[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20200021673A - Fractal-shaped Alloy Nanostructure formed by using Amorphous Nanostructure and Method of manufacturing the same - Google Patents

Fractal-shaped Alloy Nanostructure formed by using Amorphous Nanostructure and Method of manufacturing the same Download PDF

Info

Publication number
KR20200021673A
KR20200021673A KR1020180097279A KR20180097279A KR20200021673A KR 20200021673 A KR20200021673 A KR 20200021673A KR 1020180097279 A KR1020180097279 A KR 1020180097279A KR 20180097279 A KR20180097279 A KR 20180097279A KR 20200021673 A KR20200021673 A KR 20200021673A
Authority
KR
South Korea
Prior art keywords
metal
nanostructure
amorphous
alloy
bonding
Prior art date
Application number
KR1020180097279A
Other languages
Korean (ko)
Other versions
KR102458627B1 (en
Inventor
허가현
김민석
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020180097279A priority Critical patent/KR102458627B1/en
Priority to PCT/KR2019/001087 priority patent/WO2020040379A1/en
Publication of KR20200021673A publication Critical patent/KR20200021673A/en
Application granted granted Critical
Publication of KR102458627B1 publication Critical patent/KR102458627B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/10Silver compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/12Gold compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Disclosed are fractal-structured alloy nanostructures and a method for producing the same. The snowflake-shaped fractal structure is formed by using amorphous nanostructures as a chemical template. With the addition of a second metal element having a higher standard reduction potential than a central metal constituting the amorphous nanostructures, the ionic second metal element is reduced, and the oxidation number of the central metal is raised. Moreover, the amorphous nanostructures are disassociated, and the elements constituting an inorganic polymer form the fractal structure together with the second metal elements.

Description

비정질 나노구조체를 이용하여 제조된 프랙탈 형상의 합금 나노구조체 및 그 제조방법{Fractal-shaped Alloy Nanostructure formed by using Amorphous Nanostructure and Method of manufacturing the same}Fractal-shaped alloy nanostructures formed by using amorphous nanostructures and a method for manufacturing the same

본 발명은 나노 사이즈의 합금 및 그 제조방법에 관한 것으로, 더욱 상세하게는 비정질 나노구조체를 화학적 템플릿으로 이용하여 제조되는 합금 나노구조체 및 그 제조방법에 관한 것이다.The present invention relates to a nano-sized alloy and a method for manufacturing the same, and more particularly to an alloy nanostructure and a method for producing the amorphous nanostructure using a chemical template.

나노 소재의 응용에 있어서 같은 부피당 큰 표면적을 가지는(비표면적, high-surface-to-volume ratio) 나노구조체의 구현이 중요하다. 큰 표면적은 물리적, 화학적 반응성을 증진시킬 수 있으며, 그 결과로 촉매, 센서, 물질 흡착 및 분리 등에서 우수한 성질을 보일 수 있다. 눈(snow), 나뭇잎 등 자연에서 흔히 발견되는 프랙탈 형상은 큰 비표면적을 지닐 수 있다.For nanomaterial applications, the implementation of nanostructures with the same large surface area per volume (high surface-to-volume ratio) is important. Large surface areas can enhance physical and chemical reactivity, resulting in good properties in catalysts, sensors, material adsorption and separation, and the like. Fractal shapes commonly found in nature, such as snow and leaves, can have large specific surface areas.

여러 원소로 구성된 고 엔트로피 합금(high-entropy alloys)은 단일 원소의 물질보다 우수한 화학적, 물리적 성질을 지닌다는 것이 발견되었으며 이의 연구가 활발히 진행되고 있다. 예를 들어 단일 상의 Al20Li20Mg10Sc20Ti30물질은 그 밀도가 낮음에도 불구하고 탄화규소(silicon carbide) 정도의 무게대비 강도(strength-to-weight ratio)를 지님이 확인되었다. 전기적, 자성적인 특성에서도 새로운 성질을 보이는데, 예를 들어, BiFeCoNiMn은 높은 보자력(magnetic coercivity)를 지닌다는 것이 발견되었다. It has been found that high-entropy alloys composed of several elements have better chemical and physical properties than materials of a single element, and research is being actively conducted. For example, it was confirmed that the Al 20 Li 20 Mg 10 Sc 20 Ti 30 material of the single phase had a strength-to-weight ratio on the order of silicon carbide despite its low density. Electrical and magnetic properties also show new properties. For example, BiFeCoNiMn was found to have high coercivity.

하지만 여러 원소를 포함한 합금을 만드는 것은 수 초 내에 수천 켈빈을 올려야 하는 등 극한의 실험조건을 필요로 한다. 특히, 나노 크기로 여러 원소를 합금으로 만드는 것은 더욱 어려운데 크기가 작아질수록 엔트로피가 급격하게 커져 합금화되지 않고 개별적인 원소로 있으려는 경향이 크기 때문이다. But making alloys with multiple elements requires extreme experimental conditions, such as raising thousands of Kelvins in seconds. In particular, it is more difficult to make several elements into alloys at nano size, because the smaller the size, the greater the entropy, which tends to be an individual element rather than alloying.

여러 원소를 포함하는 합금의, 나노크기를 가지는 구조체를 극한의 실험조건 없이 만드는 것이 중요하다. 특히, 액상 내에서의 고 엔트로피 나노 구조체의 합성은 손쉽고, 대량화가 가능한 방법으로 여겨진다. It is important to make nanoscale structures of alloys containing multiple elements without extreme experimental conditions. In particular, the synthesis of high entropy nanostructures in a liquid phase is considered to be an easy and bulky method.

본 발명이 이루고자 하는 제1 기술적 과제는 프랙탈 형상을 가진 높은 엔트로피의 합금 나노구조체를 제공하는데 있다.The first technical problem to be achieved by the present invention is to provide a high entropy alloy nanostructure having a fractal shape.

또한, 본 발명이 이루고자 하는 제2 기술적 과제는 상기 제1 기술적 과제를 달성하기 위한 프랙탈 형상을가진 합금 나노구조체의 제조방법을 제공하는데 있다.Another object of the present invention is to provide a method of manufacturing an alloy nanostructure having a fractal shape for achieving the first technical problem.

상술한 제1 기술적 과제를 달성하기 위한 본 발명은, 프랙탈 구조를 가지고, 하기의 화학식 1의 무기 고분자에서 중심 금속, 할로겐 원소 및 결합용 관능기의 원소를 포함하며, 상기 중심 금속 보다 높은 표준환원전위를 가지는 제2 금속 원소를 더 포함하는 합금 나노구조체를 제공한다.The present invention for achieving the above-described first technical problem, has a fractal structure, including a central metal, a halogen element and elements of the functional group for bonding in the inorganic polymer of the formula (1), higher than the standard metal reduction potential It provides an alloy nanostructure further comprising a second metal element having a.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서 M은 상기 중심 금속으로 산화수 +1의 전이 금속이며, X는 상기 할로겐 원소이고, CF는 수소 원소 및 수소 결합용 원소를 포함하는 상기 결합용 관능기이며, n은 반복횟수로 10 내지 500,000의 값을 가진다.In Formula 1, M is the transition metal of oxidation number +1 to the central metal, X is the halogen element, CF is the bonding functional group containing a hydrogen element and hydrogen bonding element, n is a repeating number of 10 to 10 Has a value of 500,000.

상술한 제2 기술적 과제를 달성하기 위한 본 발명은, 하기의 화학식 2를 가지는 무기 고분자가 수소 결합된 비정질 나노구조체를 준비하는 단계; 상기 무기 고분자의 중심 금속보다 높은 표준환원전위를 가지는 제2 금속 원소를 포함하는 제2 금속 전구체를 상기 비정질 나노구조체와 혼합하는 단계; 및 상기 비정질 나노구조체를 해체하고, 상기 무기 고분자의 원소들 및 상기 제2 금속 원소를 포함하는 프랙탈 구조의 합금 나노구조체를 형성하는 단계를 포함하는 합금 나노입자의 제조방법을 제공한다.The present invention for achieving the above-described second technical problem, preparing an amorphous nanostructure hydrogen-bonded inorganic polymer having the formula (2); Mixing a second metal precursor including the second metal element having a standard reduction potential higher than that of the center metal of the inorganic polymer with the amorphous nanostructure; And dismantling the amorphous nanostructure and forming an alloy nanostructure of a fractal structure including the elements of the inorganic polymer and the second metal element.

[화학식 2][Formula 2]

Figure pat00002
Figure pat00002

상기 화학식 2에서 M은 중심 금속으로 전이 금속, X는 할로겐 원소를 나타내며, CF는 수소 원소 및 수소 결합용 원소를 포함하는 결합용 관능기를 나타내고, n은 반복횟수로 10 내지 500,000의 값을 가진다.In Formula 2, M represents a transition metal, X represents a halogen element, CF represents a functional group for bonding including a hydrogen element and an element for hydrogen bonding, and n has a value of 10 to 500,000 as a repetition frequency.

상술한 본 발명에 따르면, 프랙탈 구조의 합금 나노구조체는 무기 고분자의 중심 금속보다 높은 표준환원전위를 가진 제2 금속 원소를 포함하고, 무기 고분자를 구성하는 중심 금속, 할로겐 원소 및 결합용 관능기의 구성 원소를 포함한다. 특히, 합금 나노구조체는 2 종 이상의 제2 금속 원소들로 이루어질 수 있으며, 이를 통해 다양한 전기화학적 특성을 발현할 수 있다.According to the present invention described above, the alloy nanostructure of the fractal structure comprises a second metal element having a standard reduction potential higher than that of the center metal of the inorganic polymer, the composition of the center metal, halogen elements and bonding functional groups constituting the inorganic polymer Contains an element. In particular, the alloy nanostructures may be composed of two or more kinds of second metal elements, and thus may express various electrochemical properties.

특히, 나노 사이즈로 합금 구조체를 형성하는 것은 용융 공정을 사용하지 않는 특성으로 인해 균일한 사이즈를 형성할 수 있으며, 프랙탈 구조로 인해 높은 비표면적을 확보할 수 있다.In particular, forming the alloy structure in the nano size can form a uniform size due to the nature of not using a melting process, it is possible to secure a high specific surface area due to the fractal structure.

도 1은 본 발명의 바람직한 실시예에 따른 무기 고분자를 도시한 분자식이다.
도 2는 본 발명의 바람직한 실시예에 따라 상기 도 1의 무기 고분자를 도시한 모식도이다.
도 3은 본 발명의 제조예 1에 따른 Au 원자가 원자 수준으로 비정질 나노구조체에 흡착된 STEM 이미지 및 EDS 맵핑 이미지이다.
도 4는 본 발명의 제조예 2에 따른 Au 원자가 원자 수준으로 비정질 나노구조체에 흡수되거나 구형으로 형성되는 STEM 이미지 및 EDS 맵핑 이미지이다.
도 5는 본 발명의 제조예 3에 따른 비정질 나노구조체로부터 파생된 Au 원소를 포함하는 프랙탈 형상의 나노구조체의 STEM 이미지 및 EDS 맵핑 이미지이다.
도 6은 본 발명의 제조예 4에 따른 Au와 Pd 원소를 포함한 나노구조체의 STEM 이미지 및 EDS 맵핑 이미지이다.
도 7은 본 발명의 제조예 5에 따른 Au와 Pd 원소의 몰비를 변경하여 형성한 프랙탈 형상의 나노구조체의 SEM 이미지 및 EDS 맵핑 이미지이다.
도 8은 본 발명의 제조예 6에 따른 Au, Pd 및 Rh 원소가 포함된 프랙탈 형상의 나노구조체를 도시한 STEM 이미지 및 EDS 맵핑 이미지이다.
1 is a molecular formula showing an inorganic polymer according to a preferred embodiment of the present invention.
2 is a schematic view showing the inorganic polymer of FIG. 1 according to a preferred embodiment of the present invention.
3 is a STEM image and an EDS mapping image of Au atoms adsorbed to an amorphous nanostructure at an atomic level according to Preparation Example 1 of the present invention.
FIG. 4 is a STEM image and an EDS mapping image in which Au atoms are absorbed or formed into a sphere at an atomic level according to Preparation Example 2 of the present invention.
5 is a STEM image and an EDS mapping image of a fractal nanostructure including an Au element derived from an amorphous nanostructure according to Preparation Example 3 of the present invention.
6 is a STEM image and an EDS mapping image of a nanostructure including Au and Pd elements according to Preparation Example 4 of the present invention.
7 is a SEM image and an EDS mapping image of a fractal nanostructure formed by changing a molar ratio of Au and Pd elements according to Preparation Example 5 of the present invention.
FIG. 8 is a STEM image and an EDS mapping image showing a fractal-shaped nanostructure including Au, Pd, and Rh elements according to Preparation Example 6 of the present invention.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific form disclosed, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.

이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. Hereinafter, with reference to the accompanying drawings, it will be described in detail a preferred embodiment of the present invention.

실시예Example

본 실시예에서는 무기 고분자들의 수소 결합을 통해 형성된 비정질 나노구조체를 제조한다. 제조된 나노구조체는 화학적 합성의 템플릿으로 작용하여 합금 나노구조체를 형성한다. 형성된 합금 나노구조체는 30nm 내지 300nm의 직경을 가지며 프랙탈 형상을 가진다.In this embodiment, an amorphous nanostructure formed through hydrogen bonding of inorganic polymers is prepared. The prepared nanostructures serve as templates for chemical synthesis to form alloy nanostructures. The formed alloy nanostructures have a diameter of 30 nm to 300 nm and have a fractal shape.

비정질 나노구조체를 구성하는 무기 고분자는 주쇄와 측쇄를 가지며, 주쇄는 중심 금속과 할로겐 원소의 결합으로 구성되고, 측쇄는 결합용 관능기를 가진다. 결합용 관능기는 중심 금속과 결합된다. The inorganic polymer constituting the amorphous nanostructure has a main chain and a side chain, the main chain is composed of a bond of a central metal and a halogen element, and the side chain has a functional group for bonding. The bonding functional group is combined with the central metal.

비정질 나노구조체에 포함된 중심 금속보다 높은 표준환원전위를 가지는 제2 금속 원소가 포함된 제2 금속 전구체가 극성 용매에 투입되고, 극성 용매 내에 비정질 나노구조체와 혼합되면, 제2 금속 전구체로부터 분리되고 이온화된 제2 금속 원소는 비정질 나노구조체의 일부와 함께 프랙탈 형상의 합금 나노구조체를 형성한다.When a second metal precursor containing a second metal element having a standard reduction potential higher than that of the center metal included in the amorphous nanostructure is added to the polar solvent and mixed with the amorphous nanostructure in the polar solvent, it is separated from the second metal precursor. The ionized second metal element forms a fractal shaped alloy nanostructure with a portion of the amorphous nanostructure.

도 1은 본 발명의 바람직한 실시예에 따른 무기 고분자를 도시한 분자식이다.1 is a molecular formula showing an inorganic polymer according to a preferred embodiment of the present invention.

도 1을 참조하면, M은 전이 금속으로 산화수가 1이며, X는 할로겐 원소를 의미하고, CF는 결합용 관능기이다. 결합용 관능기는 수소 원소 및 수소 결합용 원소를 가진다. Referring to FIG. 1, M is a transition metal, the oxidation number is 1, X means a halogen element, and CF is a bonding functional group. The functional group for bonding has a hydrogen element and an element for hydrogen bonding.

전이 금속 M은 은(Ag), 금(Au), 백금(Pt), 팔라듐(Pd), 루테늄(Ru), 코발트(Co), 나트륨(Na), 칼륨(K), 철(Fe), 카드뮴(Cd), 니켈(Ni), 크로뮴(Cr), 탈륨(Tl), 루비듐(Rb), 아연(Zn), 구리(Cu), 망간(Mn), 몰리브덴(Mo), 인듐(In), 갈륨(Ga), 비스무스(Bi), 티타늄(Ti), 납(Pb), 알루미늄(Al), 마그네슘(Mg) 또는 안티모니(Sb)를 포함한다. The transition metal M is silver (Ag), gold (Au), platinum (Pt), palladium (Pd), ruthenium (Ru), cobalt (Co), sodium (Na), potassium (K), iron (Fe), cadmium (Cd), nickel (Ni), chromium (Cr), thallium (Tl), rubidium (Rb), zinc (Zn), copper (Cu), manganese (Mn), molybdenum (Mo), indium (In), gallium (Ga), bismuth (Bi), titanium (Ti), lead (Pb), aluminum (Al), magnesium (Mg) or antimony (Sb).

또한, 할로겐 원소는 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)를 포함한다. In addition, the halogen element includes fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).

결합용 관능기는 수소 원소 및 수소 결합용 원소를 가지는 화합물이다. 결합용 관능기는 전이 금속과 화학적으로 결합되고, 수소 원소를 통해 이웃하는 무기 고분자와 수소 결합을 형성한다. 이를 위해 결합용 관능기는 화학적 결합의 말단에 수소 원소와 수소 결합용 원소를 가짐이 바람직하다. 수소 결합용 원소는 15족 또는 16족 원소이며 산소, 황, 질소, 셀레늄 또는 텔루륨이 후보가 될 수 있다.The functional group for bonding is a compound having a hydrogen element and an element for hydrogen bonding. The bonding functional group is chemically bonded to the transition metal and forms a hydrogen bond with a neighboring inorganic polymer through a hydrogen element. For this purpose, the bonding functional group preferably has a hydrogen element and a hydrogen bonding element at the end of the chemical bond. The hydrogen bonding element is a group 15 or 16 element and oxygen, sulfur, nitrogen, selenium or tellurium may be candidates.

또한 무기 고분자 내의 결합용 관능기는 다른 무기 고분자의 할로겐 원소와 수소 결합을 형성할 수 있다. In addition, the functional group for bonding in the inorganic polymer may form hydrogen bonds with halogen elements of other inorganic polymers.

결합용 관능기는 티오우레아(thiourea), 우레아(urea), 셀렌우레아(selenourea), 텔루르우레아(tellurourea) 또는 티올 화합물(thiol compound)이 바람직하다. The functional group for binding is preferably thiourea, urea, selenourea, tellurourea or thiol compounds.

결합용 관능기의 수소 원소는 다른 무기 고분자의 수소 결합용 원소 또는 할로겐 원소와 수소 결합을 형성할 수 있다. 수소 결합에 의해 무기 고분자들은 상호간에 결합되고, 비정질 나노구조체로 형성된다.The hydrogen element of the bonding functional group can form a hydrogen bond with the hydrogen bonding element or halogen element of another inorganic polymer. Inorganic polymers are bonded to each other by hydrogen bonding to form amorphous nanostructures.

무기 고분자에서 전이 금속과 할로겐 원소는 주쇄를 형성하고, 전이 금속과 결합되는 결합용 관능기는 측쇄를 형성한다. 특히, 전이 금속은 +1의 산화수를 가진다.In the inorganic polymer, the transition metal and the halogen element form a main chain, and the bonding functional group bonded to the transition metal forms a side chain. In particular, the transition metal has an oxidation number of +1.

도 2는 본 발명의 바람직한 실시예에 따라 상기 도 1의 무기 고분자를 도시한 모식도이다.2 is a schematic view showing the inorganic polymer of FIG. 1 according to a preferred embodiment of the present invention.

도 2를 참조하면, 특정의 무기 고분자는 인접한 무기 고분자와 수소 결합을 형성하고, 수소 결합에 따른 나노와이어를 형성한다. 수소 결합은 결합용 관능기의 수소 원소와 다른 무기 고분자의 할로겐 원소 사이에서 이루어지거나, 결합용 관능기의 수소 원소와 다른 무기 고분자의 15족 원소 또는 16족 원소 사이에서 이루어질 수 있다. 이를 통해 무기 고분자는 인접한 무기 고분자와 결합되고, 비정질 나노와이어를 형성한다.Referring to FIG. 2, certain inorganic polymers form hydrogen bonds with adjacent inorganic polymers and form nanowires according to hydrogen bonds. The hydrogen bond may be made between the hydrogen element of the bonding functional group and the halogen element of another inorganic polymer or between the hydrogen element of the bonding functional group and the group 15 element or group 16 element of the other inorganic polymer. In this way, the inorganic polymer is combined with the adjacent inorganic polymer and forms amorphous nanowires.

더욱 상세히 설명하면, 상기 도 1에서 전이 금속으로 Cu를 사용하고, 할로겐 원소로는 Cl을 채용하며, 결합용 관능기는 티오우레아를 사용한다. 따라서, 무기 고분자의 주쇄는 CuCl이며, Cu를 중심금속으로 하여 티오우레아가 결합된다. 티오우레아의 황(S)은 중심금속 Cu와 결합을 형성한다.In more detail, in FIG. 1, Cu is used as the transition metal, Cl is used as the halogen element, and thiourea is used as the bonding functional group. Accordingly, the main chain of the inorganic polymer is CuCl, and thiourea is bonded using Cu as the center metal. Sulfur (S) of thiourea forms a bond with the central metal Cu.

상기 도 2에서 비정질 나노구조체의 형성을 위한 2 종류의 수소 결합이 형성된다. 첫째는 측쇄를 형성하는 티오우레아의 수소 원자가 주쇄의 할로겐 원소인 Cl과 수소 결합하는 경우이다. 둘째는 티오우레아의 수소 원자가 측쇄의 황과 수소 결합하는 경우이다. 어느 경우이든 수소 결합에 의해 무기 고분자들은 소정의 체적을 가지고 응집 또는 일정한 형태를 형성한다. 또한, 수소 결합에 의해 형성되는 비정질 나노구조체는 와이어의 형태를 가지며, 수소-할로겐 원소 간의 결합 및 수소-16족 원소/수소-15족 원소 간의 결합이 혼재된 형태를 가질 수 있다.In FIG. 2, two kinds of hydrogen bonds are formed to form an amorphous nanostructure. First, the hydrogen atom of the thiourea which forms a side chain hydrogen bonds with Cl which is a halogen element of a main chain. The second is when the hydrogen atom of thiourea is hydrogen bonded to the sulfur of the side chain. In any case, the hydrogen bonds cause the inorganic polymers to have a predetermined volume and form agglomerated or uniform form. In addition, the amorphous nanostructure formed by hydrogen bonding may have a form of a wire, and may have a form in which a bond between a hydrogen-halogen element and a bond between a hydrogen-16 element / hydrogen-15 element is mixed.

비정질 나노구조체는 다음의 과정을 통해 제조된다.Amorphous nanostructures are prepared by the following process.

먼저, 제1 금속 전구체, 결합용 관능기 및 극성 용매의 합성 용액이 준비된다.First, a synthesis solution of the first metal precursor, the bonding functional group, and the polar solvent is prepared.

제1 금속 전구체는 여러 산화수를 가질 수 있는 전이 금속을 포함하고, 할로겐 원소를 포함하는 것으로 극성 용매에 용해되는 특징을 가진다. 도입될 수 있는 전이 금속은 구리(Cu), 망간(Mn), 철(Fe), 카드뮴(Cd), 코발트(Co), 니켈(Ni), 아연(Zn), 수은(Hg), 몰리브덴(Mo), 티타늄(Ti), 마그네슘(Mg), 크롬(Cr) 또는 안티모니(Sb)를 포함한다. 또한, 상기 금속 전구체는 언급된 전이 금속을 포함하되, 할로겐 원소를 가지는 염화물, 질산염, 황산염, 아세트산염, 아세틸아세토네이트, 포름산염, 수산화물, 산화물 또는 이들의 수화물을 포함한다.The first metal precursor includes a transition metal which may have various oxidation numbers, and includes a halogen element, which is dissolved in a polar solvent. Transition metals that can be introduced are copper (Cu), manganese (Mn), iron (Fe), cadmium (Cd), cobalt (Co), nickel (Ni), zinc (Zn), mercury (Hg), molybdenum (Mo) ), Titanium (Ti), magnesium (Mg), chromium (Cr) or antimony (Sb). The metal precursors also include the transition metals mentioned and include chlorides, nitrates, sulfates, acetates, acetylacetonates, formates, hydroxides, oxides or hydrates thereof with halogen elements.

결합용 관능기는 수소 원소와 수소 결합용 원소를 가지며, 이에 적합한 결합용 관능기는 티오우레아, 우레아, 셀렌우레아, 텔루르우레아 또는 티올 화합물임이 바람직하다. 다만, 결합용 관능기는 수소 원소와 함께 15족 원소 또는 16족 원소를 가져야 하므로 언급된 화합물 이외에 당업자 수준에서 필요에 따라 다양한 선택이 가능하다 할 것이다.The functional group for bonding has a hydrogen element and an element for hydrogen bonding, and a suitable functional group for bonding is a thiourea, urea, selenurea, tellurium or thiol compound. However, the bonding functional group should have a group 15 element or a group 16 element together with a hydrogen element, so that various selections may be made as needed at the level of those skilled in the art in addition to the compounds mentioned.

또한, 준비되는 극성 용매는 제1 금속 전구체 및 결합용 관능기를 용해 또는 분산시키기 위한 것이다. 사용될 수 있는 극성 용매로는 알코올계, 글라이콜계, 폴리글라이콜계 또는 물이 있다. 알코올계는 메탄올, 에탄올, 프로판올 또는 부탄올 등이 있다. 또한, 폴리글아이콜계로는 에틸렌 글라이콜, 디에틸렌 글라이콜 또는 트리에틸렌 글라이콜 등이 있다.In addition, the polar solvent prepared is for dissolving or dispersing the first metal precursor and the functional group for bonding. Polar solvents that can be used include alcohols, glycols, polyglycols or water. Alcohols include methanol, ethanol, propanol or butanol. In addition, polyglycols include ethylene glycol, diethylene glycol, triethylene glycol, and the like.

또한, 극성 용매에 pH 조절제가 추가될 수 있다. 이를 통해 용해된 제1 금속 전구체, 결합용 관능기 및 극성 용매로 구성된 합성 용액의 극성을 조절한다. 합성 용액의 극성의 변화에 따라 제조되는 나노구조체의 직경 또는 길이 등이 변경되어 다양한 형태의 나노구조체를 얻을 수 있다. 상기 pH 조절제로는 산 또는 염기를 가지며, 염산, 플루오르화 수소산, 폼산, 아세트산, 사이안화수소산, 황산, 질산, 탄산, 아미노산, 구연산, 아스코르브산, 수산화칼륨, 수산화리튬, 수산화나트륨, 수산화바륨, 수산화스트론튬, 수산화구리, 수산화베릴륨, 메톡시화 이온, 암모니아, 아마이드화 이온, 메틸 음이온, 사이안화 이온, 아세트산 음이온 또는 폼산 음이온이 사용될 수 있다.In addition, a pH adjuster may be added to the polar solvent. This adjusts the polarity of the synthetic solution composed of the dissolved first metal precursor, the bonding functional group and the polar solvent. According to the change in the polarity of the synthesis solution, the diameter or length of the prepared nanostructures may be changed to obtain various nanostructures. The pH adjusting agent has an acid or a base, hydrochloric acid, hydrofluoric acid, formic acid, acetic acid, hydrocyanic acid, sulfuric acid, nitric acid, carbonic acid, amino acid, citric acid, ascorbic acid, potassium hydroxide, lithium hydroxide, sodium hydroxide, barium hydroxide, Strontium hydroxide, copper hydroxide, beryllium hydroxide, methoxylated ions, ammonia, amidated ions, methyl anions, cyanide ions, acetic acid anions or formic acid anions can be used.

상술한 과정을 통해 제1 금속 전구체, 결합용 관능기 포함 화합물 및 극성 용매를 포함하는 합성 용액이 형성된다. 또한, 언급된 바대로 pH 조절제가 합성 용액에 추가될 수 있다.Through the above-described process, a synthetic solution including a first metal precursor, a compound including a functional group for binding, and a polar solvent are formed. In addition, as mentioned, pH adjusting agents may be added to the synthesis solution.

이어서, 합성 용액을 이용한 비정질 나노구조체를 제조하는 공정이 수행된다.Subsequently, a process of preparing an amorphous nanostructure using a synthetic solution is performed.

예컨대, 합성 용액의 혼합(mixing), 교반(stirring), 초음파 분쇄(sonicating), 흔들기(shaking), 진동(vibration), 휘저음(agitating) 또는 유입(flowing)을 통해 합성 용액 내에서 비정질 나노구조체가 제조된다.For example, amorphous nanostructures in the synthesis solution through mixing, stirring, sonicating, shaking, vibrating, agitating or flowing the synthesis solution. Is prepared.

또한, 합성 용액 내에서 반응 온도는 0 ℃ 내지 극성 용매의 끓는점으로 설정도리 수 있으며, 바람직하게는 5 ℃ 내지 50 ℃의 범위이며, 더욱 바람직하게는 10 ℃ 내지 40 ℃의 범위를 가질 수 있다. 상기 온도 범위는 상온에 속하므로 당업자는 온도의 제한없이 반응을 유도할 수 있다.In addition, the reaction temperature in the synthesis solution may be set to the boiling point of 0 ° C. to the polar solvent, preferably in the range of 5 ° C. to 50 ° C., and more preferably in the range of 10 ° C. to 40 ° C. Since the temperature range belongs to room temperature, those skilled in the art can induce a reaction without limiting the temperature.

본 반응에서 제1 금속 전구체의 산화수는 감소하여 +1의 값을 가지며, 중심금속과 할로겐 원소의 주쇄가 형성된다. 즉, 반응 이전의 상태에서 제1 금속 전구체를 구성하는 전이 금속은 여러 산화수를 가질 수 있으나, 반응을 통해 제1 금속 전구체를 구성하는 전이 금속은 +1의 산화수를 가지고, 무기 고분자에서 중심 금속으로 작용한다. 또한, 제1 금속 전구체에 포함된 할로겐 원소는 전이 금속 또는 중심 금속에 결합되어 무기 고분자의 주쇄를 형성한다. 주쇄의 형성 과정에서 중심 금속과 결합하지 않는 일부 할로겐 원소는 이탈되어 합성 용액 내에 이온 상태로 부유할 수 있다.In this reaction, the oxidation number of the first metal precursor decreases to have a value of +1, and a main chain of the central metal and the halogen element is formed. That is, in the state before the reaction, the transition metal constituting the first metal precursor may have various oxidation numbers, but the transition metal constituting the first metal precursor through the reaction has an oxidation number of +1, from the inorganic polymer to the center metal. Works. In addition, the halogen element included in the first metal precursor is bonded to the transition metal or the center metal to form a main chain of the inorganic polymer. During the formation of the main chain, some halogen elements that do not bond with the central metal may escape and float in the ionic state in the synthesis solution.

또한, 결합용 관능기는 중심 금속과 화학적 결합을 형성한다. 결합과정에서 결합용 관능기는 비공유 전자쌍을 중심 금속에 공여한다. 특히, 결합용 관능기는 수소 원소 이외에 15족 원소 또는 16족 원소를 가지며, 이들 원소는 비공유 전자쌍을 중심 금속에 공여하여 결합되며, 수소 원소는 합성된 다른 무기 고분자와 수소 결합을 형성한다.In addition, the bonding functional group forms a chemical bond with the central metal. In the bonding process, the bonding group donates a lone pair of electrons to the central metal. In particular, the bonding functional group has a group 15 element or a group 16 element in addition to the hydrogen element, and these elements are bonded by donating a lone pair of electrons to the center metal, and the hydrogen element forms a hydrogen bond with another synthesized inorganic polymer.

이를 통하여 무기 고분자들이 합성되고, 무기 고분자들 사이는 수소 결합을 형성하여 비정질 나노구조체가 형성된다. 상술한 비정질 나노구조체는 나노와이어 또는 구형의 나노입자로 형성될 수 있다.In this way, inorganic polymers are synthesized, and amorphous nanostructures are formed by forming hydrogen bonds between inorganic polymers. The amorphous nanostructures described above may be formed of nanowires or spherical nanoparticles.

계속해서 형성된 비정질 나노구조체는 제2 금속 전구체와 혼합된다. 혼합을 통해 비정질 나노구조체는 제2 금속 전구체와 혼합된다. 극성 용매 내에서 비정질 나노구조체와 제2 금속 전구체의 몰비에 따라 프랙탈 형상의 합금 나노구조체가 형성된다.The subsequently formed amorphous nanostructures are mixed with a second metal precursor. Through mixing, the amorphous nanostructures are mixed with the second metal precursor. The molar ratio of the amorphous nanostructure and the second metal precursor in the polar solvent forms a fractal nano alloy structure.

제2 금속 전구체는 제2 금속 원소의 염화물, 불화물, 브롬화물, 아이오딘화물, 질산염, 아질산염, 황산염, 아세트산염, 탄산염, 구연산염, 시안화물, 인산염, 아세틸아세토네이트, 포름산염, 수산화물, 산화물, 염화금속산 형태(chlorometallic acid) 및 이들의 수화물(hydrate)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.The second metal precursor is a chloride, fluoride, bromide, iodide, nitrate, nitrite, sulfate, acetate, carbonate, citrate, cyanide, phosphate, acetylacetonate, formate, hydroxide, oxide, It may include at least one selected from the group consisting of chlorometallic acid and hydrates thereof.

또한, 제2 금속 원소는 +1의 산화수를 가지는 중심 금속의 표준환원전위보다 높은 표준환원전위를 가질 것이 요구된다.In addition, the second metal element is required to have a standard reduction potential higher than that of the central metal having an oxidation number of +1.

이를 통해 비정질 나노구조체의 분해된 일부와 제2 금속 원소로 이루어진 프랙탈 형상의 나노 구조체가 형성된다. 나노구조체의 표면 상에서의 반응은 다음의 반응식 1로 설명된다.This forms a fractal nanostructure consisting of the disassembled portion of the amorphous nanostructure and the second metal element. The reaction on the surface of the nanostructures is illustrated by Scheme 1 below.

[반응식 1]Scheme 1

M1 1+→M1 (1+x)++xe- M 1 1+ → M 1 (1 + x) + + xe -

M2 y++ye-→ M2 M 2 y + + ye - → M 2

상기 반응식 1에서 M1은 무기 고분자의 중심 금속을 나타내고, M2는 제2 금속 원소를 나타낸다. 상기 화학식에서 제2 금속 원소는 중심 금속보다 높은 환원력을 가지므로, 중심 금속은 +2가 또는 그 이상의 산화수를 가지고 주쇄로부터 해리된다. 또한, 중심 금속의 해리에 의해 발생된 전자는 이온화된 제2 금속 원소와 결합되고, 이온화된 제2 금속 원소는 중성의 제2 금속 원소로 환원된다.In Reaction Scheme 1, M 1 represents a center metal of the inorganic polymer, and M 2 represents a second metal element. Since the second metal element in the above formula has a higher reducing power than the center metal, the center metal is dissociated from the main chain with an oxidation number of +2 or more. In addition, electrons generated by dissociation of the center metal are combined with the ionized second metal element, and the ionized second metal element is reduced to the neutral second metal element.

만일, 제2 금속 원소의 양이 충분하면, 이온화된 제2 금속 원소를 환원하기 위해 비정질 나노구조체는 완전히 해리되어야 한다. 즉, 이온화된 제2 금속 원소를 환원하기에 충분한 전자를 생성하기 위해 비정질 나노구조체는 충분히 해리되고, 나노 사이즈의 제2 금속 원소만으로 구성된 나노 입자들이 형성된다.If the amount of the second metal element is sufficient, the amorphous nanostructures must be completely dissociated in order to reduce the ionized second metal element. That is, the amorphous nanostructures are sufficiently dissociated to produce enough electrons to reduce the ionized second metal element, and nanoparticles composed of only the nano-sized second metal element are formed.

반면, 제2 금속 원소의 양이 충분하지 않으면, 이온화된 제2 금속 원소를 환원하기 위해 비정질 나노구조체는 완전히 해리될 필요가 없으며, 무기 고분자의 상태를 유지할 수도 있다. 따라서, 환원을 위해 비정질 나노구조체가 해체될 수 있다하더라도 무기 고분자들의 적어도 일부는 환원된 제2 금속 원소에 결합되고, 나노 사이즈의 합금 나노구조체를 형성한다. 또한, 합금 나노구조체의 형성과정에서 프랙탈 구조가 형성된다.On the other hand, if the amount of the second metal element is not sufficient, the amorphous nanostructures do not need to be completely dissociated to reduce the ionized second metal element, and may maintain the state of the inorganic polymer. Thus, even if the amorphous nanostructures can be disassembled for reduction, at least some of the inorganic polymers are bonded to the reduced second metal element and form nano-sized alloy nanostructures. In addition, a fractal structure is formed during the formation of alloy nanostructures.

합금 나노구조체가 형성되기 위해서는 비정질 나노구조체의 몰 대비 0.5 몰 내지 1 몰의 제2 금속 원소가 요구된다. 따라서, 제2 전구체의 양도 이에 상응하여 준비될 필요가 있다.In order to form the alloy nanostructures, 0.5 mol to 1 mol of the second metal element is required relative to the moles of the amorphous nanostructures. Therefore, the amount of the second precursor also needs to be prepared accordingly.

상술한 반응을 위해 제2 금속 원소는 중심 금속과 다른 금속이며, 중심 금속의 표준환원전위보다 높은 표준환원전위를 가진다. 이를 위해 상기 제2 금속 원소는 금(Au), 은(Ag), 백금(Pt), 루테늄(Ru), 이리듐(Ir), 로듐(Rh), 팔라듐(Pd), 오스뮴(Os), 코발트(Co), 나트륨(Na), 칼륨(K), 철(Fe), 주석(Sn), 마그네슘(Mg), 비스무스(Bi), 아연(Zn), 니켈(Ni), 알루미늄(Al), 망간(Mn), 카드뮴(Cd), 납(Pb), 몰리브덴(Mo), 크로뮴(Cr), 탈륨(Tl), 루비듐(Rb), 구리(Cu), 망간(Mn), 몰리브덴(Mo), 인듐(In), 갈륨(Ga), 티타늄(Ti) 또는 안티모니(Sb)를 가진다.For the above reaction, the second metal element is a metal different from the center metal, and has a standard reduction potential higher than the standard reduction potential of the center metal. To this end, the second metal element may include gold (Au), silver (Ag), platinum (Pt), ruthenium (Ru), iridium (Ir), rhodium (Rh), palladium (Pd), osmium (Os), and cobalt ( Co, sodium (Na), potassium (K), iron (Fe), tin (Sn), magnesium (Mg), bismuth (Bi), zinc (Zn), nickel (Ni), aluminum (Al), manganese ( Mn), cadmium (Cd), lead (Pb), molybdenum (Mo), chromium (Cr), thallium (Tl), rubidium (Rb), copper (Cu), manganese (Mn), molybdenum (Mo), indium ( In), gallium (Ga), titanium (Ti) or antimony (Sb).

제2 금속 원소는 비정질 나노구조체의 특정 영역에서 환원되고, 응집되는 경향을 가진다. 이는 금속물이 용융상태에서 급속 냉각되는 경로를 취하지 않으며, 원자 단위에서 상온 합성을 통해 형성한 결과에 기인한 것으로 추측된다.The second metal element tends to be reduced and aggregated in certain regions of the amorphous nanostructures. It is assumed that this is due to the result of the formation of the metal by rapid synthesis in the atomic unit without taking the path of rapid cooling in the molten state.

예컨대, 상기 전이 금속이 Cu인 경우, 제2 금속 원소는 은(Ag), 금(Au), 백금(Pt), 팔라듐(Pd), 루테늄(Ru), 오스뮴(Os), 이리듐(Ir) 또는 로듐(Rh)임이 바람직하다.For example, when the transition metal is Cu, the second metal element is silver (Ag), gold (Au), platinum (Pt), palladium (Pd), ruthenium (Ru), osmium (Os), iridium (Ir) or Preference is given to rhodium (Rh).

상기 비정질 나노구조체와 제2 금속 전구체 사이의 반응은 극성 용매 내에서 수행됨이 바람직하다. 사용되는 극성 용매는 제2 금속 전구체의 용해 및 분산에 이용되며, 물, 알코올계, 글라이콜계 또는 폴리글라이콜계임이 바람직하다. 알코올계 극성 용매로는 메탄올, 에탄올, 프로판올 또는 부탄올이 있으며, 폴리글라이콜계 극성 용매로는 에틸렌 글라이콜, 디에틸렌 글라이콜 또는 트리에틸렌 글라이콜 등이 있으며, 극성 용매라면 언급된 물질 이외에 다양한 물질을 용매로 사용가능하다 할 것이다.The reaction between the amorphous nanostructure and the second metal precursor is preferably carried out in a polar solvent. The polar solvent used is used for dissolving and dispersing the second metal precursor, and is preferably water, alcohol, glycol or polyglycol. Alcohol-based polar solvents include methanol, ethanol, propanol or butanol, and polyglycol-based polar solvents include ethylene glycol, diethylene glycol or triethylene glycol and the like. In addition, various materials may be used as the solvent.

또한, 비정질 나노구조체와 제2 금속 전구체는 극성 용매의 혼합(mixing), 교반(stirring), 초음파분쇄(sonicating), 흔들기(shaking), 진동(vibrating), 휘저음(agitating), 유입(flowing) 또는 이들의 조합에 의하여 수행될 수 있다. 상기 방법을 통해, 상기 용매 내에 비정질 나노구조체 및 제2 금속 원소 함유 전구체를 균일하게 분산시키고 서로 반응시켜 간단하고 빠르게 제2 금속 원소를 포함하는 프랙탈 형태의 나노 구조체를 형성할 수 있다.In addition, the amorphous nanostructure and the second metal precursor may be mixed, stirred, sonicated, shaking, vibrating, agitating, or flowing polar solvents. Or a combination thereof. Through this method, it is possible to uniformly disperse the amorphous nanostructure and the second metal element-containing precursor in the solvent and react with each other to form a nanostructure in the form of fractals containing the second metal element simply and quickly.

또한, 제2 금속 전구체를 복수개 형성하고, 프랙탈 형태의 고 엔트로피 합금 나노 구조체를 형성할 수 있다. 즉, 중심 금속보다 높은 표준환원전위를 가지는 2 종류 이상의 금속들이 포함된 제2 금속 전구체들을 형성하고, 이들의 혼합 및 교반을 통하여 2 종류 이상의 제2 금속 원소들이 혼합된 프랙탈 형태의 고 엔트로피 합금 나노 구조체를 형성할 수 있다. 이를 통해 다양한 금속의 합금을 나노 사이즈로, 프랙탈 형상으로 형성할 수 있다. 2 종류 이상의 제2 금속 원소들이 혼합될 경우, 제2 금속 원소들의 총 몰비는 비정질 나노구조체 대비 0.5 내지 1임이 바람직하다.In addition, a plurality of second metal precursors may be formed and a high entropy alloy nanostructure in the form of a fractal may be formed. That is, fractal high-entropy alloy nanos are formed by forming second metal precursors containing two or more metals having a standard reduction potential higher than that of the central metal, and mixing two or more second metal elements by mixing and stirring them. The structure can be formed. This allows alloys of various metals to be formed in nanoscale and fractal shapes. When two or more kinds of second metal elements are mixed, the total molar ratio of the second metal elements is preferably 0.5 to 1 relative to the amorphous nanostructure.

프랙탈 형태의 고 엔트로피 합금 나노 구조체는 2 종류 이상의 다른 금속 원소들로 구성되며, 상호간에 다른 환원력을 가진다. 또한, 이들은 비정질 나노구조체의 중심 금속에 비해 높은 표준환원전위를 가진다. 비정질 나노구조체는 2 종류 이상의 제2 금속원소를 원자단위로 흡수시킬 수 있으므로 균일하게 제 2금속 원소들이 섞인 프랙탈 형태의 고 엔트로피 합금 나노 구조체를 합성할 수 있다. 열역학적으로 프랙탈 형태의 고 엔트로피 합금 나노 구조체는 비정질로 형성될 수 있다. The fractal high entropy alloy nanostructure is composed of two or more different metal elements and has mutually different reducing power. In addition, they have a high standard reduction potential compared to the center metal of amorphous nanostructures. Since the amorphous nanostructure can absorb two or more kinds of second metal elements on an atomic basis, it is possible to synthesize high-entropy alloy nanostructures in a fractal form in which second metal elements are uniformly mixed. Thermodynamically fractal high entropy alloy nanostructures can be formed amorphous.

제조예 1 : Au 원소가 원자 수준으로 흡착된 비정질 나노구조체의 제조Preparation Example 1 Preparation of Amorphous Nanostructure with Au Element Adsorbed at Atomic Level

25mg의 CuCl2를 제1 금속 전구체로 이용하고, 25mg의 티오우레아 파우더를 결합용 관능기로 이용하여 비커에 담았다. 상기 비커에 극성 용매인 에탄올 100ml를 넣어 주었다. 상기 CuCl2, 티오우레아 및 에탄올이 섞인 용액을 상온에서 초음파 분산시켰다. 분산 결과로 1~2 분 이내에 Cu-Cl을 주쇄으로 하는 S, N, C, H가 포함된 구리-클로라이드 비정질 나노와이어가 합성되었다. 25 mg of CuCl 2 was used as the first metal precursor, and 25 mg of thiourea powder was put in a beaker using the bonding functional group. 100 ml of ethanol, a polar solvent, was added to the beaker. The solution containing CuCl 2 , thiourea and ethanol was ultrasonically dispersed at room temperature. As a result of the dispersion, copper-chloride amorphous nanowires containing S, N, C, and H containing Cu-Cl as a main chain were synthesized within 1 to 2 minutes.

상기 구리-클로라이드 비정질 나노와이어의 몰질량은 175.12g/mol이며 투입 전구체 대비 70 wt%의 수율을 가진다. 25mg의 CuCl2와 25mg의 티오우레아가 사용되었으므로 최종적으로 35mg의 비정질 나노와이어가 생성된다. 비정질 나노와이어의 몰질량이 175.12g/mol이므로 최종적으로 0.2mmol의 구리-클로라이드 비정질 나노와이어가 형성된다. 제2 금속 원소를 원자 수준으로 흡수시키기 위해 Au가 0.05mmol 포함된 gold(Ⅲ) chloride solution을 100ml 에탄올에 분산시켜준 후 상기 구리-클로라이드 비정질 나노와이어가 담겨져있는 용액 100ml에 첨가한 후 30 분간 교반 시켜주었다. The molar mass of the copper-chloride amorphous nanowires is 175.12 g / mol and has a yield of 70 wt% relative to the input precursor. 25 mg of CuCl 2 and 25 mg of thiourea were used, resulting in 35 mg of amorphous nanowires. Since the molar mass of the amorphous nanowire is 175.12 g / mol, 0.2 mmol of copper-chloride amorphous nanowire is finally formed. In order to absorb the second metal element at the atomic level, gold (III) chloride solution containing 0.05 mmol of Au was dispersed in 100 ml ethanol, and then added to 100 ml of the solution containing the copper-chloride amorphous nanowire, followed by stirring for 30 minutes. I let you.

도 3은 본 발명의 제조예 1에 따른 Au 원자가 원자 수준으로 비정질 나노구조체에 흡착된 STEM 이미지 및 EDS 맵핑 이미지이다.3 is a STEM image and an EDS mapping image of Au atoms adsorbed to an amorphous nanostructure at an atomic level according to Preparation Example 1 of the present invention.

도 3을 참조하면, Au 원자는 구리-클로라이드 비정질 나노와이어에 원자 수준으로 흡수 또는 흡착되고 있음을 알 수 있다. 즉, 비정질 나노구조체 대비 제2 금속 원소의 몰비가 낮은 경우, 제2 금속 원소는 충분히 환원되어 금속 입자로 형성되지 못하고, 이온 상태 또는 일부 환원된 금속 상태로 비정질 나노구조체의 내부 또는 표면에 흡수 또는 흡착된 상태로 나타난다. 아래는 각각의 원소의 조성이 원자 백분율(atomic percent)로 나타난다. Referring to FIG. 3, it can be seen that Au atoms are absorbed or adsorbed at the atomic level to copper-chloride amorphous nanowires. That is, when the molar ratio of the second metal element to the amorphous nanostructure is low, the second metal element is not sufficiently reduced to form the metal particles, and is absorbed into or inside the amorphous nanostructure in the ionic state or the partially reduced metal state. Appear as adsorbed. Below is the composition of each element in atomic percent.

원소element 원자 조성(%)Atomic Composition (%) AuAu 1.061.06 CuCu 20.3420.34 ClCl 19.6419.64 SS 20.0020.00 NN 38.9638.96

상기 표 1에서 상기 도 3의 구조물에 대한 원자 백분율이 도시되며, 중심 금속 Cu에 비해 제2 금속 원소인 Au가 상대적으로 낮은 원자 백분율을 가짐을 알 수 있다.In Table 1, the atomic percentage of the structure of FIG. 3 is shown, and it can be seen that Au, the second metal element, has a relatively low atomic percentage compared to the central metal Cu.

제조예 2 : Au 전구체의 사용량 증가에 따른 비정질 나노구조체의 형상변화Preparation Example 2 Shape Change of Amorphous Nanostructures with Increasing Amount of Au Precursor

상기 제조예 1에서 Au 전구체의 사용량을 증가시켜 Au가 0.1mmol 포함된 gold(Ⅲ) chloride solution을 100ml 에탄올에 분산 시켜준 후 상기 구리-클로라이드 비정질 나노와이어가 담겨져있는 용액에 첨가한 후 30 분간 교반한다.The amount of Au precursor in Preparation Example 1 was increased to disperse gold (III) chloride solution containing 0.1 mmol in Au in 100 ml ethanol, and then added to the solution containing the copper-chloride amorphous nanowire, followed by stirring for 30 minutes. do.

도 4는 본 발명의 제조예 2에 따른 Au 원자가 원자 수준으로 비정질 나노구조체에 흡수되거나 구형으로 형성되는 STEM 이미지 및 EDS 맵핑 이미지이다.FIG. 4 is a STEM image and an EDS mapping image in which Au atoms are absorbed or formed into a sphere at an atomic level according to Preparation Example 2 of the present invention.

도 4를 참조하면, “”로 표시된 부분은 비정질 나노구조체의 특정 부위에 프랙탈 형상의 구형으로 Au 원자들 및 무기 고분자의 구성요소들이 생성된 상태를 표시한다. 또한, “”로 표시된 부분은 비정질 나노구조체의 공극 또는 표면 상에 Au 원자들이 흡수 또는 흡착된 상태를 도시한다.Referring to FIG. 4, a portion indicated by “” indicates a state in which Au atoms and components of an inorganic polymer are formed in a fractal sphere in a specific portion of the amorphous nanostructure. In addition, the portion marked with “” shows a state in which Au atoms are absorbed or adsorbed on the pores or surfaces of the amorphous nanostructures.

즉, 제2 금속 원소인 Au 원자의 양이 증가할수록 비정질 나노구조체의 표면 상에는 대략 구형으로 프랙탈 형상이 나타나기 시작함을 알 수 있다. 다만, 무기 고분자들이 수소 결합된 나노 구조체가 완전히 분해되는 현상은 관측되지 않는다. That is, it can be seen that as the amount of Au atoms, which are the second metal elements, increases, fractal shapes begin to appear in a substantially spherical shape on the surface of the amorphous nanostructure. However, the phenomenon in which the inorganic polymers hydrogen-bonded nanostructure is completely decomposed is not observed.

또한, 하기의 표 2에서는 프랙탈 형상에서의 원소들의 원자 백분율 및 흡수된 상태에서 원소들의 원자 백분율이 개시된다. In addition, Table 2 below discloses the atomic percentage of elements in the fractal shape and the atomic percentage of elements in the absorbed state.

원소(A)Element (A) 원자 조성(A)(%)Atomic Composition (A) (%) 원소(B)Element (B) 원자 조성(B)(%)Atomic Composition (B) (%) AuAu 15.9115.91 AuAu 2.412.41 CuCu 20.6620.66 CuCu 21.7521.75 ClCl 30.4630.46 ClCl 19.2019.20 SS 14.1614.16 SS 20.7820.78 NN 18.8118.81 NN 35.8635.86

상기 표 2에서 A로 표시된 부분은 상기 도 4의 "A"로 표시된 프랙탈 구조의 원자 백분율이며, B로 표시된 부분은 상기 도 4의 “로 표시된 제2 금속 원소가 비정질 나노구조체에 흡수 또는 흡착된 부분의 원자 백분율을 나타낸다. 이를 살펴볼 때, 프랙탈 형상에서는 비정질 나노구조체를 구성하는 무기 고분자의 일부가 이탈되어 Au 원소를 환원시키고, 환원과정에서 Au 원소와 화학적 또는 물리적으로 결합되고 있음을 알 수 있다.A portion indicated by A in Table 2 is an atomic percentage of the fractal structure denoted by "A" of FIG. 4, and a portion denoted by B denotes that the second metal element denoted by "of FIG. 4 is absorbed or adsorbed to the amorphous nanostructure. Indicates the atomic percentage of the part. From this, it can be seen that in the fractal shape, a part of the inorganic polymer constituting the amorphous nanostructure is separated to reduce the Au element, and chemically or physically bonds with the Au element in the reduction process.

또한, 본 제조예에서 비정질 나노와이어는 0.2mmol로 준비된 상태이므로, 비정질 나노와이어 대비 50%의 몰량을 가진 제2 금속 원소가 투입되는 경우, 프랙탈 형상이 나타남을 확인할 수 있다. 형성된 프랙탈 구조에서는 제2 금속 원소와 무기 고분자를 구성하는 다양한 원소들이 응집된 상태로 나타난다.In addition, since the amorphous nanowires are prepared in a state of 0.2 mmol in the preparation example, when the second metal element having a molar amount of 50% of the amorphous nanowires is added, it can be seen that a fractal shape appears. In the formed fractal structure, various elements constituting the second metal element and the inorganic polymer appear in an aggregated state.

제조예 3 : Au 원소가 포함된 프랙탈 나노구조체의 제조Preparation Example 3 Preparation of Fractal Nanostructures Containing Au Elements

상기 제조예 1에서 Au 전구체의 사용량을 증가시켜 Au가 0.15 mmol 포함된 gold(Ⅲ) chloride solution을 100 ml 에탄올에 분산시켜준 후 상기 구리-클로라이드 비정질 나노와이어가 담긴 용액에 첨가한 후 30 분간 교반한다.The amount of Au precursor in Preparation Example 1 was increased to disperse gold (III) chloride solution containing 0.15 mmol of Au in 100 ml ethanol, and then added to the solution containing copper-chloride amorphous nanowire, followed by stirring for 30 minutes. do.

도 5는 본 발명의 제조예 3에 따른 비정질 나노구조체로부터 파생된 Au 원소를 포함하는 프랙탈 형상의 나노구조체의 STEM 이미지 및 EDS 맵핑 이미지이다.5 is a STEM image and an EDS mapping image of a fractal nanostructure including an Au element derived from an amorphous nanostructure according to Preparation Example 3 of the present invention.

도 5를 참조하면, 구리-클로라이드 비정질 나노와이어는 0.2mmol로 준비된 상태이며, 제2 금속 원소인 Au는 비정질 나노와이어 대비 75%의 몰비를 가진다.Referring to FIG. 5, the copper-chloride amorphous nanowires are prepared as 0.2 mmol, and the second metal element Au has a molar ratio of 75% compared to the amorphous nanowires.

즉, 제2 금속 원소의 양이 증가함에 따라, 비정질 나노와이어는 무기 고분자 또는 무기 고분자가 일부 응집된 형태로 해리되고, 무기 고분자를 구성하는 원소들 및 제2 금속 원소로 응집되고, 프랙탈 형상을 가지게 된다. 즉, 투입되는 제2 금속 원소의 양이 증가함에 따라 비정질 나노와이어는 중심 금속의 산화에 의해 완전히 해리되고, 분리된 일부 무기 고분자들의 원소들은 제2 금속 원소와 프랙탈 구조를 형성한다.That is, as the amount of the second metal element increases, the amorphous nanowire is dissociated into a form in which the inorganic polymer or the inorganic polymer is partially aggregated, aggregates into the elements constituting the inorganic polymer and the second metal element, and forms a fractal shape. To have. That is, as the amount of the introduced second metal element increases, the amorphous nanowire is completely dissociated by oxidation of the central metal, and the elements of the separated inorganic polymers form a fractal structure with the second metal element.

상기 사항은 하기의 표 3에서도 확인할 수 있다.The matter can also be confirmed in Table 3 below.

원소element 원자 조성(%)Atomic Composition (%) AuAu 29.6829.68 CuCu 10.2210.22 ClCl 11.3111.31 SS 15.4315.43 NN 33.3633.36

상기 표 3에서 프랙탈 구조의 구형의 합금 나노구조체에는 제2 금속 원소인 Au 이외에 무기 고분자를 구성하는 원소들이 고르게 분포하고 있다. 또한, Au의 EDS 이미지에서 확인되는 바와 같이 제2 금속 원소는 프랙탈 구조를 형성한다. In Table 3, elements constituting the inorganic polymer in addition to Au as the second metal element are evenly distributed in the spherical alloy nanostructure of the fractal structure. In addition, as seen in the EDS image of Au, the second metal element forms a fractal structure.

제조예 4 : Au 및 Pd 원소가 포함된 프랙탈 나노구조체의 제조Preparation Example 4 Preparation of Fractal Nanostructures Containing Au and Pd Elements

Au 0.075 mmol이 포함된 gold(Ⅲ) chloride solution과 Pd 0.075mmol이 포함된 palladium(Ⅱ) chloride solution을 100ml 에탄올에 분산시킨 후 상기 제조예 1에서 마련된 구리-클로라이드 비정질 나노와이어와 교반해 주었다.Gold (III) chloride solution containing 0.075 mmol of Au and palladium (II) chloride solution containing 0.075 mmol of Pd were dispersed in 100 ml ethanol and stirred with the copper-chloride amorphous nanowire prepared in Preparation Example 1.

도 6은 본 발명의 제조예 4에 따른 Au와 Pd 원소를 포함한 나노구조체의 STEM 이미지 및 EDS 맵핑 이미지이다.6 is a STEM image and an EDS mapping image of a nanostructure including Au and Pd elements according to Preparation Example 4 of the present invention.

도 6을 참조하면, Au와 Pd는 동일한 몰량으로 투입되며, 총 0.15mmol의 몰량을 가진다. 또한, 제조예 1의 비정질 나노와이어는 0.2mmol의 몰량을 가지므로 Au 및 Pd는 비정질 나노와이어 대비 75%의 몰량을 가진다. 따라서, 프랙탈 구조의 합금 나노구조체가 형성될 수 있다. 하기의 표 4에서는 상기 도 6의 합금 나노구조체의 원자 백분율이 개시된다.Referring to FIG. 6, Au and Pd are added in the same molar amount, and have a total molar amount of 0.15 mmol. In addition, since the amorphous nanowires of Preparation Example 1 have a molar amount of 0.2 mmol, Au and Pd have a molar amount of 75% compared to the amorphous nanowires. Thus, alloy nanostructures of fractal structure can be formed. In Table 4 below, the atomic percentage of the alloy nanostructure of FIG. 6 is disclosed.

원소element 원자 조성(%)Atomic Composition (%) AuAu 14.5614.56 PdPd 13.9913.99 CuCu 7.917.91 ClCl 13.6213.62 SS 15.3315.33 NN 34.5934.59

상기 표 4에서는 도 6의 첫 번째 이미지에서 점선으로 표시된 부분에 대한 원자 백분율을 개시한다. 원자 조성에서 알 수 있듯이 Pd의 투입량이 Au와 거의 동일하므로 합금 나노구조체에서도 Au 및 Pd는 상호간에 유사한 원자 백분율을 가짐을 알 수 있다.Table 4 above describes the atomic percentages for the portion indicated by the dotted lines in the first image of FIG. As can be seen from the atomic composition, since the input amount of Pd is almost the same as Au, it can be seen that Au and Pd have similar atomic percentages in the alloy nanostructures.

제조예 5 : 몰비가 변경된 Au 및 Pd 원소가 포함된 프랙탈 나노구조체의 제조Preparation Example 5 Preparation of Fractal Nanostructures Containing Au and Pd Elements with Modified Molar Ratios

Au 0.1125 mmol이 포함된 gold(Ⅲ) chloride solution과 Pd 0.0375 mmol이 포함된 palladium(Ⅱ) chloride solution을 100 ml 에탄올에 분산한 후,상기 제조예 1에서 마련된 구리-클로라이드 비정질 나노와이어와 교반해 주었다.Gold (III) chloride solution containing 0.1125 mmol of Au and palladium (II) chloride solution containing 0.0375 mmol of Pd were dispersed in 100 ml ethanol and stirred with copper-chloride amorphous nanowires prepared in Preparation Example 1. .

도 7은 본 발명의 제조예 5에 따른 Au와 Pd 원소의 몰비를 변경하여 형성한 프랙탈 형상의 나노구조체의 SEM 이미지 및 EDS 맵핑 이미지이다.7 is a SEM image and an EDS mapping image of a fractal nanostructure formed by changing a molar ratio of Au and Pd elements according to Preparation Example 5 of the present invention.

도 7을 참조하면, 제2 금속 원소는 2 종류로 Au 및 Pd가 포함된다. 제2 금속 원소의 총몰수는 0.15 몰로 비정질 나노와이어 대비 75%의 몰비를 나타낸다. 따라서, 제2 금속 원소는 프랙탈 구조를 형성할 수 있다. 다만, 상기 도 7에서 보이는 바와 같이 몰수가 상대적으로 큰 Au가 명확한 프랙탈 구조를 보이고 있으며, 작은 몰수를 가진 Pd의 경우, 프랙탈 구조가 명징하게 나타나지 않고, 합금 나노구조체의 전체에 분포되는 것을 알 수 있다. 아래의 표 5에서는 제2 금속 원소들 간에 투입된 몰량의 불균형에 의해 합금 나노구조체 내에서의 원자 백분율이 개시된다.Referring to FIG. 7, two kinds of second metal elements include Au and Pd. The total mole number of the second metal element is 0.15 mole, representing a mole ratio of 75% to the amorphous nanowires. Thus, the second metal element can form a fractal structure. However, as shown in FIG. 7, Au having a relatively high mole number shows a clear fractal structure, and in the case of Pd having a small number of moles, the fractal structure does not appear clearly and is distributed throughout the alloy nanostructure. have. In Table 5 below, the atomic percentage in the alloy nanostructure is disclosed by the molar imbalance introduced between the second metal elements.

원소element 원자 조성(%)Atomic Composition (%) AuAu 23.4923.49 PdPd 7.627.62 CuCu 7.407.40 ClCl 7.597.59 SS 17.0417.04 NN 36.8636.86

상기 표 5에서 알 수 있듯이, 투입량이 작은 Pd는 형성된 합금 나노구조체 내에서도 낮은 원자 조성비를 보이고 있다.As can be seen in Table 5, Pd has a low atomic composition ratio even in the alloy nanostructure formed.

즉, 2 종류 이상의 제2 금속 원소가 투입되는 경우, 사용된 제2 금속원소의 전구체 양에 비례하는 원자 몰비를 지닌 프랙탈 형상의 나노구조체를 형성할 수 있다. That is, when two or more kinds of second metal elements are added, a fractal nanostructure having an atomic molar ratio proportional to the amount of precursor of the second metal element used may be formed.

제조예 6 : 3 종류 이상의 제2 금속 원소들이 포함된 프랙탈 형상의 합금 나노구조체의 제조Preparation Example 6 Preparation of Fractal Alloy Alloy Nanostructures Containing Three or More Second Metal Elements

Au 0.05 mmol이 포함된 gold(Ⅲ) chloride solution, Pd 0.05 mmol이 포함된 palladium(Ⅱ) chloride solution, Rh 0.05 mmol이 포함된 rhodium(Ⅲ) nitrate solution을 100ml 에탄올에 분산 시켜준 후 상기 제조예 1에서 마련된 구리-클로라이드 비정질 나노와이어와 교반해 주었다.Preparation Example 1 after dispersing gold (III) chloride solution containing Au 0.05 mmol, palladium (II) chloride solution containing 0.05 mmol Pd, rhodium (III) nitrate solution containing Rh 0.05 mmol in 100ml ethanol It was stirred with a copper-chloride amorphous nanowire prepared in.

즉, 제2 금속 원소로 Au, Pd 및 Rh가 준비되며, 제2 금속 원소들의 총량은 0.15몰이며, 제조예 1의 비정질 나노와이어 대비 75%의 몰 함량을 나타낸다. 따라서, 프랙탈 형상으로의 제조가 가능하다.That is, Au, Pd and Rh are prepared as the second metal element, and the total amount of the second metal elements is 0.15 mole, and the molar content of 75% of the amorphous nanowire of Preparation Example 1 is shown. Thus, it is possible to produce a fractal shape.

도 8은 본 발명의 제조예 6에 따른 Au, Pd 및 Rh 원소가 포함된 프랙탈 형상의 나노구조체를 도시한 STEM 이미지 및 EDS 맵핑 이미지이다.8 is a STEM image and an EDS mapping image showing a fractal-shaped nanostructure including Au, Pd, and Rh elements according to Preparation Example 6 of the present invention.

도 8을 참조하면, SREM 이미지에서 전체적으로 프랙탈 형상이 이루어짐을 알 수 있다. 다만, EDS 맵핑 이미지에서 제2 금속 원소들은 선명한 프랙탈 형상 보다는 광범위하게 분포된 상태로 나타난다. 이는 제2 금속 원소를 구성하는 각각의 금속 원소의 몰 함량이 다소 낮은데 기인하는 것으로 추측된다. 즉, 금속 원소의 몰 함량이 증가할수록 프랙탈 구조를 만드는데 용이함을 알 수 있다.Referring to FIG. 8, it can be seen that the fractal shape is entirely formed in the SREM image. However, in the EDS mapping image, the second metal elements appear to be widely distributed rather than a clear fractal shape. This is presumed to be due to the rather low molar content of each metal element constituting the second metal element. That is, it can be seen that as the molar content of the metal element increases, it is easier to form a fractal structure.

또한, 본 실시예에서는 3 종의 금속 원소들이 제2 금속 원소로 사용되었으나, 필요에 따라 그 이상의 금속 원소들이 사용될 수 있다. 다만, 제2 금속 원소의 전체 몰 총량은 비정질 나노구조체 대비 50% 내지 100%임이 바람직하다. 50% 미만에서는 프랙탈 구조의 합금 나노구조체가 형성되지 않으며, 100%를 상회하는 경우, 프랙탈 구조의 합금 나노구조체가 형성되지 않고, 제2 금속 원소 만으로 이루어진 나노입자들이 형성된다.In addition, in the present embodiment, three metal elements are used as the second metal element, but more metal elements may be used as necessary. However, it is preferable that the total molar total amount of the second metal element is 50% to 100% of the amorphous nanostructure. If less than 50%, the alloy nanostructures of the fractal structure is not formed, and if it exceeds 100%, the alloy nanostructures of the fractal structure are not formed, and nanoparticles composed of only the second metal element are formed.

상술한 본 발명의 다양한 제조예에서 개시되는 바와 같이 중심 금속과 할로겐 원소를 주쇄로 하는 무기 고분자는 수소 결합을 통해 비정질 나노구조체를 형성한다. 또한, 중심 금속에 비해 높은 표준환원전위를 가지는 제2 금속 원소는 특정의 몰비에서 프랙탈 구조의 합금 나노구조체를 형성한다. 형성된 합금 나노구조체에는 무기 고분자를 형성하는 중심 금속, 할로겐 원소 및 결합용 관능기의 원소들이 포함된다.As disclosed in the various preparation examples of the present invention described above, the inorganic polymer having a main metal and a halogen element as a main chain forms an amorphous nanostructure through hydrogen bonding. In addition, the second metal element, which has a higher standard reduction potential compared to the center metal, forms alloy nanostructures of fractal structure at a specific molar ratio. The alloy nanostructure formed includes elements of a central metal, a halogen element and a bonding functional group forming an inorganic polymer.

이는 제2 금속 원소가 비정질 나노구조체와 혼합된 경우, 제2 금속 원소가 가지는 높은 환원력에 의해 비정질 나노구조체의 중심 금속의 산화수가 증가되고, 산화수의 증가에 따른 비정질 나노구조체의 해리 동작에 기인하는 것으로 추측된다. This is because when the second metal element is mixed with the amorphous nanostructure, the oxidation number of the center metal of the amorphous nanostructure is increased by the high reducing force of the second metal element, and it is due to the dissociation operation of the amorphous nanostructure due to the increase in the oxidation number. It is assumed to be.

다만, 제2 금속 원소의 몰 총량이 비정질 나노구조체 대비 특정의 상한 값을 상회하면, 제2 금속 원소의 환원을 위해 더 많은 전자가 생산되고, 소모되어야 한다. 따라서, 무기 고분자 자체가 완전히 해리되는 현상이 발생되고, 환원된 제2 금속 원소들 만의 나노 입자들이 형성된다.However, when the total molar amount of the second metal element exceeds a certain upper limit than the amorphous nanostructure, more electrons must be produced and consumed for the reduction of the second metal element. Thus, a phenomenon in which the inorganic polymer itself is completely dissociated occurs, and nanoparticles of only the reduced second metal elements are formed.

그러나, 제2 금속 원소의 몰 총량이 비정질 나노구조체 대비 특정의 하한 값 미만에서는 제2 금속 원소는 이온화된 상태로 비정질 나노구조체에 흡수 또는 흡착된다. 제2 금속 원소가 일부 환원될 수도 있으나 그 양이 미미하므로 비정질 나노구조체는 해체되지 않는다.However, when the total molar amount of the second metal element is less than a certain lower limit than the amorphous nanostructure, the second metal element is absorbed or adsorbed to the amorphous nanostructure in an ionized state. The second metal element may be partially reduced, but the amount thereof is insignificant so that the amorphous nanostructure is not disassembled.

제2 금속 원소의 몰 총량이 비정질 나노구조체 대비 특정의 하한값 이상에서 제2 금속 원소는 본격적으로 환원되며, 비정질 나노구조체의 표면 등에서 일부 해체된 무기 고분자와 결합하여 프랙탈 구조의 합금 나노구조체의 형성을 개시한다. 또한, 몰 총량이 증가하면 비정질 나노구조체는 완전히 해체되며, 해체된 무기 고분자의 일부는 환원된 제2 금속 원소와 결합하여 프랙탈 구조를 형성한다.When the total molar amount of the second metal element is greater than a certain lower limit than the amorphous nanostructure, the second metal element is reduced in earnest, and is combined with a partially disintegrated inorganic polymer on the surface of the amorphous nanostructure to form the alloy nanostructure of the fractal structure. It starts. In addition, when the total molar amount increases, the amorphous nanostructure is completely disintegrated, and a part of the disintegrated inorganic polymer is combined with the reduced second metal element to form a fractal structure.

상술한 본 발명에서 프랙탈 구조의 합금 나노구조체는 무기 고분자의 중심 금속보다 높은 표준환원전위를 가진 제2 금속 원소를 포함하고, 무기 고분자를 구성하는 중심 금속, 할로겐 원소 및 결합용 관능기의 구성 원소를 포함한다. 특히, 합금 나노구조체는 2 종 이상의 제2 금속 원소들로 이루어질 수 있으며, 이를 통해 다양한 전기화학적 특성을 발현할 수 있다.In the present invention described above, the alloy nanostructure of the fractal structure includes a second metal element having a standard reduction potential higher than that of the center metal of the inorganic polymer, and includes a center metal, a halogen element, and a constituent element of the functional group for bonding. Include. In particular, the alloy nanostructures may be composed of two or more kinds of second metal elements, and thus may express various electrochemical properties.

특히, 나노 사이즈로 합금 구조체를 형성하는 것은 용융 공정을 사용하지 않는 특성으로 인해 균일한 사이즈를 형성할 수 있으며, 프랙탈 구조로 인해 높은 비표면적을 확보할 수 있다.In particular, forming the alloy structure in the nano size can form a uniform size due to the nature of not using a melting process, it is possible to secure a high specific surface area due to the fractal structure.

Claims (15)

프랙탈 구조를 가지고, 하기의 화학식 1의 무기 고분자에서 중심 금속, 할로겐 원소 및 결합용 관능기의 원소를 포함하며,
상기 중심 금속 보다 높은 표준환원전위를 가지는 제2 금속 원소를 더 포함하는 합금 나노구조체.
[화학식 1]
Figure pat00003

상기 화학식 1에서 M은 상기 중심 금속으로 산화수 +1의 전이 금속이며, X는 상기 할로겐 원소이고, CF는 수소 원소 및 수소 결합용 원소를 포함하는 상기 결합용 관능기이며, n은 반복횟수로 10 내지 500,000의 값을 가진다.
It has a fractal structure, and includes an element of the central metal, a halogen element, and a bonding functional group in the inorganic polymer of Formula 1 below,
Alloy nanostructure further comprising a second metal element having a higher standard reduction potential than the central metal.
[Formula 1]
Figure pat00003

In Formula 1, M is the transition metal of oxidation number +1 to the central metal, X is the halogen element, CF is the bonding functional group including a hydrogen element and hydrogen bonding element, n is a repeating number of 10 to 10 Has a value of 500,000.
제1항에 있어서, 상기 무기 고분자의 상기 중심 금속은 은(Ag), 금(Au), 백금(Pt), 팔라듐(Pd), 루테늄(Ru), 코발트(Co), 나트륨(Na), 칼륨(K), 철(Fe), 카드뮴(Cd), 니켈(Ni), 크로뮴(Cr), 탈륨(Tl), 루비듐(Rb), 아연(Zn), 구리(Cu), 망간(Mn), 몰리브덴(Mo), 인듐(In), 갈륨(Ga), 비스무스(Bi), 티타늄(Ti), 납(Pb), 알루미늄(Al), 마그네슘(Mg) 또는 안티모니(Sb)를 포함하는 것을 특징으로 하는 합금 나노구조체. The method of claim 1, wherein the core metal of the inorganic polymer is silver (Ag), gold (Au), platinum (Pt), palladium (Pd), ruthenium (Ru), cobalt (Co), sodium (Na), potassium (K), iron (Fe), cadmium (Cd), nickel (Ni), chromium (Cr), thallium (Tl), rubidium (Rb), zinc (Zn), copper (Cu), manganese (Mn), molybdenum (Mo), indium (In), gallium (Ga), bismuth (Bi), titanium (Ti), lead (Pb), aluminum (Al), magnesium (Mg) or antimony (Sb) characterized in that it comprises Alloy nanostructures. 제2항에 있어서, 상기 제2 금속 원소는 구리보다 큰 표준환원전위를 가지고, 은(Ag), 금(Au), 백금(Pt), 팔라듐(Pd), 루테늄(Ru), 오스뮴 (Os), 이리듐 (Ir) 또는 로듐(Rh)를 포함하는 것을 특징으로 하는 합금 나노구조체.The method of claim 2, wherein the second metal element has a standard reduction potential larger than that of copper, and includes silver (Ag), gold (Au), platinum (Pt), palladium (Pd), ruthenium (Ru), and osmium (Os). Alloy nanostructures comprising iridium (Ir) or rhodium (Rh). 제3항에 있어서, 상기 제2 금속 원소는 2 종류 이상의 금속 원소들로 구성되고, 합금을 형성하는 것을 특징으로 하는 합금 나노구조체.4. The alloy nanostructure of claim 3, wherein the second metal element is formed of two or more kinds of metal elements, and forms an alloy. 제2항에 있어서, 상기 프랙탈 구조는 구형이며, 30nm 내지 300nm의 직경을 가지는 것을 특징으로 하는 합금 나노구조체.The alloy nanostructures of claim 2, wherein the fractal structure is spherical and has a diameter of 30 nm to 300 nm. 하기의 화학식 2를 가지는 무기 고분자가 수소 결합된 비정질 나노구조체를 준비하는 단계;
상기 무기 고분자의 중심 금속보다 높은 표준환원전위를 가지는 제2 금속 원소를 포함하는 제2 금속 전구체를 상기 비정질 나노구조체와 혼합하는 단계; 및
상기 비정질 나노구조체를 해체하고, 상기 무기 고분자의 원소들 및 상기 제2 금속 원소를 포함하는 프랙탈 구조의 합금 나노구조체를 형성하는 단계를 포함하는 합금 나노입자의 제조방법.
[화학식 2]
Figure pat00004

상기 화학식 2에서 M은 중심 금속으로 전이 금속, X는 할로겐 원소를 나타내며, CF는 수소 원소 및 수소 결합용 원소를 포함하는 결합용 관능기를 나타내고, n은 반복횟수로 10 내지 500,000의 값을 가진다.
Preparing an amorphous nanostructure in which an inorganic polymer having Formula 2 is hydrogen-bonded;
Mixing a second metal precursor including the second metal element having a standard reduction potential higher than that of the center metal of the inorganic polymer with the amorphous nanostructure; And
Dissolving the amorphous nanostructure and forming an alloy nanostructure of a fractal structure including the elements of the inorganic polymer and the second metal element.
[Formula 2]
Figure pat00004

In Formula 2, M represents a transition metal, X represents a halogen element, CF represents a functional group for bonding including a hydrogen element and an element for hydrogen bonding, and n has a value of 10 to 500,000 in repetition frequency.
제6항에 있어서, 상기 무기 고분자의 상기 중심 금속은 +1의 산화수를 가지며, 상기 합금 나노구조체의 형성 단계에서 제2 금속 원소의 환원을 위해 상기 중심 금속의 산화수는 증가하고, 상기 비정질 나노구조체는 해리되는 것을 특징으로 하는 합금 나노입자의 제조방법.The method of claim 6, wherein the central metal of the inorganic polymer has an oxidation number of +1, the oxidation number of the central metal is increased for the reduction of the second metal element in the step of forming the alloy nanostructure, the amorphous nanostructure Method for producing an alloy nanoparticles characterized in that dissociation. 제7항에 있어서, 상기 제2 금속 원소의 환원을 통해 형성되는 상기 합금 나노구조체는 30nm 내지 300nm의 직경을 가지는 것을 특징으로 하는 합금 나노입자의 제조방법.The method of claim 7, wherein the alloy nanostructure formed through the reduction of the second metal element has a diameter of 30nm to 300nm manufacturing method of the alloy nanoparticles. 제6항에 있어서, 상기 제2 금속 원소는 상기 비정질 나노구조체 대비 0.5 내지 1의 몰 분율을 가지는 것을 특징으로 하는 합금 나노입자의 제조방법.The method of claim 6, wherein the second metal element has a mole fraction of 0.5 to 1 relative to the amorphous nanostructure. 제6항에 있어서, 상기 비정질 나노구조체를 준비하는 단계는,
제1 금속 전구체, 결합용 관능기 및 극성 용매를 준비하는 단계; 및
상기 제1 금속 전구체, 상기 결합용 관능기 및 상기 극성 용매를 혼합한 합성 용액을 통해 상기 화학식 2의 무기 고분자가 상호 수소 결합된 상기 비정질 나노구조체를 형성하는 단계를 포함하는 합금 나노입자의 제조방법.
The method of claim 6, wherein preparing the amorphous nanostructures,
Preparing a first metal precursor, a functional group for bonding, and a polar solvent; And
And forming the amorphous nanostructure in which the inorganic polymer of the formula (2) is hydrogen-bonded with each other through a synthesis solution in which the first metal precursor, the bonding functional group, and the polar solvent are mixed.
제10항에 있어서, 상기 제1 금속 전구체는 전이 금속과 할로겐 원소를 포함하고, 상기 전이 금속은 은(Ag), 금(Au), 백금(Pt), 팔라듐(Pd), 루테늄(Ru), 코발트(Co), 나트륨(Na), 칼륨(K), 철(Fe), 카드뮴(Cd), 니켈(Ni), 크로뮴(Cr), 탈륨(Tl), 루비듐(Rb), 아연(Zn), 구리(Cu), 망간(Mn), 몰리브덴(Mo), 인듐(In), 갈륨(Ga), 비스무스(Bi), 티타늄(Ti), 납(Pb), 알루미늄(Al), 마그네슘(Mg) 또는 안티모니(Sb)로 이루어진 군으로부터 선택되는 적어도 하나의 원소를 포함하는 것을 특징으로 하는 합금 나노입자의 제조방법.The method of claim 10, wherein the first metal precursor includes a transition metal and a halogen element, and the transition metal includes silver (Ag), gold (Au), platinum (Pt), palladium (Pd), ruthenium (Ru), Cobalt (Co), sodium (Na), potassium (K), iron (Fe), cadmium (Cd), nickel (Ni), chromium (Cr), thallium (Tl), rubidium (Rb), zinc (Zn), Copper (Cu), manganese (Mn), molybdenum (Mo), indium (In), gallium (Ga), bismuth (Bi), titanium (Ti), lead (Pb), aluminum (Al), magnesium (Mg) or Method for producing an alloy nanoparticles, characterized in that it comprises at least one element selected from the group consisting of antimony (Sb). 제11항에 있어서, 상기 결합용 관능기는 수소 원소 및 수소 결합용 원소를 포함하고, 상기 수소 결합용 원소는 산소(O), 황(S), 질소(N), 셀레늄(Se) 또는 텔루륨(Te)을 가지는 것을 특징으로 하는 합금 나노입자의 제조방법.The method of claim 11, wherein the bonding functional group comprises a hydrogen element and a hydrogen bonding element, the hydrogen bonding element is oxygen (O), sulfur (S), nitrogen (N), selenium (Se) or tellurium (Te) has a method for producing an alloy nanoparticles, characterized in that. 제12항에 있어서, 상기 결합용 관능기는 티오우레아(thiourea), 우레아(urea), 셀렌우레아(selenourea), 텔루르우레아(tellurourea) 또는 티올 화합물(thiol compound)을 가지는 것을 특징으로 하는 합금 나노입자의 제조방법.The method of claim 12, wherein the bonding functional group of the alloy nanoparticles, characterized in that the thiourea (urea), urea (urea), selenourea (selenourea), tellurourea or thiol compound (thiol compound) Manufacturing method. 제6항에 있어서, 제2 금속 전구체는 상기 제2 금속 원소의 염화물, 불화물, 브롬화물, 아이오딘화물, 질산염, 아질산염, 황산염, 아세트산염, 탄산염, 구연산염, 시안화물, 인산염, 아세틸아세토네이트, 포름산염, 수산화물, 산화물, 염화금속산 형태(chlorometallic acid) 및 이들의 수화물(hydrate)로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 것을 특징으로 하는 합금 나노입자의 제조방법.The method of claim 6, wherein the second metal precursor is chloride, fluoride, bromide, iodide, nitrate, nitrite, sulfate, acetate, carbonate, citrate, cyanide, phosphate, acetylacetonate, A method for producing alloy nanoparticles, comprising at least one selected from the group consisting of formate, hydroxide, oxide, chlorometallic acid and hydrates thereof. 제6항에 있어서, 상기 중심 금속은 구리이고, 상기 할로겐 원소는 염소이며, 상기 결합용 관능기는 티오우레아이며, 상기 제2 금속 원소는 은(Ag), 금(Au), 백금(Pt), 팔라듐(Pd), 루테늄(Ru), 오스뮴 (Os), 이리듐 (Ir) 또는 로듐(Rh)를 포함하는 것을 특징으로 하는 합금 나노입자의 제조방법.The method of claim 6, wherein the center metal is copper, the halogen element is chlorine, the bonding functional group is thiourea, the second metal element is silver (Ag), gold (Au), platinum (Pt), Method for producing alloy nanoparticles comprising palladium (Pd), ruthenium (Ru), osmium (Os), iridium (Ir) or rhodium (Rh).
KR1020180097279A 2018-08-21 2018-08-21 Fractal-shaped Alloy Nanostructure formed by using Amorphous Nanostructure and Method of manufacturing the same KR102458627B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180097279A KR102458627B1 (en) 2018-08-21 2018-08-21 Fractal-shaped Alloy Nanostructure formed by using Amorphous Nanostructure and Method of manufacturing the same
PCT/KR2019/001087 WO2020040379A1 (en) 2018-08-21 2019-01-25 Fractal alloy nanostructures produced using amorphous nanostructures and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180097279A KR102458627B1 (en) 2018-08-21 2018-08-21 Fractal-shaped Alloy Nanostructure formed by using Amorphous Nanostructure and Method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20200021673A true KR20200021673A (en) 2020-03-02
KR102458627B1 KR102458627B1 (en) 2022-10-25

Family

ID=69592701

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180097279A KR102458627B1 (en) 2018-08-21 2018-08-21 Fractal-shaped Alloy Nanostructure formed by using Amorphous Nanostructure and Method of manufacturing the same

Country Status (2)

Country Link
KR (1) KR102458627B1 (en)
WO (1) WO2020040379A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115018900A (en) * 2022-05-24 2022-09-06 广州聚能予健生物科技有限公司 Structural design method and device for composite special energy gathering system and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090130433A1 (en) * 2007-11-16 2009-05-21 Konica Minolta Holdings, Inc. Manufacturing method of metal nanowire, metal nanowire and transparent electric conductor
US20120034550A1 (en) * 2009-04-21 2012-02-09 Washington University In St. Louis Palladium-Platinum Nanostructures And Methods For Their Preparation
US20120063948A1 (en) * 2010-09-09 2012-03-15 Ramsden William D Nanowire preparation methods, compositions, and articles
CN103817319A (en) * 2012-11-19 2014-05-28 中国科学院大连化学物理研究所 Copper-bearing bimetallic nanometer material with dentritic structure and method for manufacturing copper-bearing bimetallic nanometer material
US20150194548A1 (en) * 2012-07-26 2015-07-09 Imra Europe Sas Large-grain crystallized metal chalcogenide film, colloidal solution of amorphous particles, and preparation methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090130433A1 (en) * 2007-11-16 2009-05-21 Konica Minolta Holdings, Inc. Manufacturing method of metal nanowire, metal nanowire and transparent electric conductor
US20120034550A1 (en) * 2009-04-21 2012-02-09 Washington University In St. Louis Palladium-Platinum Nanostructures And Methods For Their Preparation
US20120063948A1 (en) * 2010-09-09 2012-03-15 Ramsden William D Nanowire preparation methods, compositions, and articles
US20150194548A1 (en) * 2012-07-26 2015-07-09 Imra Europe Sas Large-grain crystallized metal chalcogenide film, colloidal solution of amorphous particles, and preparation methods
CN103817319A (en) * 2012-11-19 2014-05-28 中国科学院大连化学物理研究所 Copper-bearing bimetallic nanometer material with dentritic structure and method for manufacturing copper-bearing bimetallic nanometer material

Also Published As

Publication number Publication date
KR102458627B1 (en) 2022-10-25
WO2020040379A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP5824067B2 (en) Nanowire and manufacturing method thereof
JP5449154B2 (en) Method for forming electrically conductive copper pattern layer by laser irradiation
JP5774756B2 (en) Solid solution type alloy fine particles
US4745094A (en) Mono- or multi-metal microaggregates, a method for their preparation and their application in the catalysis of the photoreduction of water
EP2208559A1 (en) Silver microparticle-containing composition, process for production of the composition, process for production of the silver microparticle, and paste containing the silver microparticle
KR102407233B1 (en) Composite Body in which Nanoparticles are uniformly dispersed in nanosized Pores of a Support and Method of manufacturing the same
JP2008138286A (en) Fine particle dispersion, and method for producing fine particle dispersion
CN108213456B (en) Preparation method of cubic nanometer copper powder
JP2011074476A (en) Method for producing copper nanoparticle
KR102432090B1 (en) Ultrasmall Nanostructure formed by using Amorphous Nanostructure and Method of manufacturing the same
JP2010100899A (en) Silver-rhodium alloy fine particle and method for producing the same
Mourdikoudis et al. Colloidal chemical bottom-up synthesis routes of pnictogen (As, Sb, Bi) nanostructures with tailored properties and applications: a summary of the state of the art and main insights
KR101236246B1 (en) Copper powder
KR102458627B1 (en) Fractal-shaped Alloy Nanostructure formed by using Amorphous Nanostructure and Method of manufacturing the same
CN106903325A (en) The preparation method of silver-tin contact material and its contact material being made
JP2006037145A (en) Silver nano-grain and producing method therefor, and dispersion body containing silver nano-grain
EP3804886A1 (en) Micro-nanostructure manufactured using amorphous nanostructure and manufacturing method therefor
JP2008179836A (en) Method of synthesizing wire-shaped metal particle
KR20190044490A (en) Amorphous Nanostructure made up of Inorganic Polymer and Method of manufacturing the same
US11167262B2 (en) Amorphous nanostructure composed of inorganic polymer and method for manufacturing the same
JP3720250B2 (en) High hydrogen storage alloy and manufacturing method thereof
Lai et al. One-pot seedless aqueous design of metal nanostructures for energy electrocatalytic applications
JP3872465B2 (en) High hydrogen storage material and its manufacturing method
JP2009215615A (en) Method for synthesizing rod-shaped metal particle
JP5945608B2 (en) Gold nanoparticle dispersion for forming conductive film, method for producing the same, and conductive coating composition containing the dispersion

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant