 페놀성 물질, 정유, 플라보노이드, 사사포닌(sarsaponin)을 함유하는 일부 식물 추출물들이 메탄가스 생성을 감소시킨다는 것이 증명된 바 있다.Therefore, for the production of eco-friendly livestock and organic livestock products, the development of substances that can replace the existing antibiotics and the development of related technologies are recognized as very important tasks. Among the substances that are most likely to replace antibiotics are natural extracts derived from plants. Plants produce secondary metabolites to protect themselves from the environment, and since these secondary metabolites exhibit various physiologically active effects, they can be used as medicines to prevent or treat diseases of humans or animals. The antimicrobial effect on pathogenic microorganisms is also one of the physiological activities that can be exhibited by secondary metabolites of plants. In addition, studies have been reported that secondary metabolites of plants increase fermentation in rumen and increase the efficiency of feed energy while reducing methane gas generation in rumen animals, and among the secondary metabolites produced by plants, It has been demonstrated that some plant extracts containing phenolic substances, essential oils, flavonoids, and sarsaponin, which are representative components of action, reduce methane production.
반추위 메탄가스 저감에 대한 작용기전은 크게 두 가지로 나뉠 수 있다. 첫 번째는 발생되는 수소를 메탄가스 생성이 아닌 다른 방향으로 대사되게 하는 수소치환방법이다. 두 번째는 메탄가스를 생성하는 세균에 대하여 직접적인 항균작용을 통하여 메탄가스 생성을 줄이는 방법이다. 이들 두 가지 방법들 중에서 어떤 것이 효율적이라고 단정 지을 수는 없으나, 궁극적으로 메탄가스를 저감시키는 효과를 찾는 것이 더 중요하다. There are two main mechanisms of action for the reduction of rumen methane gas. The first is a hydrogen substitution method that allows the generated hydrogen to be metabolized in a direction other than methane gas production. The second method is to reduce methane gas production through direct antibacterial action against methane gas-producing bacteria. It cannot be concluded that any of these two methods is efficient, but it is more important to find the effect of ultimately reducing methane gas.
이에 본 기술은 반추위내 메탄가스를 줄일 수 있는 식물 또는 식물 추출물을 탐색하고 사료첨가제로서의 활용에 그 목적을 가지고 있다.Accordingly, the present technology aims to search for plants or plant extracts capable of reducing methane gas in the rumen and to use them as feed additives.
본 발명의 목적은 반추동물 메탄 저감을 위한 사료 첨가용 조성물을 제공하는 데에 있다.An object of the present invention is to provide a composition for adding feed for reducing ruminant methane.
본 발명의 또 다른 목적은 반추위 내 메탄가스 생성을 억제하는 방법을 제공하는 데에 있다.Another object of the present invention is to provide a method for inhibiting methane gas production in the rumen.
상기 목적을 달성하기 위하여, 본 발명은 파(Allium fistulosum) 및 탄닌산(tannic acid)을 유효성분으로 포함하는 반추동물 메탄 저감을 위한 사료첨가용 조성물을 제공한다.In order to achieve the above object, the present invention provides a feed additive composition for reducing methane in ruminants, including leek (Allium fistulosum) and tannic acid (tannic acid) as an active ingredient.
또한, 본 발명은 상기 반추동물 메탄 저감을 위한 사료첨가용 조성물을 포함하는 사료 조성물을 제공한다.In addition, the present invention provides a feed composition comprising a feed additive composition for reducing ruminant methane.
또한, 본 발명은 사료 조성물을 반추동물에 투여하는 단계를 포함하는 반추위 내 메탄가스 생성 억제 방법을 제공한다.In addition, the present invention provides a method for inhibiting methane gas production in a rumen comprising the step of administering a feed composition to a ruminant.
본 발명에서는 파 및 탄닌산이 총 가스 발생량, 메탄 발생량 및 이산화탄소 발생량을 감소시키고, 반추위 내 메탄 생성을 저감시키는 프로피온산을 증가시키며, 메탄 생성균 및 섬유소 분해 박테리아를 감소시키는 것을 확인한 바, 상기와 같은 효과를 가지는 파 및 탄닌산은 가축의 생장을 촉진하고 사료 효율을 증가시킬 수 있고, 장기간 사용하여도 안전한 합성 첨가제 또는 항생제 대체제로 사용될 수 있으며, 메탄가스 생성을 감소시키는 천연 메탄 저감제로서 사료 첨가제로 사용될 수 있다. In the present invention, it was confirmed that par and tannic acid reduce total gas generation, methane generation, and carbon dioxide generation, increase propionic acid to reduce methane production in the rumen, and reduce methane-producing bacteria and fibrinolytic bacteria. Eggplant green onion and tannic acid can promote the growth of livestock and increase feed efficiency, can be used as a safe synthetic additive or antibiotic substitute even after long-term use, and can be used as a feed additive as a natural methane reducing agent to reduce methane gas production. have.
도 1은 메탄 환원 첨가제 및 발효 시간에 따른 반추위 미생물 군집의 변화를 확인한 결과이다(a, b, c 등 = P<0.05).1 is a result confirming the change in the rumen microbial community according to the methane reduction additive and fermentation time (a, b, c, etc. = P <0.05).
본 발명에서 사용된 용어 "반추동물"은 포유류 소목에 속하는 되새김 동물로 소, 염소, 황소, 물소, 들소, 사슴, 낙타, 양 등을 포함하며, 네 개의 격실의 위를 가지는데 그 중 하나가 반추위이다. 반추동물 반추위(rumen)라고 불리우는 소화계에서 미생물의 발효를 통해 셀룰로즈(cellulose)를 휘발성 지방산(volatile fatty acid)으로 전환시키고 이것을 영양분으로 이용한다. 즉, 반추위 내에서 탄수화물의 분해를 통하여 휘발성 지방산, 수소, 이산화탄소 등이 생성되며, 상기 수소와 이산화탄소는 반추위 산도 하강의 원인이 된다. 상기 수소와 이산화탄소는 메탄으로 전환되어 소실된다.The term "ruminant" as used in the present invention is a receding animal belonging to mammalian cattle, including cows, goats, bulls, buffaloes, bison, deer, camels, sheep, etc., having one of four compartments, one of which It is rumen. Ruminants In the digestive system called rumen, cellulose is converted to volatile fatty acids through the fermentation of microorganisms and used as nutrients. That is, volatile fatty acids, hydrogen, carbon dioxide, etc. are generated through the decomposition of carbohydrates in the rumen, and the hydrogen and carbon dioxide cause rumen acidity to fall. The hydrogen and carbon dioxide are converted to methane and lost.
본 발명에서 사용된 용어 "메탄"은 이산화탄소 다음으로 지구온난화에 가장 큰 영향을 미치는 요인이며, 반추동물이 탄수화물을 포함하는 사료를 섭취하는 경우 메탄가스 생성 미생물에 의해 반추위 내에서 생성되는데, 이는 사료 이용 효율을 떨어뜨리는 원인 중 하나로, 반추동물의 반추위 내의 메탄가스 생성을 억제시키는 것이 중요하다.The term "methane" used in the present invention is a factor that has the greatest influence on global warming after carbon dioxide, and is produced in the rumen by methane gas-producing microorganisms when ruminants ingest feed containing carbohydrates. As one of the reasons for deteriorating utilization efficiency, it is important to suppress methane gas production in the rumen of ruminants.
본 발명에서 사용된 용어 "유효성분"은 내재된 약리작용에 의해 그 의약품의 효능 및/또는 효과를 직접 또는 간접적으로 발현한다고 기대되는 물질 또는 물질군(약리학적 활성성분 등이 밝혀지지 않은 생약 등을 포함한다)으로서 주성분으로 포함하는 것을 의미한다. The term "active ingredient" used in the present invention is a substance or group of substances (such as a crude drug whose pharmacologically active ingredient is not known) that is expected to directly or indirectly express the efficacy and/or the effect of the drug by the inherent pharmacological action. It includes) as a main component.
본 발명은 파(Allium fistulosum) 및 탄닌산(tannic acid)을 유효성분으로 포함하는 반추동물 메탄 저감을 위한 사료첨가용 조성물을 제공한다.The present invention provides a feed additive composition for reducing ruminant methane, which includes leek (Allium fistulosum) and tannic acid as active ingredients.
상기 조성물은 총 가스 발생량, 메탄 발생량 및 이산화탄소 발생량을 감소시키고, 메탄 생성균 및 섬유소 분해 박테리아를 감소시킬 수 있다.The composition may reduce total gas generation, methane generation and carbon dioxide generation, and may reduce methane-producing bacteria and fibrinolytic bacteria.
상기 반추동물은 소, 염소, 양, 기린, 미국산 들소, 유럽산 들소, 야크(yak), 물소, 사슴, 낙타, 알파카(alpaca), 라마, 누(wildebeest), 영양, 가지뿔 영양(pronghorn) 및 닐가이 영양(nilgai)으로 이루어진 군에서 선택될 수 있으나, 이에 제한되는 것은 아님을 명시한다.The ruminants include cattle, goats, sheep, giraffes, American bison, European bison, yak, buffalo, deer, camel, alpaca, llama, wildebeest, antelope, pronghorn and It may be selected from the group consisting of nilgai nutrition, but is not limited thereto.
또한, 본 발명은 상기 반추동물 메탄 저감을 위한 사료첨가용 조성물을 포함하는 사료 조성물을 제공한다.In addition, the present invention provides a feed composition comprising a feed additive composition for reducing ruminant methane.
상기 사료 조성물은 상기 메탄 저감을 위한 사료첨가용 조성물 및 기타 공지의 사료 조성물에 첨가되는 성분을 포함할 수 있고, 상기 사료 조성물은 공지의 방법에 의해 제조되는 것으로, 이에 대한 상세한 설명은 생략하기로 한다. 또한 상기 사료는 일반볏짚, 야초, 목초, 앤시리지, 건초, 산야초 등이 있으나, 이에 제한되는 것은 아니며 가축의 사육에 사용되는 사료이면 무방하다. The feed composition may include a feed additive composition for reducing methane and other ingredients added to a known feed composition, and the feed composition is prepared by a known method, and detailed description thereof will be omitted. do. In addition, the feed includes general rice straw, weeds, grasses, ansiridge, hay, and wild grass, but is not limited thereto, and may be any feed used for breeding livestock.
상기 메탄 저감을 위한 사료첨가용 조성물은, 건조사료 총 100 중량부에 대하여 0.1 내지 15 중량부로 첨가될 수 있으나, 이에 제한되는 것은 아님을 명시한다.The composition for adding feed for reducing methane may be added in an amount of 0.1 to 15 parts by weight based on 100 parts by weight of the dry feed, but is not limited thereto.
또한, 본 발명은 상기 사료 조성물을 반추동물에 투여하는 단계를 포함하는 반추위 내 메탄가스 생성 억제 방법을 제공한다.In addition, the present invention provides a method for inhibiting methane gas production in the rumen comprising the step of administering the feed composition to ruminants.
이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only intended to illustrate the present invention more specifically, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .
실시예 1: 공시동물 및 반추위액Example 1: Disclosed animals and rumen fluid
연구 절차 및 공시축의 사양관리는 국립경상대학교 실험동물 복지 윤리법에 따라 수행하였으며, 반추위액은 국립경상대학교 야생동물보호센터에서 사육중인 반추위에 캐뉼라(cannula)가 장착된 한우 암소(체중 450 kg±30 kg)로부터 채취하였다. The study procedure and specification management of the public axis were performed in accordance with the National Institute of Economics and Animal Welfare and Ethics, and the ruminant fluid was a cow with a cannula mounted on the rumen that is bred at the National Institute of Animal Wildlife Protection (450 kg±30 weight). kg).
공시동물의 사양관리는 농후사료(제 BBVMRO 158호)와 티모시(timothy)를 6:4의 중량비로 혼합한 후, 체중의 2%를 1일 2회(09:00 및 17:00) 분할 급여하였으며, 물과 미네랄 블록은 자유 섭취하도록 하였다. For specification management of public animals, thick feed (No. BBVMRO 158) and timothy are mixed at a weight ratio of 6:4, and 2% of body weight is divided twice a day (09:00 and 17:00) Water and mineral blocks were freely consumed.
반추위액은 오전 사료급여 직전 반추위 캐뉼라를 통해 채취하였고, 4겹의 직포(cheese cloth)를 이용하여 여과한 다음, 혐기상태의 2 L 유리병에 담아 신속하게 실험실로 이동하였다. 상기 반추위액은 39℃ 항온수조(water bath, Lab Companion; BS-21)에 1시간 정치시킨 후, 진공 펌프로 사료 입자를 제거한 다음 in vitro 시험에 사용하였다.The rumen gastric juice was collected through a rumen cannula just before the morning feeding, filtered using 4 layers of cheese cloth, and then quickly transferred to a laboratory in an anaerobic 2 L glass bottle. The rumen solution was left in an 39°C water bath, Lab Companion (BS-21) for 1 hour, and then used for in vitro testing after removing the feed particles with a vacuum pump.
실시예 2: 공시재료 및 Example 2: Disclosed materials and in vitroin vitro 시험 exam
2 mm으로 분쇄한 티모시를 65℃ 건조기(dry oven)에서 24시간 동안 건조시킨 후 공시재료로 사용하였고, 3 ㎝×5.5 ㎝로 자체 제작한 nylon bag(Ankom Forage bag: R1020)에 공시재료 0.95 g을 넣어 모든 처리구에 일괄적으로 사용하였으며, 0.05 g은 처리구별로 메탄 저감을 위한 원료로 사용하였다. Timothy crushed to 2 mm was dried in a dry oven at 65° C. for 24 hours, and used as a test material. 0.95 g of test material in a nylon bag (Ankom Forage bag: R1020) manufactured by itself with 3 cm×5.5 cm. Was added and used in batches for all treatment groups, and 0.05 g was used as a raw material for methane reduction for each treatment group.
대조구는 밀기울(wheat barn), 처리1구(MRA-1)는 파(Allium fistulosum L., 0.05 g), 처리2구(MRA-2)는 로릴 황산나트륨(sodium lauryl sulfate; SLS, 0.025 g)+밀기울(0.025 g), 처리3구(MRA-3)는 도데실 황산나트륨(sodium dodecyl sulfate; SDS, 0.025 g)+밀기울(0.025 g), 처리4구(MRA-4)는 파(0.02 g)+탄닌산(0.02 g)+밀기울(0.01 g)을 원료로 사용하였다. The control group was wheat bran (wheat barn), treatment group 1 (MRA-1) was leek ( Allium fistulosum L., 0.05 g), treatment group 2 (MRA-2) was sodium lauryl sulfate (SLS, 0.025 g)+ Wheat bran (0.025 g), treatment group 3 (MRA-3) is sodium dodecyl sulfate (SDS, 0.025 g) + wheat bran (0.025 g), treatment group 4 (MRA-4) is green onion (0.02 g) + Tannic acid (0.02 g) + bran (0.01 g) was used as a raw material.
공시재료인 티모시와 각 처리구별 원료를 nylon bag에 넣어 열 봉합(heat sealing)한 후 125 mL 혈청 병(serum bottle)에 투여하였다. 이후 반추위액과 McDougall 버퍼(Mcdougall, 1948)를 1:2의 비율로 혼합한 배양액 60 mL를 혐기상태(O2-free N2)로 분주한 후 부틸 고무(butyl rubber)와 알루미늄 씰(aluminum seal)을 이용하여 혈청 병을 밀봉하였다. 각 처리구별 배양은 39℃의 진탕 배양기(shaking incubator, Jeio Tech; SI-900R, 120 rpm)에서 시간대별(3, 6, 9, 12, 24 및 48시간)로 3반복으로 in vitro 시험을 수행하였다. 공시재료, 대조구 및 처리구의 화학적 조성은 하기 표 1과 같다.The raw material for each treatment group, timothy, was placed in a nylon bag, heat sealed, and then administered to a 125 mL serum bottle. Subsequently, 60 mL of the culture solution in which the rumen fluid and McDougall buffer (Mcdougall, 1948) were mixed at a ratio of 1:2 was dispensed into an anaerobic state (O 2 -free N 2 ), followed by butyl rubber and an aluminum seal. ) Was used to seal the serum bottle. Incubation for each treatment group was performed in vitro by repeating 3 times in a time zone (3, 6, 9, 12, 24 and 48 hours) in a shaking incubator at 39°C (shaking incubator, Jeio Tech; SI-900R, 120 rpm). Did. Chemical composition of the test material, control and treatment are shown in Table 1 below.
* NDF: Neutral detergent fiber(중성 세제 불용성 섬유)* NDF: Neutral detergent fiber
ADF: Acid detergent fiber(산성 세제 불용성 섬유) ADF: Acid detergent fiber
실시예 3: 분석항목 및 방법Example 3: Analysis items and methods
3-1. pH 분석3-1. pH analysis
pH 분석을 위해, Weaton decapper(Weaton Co., USA)를 이용하여 혈청 병의 부틸 고무와 알루미늄 씰을 제거한 후 배양액의 pH를 pH 측정기(Mettler Toledo, MP230)를 이용하여 측정하였다.For pH analysis, the butyl rubber and the aluminum seal of the serum bottle were removed using Weaton decapper (Weaton Co., USA), and then the pH of the culture was measured using a pH meter (Mettler Toledo, MP230).
3-2. 건물 소화율 분석3-2. Building digestibility analysis
건물 소화율 분석을 위해, 혈청 병 내 nylon bag을 수거하여 물을 채운 수조에 넣고, Heidolphs Rotamax 120(Heidolph Instrument, Germany)를 이용하여 100 rpm에서 20분간 3회 세척 후, 65℃의 건조기(Jeio tech, Korea)에서 약 24시간 동안 건조시켜 건물 잔량을 측정하였다. 이후 발효 전 기질량과의 차이를 구한 후, 상기 차이를 발효 전 기질량의 백분율로 환산하여 건물 소화율을 계산하였다.For analysis of building digestibility, a nylon bag in a serum bottle was collected and placed in a water-filled water tank, and washed three times at 100 rpm for 20 minutes using Heidolphs Rotamax 120 (Heidolph Instrument, Germany), followed by a dryer at 65°C (Jeio tech , Korea) for about 24 hours to measure the remaining amount of the building. Subsequently, after obtaining the difference from the air mass before fermentation, the difference was converted into a percentage of the air mass before fermentation to calculate the building digestibility.
3-3. 미생물 성장량 분석3-3. Microbial growth analysis
미생물 성장량 분석을 위해, 배양액 1 mL를 취한 후, 3,000 rpm에서 3분간 원심분리하여 사료입자를 제거하였다. 이후 상등액을 14,000 rpm에서 3분간 재원심분리하여 미생물 펠렛(pellet)을 침전시킨 다음 상등액 제거 후, 펠렛에 인산나트륨 버퍼(sodium phosphate buffer, pH 6.5)를 1 mL 첨가하여 볼텍스(vortex)로 교반하는 세척 과정을 3회 반복 수행하였다. 이후 분광광도계(spectrophotometer, BIO-RAD Model 680)로 550 nm에서 광학 밀도(optical density; O.D) 값을 측정하여 미생물 성장량을 계산하였다.For the analysis of microbial growth, 1 mL of culture was taken, and then the feed particles were removed by centrifugation at 3,000 rpm for 3 minutes. Subsequently, the supernatant was re-centrifuged at 14,000 rpm for 3 minutes to precipitate microbial pellets, and after removal of the supernatant, 1 mL of sodium phosphate buffer (pH 6.5) was added to the pellets and stirred with vortex. The washing process was repeated 3 times. Thereafter, a microscopic growth amount was calculated by measuring an optical density (O.D) value at 550 nm with a spectrophotometer (BIO-RAD Model 680).
3-4. 총 가스 발생량 분석3-4. Total gas generation analysis
총 가스 발생량은 Theodorou 등(1994)의 방법을 참고하여 수행하였다. 혈청 병의 상부 공간에 있는 가스를 detachable pressure transducer 및 digital readout voltmeter(Laurel Electronics, Inc., CA, USA)를 사용하여 측정하였고, 이후 9 mL 진공관(vacutainer)에 가스를 포집하여 가스 크로마토그래피(gas chromatography; GC, HP 5890 Gas Chromatography, USA)를 사용하여 메탄 및 이산화탄소 발생량을 측정하였다.The total gas generation was performed with reference to the method of Theodorou et al. (1994). The gas in the upper space of the serum bottle was measured using a detachable pressure transducer and a digital readout voltmeter (Laurel Electronics, Inc., CA, USA), after which gas was collected in a 9 mL vacuum tube to perform gas chromatography (gas Chromatography; GC, HP 5890 Gas Chromatography, USA) was used to measure the amount of methane and carbon dioxide generated.
3-5. 휘발성 지방산 분석3-5. Volatile fatty acid analysis
휘발성 지방산 분석을 위해, 배양액 1 mL를 취한 후, 12,000 rpm에서 3분간 원심분리하여 사료입자를 제거하였다. 이후 상등액을 0.20 μM 시린지 필터(syringe filter)로 여과한 다음 고성능 액체 크로마토그래피(high performance liquid chromatography; HPLC, Agilent-1200, Germany)를 이용하여 측정하였다. 시료의 주입량은 20 μL였고, 이동상 용액은 0.0085 N H2SO4를 사용하였으며, 유속은 0.6 mL/분이었다. 컬럼은 300 mm× 7.8 mm I.d. MetaCarb 87H(Varian, USA)을 35℃의 조건에서 사용하였다.For the analysis of volatile fatty acids, 1 mL of culture was taken, and then the feed particles were removed by centrifugation at 12,000 rpm for 3 minutes. Subsequently, the supernatant was filtered using a 0.20 μM syringe filter and then measured using high performance liquid chromatography (HPLC, Agilent-1200, Germany). The injection amount of the sample was 20 μL, and the mobile phase solution used 0.0085 NH 2 SO 4 and the flow rate was 0.6 mL/min. As a column, 300 mm×7.8 mm Id MetaCarb 87H (Varian, USA) was used at 35°C.
3-6. 미생물 군집 변화 분석3-6. Microbial community change analysis
미생물 군집의 변화를 분석하기 위해, 실시간 중합효소 연쇄반응(real-time PCR)을 수행하였다. 배양액 1 mL를 취한 후, 3,000 rpm에서 3분간 원심분리하여 사료 입자를 제거한 다음, NucleoSpin Soil(Macherey-Nagel, Duren, Germany)를 이용하여 DNA를 추출하고, Nano-drop(Thermo Scientific, Wilmington, Delaware USA)을 이용하여 DNA의 농도를 측정한 후 10 mg/μL로 보정하여 실험에 사용하였다. To analyze the changes in the microbial community, real-time PCR was performed. After taking 1 mL of the culture solution, the feed particles are removed by centrifugation at 3,000 rpm for 3 minutes, and then DNA is extracted using NucleoSpin Soil (Macherey-Nagel, Duren, Germany), and Nano-drop (Thermo Scientific, Wilmington, Delaware) USA) was used to measure the concentration of DNA and correct it to 10 mg/μL to use in the experiment.
실시간 중합효소 연쇄반응에 사용된 프라이머(primer)는 각각 총 박테리아(total bacteria, Denman and McSweeney, 2006), 메탄 생성균(Ciliate-associated methanogens, Skillman et al., 2006), 메탄 세균(Methanogenic archaea, Denman et al., 2007), 피브로박터 숙시노게네스와 루미노코쿠스 프라베파시엔스(Fibrobacter succinogenes and Ruminococcus flavefaciens, Denman and McSweeney, 2006) 및 루미노코쿠스 알부스(Ruminococcus albus, Koike and Kobayashi, 2001)에 대한 프라이머이다.Primers used in the real-time polymerase chain reaction are total bacteria (Total bacteria, Denman and McSweeney, 2006), methane producing bacteria (Ciliate-associated methanogens, Skillman et al., 2006), and methane bacteria (Methanogenic archaea, Denman) et al., 2007), Fibrobacter succinogenes and Ruminococcus flavefaciens , Denman and McSweeney, 2006), and Ruminococcus albus , Koike and Kobayashi, 2001 ).
실험에 사용하기 전, 전방향 프라이머(forward primer; FW) 10 μL 및 역방향 프라이머(reverse primer; RW) 10 μL를 증류수 180 μL를 섞어 10 pmol로 희석하였다. 0.2 mL PCR tube(PCR-0208-FCP-C, Corning Axygen, New York, USA)에 10 mg/μL로 보정한 DNA와 증류수를 섞어 9 μL 분주하고, 희석된 프라이머 1 μL와 SYBR Green(Code: QPK-201, Toyobo Co., LTD., Japan) 10 μL를 섞은 pre-mixture를 11 μL 분주하여 총 부피가 20 μL가 되도록 하였다. Before use in the experiment, 10 μL of forward primer (FW) and 10 μL of reverse primer (RW) were mixed with 180 μL of distilled water and diluted to 10 pmol. 0.2 μl PCR tube (PCR-0208-FCP-C, Corning Axygen, New York, USA) was mixed with 10 mg/μL of DNA and distilled water and dispensed 9 μL, diluted 1 μL of primer and SYBR Green (Code: QPK-201, Toyobo Co., LTD., Japan) 11 μL of pre-mixture mixed with 10 μL was dispensed so that the total volume was 20 μL.
이후 Denman과 McSweency(2006), Denman 등(2007)의 방법을 참고하여 Real-Time PCR(CFX96TM Real-Time system, BIO RAD)을 수행하였으며, 총 박테리아를 레퍼런스 유전자(reference gene)로 사용하여 섬유소 박테리아(Ruminococcus albus, Ruminocuccus flavefaciens, Fibrobacter succinogenes), 메탄 세균 및 메탄 생성균의 발현율을 측정하였으며, 대조구를 1로 보고 다른 처리구를 상대정량하여 미생물 군집의 변화를 분석하였다.Since then, Real-Time PCR (CFX96TM Real-Time system, BIO RAD) was performed with reference to the methods of Denman and McSweency (2006) and Denman et al. (2007). ( Ruminococcus albus , Ruminocuccus flavefaciens , Fibrobacter succinogenes ), the expression rate of methane bacteria and methane producing bacteria was measured, and the control group was regarded as 1 to analyze the change of the microbial community by relative quantification of other treatment groups.
실시예 4: 통계처리Example 4: Statistical processing
통계처리는 SAS package program(2002)의 General Linear Model(GLM) procedure에 따라 처리하였으며, 각 처리구간의 유의성 검증을 위해 분산 분석을 실시 후, Duncan’s multiple range test(Duncan, 1955)로 5% 수준에서 유의성을 검정하였다(P<0.05).Statistical processing was processed according to the General Linear Model (GLM) procedure of SAS package program (2002), and after analyzing the variance to verify the significance of each processing section, Duncan's multiple range test (Duncan, 1955) at 5% level. Significance was tested ( P <0.05).
시험예: 파 및 탄닌산이 반추동물 메탄 저감에 미치는 영향 분석 Test Example: Analysis of the effects of green onion and tannic acid on ruminant methane reduction
파 및 탄닌산이 in vitro 반추위 내 발효성상 중 pH, 건물 소화율 및 미생물 성장량에 미치는 영향은 하기 표 2에 나타내었다. The effects of green onion and tannic acid on pH, building digestibility and microbial growth during fermentation in vitro rumen are shown in Table 2 below.
pH는 대조구 및 첨가구에서 모두 적정 수준을 유지하고 있었으며, 발효시간이 경과함에 따라 낮아지는 경향을 나타내었다. 일반적인 반추위 내 pH는 5.0~7.8의 상태를 유지한다는 종래 연구 결과(Ha et al., 2013)와 일치하였다. The pH was maintained at an appropriate level in both the control and the addition, and tended to decrease as the fermentation time passed. In general, the pH in the rumen is consistent with the results of previous studies (Ha et al., 2013), which maintains a state of 5.0 to 7.8.
건물 소화율의 경우, 대조구와 처리구를 비교하였을 때 유의적(P>0.05)인 차이를 보이지 않았다. In the case of building digestibility, there was no significant difference ( P >0.05) when comparing the control and treatment groups.
미생물 성장량의 경우, 대조구와 비교하였을 때 발효 6, 9시간대의 처리4구(MRA-4)에서 미생물 성장량이 유의적(P<0.05)으로 높았으며, 모든 처리구에서 12시간대와 48시간대에서 최대치에 도달하는 것을 확인할 수 있었다. 이러한 결과는 파 및 탄닌산이 미생물의 성장 지연 현상을 나타내지 않음을 의미한다. In the case of microbial growth, the microbial growth was significantly ( P <0.05) higher in the 4 treatment groups (MRA-4) in the fermentation 6 and 9 hours compared to the control, and at the maximum in the 12 hours and 48 hours in all treatment groups. It was confirmed that it reached. These results indicate that green onion and tannic acid do not show the growth delay of microorganisms.
즉, 본 발명에서 사용된 파 및 탄닌산은 적정 범위의 pH 상태를 유지시키고, 건물 소화율 및 미생물 성장량에 부정적인 영향을 미치지 않는 것을 확인한 바, 총 가스 및 메탄을 저감시킬 수 있는 천연 첨가제의 조건에 적합한 것으로 판단하였다.That is, the green onion and tannic acid used in the present invention maintain a pH range in an appropriate range, and confirm that they do not negatively affect the building digestibility and microbial growth, and are suitable for the conditions of natural additives capable of reducing total gas and methane. It was judged.
* a, b, c 등 = P<0.05* a, b, c etc = P <0.05
파 및 탄닌산이 in vitro 반추위 내 총 가스 발생량에 미치는 영향은 하기 표 3에 나타내었다. The effects of green onion and tannic acid on total gas generation in rumen in vitro are shown in Table 3 below.
총 가스 발생량은 발효시간이 경과함에 따라 모든 처리구에서 증가하였고, 대조구와 비교하였을 때 발효 3, 9, 24, 48시간대의 처리4구(MRA-4)에서 유의적(P<0.05)으로 감소하는 확인하였다. Total gas generation increased in all treatment groups over the course of the fermentation time, and decreased significantly ( P <0.05) in the treatment group 4 (MRA-4) in the 3, 9, 24, and 48-hour periods compared to the control. Confirmed.
메탄 발생량은 발효시간이 경과함에 따라 모든 처리구에서 증가하였고, 대조구와 비교하였을 때 발효 24시간대의 처리2구(MRA-2), 처리3구(MRA-3) 및 처리4구(MRA-4)에서 유의적(P<0.05)으로 감소하는 것을 확인하였다. The amount of methane generated increased in all treatment groups as the fermentation time elapsed, and compared to the control, treatment 2 (MRA-2), treatment 3 (MRA-3) and treatment 4 (MRA-4) in the 24-hour fermentation period. It was confirmed to decrease significantly ( P <0.05).
이산화탄소 발생량 역시 발효시간이 경과함에 따라 모든 처리구에서 증가하였고, 대조구와 비교하였을 때 발효 24, 48시간대의 처리2구(MRA-2), 처리3구(MRA-3) 및 처리4구(MRA-4)에서 유의적(P<0.05)으로 감소하는 것을 확인하였다. The amount of carbon dioxide generated also increased in all treatment groups over the course of the fermentation time, and compared to the control,
즉, 본 발명에서 사용된 파 및 탄닌산은 합성 첨가제와 유사한 메탄 저감 효과를 나타내었으며, 특히 이산화탄소 저감 효과는 합성 첨가제보다 지속성 면에서 우수한 것을 확인할 수 있었다.That is, the green onion and tannic acid used in the present invention showed a methane reduction effect similar to that of the synthetic additive, and in particular, it was confirmed that the carbon dioxide reduction effect was superior to the synthetic additive in terms of sustainability.
파 및 탄닌산이 in vitro 반추위 내 휘발성 지방산에 미치는 영향은 하기 표 4에 나타내었다.The effects of green onion and tannic acid on volatile fatty acids in rumen in vitro are shown in Table 4 below.
총 휘발성 지방산의 경우, 대조구와 비교하였을 때 발효 24시간대의 처리4구(MRA-4)에서 유의적(P<0.05)으로 높았고, 초산(acetic acid) 함량의 경우, 대조구와 비교하였을 때 발효 6, 9시간대의 처리4구(MRA-4)에서 유의적(P<0.05)으로 낮았으며, 발효 48시간대의 처리1구(MRA-1)에서 유의적(P<0.05)으로 낮았다. 프로피온산(propionic acid) 함량의 경우, 대조구와 비교하였을 때 발효 12, 24시간대의 처리4구(MRA-4)에서 유의적(P<0.05)으로 높은 것을 확인하였다. 반추위 내 프로피온산은 메탄의 전구물질인 수소를 이용하여 생성되는 것으로 알려져 있는 바(Grobner et al., 1982), 상기 결과는 탄닌산이 반추위 내 수소를 이용하여 메탄 생성을 저감시키는 것으로 사료된다.In the case of total volatile fatty acids, fermentation was significantly higher in 4 treatment groups (MRA-4) in the 24-hour fermentation period ( P <0.05) compared to the control, and in the case of acetic acid content, fermentation when compared to the control 6 , It was significantly lower in treatment group 4 (MRA-4) at 9 hours ( P <0.05) and significantly lower in treatment group 1 (MRA-1) at 48 hours than fermentation ( P <0.05). In the case of propionic acid, compared to the control, it was confirmed that the fermentation was significantly higher ( P <0.05) in 4 treatment groups (MRA-4) at 12 and 24 hours of fermentation. Propionic acid in the rumen is known to be produced using hydrogen, a precursor of methane (Grobner et al., 1982), and it is thought that tannic acid reduces methane production by using hydrogen in the rumen.
파 및 탄닌산이 in vitro 반추위 내 미생물 군집 변화에 미치는 영향은 도 1에 나타내었다. 대조구와 비교하였을 때 섬유소 분해 박테리아(Ruminococcus albus, Fibrobacter succinogenes)는 발효 12시간대 모든 처리구에서 유의적(P<0.05)으로 낮았고, 루미노코쿠스 알부스(Ruminococcus albus는 발효 24시간대의 처리1구(MRA-1), 처리2구(MRA-2) 및 처리3구(MRA-3)에서 유의적(P<0.05)으로 높았으며, 피브로박터 숙시노게네스(Fibrobacter succinogenes)는 처리2구(MRA-2), 처리3구(MRA-3) 및 처리4구(MRA-4)에서 유의적(P<0.05)으로 높았다. The effect of green onion and tannic acid on the microbial community changes in the rumen in vitro is shown in FIG. 1. Compared to the control, fibrinolytic bacteria ( Ruminococcus albus, Fibrobacter succinogenes ) The fermentation was significantly lower ( P <0.05) in all treatments at 12 hours, and Ruminococcus albus was The fermentation 24-hour treatment group (MRA-1), treatment group 2 (MRA-2), and treatment group 3 (MRA-3) were significantly higher ( P <0.05), and fibrobacter succinogenes ( Fibrobacter succinogenes ) was significantly higher ( P <0.05) in treatment 2 (MRA-2), treatment 3 (MRA-3) and treatment 4 (MRA-4).
상기 결과는 음이온성 계면활성제인 SLS가 반추위 내의 카르복시-메틸 셀룰라아제 효소(carboxy-methyl cellulase enzyme)의 활성과 섬모충류(ciliate protozoa)의 수를 감소시켜 유기물과 섬유소 분해율을 감소시킨다는 종래 연구 결과(Santra 등., 2007)와 일치하였다. 그러나, 계면활성제의 농도를 증가시키면 사료에 효소의 부착이 방해된다는 종래 연구 결과(McAllister 등., 2000)와는 상이하였다. The above results show that the anionic surfactant SLS reduces the activity of carboxy-methyl cellulase enzyme in the rumen and the number of ciliate protozoa, thereby reducing the decomposition rate of organic matter and fibrin (Santra Et al., 2007). However, it was different from the results of previous studies (McAllister et al., 2000) that increasing the concentration of surfactants prevents the adhesion of enzymes to feed.
또한, 대조구와 비교하였을 때 메탄 생성균(ciliate-associated methanogens)은 발효 24시간대의 처리1구(MRA-1), 처리2구(MRA-2) 및 처리4구(MRA-4)에서 유의적(P<0.05)으로 낮은 것을 확인한 바, 파 및 탄닌산은 메탄 저감 효과를 나타내는 합성 첨가제의 대체제로서 사용될 수 있음을 확인하였다.In addition, compared to the control, methane-producing bacteria (ciliate-associated methanogens) were significant in treatment group 1 (MRA-1), treatment group 2 (MRA-2), and treatment group 4 (MRA-4) in the 24-hour fermentation period ( It was confirmed that P <0.05) was low, and it was confirmed that green onion and tannic acid can be used as a substitute for a synthetic additive showing a methane reducing effect.
이상으로 본 발명의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.The specific parts of the present invention have been described in detail above, and it is obvious that for those skilled in the art, these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all modifications or variations derived from the meaning and scope of the claims and their equivalent concepts should be interpreted to be included in the scope of the present invention.
Claims (7)
Method of inhibiting methane gas production in the rumen comprising the step of administering to the ruminant the feed composition according to claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180158911A KR20200071317A (en) | 2018-12-11 | 2018-12-11 | Feed additive composition for reducing methane emission from ruminants comprising Allium fistulosum and tannic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180158911A KR20200071317A (en) | 2018-12-11 | 2018-12-11 | Feed additive composition for reducing methane emission from ruminants comprising Allium fistulosum and tannic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20200071317A true KR20200071317A (en) | 2020-06-19 |
Family
ID=71137184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180158911A Ceased KR20200071317A (en) | 2018-12-11 | 2018-12-11 | Feed additive composition for reducing methane emission from ruminants comprising Allium fistulosum and tannic acid |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20200071317A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190112329A (en) * | 2017-02-21 | 2019-10-04 | 디에스엠 아이피 어셋츠 비.브이. | Use of feed compositions for reducing methane emissions from ruminants and / or improving ruminant performance |
CN113575768A (en) * | 2021-06-23 | 2021-11-02 | 中国农业科学院北京畜牧兽医研究所 | Composition for regulating and controlling rumen fermentation gas yield of ruminant and application thereof |
KR20220063892A (en) | 2020-11-11 | 2022-05-18 | 경상국립대학교산학협력단 | Feed additive composition for reducing methane emission from ruminants comprising phytoncide oil derived from discarded Pinus koraiensis as an active ingredient |
KR102404021B1 (en) * | 2021-12-24 | 2022-06-02 | 이안스(주) | How to manufacture feed additives using sea lattuce |
KR20220123968A (en) | 2021-03-02 | 2022-09-13 | 경상국립대학교산학협력단 | Feed additive composition for reducing methane emission from ruminants comprising leaves of bamboo as an active ingredient |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150004836A (en) | 2012-04-19 | 2015-01-13 | 인터퀴임, 에스.에이. | Feed composition for reducing ruminant methanogenesis |
-
2018
- 2018-12-11 KR KR1020180158911A patent/KR20200071317A/en not_active Ceased
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150004836A (en) | 2012-04-19 | 2015-01-13 | 인터퀴임, 에스.에이. | Feed composition for reducing ruminant methanogenesis |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190112329A (en) * | 2017-02-21 | 2019-10-04 | 디에스엠 아이피 어셋츠 비.브이. | Use of feed compositions for reducing methane emissions from ruminants and / or improving ruminant performance |
KR20220063892A (en) | 2020-11-11 | 2022-05-18 | 경상국립대학교산학협력단 | Feed additive composition for reducing methane emission from ruminants comprising phytoncide oil derived from discarded Pinus koraiensis as an active ingredient |
KR20220123968A (en) | 2021-03-02 | 2022-09-13 | 경상국립대학교산학협력단 | Feed additive composition for reducing methane emission from ruminants comprising leaves of bamboo as an active ingredient |
CN113575768A (en) * | 2021-06-23 | 2021-11-02 | 中国农业科学院北京畜牧兽医研究所 | Composition for regulating and controlling rumen fermentation gas yield of ruminant and application thereof |
CN113575768B (en) * | 2021-06-23 | 2023-09-15 | 中国农业科学院北京畜牧兽医研究所 | Composition for regulating and controlling rumen fermentation gas yield of ruminant and application thereof |
KR102404021B1 (en) * | 2021-12-24 | 2022-06-02 | 이안스(주) | How to manufacture feed additives using sea lattuce |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20200071317A (en) | Feed additive composition for reducing methane emission from ruminants comprising Allium fistulosum and tannic acid | |
Togtokhbayar et al. | Effect of exogenous xylanase on rumen in vitro gas production and degradability of wheat straw | |
Gordon et al. | The role of anaerobic gut fungi in ruminants | |
DK2748300T3 (en) | ENZYM-PRODUCING BACILLUS STUMS | |
Blanch et al. | Influence of a mixture of cinnamaldehyde and garlic oil on rumen fermentation, feeding behavior and performance of lactating dairy cows | |
Ghazanfar et al. | Probiotic yeast: Mode of action and its effects on ruminant nutrition | |
JP2017510289A (en) | Use of enzyme compositions in ruminant feed | |
WO2014184432A2 (en) | Tall oil fatty acid | |
Suong et al. | Optimizing anthocyanin-rich black cane (Saccharum sinensis Robx.) silage for ruminants using molasses and iron sulphate: A sustainable alternative | |
Salem et al. | The effect of feeding horses a high fiber diet with or without exogenous fibrolytic enzymes supplementation on nutrient digestion, blood chemistry, fecal coliform count, and in vitro fecal fermentation | |
Zhang et al. | Ruminal pH pattern, fermentation characteristics and related bacteria in response to dietary live yeast (Saccharomyces cerevisiae) supplementation in beef cattle | |
Lee et al. | Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations | |
Qiang et al. | Microbial community in the forestomachs of alpacas (Lama pacos) and sheep (Ovis aries) | |
Jiao et al. | Screening of live yeast and yeast derivatives for their impact of strain and dose on in vitro ruminal fermentation and microbial profiles with varying media pH levels in high‐forage beef cattle diet | |
Yan | Weaning methods affect ruminal methanogenic archaea composition and diversity in Holstein calves | |
Julliand et al. | Effect of dehydrated alfalfa on equine gastric and faecal microbial ecosystems | |
KR20200054902A (en) | Feed additive for cattle comprising N-acetyl-L-tryptophan as active ingredient | |
Zhou et al. | Compound enzyme preparation supplementation improves the production performance of goats by regulating rumen microbiota | |
Meenongyai et al. | Effect of coated cysteamine hydrochloride and probiotics supplemented alone or in combination on feed intake, nutrients digestibility, ruminal fermentation, and blood metabolites of Kamphaeng Saen beef heifers | |
Lee et al. | Effect of 2-bromoethanesulfonic acid on in vitro fermentation characteristics and methanogen population | |
Li et al. | Effects of a commercial blend of essential oils and monensin in a high-grain diet containing wheat distillers’ grains on in vitro fermentation | |
Gomaa et al. | Effect of dried distillers grains with solubles and red osier dogwood extract on fermentation pattern and microbial profiles of a high-grain diet in an artificial rumen system | |
CN114032200A (en) | Preparation method of bacillus subtilis feed additive for breeding animals | |
Singer et al. | Effect of yeast-based probiotics supplementation on the productive performance of Baladi male goats under conditions of Aswan, Egypt | |
KR101336980B1 (en) | Microorganism capable of reducing methane produced by ruminant animals and its uses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20181211 |
|
PA0201 | Request for examination | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20191216 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20200626 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20191216 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |