[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20200058334A - Mixture with non-crosslinking resin for preparing insulation layer of power cable - Google Patents

Mixture with non-crosslinking resin for preparing insulation layer of power cable Download PDF

Info

Publication number
KR20200058334A
KR20200058334A KR1020200047263A KR20200047263A KR20200058334A KR 20200058334 A KR20200058334 A KR 20200058334A KR 1020200047263 A KR1020200047263 A KR 1020200047263A KR 20200047263 A KR20200047263 A KR 20200047263A KR 20200058334 A KR20200058334 A KR 20200058334A
Authority
KR
South Korea
Prior art keywords
mixture
molecular weight
power cable
insulating layer
ethylene
Prior art date
Application number
KR1020200047263A
Other languages
Korean (ko)
Other versions
KR102185799B1 (en
Inventor
김웅
남진호
김형준
유익현
Original Assignee
엘에스전선 주식회사
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사, 한국전력공사 filed Critical 엘에스전선 주식회사
Publication of KR20200058334A publication Critical patent/KR20200058334A/en
Application granted granted Critical
Publication of KR102185799B1 publication Critical patent/KR102185799B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0275Disposition of insulation comprising one or more extruded layers of insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Insulating Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

The present invention relates to a mixture for producing an insulating layer of a power cable, the mixture including a mixture of polypropylene and ethylene-propylene copolymer, having the highest crystallization temperature of 110-125°C when the crystallization temperature is measured using a differential scanning calorimeter (DSC), and having a weight average molecular weight of 200,000 to 450,000, a number average molecular weight of 40,000 to 100,000, and a molecular weight distribution of 2 to 8. The mixture of the present invention satisfies mechanical properties required for a cable.

Description

비가교 수지로 이루어진 전력 케이블의 절연층 제조용 혼합물{Mixture with non-crosslinking resin for preparing insulation layer of power cable}Mixture with non-crosslinking resin for preparing insulation layer of power cable

본 발명은 비가교 수지로 이루어진 전력 케이블의 절연층 제조용 혼합물에 관한 것이다.The present invention relates to a mixture for producing an insulating layer of a power cable made of a non-crosslinking resin.

통상적으로 폴리에틸렌은 100 ~ 125 ℃의 녹는점을 갖고 있어서, IEC, ICEA 등의 대부분의 국제 규격에서 규정하고 있는 케이블의 연속 사용 온도 90℃를 만족할 수 없었다. 종래에는 이러한 문제점을 극복하기 위하여 다양한 방법으로 폴리에틸렌을 가교시킨 가교 폴리에틸렌을 절연층의 성분으로 사용하여 왔다. Typically, polyethylene has a melting point of 100 to 125 ° C, so it cannot satisfy the continuous use temperature of 90 ° C of cables specified in most international standards such as IEC and ICEA. Conventionally, in order to overcome this problem, crosslinked polyethylene in which polyethylene is crosslinked in various ways has been used as a component of the insulating layer.

그러나 이와 같이 가교 폴리에틸렌을 사용하게 될 경우, 가교 공정의 추가 및 이와 관련된 설비 투자에 따른 비용 증가 문제, 가교시에 발생하는 부산물 등의 이물에 의한 케이블의 절연 성능이 저하되는 등 새로운 문제점들이 발생하게 되었다.However, when the crosslinked polyethylene is used in this way, new problems may occur, such as the addition of the crosslinking process and the cost increase due to the investment in equipment related thereto, and the insulation performance of the cable due to foreign matter such as by-products generated during crosslinking. Became.

따라서, 이러한 문제점을 해결하기 위하여 가교되지 않은 수지로 이루어지고 케이블의 절연층에 요구되는 여러가지 물성을 만족할 수 있는 전력 케이블의 절연층 제조용 혼합물에 관한 필요성이 절실히 대두되었다.Therefore, in order to solve this problem, there is an urgent need for a mixture for preparing an insulating layer of a power cable that is made of resin that is not crosslinked and can satisfy various properties required for the insulating layer of a cable.

상기 문제점을 해결하기 위하여 본 발명은 비가교 수지로 이루어지면서 기계적 물성이 우수한 전력 케이블의 절연층 제조용 혼합물을 제공하는 것이다.In order to solve the above problems, the present invention is made of a non-crosslinked resin and provides a mixture for preparing an insulating layer of a power cable having excellent mechanical properties.

상기 목적을 달성하기 위한 본 발명의 일 양태에 따른 전력 케이블의 절연층 제조용 혼합물은 폴리프로필렌과 에틸렌-프로필렌공중합체를 포함하고, 시차주사열량계(DSC)를 이용하여 결정화 온도를 관찰하였을 때 최고 결정화 온도가 110 ℃ 이상 125 ℃ 이하인 것을 특징으로 한다.The mixture for preparing an insulating layer of a power cable according to an aspect of the present invention for achieving the above object includes polypropylene and an ethylene-propylene copolymer, and exhibits the highest crystallization when a crystallization temperature is observed using a differential scanning calorimeter (DSC). It is characterized in that the temperature is 110 ° C or higher and 125 ° C or lower.

상기 혼합물은 200,000 내지 450,000의 중량평균 분자량을 갖는 것을 특징으로 한다.The mixture is characterized by having a weight average molecular weight of 200,000 to 450,000.

상기 혼합물은 40,000 내지 100,000의 수평균 분자량을 갖는 것을 특징으로 한다.The mixture is characterized by having a number average molecular weight of 40,000 to 100,000.

상기 혼합물은 2 내지 8의 분자량 분포를 갖는 것을 특징으로 한다.The mixture is characterized by having a molecular weight distribution of 2 to 8.

본 발명에 따른 전력 케이블의 절연층 제조용 혼합물은 종래에 절연층의 성분으로 사용하던 가교 폴리에틸렌을 사용하지 않음으로써, 가교 공정을 거침에 따른 비용 증가 문제, 가교 부산물에 의한 절연 성능 저하의 문제점들이 발생하지 않을 뿐만 아니라, 케이블에 요구되는 기계적 물성 등을 만족한다.The mixture for preparing the insulating layer of the power cable according to the present invention does not use a crosslinked polyethylene that was conventionally used as a component of the insulating layer, resulting in problems of cost increase through a crosslinking process and problems of deterioration of insulation performance by crosslinking by-products. Not only does it not, it also satisfies the mechanical properties required for the cable.

본 명세서에 첨부된 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술 사상의 이해를 돕기 위한 것이므로, 본 발명은 아래 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 통상적으로 사용되는 케이블의 단면도를 나타낸다.
The drawings attached to the present specification illustrate preferred embodiments of the present invention, and are intended to assist in understanding the technical spirit of the present invention together with the detailed description of the present invention, and the present invention is limited to only the matters described in the drawings below No.
1 shows a cross-sectional view of a commonly used cable.

이하, 본 발명을 자세히 설명한다. Hereinafter, the present invention will be described in detail.

도 1에는 통상적으로 사용되는 절연 케이블의 구조가 도시되어 있다. 도 1을 참조하면, 상기 절연 케이블은 적어도 하나 이상의 도체(11), 내부 반도전층(12), 절연층(13), 외부 반도전층(14), 차폐층(15) 및 시스층(16)이 차례로 배치된 구조를 갖는다.1 shows the structure of a commonly used insulated cable. Referring to FIG. 1, the insulated cable includes at least one conductor 11, an inner semiconducting layer 12, an insulating layer 13, an outer semiconducting layer 14, a shielding layer 15, and a sheath layer 16. It has a structure arranged in turn.

종래에는 상기 절연층(13)의 재료로서 주로 가교 폴리에틸렌을 사용하였다.그러나, 본 발명은 상기 적어도 하나 이상의 도체를 감싸는 절연층(13)이 폴리프로필렌 수지와 에틸렌-프로필렌공중합체 수지의 혼합물을 포함하는 것을 특징으로 한다. Conventionally, cross-linked polyethylene was mainly used as a material for the insulating layer 13. However, in the present invention, the insulating layer 13 surrounding the at least one conductor includes a mixture of polypropylene resin and ethylene-propylene copolymer resin. It is characterized by.

상기 폴리프로필렌과 에틸렌-프로필렌공중합체의 혼합물은 시차주사열량계(DSC)를 이용하여 결정화 온도를 관찰하였을 때 최고(max) 결정화 온도가 110 ℃ 이상 125 ℃ 이하인 것이 바람직하다. 상기 최고 결정화 온도가 110 ℃ 미만일 경우에는 IEC 국제 규격에서 요구하는 노화(aging) 시험 조건(135 ℃ 또는 150 ℃)에서 상기 폴리프로필렌과 에틸렌-프로필렌공중합체의 혼합물이 용융되어 케이블의 연속 사용 온도 90 ℃ 조건을 만족할 수 없으며, 상기 최고 결정화 온도가 125 ℃를 초과할 경우에는 냉각 중 결정화 속도가 빨라져 상온에서의 인장 신율 저하되는 문제가 발생한다.When the crystallization temperature of the polypropylene and ethylene-propylene copolymer is observed using a differential scanning calorimeter (DSC), the maximum (max) crystallization temperature is preferably 110 ° C or higher and 125 ° C or lower. When the maximum crystallization temperature is less than 110 ° C, the mixture of the polypropylene and the ethylene-propylene copolymer is melted under the aging test conditions (135 ° C or 150 ° C) required by IEC international standards, and the cable is used continuously 90 If the maximum temperature of the crystallization cannot be satisfied, and the maximum crystallization temperature exceeds 125 ° C, the crystallization rate during cooling increases, resulting in a decrease in tensile elongation at room temperature.

상기 폴리프로필렌과 에틸렌-프로필렌공중합체의 혼합물은 200,000 내지 450,000의 중량평균 분자량을 가지며, 이러한 중량평균 분자량과 관련하여 200,000 미만이면 기계적 물성 및 가열후 기계적 물성이 저하되어 불리하며, 450,000을 초과하면 높은 점도로 인하여 가공성이 저하되어 불리하다.The mixture of the polypropylene and the ethylene-propylene copolymer has a weight average molecular weight of 200,000 to 450,000, and if it is less than 200,000 in relation to the weight average molecular weight, mechanical properties and mechanical properties after heating are disadvantageous. Due to the viscosity, the workability is lowered, which is disadvantageous.

상기 폴리프로필렌과 에틸렌-프로필렌공중합체의 혼합물은 40,000 내지 100,000의 수평균 분자량을 가지며, 이러한 수평균 분자량과 관련하여 40,000 미만이면 기계적 물성 및 가열후 기계적 물성이 저하되어 불리하며, 100,000을 초과하면 높은 점도로 인하여 가공성이 저하되어 불리하다.The mixture of the polypropylene and ethylene-propylene copolymer has a number average molecular weight of 40,000 to 100,000, and if it is less than 40,000 in relation to the number average molecular weight, mechanical properties and mechanical properties after heating are disadvantageous, and when it exceeds 100,000, it is high. Due to the viscosity, the workability is lowered, which is disadvantageous.

상기 폴리프로필렌과 에틸렌-프로필렌공중합체의 혼합물은 2 내지 8의 분자량 분포를 가지며, 이러한 분자량 분포와 관련하여 2 미만이면 높은 점도로 인하여 가공성이 저하되어 불리하며, 8을 초과하면 기계적 물성 및 가열후 기계적 물성이 저하되어 불리하다.The mixture of the polypropylene and the ethylene-propylene copolymer has a molecular weight distribution of 2 to 8, and when it is less than 2 in relation to the molecular weight distribution, processability is deteriorated due to high viscosity, and when it exceeds 8, mechanical properties and after heating Mechanical properties are deteriorated, which is disadvantageous.

본 발명에 따른 상기 혼합물은 녹는점이 155~165℃인 폴리프로필렌 수지와 녹는점이 100~140℃인 에틸렌-프로필렌공중합체 수지를 양축 압출기를 이용하여 용융상태에서 기계적으로 혼합하는 것에 의해 제조된다. 또한, 다른 방법으로, 본 발명에 따른 상기 혼합물은 상기 폴리프로필렌 수지와 상기 에틸렌-프로필렌의 순차적인 중합반응을 통해서도 제조될 수 있다. The mixture according to the present invention is prepared by mechanically mixing a polypropylene resin having a melting point of 155 to 165 ° C and an ethylene-propylene copolymer resin having a melting point of 100 to 140 ° C in a molten state using a twin-screw extruder. In addition, in another method, the mixture according to the present invention can also be prepared through a sequential polymerization reaction of the polypropylene resin and the ethylene-propylene.

[실시예][Example]

이하 실시예를 들어 본 발명을 더 구체적으로 설명한다. 본 발명이 속하는 분야의 평균적 기술자는 아래 실시예에 기재된 실시 태양 외에 여러 가지 다른 형태로 본 발명을 변경할 수 있으며, 이하 실시예는 본 발명을 예시할 따름이지 본 발명의 기술적 사상의 범위를 아래 실시예 범위로 한정하기 위한 의도라고 해석해서는 아니된다. Hereinafter, the present invention will be described in more detail with reference to Examples. The average person skilled in the art to which the present invention pertains may change the present invention in various other forms in addition to the embodiments described in the examples below, and the following examples are merely illustrative of the present invention and the scope of the technical spirit of the present invention is carried out below. It should not be construed as intended to be limited to the scope of the examples.

<실시예 1><Example 1>

프로필렌의 중합 반응과 에틸렌-프로필렌수지의 공중합 반응을 순차적으로 일으켜 녹는점이 162℃인 폴리프로필렌 수지와 녹는점이 117℃인 에틸렌-프로필렌공중합수지의 혼합물(Basell, Q200F)을 제조하였다. 이때, 순차적인 공중합반응에 의해 폴리프로필렌 수지는 31중량%, 에틸렌-프로필렌 공중합체는 69중량%가 생성된다. 이때, 이렇게 제조된 혼합물의 결정화 온도, 중량평균분자량 및 분자량 분포는 하기 표 1과 같다. A mixture of a polypropylene resin having a melting point of 162 ° C and an ethylene-propylene copolymer resin having a melting point of 117 ° C (Basell, Q200F) was prepared by sequentially producing a polymerization reaction of propylene and a copolymerization reaction of ethylene-propylene resin. At this time, 31% by weight of the polypropylene resin and 69% by weight of the ethylene-propylene copolymer are produced by the sequential copolymerization reaction. At this time, the crystallization temperature, weight average molecular weight and molecular weight distribution of the mixture thus prepared are shown in Table 1 below.

<비교예 1><Comparative Example 1>

녹는점이 165℃인 폴리프로필렌 수지(SK종합화학, H920Y) 65중량%와 녹는점이 107℃인 에틸렌-프로필렌공중합체 수지(DOW, DP2000.01) 35중량%를 양축압출기를 이용하여 용융한 상태에서 혼합하여 비교예 1의 혼합물을 제조한다. 이때, 이렇게 제조된 혼합물의 결정화 온도, 중량평균분자량 및 분자량 분포는 하기 표 1과 같다. 65% by weight of polypropylene resin (SK General Chemical, H920Y) with a melting point of 165 ℃ and 35% by weight of ethylene-propylene copolymer resin with a melting point of 107 ℃ (DOW, DP2000.01) are melted using a twin-screw extruder. Mix to prepare the mixture of Comparative Example 1. At this time, the crystallization temperature, weight average molecular weight and molecular weight distribution of the mixture thus prepared are shown in Table 1 below.

<비교예 2><Comparative Example 2>

녹는점이 165℃인 폴리프로필렌 수지(SK종합화학, H920Y) 25중량%와 녹는점이 107℃인 에틸렌-프로필렌공중합체 수지(DOW, DP2000.01) 75중량%를 양축압출기를 이용하여 용융한 상태에서 혼합하여 비교예 2의 혼합물을 제조한다. 이때, 이렇게 제조된 혼합물의 결정화 온도, 중량평균분자량 및 분자량 분포는 하기 표 1과 같다. 25% by weight of polypropylene resin (SK General Chemical, H920Y) with a melting point of 165 ℃ and 75% by weight of ethylene-propylene copolymer resin with a melting point of 107 ℃ (DOW, DP2000.01) are melted using a twin-screw extruder. Mix to prepare the mixture of Comparative Example 2. At this time, the crystallization temperature, weight average molecular weight and molecular weight distribution of the mixture thus prepared are shown in Table 1 below.

<비교예 3><Comparative Example 3>

녹는점이 160℃인 폴리프로필렌 수지(호남석유화학, B-310) 40중량%와 녹는점이 107℃인 에틸렌-프로필렌공중합체 수지(DOW, DP2000.01) 60중량%를 양축압출기를 이용하여 용융한 상태에서 혼합하여 비교예 3의 혼합물을 제조한다. 이때, 이렇게 제조된 혼합물의 결정화 온도, 중량평균분자량 및 분자량 분포는 하기 표 1과 같다. 40% by weight of polypropylene resin (Honnam Petrochemical, B-310) with a melting point of 160 ℃ and 60% by weight of ethylene-propylene copolymer resin (DOW, DP2000.01) with a melting point of 107 ℃ were melted using a twin-screw extruder. The mixture of Comparative Example 3 was prepared by mixing in a state. At this time, the crystallization temperature, weight average molecular weight and molecular weight distribution of the mixture thus prepared are shown in Table 1 below.

<비교예 4><Comparative Example 4>

녹는점이 163℃인 폴리프로필렌 수지(SK종합화학, H360F) 40중량%와 녹는점이 108℃인 에틸렌-프로필렌공중합체 수지(DOW, DP3000) 60중량%를 양축압출기를 이용하여 용융한 상태에서 혼합하여 비교예 4의 혼합물을 제조한다. 이때, 이렇게 제조된 혼합물의 결정화 온도, 중량평균분자량 및 분자량 분포는 하기 표 1과 같다. 40% by weight of polypropylene resin (SK General Chemical, H360F) having a melting point of 163 ° C and 60% by weight of ethylene-propylene copolymer resin (DOW, DP3000) having a melting point of 108 ° C were mixed in a molten state using a twin-screw extruder. The mixture of Comparative Example 4 is prepared. At this time, the crystallization temperature, weight average molecular weight and molecular weight distribution of the mixture thus prepared are shown in Table 1 below.

폴리프로필렌과 에틸렌-프로필렌공중합체의
혼합물
Polypropylene and ethylene-propylene copolymer
mixture

실시예

Example

비교예 1

Comparative Example 1

비교예 2

Comparative Example 2

비교예 3

Comparative Example 3

비교예 4

Comparative Example 4
결정화 온도 (℃)Crystallization temperature (℃) 118118 135135 105105 125125 125125 중량평균 분자량Weight average molecular weight 370,000370,000 320,000320,000 340,000340,000 650,000650,000 180,000180,000 분자량 분포Molecular weight distribution 5.25.2 4.14.1 4.54.5 1.51.5 1010

물성 측정 및 평가Measurement and evaluation of properties

상기 실시예 1 및 비교예 1 내지 비교예 4의 혼합물로 이루어진 절연층을 포함하는 케이블을 각각 제조한다. 이 케이블은 전형적으로 도 1과 같은 구조를 갖는다. 상기 제조된 케이블에 대해 상온에서의 기계적 물성(인장 강도, 인장 신율), 가열후 기계적 물성(인장 강도, 신장 잔율) 및 압출기 수지 압력을 측정한 결과를 아래 표 2에 정리하였고, 간략한 실험 조건은 다음과 같다.Cables each including an insulating layer made of the mixture of Example 1 and Comparative Examples 1 to 4 were prepared. This cable typically has the structure shown in FIG. 1. The results of measuring the mechanical properties at room temperature (tensile strength, tensile elongation), mechanical properties after heating (tensile strength, elongation residual rate) and the pressure of the extruder resin are summarized in Table 2 below. As follows.

㉠ 상온 기계적 물성 기계적 Mechanical properties at room temperature

케이블은 IEC 60811-1-1에 준하여 인장속도 250 mm/분으로 측정하였을 때 인장 강도는 1.27 kgf/mm2 이상, 인장 신율은 200% 이상이어야 한다.The cable shall have a tensile strength of 1.27 kgf / mm 2 or more and a tensile elongation of 200% or more when measured at a tensile speed of 250 mm / min according to IEC 60811-1-1.

㉡ 가열 후 기계적 물성기계적 Mechanical properties after heating

케이블을 150 ℃에서 168 시간 동안 가열 노화한 후 기계적 물성을 측정하였다. 이때, 인장강도 잔율과 신장 잔율은 최소 75% 이상이어야 한다.The cable was heat aged at 150 ° C. for 168 hours, and then mechanical properties were measured. At this time, the residual tensile strength and residual tensile strength should be at least 75%.

㉢ 압출기 수지 압력수지 Extruder resin pressure

통상적인 케이블 가공용 압출기에서 수지 압력은 낮을수록 우수한 생산성을 보장하며, 정상적인 생산성을 유지할 수 있는 수지 압력의 한계는 300bar 이하이면 바람직하다.In a typical cable processing extruder, the lower the resin pressure, the better the productivity. It is desirable to limit the resin pressure to ensure and maintain normal productivity if it is 300 bar or less.

시험 항목Test Items 실시예Example 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 상온 인장 강도(kgf/mm2)Room temperature tensile strength (kgf / mm 2 ) 2.12.1 1.91.9 1.81.8 3.23.2 1.61.6 상온 인장 신율(%)Elongation at room temperature (%) 665665 105105 480480 750750 440440 가열후
인장강도 잔율(%)
After heating
Tensile strength residual rate (%)
8282 8080 용융Melt 9191 6363
가열후 신장 잔율(%)Residual elongation after heating (%) 8181 450450 용융Melt 9090 5757 압출기 수지압력(bar)Extruder resin pressure (bar) 160160 150150 130130 430430 130130

표 2에 정리한 바와 같이, 비교예 1의 경우 높은 결정화 온도(135℃)를 가지는 폴리프로필렌과 에틸렌-프로필렌공중합체의 혼합물을 사용함에 따라 냉각 중 결정화 속도가 빨라져 상온에서의 인장 신율 저하를 나타냈으며, 오히려 150℃에서 가열 시험 중 어닐링(annealing) 효과에 의해 잠재된 신장 잔율을 회복하는 결과를 나타냈다. 비교예 2의 경우 낮은 결정화 온도(105℃)를 가지는 폴리프로필렌과 에틸렌-프로필렌공중합체의 혼합물을 사용함에 따라 고온에서 용융되어, 가열후 기계적 물성이 좋지 않았다.As summarized in Table 2, in the case of Comparative Example 1, by using a mixture of polypropylene and an ethylene-propylene copolymer having a high crystallization temperature (135 ° C), the crystallization rate during cooling is fast, indicating a decrease in tensile elongation at room temperature. Rather, during the heating test at 150 ° C, it showed a result of restoring the elongation potential latent by an annealing effect. In Comparative Example 2, a mixture of polypropylene and an ethylene-propylene copolymer having a low crystallization temperature (105 ° C.) was melted at a high temperature, and mechanical properties were poor after heating.

비교예 3의 경우 높은 중량평균 분자량(650,000)과 좁은 분자량 분포(1.5 Mw/Mn)를 가지는 폴리프로필렌과 에틸렌-프로필렌공중합체의 혼합물을 사용함에 따라 상온 및 가열후 기계적 물성이 우수하였으나, 높은 수지 압력을 보여 가공 특성이 저하되었다. In the case of Comparative Example 3, mechanical properties after room temperature and heating were excellent as a mixture of polypropylene and ethylene-propylene copolymer having high weight average molecular weight (650,000) and narrow molecular weight distribution (1.5 Mw / Mn) was used, but high resin The processing characteristics were deteriorated due to the pressure.

비교예 4의 경우 넓은 분자량 분포(10 Mw/Mn)를 가지는 폴리프로필렌과 에틸렌-프로필렌공중합체의 혼합물을 사용함에 따라 양호한 가공특성을 나타냈으나, 상기 혼합물의 낮은 중량평균 분자량(180,000)으로 인해 가열후 기계적 물성이 좋지 않았다.In the case of Comparative Example 4, good processing characteristics were exhibited by using a mixture of polypropylene and ethylene-propylene copolymer having a broad molecular weight distribution (10 Mw / Mn), but due to the low weight average molecular weight (180,000) of the mixture Mechanical properties were not good after heating.

반면, 본 발명의 실시예의 경우 상온에서의 기계적 물성(상온 인장강도 및 상온 인장신율) 뿐만 아니라, 가열후 기계적 물성(가열후 인장강도 잔율 및 가열후 신장잔율)에서도 우수한 결과를 나타냈다. 이러한 결과는 최적의 물성을 갖는 폴리프로필렌과 에틸렌-프로필렌공중합체의 혼합물을 사용한 것에 기인한다.On the other hand, in the case of the embodiment of the present invention, as well as mechanical properties at room temperature (at room temperature tensile strength and elongation at room temperature), mechanical properties after heating (residual strength after heating and residual elongation after heating) showed excellent results. These results are due to the use of a mixture of polypropylene and ethylene-propylene copolymers with optimum properties.

이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다. 또한, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Although the present invention has been described above by way of limited examples and drawings, the present invention is not limited by this, and will be described below by the person skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the equal scope of the claims. In addition, the terms or words used in the specification and claims should not be interpreted as being limited to ordinary or lexical meanings, and the inventor appropriately defines the concept of terms in order to describe his or her invention in the best way. Based on the principle that it can be done, it should be interpreted as a meaning and a concept consistent with the technical idea of the present invention. Therefore, the configuration shown in the embodiments and drawings described in this specification is only one of the most preferred embodiments of the present invention and does not represent all of the technical spirit of the present invention, and thus can replace them at the time of application. It should be understood that there may be equivalents and variations.

11 : 도체
12 : 내부 반도전층
13 : 절연층
14 : 외부 반도전층
15 : 차폐층
16 : 시스층
11: conductor
12: inner semiconducting layer
13: insulating layer
14: outer semiconducting layer
15: shielding layer
16: sheath layer

Claims (4)

전력 케이블의 절연층 제조용 혼합물로서,
상기 혼합물은 폴리프로필렌과 에틸렌-프로필렌공중합체를 포함하고,
상기 혼합물은 시차주사열량계(DSC)를 이용하여 결정화 온도를 관찰하였을 때 최고 결정화 온도가 110 ℃ 이상 125 ℃ 이하인 것을 특징으로 하는 전력 케이블의 절연층 제조용 혼합물.
A mixture for the production of an insulating layer of a power cable,
The mixture includes polypropylene and ethylene-propylene copolymer,
The mixture is a mixture for producing an insulating layer of a power cable, characterized in that the highest crystallization temperature is 110 ° C or more and 125 ° C or less when the crystallization temperature is observed using a differential scanning calorimeter (DSC).
제 1 항에 있어서,
200,000 내지 450,000의 중량평균 분자량을 갖는 것을 특징으로 하는 전력 케이블의 절연층 제조용 혼합물.
According to claim 1,
Mixture for preparing an insulating layer of a power cable, characterized in that it has a weight average molecular weight of 200,000 to 450,000.
제 1 항 또는 제 2 항에 있어서,
40,000 내지 100,000의 수평균 분자량을 갖는 것을 특징으로 하는 전력 케이블의 절연층 제조용 혼합물.
The method of claim 1 or 2,
A mixture for preparing an insulating layer of a power cable, characterized in that it has a number average molecular weight of 40,000 to 100,000.
제 3 항에 있어서,
2 내지 8의 분자량 분포를 갖는 것을 특징으로 하는 전력 케이블의 절연층 제조용 혼합물.
The method of claim 3,
Mixture for preparing an insulating layer of a power cable, characterized in that it has a molecular weight distribution of 2 to 8.
KR1020200047263A 2011-02-10 2020-04-20 Mixture with non-crosslinking resin for preparing insulation layer of power cable KR102185799B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110011987 2011-02-10
KR1020110011987 2011-02-10

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020120013637A Division KR102121071B1 (en) 2011-02-10 2012-02-10 Cable Including Insulation Layer With Non-crosslinking Resin

Publications (2)

Publication Number Publication Date
KR20200058334A true KR20200058334A (en) 2020-05-27
KR102185799B1 KR102185799B1 (en) 2020-12-02

Family

ID=46884261

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020120013637A KR102121071B1 (en) 2011-02-10 2012-02-10 Cable Including Insulation Layer With Non-crosslinking Resin
KR1020190007010A KR20190011296A (en) 2011-02-10 2019-01-18 Cable Including Insulation Layer With Non-crosslinking Resin
KR1020200047263A KR102185799B1 (en) 2011-02-10 2020-04-20 Mixture with non-crosslinking resin for preparing insulation layer of power cable

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020120013637A KR102121071B1 (en) 2011-02-10 2012-02-10 Cable Including Insulation Layer With Non-crosslinking Resin
KR1020190007010A KR20190011296A (en) 2011-02-10 2019-01-18 Cable Including Insulation Layer With Non-crosslinking Resin

Country Status (1)

Country Link
KR (3) KR102121071B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110415868A (en) * 2019-05-07 2019-11-05 广东筑宾电子科技有限公司 A kind of flexible transmission line
JP7358949B2 (en) * 2019-11-28 2023-10-11 株式会社オートネットワーク技術研究所 insulated wire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195604A (en) * 1989-01-24 1990-08-02 Furukawa Electric Co Ltd:The Foam insulating electric wire
JPH052938A (en) * 1991-06-25 1993-01-08 Furukawa Electric Co Ltd:The Electric wire with foamed insulator and its manufacture
KR20090010110A (en) * 2006-07-10 2009-01-28 보레알리스 테크놀로지 오와이. Cable layer on polypropylene basis with high electrical breakdown strength
KR20090043198A (en) * 2007-10-29 2009-05-06 엘에스전선 주식회사 High strength foam cable for ship
JP2010055849A (en) * 2008-08-27 2010-03-11 Japan Polyethylene Corp Polyethylene resin material for non-crosslinked electric wire, and electric wire and cable using the same
WO2011004835A1 (en) * 2009-07-07 2011-01-13 株式会社フジクラ Foamed electric wire and transmission cable having said foamed electric wires

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195604A (en) * 1989-01-24 1990-08-02 Furukawa Electric Co Ltd:The Foam insulating electric wire
JPH052938A (en) * 1991-06-25 1993-01-08 Furukawa Electric Co Ltd:The Electric wire with foamed insulator and its manufacture
KR20090010110A (en) * 2006-07-10 2009-01-28 보레알리스 테크놀로지 오와이. Cable layer on polypropylene basis with high electrical breakdown strength
KR20090043198A (en) * 2007-10-29 2009-05-06 엘에스전선 주식회사 High strength foam cable for ship
JP2010055849A (en) * 2008-08-27 2010-03-11 Japan Polyethylene Corp Polyethylene resin material for non-crosslinked electric wire, and electric wire and cable using the same
WO2011004835A1 (en) * 2009-07-07 2011-01-13 株式会社フジクラ Foamed electric wire and transmission cable having said foamed electric wires

Also Published As

Publication number Publication date
KR20190011296A (en) 2019-02-01
KR102121071B1 (en) 2020-06-10
KR102185799B1 (en) 2020-12-02
KR20120092076A (en) 2012-08-20

Similar Documents

Publication Publication Date Title
EP3342816B1 (en) Power cable comprising a polypropylene resin in an insulation layer
EP2637178A2 (en) Insulating composition and electric cable comprising same
EP2622012B1 (en) Recyclable thermoplastic insulation with improved breakdown strength
KR102201366B1 (en) Mixture with non-crosslinking resin for preparing insulation layer of power cable
EP3045496B1 (en) Crosslinked polyethylene resin composition
KR102003567B1 (en) Power cable
EP3470462A1 (en) Polypropylene for insulation layer of power cable
JP2014519146A (en) Polymer compositions for electrical devices
US11629246B2 (en) Power cable
KR20200004061A (en) Power cable
KR102185799B1 (en) Mixture with non-crosslinking resin for preparing insulation layer of power cable
EP3359601B1 (en) Semiconductive shield composition
EP3745427A1 (en) Power cable
US7750242B2 (en) Insulated wire, insulated cable, non-halogen flame retardant wire, and non-halogen flame retardant cable
EP3445820B1 (en) Fluoropolymer composition
EP3544026A1 (en) Power cable
EP3819918A1 (en) Power cable
KR20190106955A (en) Power cable
EP2799485B9 (en) Polymer composition and a cable spacer comprising the polymer composition
KR102339371B1 (en) Semiconductive composition and power cable having a semiconductive layer formed from the same
KR20190087345A (en) Power cable
KR100625804B1 (en) Insulation material for high voltage instrumental wire and cable using thereof
KR20200004270A (en) Power cable
KR20180113269A (en) Insulated cable having an excellent heat resistance
KR20220068022A (en) Polypropylene resin composition for power cable

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant