KR20190120484A - 열전발전모듈용 전극소재 및 그 제조방법 - Google Patents
열전발전모듈용 전극소재 및 그 제조방법 Download PDFInfo
- Publication number
- KR20190120484A KR20190120484A KR1020180043715A KR20180043715A KR20190120484A KR 20190120484 A KR20190120484 A KR 20190120484A KR 1020180043715 A KR1020180043715 A KR 1020180043715A KR 20180043715 A KR20180043715 A KR 20180043715A KR 20190120484 A KR20190120484 A KR 20190120484A
- Authority
- KR
- South Korea
- Prior art keywords
- electrode material
- thermoelectric
- power module
- thermoelectric power
- mixed powder
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 239000007772 electrode material Substances 0.000 claims abstract description 108
- 239000000463 material Substances 0.000 claims abstract description 63
- 239000010949 copper Substances 0.000 claims abstract description 53
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052802 copper Inorganic materials 0.000 claims abstract description 27
- 230000000737 periodic effect Effects 0.000 claims abstract description 4
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 4
- 150000003624 transition metals Chemical class 0.000 claims abstract description 4
- 239000011812 mixed powder Substances 0.000 claims description 34
- 239000002245 particle Substances 0.000 claims description 17
- 238000010248 power generation Methods 0.000 claims description 17
- 238000005245 sintering Methods 0.000 claims description 16
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 239000011733 molybdenum Substances 0.000 claims description 10
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- 239000010937 tungsten Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- 229910020630 Co Ni Inorganic materials 0.000 claims description 6
- 229910018989 CoSb Inorganic materials 0.000 claims description 6
- 229910002440 Co–Ni Inorganic materials 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 abstract 2
- 239000000956 alloy Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000003825 pressing Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910020712 Co—Sb Inorganic materials 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 230000005679 Peltier effect Effects 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- MOOAHMCRPCTRLV-UHFFFAOYSA-N boron sodium Chemical compound [B].[Na] MOOAHMCRPCTRLV-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000002490 spark plasma sintering Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
-
- H01L35/14—
-
- H01L35/04—
-
- H01L35/34—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/81—Structural details of the junction
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
본 발명은 열전발전모듈용 전극소재 및 그 제조방법에 관한 것이다. 구체예에서 상기 열전발전모듈용 전극소재 제조방법은 스커터루다이트계(skutterudite) 열전소재와 열팽창계수(CTE) 차이가 1.5 X 10-6/℃ 이하이며, 주기율표 제6족인 전이금속과 구리를 포함하는 전극소재이고, 상기 전극소재는 하기 화학식 1 또는 화학식 2로 표시된다:
[식 1]
xMo(1-x)Cu (0.5 ≤ x ≤ 0.6)
[식 2]
yW(1-y)Cu (0.48 ≤ y ≤ 0.58).
[식 1]
xMo(1-x)Cu (0.5 ≤ x ≤ 0.6)
[식 2]
yW(1-y)Cu (0.48 ≤ y ≤ 0.58).
Description
본 발명은 열전발전모듈용 전극소재 및 그 제조방법에 관한 것이다.
열전발전모듈은 열에너지를 전기에너지로 전환하는 장치이다. 한편, 열전현상은 두 물질 사이에 전류를 인가함으로써 재료 접합부 양단에 발열 및 냉각이 이루어지거나(펠티에 효과, Peltier effect), 역으로 두 물질 간의 온도차에 의해 기전력이 발생(제백효과, Seebeck effect)하는 현상이다. 이러한 제백효과를 이용하면, 컴퓨터나 자동차 엔진 등에서 발생한 열을 전기에너지로 변환할 수 있고, 펠티에 효과를 이용하면, 냉매가 필요 없는 각종 냉각 시스템을 구현할 수 있다.
도 1은 통상적인 열전발전모듈을 나타낸 것이다. 상기 도 1을 참조하면, 열전발전모듈(100)은 P형 열전소재(50) 및 N형 열전소재(52)를 포함하고, 상기 P형 및 N형 열전소재(50, 52)는 각각 상부 및 하부에 확산방지층(40), 접합층(30) 및 전극소재(20)이 순차적으로 형성되며, 전극소재(20)은 절연기판(10)과 접촉한다.
열전발전모듈(100)의 전극소재(20)은 구리(Cu) 또는 알루미늄(Al)이 주로 사용되고 있다. 한편, 열전소재(50, 52)로 스커터루다이트(skutterudite)계 소재를 사용하는 경우 열전소재(50, 52)와 전극소재(20) 사이의 열팽창계수 차이가 커서, 300℃ 이상의 온도차 조건에서 장시간 구동하는 경우, 상기 열팽창계수 차이로 발생하는 열응력 때문에 열전소재(50, 52)와 전극소재(20)의 접합계면이 파괴되는 문제가 있었다.
본 발명의 배경기술은 대한민국 등록특허공보 제10-1454453호(2014.10.24 공고, 발명의 명칭: 열전성능 향상을 위한 고온부 밀봉구조를 갖는 열전발전모듈) 등에 개시되어 있다.
본 발명의 하나의 목적은 열전발전모듈의 전극소재와 열전소재와의 열팽창계수차를 최소화하여, 전극소재와 열전소재와의 접합성, 안정성 및 신뢰성이 우수한 열전발전모듈용 전극소재를 제공하는 것이다.
본 발명의 다른 목적은 열전 발전 효율성이 우수한 열전발전모듈용 전극소재를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 열전발전모듈용 전극소재의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 열전발전모듈용 전극소재를 포함하는 열전발전모듈의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 열전발전모듈의 제조방법에 의해 제조된 열전발전모듈을 제공하는 것이다.
본 발명의 하나의 관점은 열전발전모듈용 전극소재에 관한 것이다. 한 구체예에서 상기 전극소재는 스커터루다이트계(skutterudite) 열전소재와 열팽창계수(CTE) 차이가 1.5 X 10-6/℃ 이하이며, 주기율표 제6족인 전이금속과 구리를 포함하는 전극소재이고, 상기 전극소재는 하기 화학식 1 또는 화학식 2로 표시된다:
[식 1]
xMo(1-x)Cu (0.5 ≤ x ≤ 0.6)
[식 2]
yW(1-y)Cu (0.48 ≤ y ≤ 0.58).
한 구체예에서 상기 스커터루다이트계(skutterudite) 열전소재는 CoSb3계, FeSb3계 및 (Fe-Co-Ni)Sb3계 중 하나 이상 포함할 수 있다.
본 발명의 다른 관점은 상기 전극소재 제조방법에 관한 것이다. 한 구체예에서 상기 전극소재 제조방법은 구리(Cu) 50~60 중량% 및 몰리브덴(Mo) 40~50 중량%를 포함하는 제1 혼합분말을 제조하는 단계; 및 상기 제1 혼합분말을 방전 플라즈마 소결하는 단계;를 포함한다.
다른 구체예에서 상기 전극소재 제조방법은 텅스텐(W) 48~58 중량% 및 구리(Cu) 42~52 중량%를 포함하는 제2 혼합분말을 제조하는 단계; 및 상기 제2 혼합분말을 방전 플라즈마 소결하는 단계;를 포함한다.
한 구체예에서 상기 방전 플라즈마 소결은 10~60MPa으로 가압하면서, 800~950℃까지 승온하여 소결할 수 있다.
한 구체예에서 상기 승온은 10~300℃/min의 승온속도로 실시할 수 있다.
한 구체예에서 상기 제1 혼합분말의 평균입경은 10㎛ 이하일 수 있다.
한 구체예에서 상기 제2 혼합분말의 평균입경은 10㎛ 이하일 수 있다.
본 발명의 또 다른 관점은 상기 전극소재를 포함하는 열전발전모듈에 관한 것이다. 상기 열전발전모듈은 상기 전극소재; 및 상기 전극소재에 접합된, 열팽창계수가 10.3 X 10-6/℃ 내지 10.5 X 10-6/℃인 스커터루다이트계 열전소재;를 포함한다.
한 구체예에서 상기 스커터루다이트계(skutterudite) 열전소재는 CoSb3계, FeSb3계 및 (Fe-Co-Ni)Sb3계 중 하나 이상 포함할 수 있다.
한 구체예에서 상기 접합은 은(Ag)을 포함하는 페이스트 조성물로 접합될 수 있다.
한 구체예에서 상기 스커터루다이트계 열전소재 및 전극소재의 열팽창계수 차이는, 1.5 X 10-6/℃ 이하일 수 있다.
본 발명에 따른 열전발전모듈용 전극소재를 적용시, 열전발전모듈의 발전 효율성이 우수하며, 스커터루다이트계 열전소재와의 열팽창계수 차이를 최소화하여, 전극소재와 열전소재와의 접합성, 안정성 및 신뢰성이 우수할 수 있다.
도 1은 통상적인 열전발전모듈을 나타낸 것이다.
도 2는 본 발명의 한 구체예에 따라 제조된 열전발전모듈용 전극소재의 미세조직을 나타낸 광학현미경 사진이다.
도 3(a)는, 본 발명의 한 구체예에 따라 의해 제조된 열전발전모듈에서, 전극소재와 열전소재와의 접합계면을 나타낸 사진이며, 도 3(b)는 상기 접합계면의 전기저항을 측정한 결과를 나타낸 그래프이다.
도 4는 본 발명에 따른 실시예 및 본 발명에 대한 비교예를 고온 조건에서 방치한 후 외관을 비교한 사진이다.
도 2는 본 발명의 한 구체예에 따라 제조된 열전발전모듈용 전극소재의 미세조직을 나타낸 광학현미경 사진이다.
도 3(a)는, 본 발명의 한 구체예에 따라 의해 제조된 열전발전모듈에서, 전극소재와 열전소재와의 접합계면을 나타낸 사진이며, 도 3(b)는 상기 접합계면의 전기저항을 측정한 결과를 나타낸 그래프이다.
도 4는 본 발명에 따른 실시예 및 본 발명에 대한 비교예를 고온 조건에서 방치한 후 외관을 비교한 사진이다.
본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로써 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있으므로 그 정의는 본 발명을 설명하는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하도록 한다.
열전발전모듈용 전극소재
본 발명의 하나의 관점은 열전발전모듈용 전극소재에 관한 것이다. 한 구체예에서 상기 전극소재는 스커터루다이트계(skutterudite) 열전소재와 열팽창계수(CTE) 차이가 1.5 X 10-6/℃ 이하이며, 주기율표 제6족인 전이금속과 구리를 포함하는 전극소재이고, 상기 전극소재는 하기 화학식 1 또는 화학식 2로 표시된다:
[식 1]
xMo(1-x)Cu (0.5 ≤ x ≤ 0.6)
[식 2]
yW(1-y)Cu (0.48 ≤ y ≤ 0.58).
상기 열팽창계수 차이에서, 전극소재와 열전소재와의 접합성 및 신뢰성이 우수할 수 있다. 상기 열팽창계수(CTE) 차이가 1.5 X 10-6/℃를 초과하는 경우, 열전소재와 전극소재 간 계면이 분리되며, 열전발전 효율이 저하될 수 있다. 예를 들면, 0~1.2 X 10-6/℃ 일 수 있다.
상기 식 1 및 식 2에 따른 성분 범위에서, 스커터루다이트계 열전소재와 전극소재 열팽창계수 차이를 최소화할 수 있어, 고온에서도 열전소재와 전극소재 간 계면이 분리되는 현상을 방지할 수 있으며, 열전 발전 효율이 동시에 우수할 수 있다.
한 구체예에서 상기 전극소재의 열팽창계수(CTE)는 9.0 X 10-6/℃ 내지 11.1 X 10-6/℃ 일 수 있다. 상기 범위에서 고온에서도 열전소재와 전극소재 간 계면이 분리되는 현상을 방지할 수 있으며, 열전 발전 효율이 동시에 우수할 수 있다.
열전발전모듈용 전극소재 제조방법
본 발명의 다른 관점은 상기 열전발전모듈용 전극소재 제조방법에 관한 것이다. 한 구체예에서 상기 열전발전모듈용 전극소재 제조방법은 구리(Cu) 50~60 중량% 및 몰리브덴(Mo) 40~50 중량%를 포함하는 제1 혼합분말을 제조하는 단계; 및 상기 제1 혼합분말을 방전 플라즈마 소결하는 단계;를 포함한다.
상기 구리(Cu) 및 몰리브덴(Mo)을 상기 함량 범위를 벗어나 전극소재를 제조시, 열전발전 효율성이 저하되거나, 전극소재와 스커터루다이트계 열전소재와의 열팽창계수 차가 증가하여, 접합성 및 내구성이 저하되어 열전발전 운전시 전극소재 및 열전소재가 열화되거나 파괴될 수 있다.
다른 구체예에서 상기 열전발전모듈용 전극소재 제조방법은 텅스텐(W) 48~58 중량% 및 구리(Cu) 42~52 중량%를 포함하는 제2 혼합분말을 제조하는 단계; 및 상기 제2 혼합분말을 방전 플라즈마 소결하는 단계;를 포함한다.
상기 텅스텐(W) 및 구리(Cu)를 상기 함량 범위를 벗어나 전극소재를 제조시, 열전발전 효율성이 저하되거나, 전극소재와 스커터루다이트계 열전소재와의 열팽창계수 차가 증가하여, 접합성 및 내구성이 저하되어 열전발전 운전시 전극소재 및 열전소재가 열화되거나 파괴될 수 있다.
본 발명의 스커터루다이트계 열전소재와 접합되는, 열전발전모듈용 전극소재는 열팽창계수 차이를 최소화할 수 있어, 고온에서도 열전소재와 전극소재 간 계면이 분리되는 현상을 방지할 수 있다.
한 구체예에서 상기 스커터루다이트계(skutterudite) 열전소재는 CoSb3계, FeSb3계 및 (Fe-Co-Ni)Sb3계 중 하나 이상 포함할 수 있다.
한 구체예에서 n형 스커터루다이트계 열전소재인 Co4Sb12계 합금의 열팽창계수는 약 10.5 X 10-6/℃이고 p형 스커터루다이트계 열전소재인 Fe3 . 4Co0 . 6Sb12계 합금의 열팽창계수는 약 10.3 X 10-6/℃이다.
한편, 상기 구리(Cu)의 열팽창계수는 약 17 X 10-6/℃이며, 상기 구리(Cu) 만을 적용하여 전극소재를 제조하는 경우, 열전소재와 전극소재 사이의 열팽창계수 차이가 40% 이상으로 증가하여, 고온에서 안정적인 계면을 유지하는 것이 불가능하다. 따라서 열팽창계수가 상대적으로 작은 몰리브덴(Mo)(열팽창계수 약 4.8 X 10-6/℃) 및 텅스텐(W)(열팽창계수 약 4.5 X 10-6/℃)을 적용하여 전극소재를 제조하여, 스커터루다이트 열전소재와의 열팽창계수 차이를 최소화할 수 있다. 이와 같이 열전소재 및 전극소재 사이의 열팽창계수 차이가 작아야 계면에서 분리되는 문제를 최소화하여 신뢰성이 우수한 열전발전모듈을 제조할 수 있다.
한 구체예에서 상기 제1 혼합분말에 포함되는 몰리브덴 및 구리는, 구형일 수 있다. 한 구체예에서 상기 제2 혼합분말에 포함되는 텅스텐 및 구리는, 구형일 수 있다. 상기 조건에서 전극소재 제조시 내구성 및 열전 발전효율이 우수할 수 있다.
한 구체예에서 상기 제1 혼합분말에 포함되는 몰리브덴 및 구리의 평균입경은 10㎛ 이하일 수 있다. 상기 범위로 포함시, 상기 전극소재의 열전 발전 효율과, 기계적 강도 및 내구성이 동시에 우수할 수 있다. 예를 들면 상기 평균입경은 5㎛ 이하일 수 있다.
한 구체예에서 상기 제2 혼합분말에 텅스텐 및 구리의 평균입경은 10㎛ 이하일 수 있다. 상기 범위로 포함시, 상기 전극소재의 열전 발전 효율과, 기계적 강도 및 내구성이 동시에 우수할 수 있다. 예를 들면 상기 평균입경은 5㎛ 이하일 수 있다.
상기 방전 플라즈마 소결(Spark Plasma Sintering; SPS)법을 적용시, 단시간에 목적하는 재료를 제조할 수 있으며, 방전 플라즈마 소결법에 의해 제조된 소결체 형태의 부재의 미세조직은, 혼합분말 상태에서의 특성을 유지할 수 있다.
한 구체예에서 상기 제1 혼합분말, 또는 제2 혼합분말을 그라파이트 몰드에 장입한 다음, 챔버 내부를 펀치로 1축으로 가압하면서 가압방향과 평행한 방향으로 직류펄스전류를 인가하여 소결할 수 있다.
한 구체예에서 상기 방전 플라즈마 소결시 상기 챔버 내부는 1.0 X 10-2 torr 이하의 진공도 조건일 수 있다. 상기 진공도 조건에서 소결시 전극소재가 산화되는 현상을 방지할 수 있다.
한 구체예에서 상기 방전 플라즈마 소결은 상기 제1 혼합분말 또는 제2 혼합분말을 10~60MPa 압력으로 가압하면서, 800~950℃까지 승온하여 소결할 수 있다.
상기 가압 압력이 10MPa 미만인 경우에는 혼합분말 입자 사이에 공극이 많게 되므로 원하는 밀도를 얻을 수 없고, 가압 압력이 60 MPa를 초과하는 경우에는 그 이상의 효과는 기대할 수 없고 고압에 따른 몰드, 유압장치 등의 설계가 추가됨으로써 설비 제작 비용이 증가할 수 있다.
온도가 800~950℃까지 승온되면, 일정시간(예를 들면, 5분~10분)을 유지하여 소결체를 제조할 수 있다. 상기 승온되는 온도가 950℃를 초과하는 경우에는 과도한 입자의 성장으로 인해 전극소재의 기계적 물성이 저하될 수 있고, 승온 온도가 800℃ 미만에서 완료되는 경우에는 불완전한 소결로 인해 전극소재의 특성이 저하될 수 있다.
한 구체예에서 상기 승온은 10~300℃/min의 승온속도로 실시할 수 있다. 상기 승온속도가 300℃/min을 초과하는 경우에는 소결 온도의 제어가 어려울 수 있고, 승온속도가 310℃/min 미만인 경우에는 시간이 오래 걸려 생산성이 저하될 수 있다.
열전발전모듈 제조방법
본 발명의 또 다른 관점은 열전발전모듈 제조방법에 관한 것이다. 한 구체예에서 상기 열전발전모듈 제조방법은 상기 열전발전모듈용 전극소재와, 열팽창계수가 10.3 X 10-6/℃ 내지 10.5 X 10-6/℃인 스커터루다이트계(skutterudite) 열전소재를 접합하는 단계;를 포함한다.
한 구체예에서 상기 접합은 은(Ag)을 포함하는 페이스트 조성물을 이용하여 실시할 수 있다. 상기 페이스트 조성물은 은 및 유기 용제를 포함할 수 있다.
한 구체예에서 상기 페이스트 조성물은 추가적으로 환원제 및 분산제 등을 더 포함할 수 있다.
한 구체예에서 상기 환원제는 하이드라진(hydrazine), 소듐 보론 하이드라이드(sodium boron hydride) 및 아스코르브산(ascorbic acid) 등을 사용할 수 있다.
한 구체예에서 상기 분산제로는 폴리비닐피롤리돈(Polyvinyl pyrrolidone, (C6H9NO)n, PVP), 소듐 도데실 설페이트(Sodium dodecyl sulfate, SDS), 나프탈렌 술폰산 폴리콘덴세이트(Naphathalene sulfonic acid polycondensate) 및 소듐염(sodium salt) 등을 사용할 수 있다.
한 구체예에서 상기 스커터루다이트계 열전소재는 Co-Sb계 합금 및 Fe-Co-Sb계 합금 중 하나 이상을 포함할 수 있다.
열전발전모듈의 제조방법에 의해 제조된 열전발전모듈
본 발명의 또 다른 관점은 상기 열전발전모듈의 제조방법에 의해 제조된 열전발전모듈에 관한 것이다.
본 발명의 또 다른 관점은 상기 전극소재를 포함하는 열전발전모듈에 관한 것이다. 상기 열전발전모듈은 상기 전극소재; 및 상기 전극소재에 접합된, 열팽창계수가 10.3 X 10-6/℃ 내지 10.5 X 10-6/℃인 스커터루다이트계 열전소재;를 포함한다.
한 구체예에서 상기 스커터루다이트계(skutterudite) 열전소재는 CoSb3계, FeSb3계 및 (Fe-Co-Ni)Sb3계 중 하나 이상 포함할 수 있다. 예를 들면, 상기 스커터루다이트계 열전소재는 n형 열전소재로 열팽창계수가 10.5 X 10-6/℃인 Co4Sb12계 합금을 포함할 수 있으며, p형 열전소재로 열팽창계수가 10.3 X 10-6/℃인 Fe3.4Co0.6Sb12계 합금을 포함할 수 있다.
한 구체예에서 상기 접합은 은(Ag)을 포함하는 페이스트 조성물로 접합될 수 있다.
한 구체예에서 상기 스커터루다이트계 열전소재 및 전극소재의 열팽창계수 차이는, 1.5 X 10-6/℃ 이하일 수 있다. 상기 열팽창계수 차이에서, 전극소재와 열전소재와의 접합성 및 신뢰성이 우수할 수 있다. 예를 들면, 0~1.2 X 10-6/℃ 일 수 있다.
본 발명에 따른 열전발전모듈용 전극소재를 적용시, 열전발전모듈의 발전 효율성이 우수하며, 스커터루다이트계 열전소재와의 열팽창계수 차이를 최소화하여, 전극소재와 열전소재와의 접합성 및 신뢰성이 우수할 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
실시예
및
비교예
실시예
1: 열전발전모듈용 전극소재제조
평균 입경이 각각 1㎛인, 구형의 몰리브덴(Mo) 55 중량% 및 구리(Cu) 45 중량%를 포함하는 제1 혼합분말을 준비하였다. 상기 제1 혼합분말을 방전 플라즈마 소결 장치를 이용하여 소결하여 전극소재를 제조하였다. 구체적으로 상기 제1 혼합분말을 그라파이트 몰드에 투입하였다. 그 다음에 1.0 X 10-2 torr 이하의 진공도를 적용한 챔버에 상기 몰드를 장입하고, 펀치를 이용하여 몰드를 1축으로 10~60MPa의 압력으로 가압하면서, 10~300℃/min의 승온속도로 800~950℃까지 승온하였다. 상기 승온완료된 온도를, 5~10분 동안 유지하면서, 상기 몰드의 가압방향과 평행한 방향으로 직류펄스전류를 인가하여 소결하여, 전극소재를 제조하였다.
실시예
2: 열전발전모듈용 전극소재제조
평균 입경이 각각 1㎛인, 구형의 몰리브덴(Mo) 50 중량% 및 구리(Cu) 50 중량%를 포함하는 제1 혼합분말을 적용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 전극소재를 제조하였다.
실시예
3: 열전발전모듈용 전극소재제조
평균 입경이 각각 1㎛인, 구형의 몰리브덴(Mo) 60 중량% 및 구리(Cu) 40 중량%를 포함하는 제1 혼합분말을 적용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 전극소재를 제조하였다.
실시예
4: 열전발전모듈용 전극소재제조
평균 입경이 각각 1㎛인, 구형의 텅스텐(W) 53 중량% 및 구리(Cu) 47 중량%를 포함하는 제2 혼합분말을 적용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 전극소재를 제조하였다.
실시예
5: 열전발전모듈용 전극소재제조
평균 입경이 각각 1㎛인, 구형의 텅스텐(W) 48 중량% 및 구리(Cu) 52 중량%를 포함하는 제2 혼합분말을 적용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 전극소재를 제조하였다.
실시예
6: 열전발전모듈용 전극소재제조
평균 입경이 각각 1㎛인, 구형의 텅스텐(W) 58 중량% 및 구리(Cu) 42 중량%를 포함하는 제2 혼합분말을 적용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 전극소재를 제조하였다.
상기 실시예 1~6의 열전발전모듈용 전극소재에 대하여, 열팽창계수를 측정하여 그 결과를 하기 표 1에 나타내었다.
상기 표 1의 결과를 참조하면, 본 발명에 따라 제조된 열전발전모듈용 전극소재는, 열팽창계수가 9.2 X 10-6/℃ 내지 11.1 X 10-6/℃의 범위로 형성되어, 스커터루다이트계 열전소재의 열팽창계수 차이를 최소화하여, 고온에서도 열전소재와 전극소재 간 계면의 분리 현상을 방지할 수 있음을 알 수 있었다.
또한, 하기 도 2는 본 발명의 실시예 1에 따라 제조된 열전발전모듈용 전극소재의 미세조직을 나타낸 광학현미경 사진이다. 상기 도 2를 참조하면, 10㎛ 이하의 입자를 포함하는 복합체 구조를 형성함을 알 수 있었다.
실시예
7: 열전발전모듈 제조
상기 실시예 1의 열전발전모듈용 전극소재와, 열전소재(n형: Co4Sb12계)를, 은(Ag)을 포함하는 페이스트 조성물을 이용하여 접합하는 단계를 포함하여, 열전발전모듈을 제조하였다.
도 3(a)는, 상기 실시예 7에 의해 제조된 열전발전모듈에서, 전극소재와 열전소재와의 접합계면을 나타낸 사진이며, 도 3(b)는 상기 접합계면의 전기저항을 측정한 결과를 나타낸 그래프이다. 상기 도 3을 참조하면, 본 발명에 따른 전극소재를 열전소재와 접합시, 접합계면의 물성이 저하되지 않으면서, 전기적 특성이 우수하여 열전발전 효율성이 우수한 것을 알 수 있었다.
비교예
1
구리(Cu) 전극소재와 열전소재(n형: Co4Sb12계)를 은(Ag)을 포함하는 페이스트 조성물을 이용하여 접합한 것을 제외하고, 상기 실시예 7과 동일한 방법으로 열전발전모듈을 제조하였다.
상기 실시예 7 및 비교예 1에 대하여, 500℃의 온도에서 100 시간 동안 유지한 다음, 전극소재 또는 열전소재의 외관을 관찰하였다. 도 4는 상기 실시예 7 및 비교예 1에 대하여 고온 조건에서 방치한 후 외관을 비교한 사진이다. 상기 도 4를 참조하면 본 발명의 실시예 7의 경우, 고온 조건에서도 전극소재 및 열전소재의 내구성이 유지되었으나, 구리 전극소재를 적용한 비교예 1의 경우, 전극소재 및 열전소재가 열팽창계수 차이로 인해 파괴되었음을 알 수 있었다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.
Claims (12)
- 스커터루다이트계(skutterudite) 열전소재와 열팽창계수(CTE) 차이가 1.5 X 10-6/℃ 이하이며, 주기율표 제6족인 전이금속과 구리를 포함하는 전극소재이고,
상기 전극소재는 하기 화학식 1 또는 화학식 2로 표시되는 전극소재:
[식 1]
xMo(1-x)Cu (0.5 ≤ x ≤ 0.6)
[식 2]
yW(1-y)Cu (0.48 ≤ y ≤ 0.58).
- 제1항에 있어서, 상기 스커터루다이트계(skutterudite) 열전소재는 CoSb3계, FeSb3계 및 (Fe-Co-Ni)Sb3계 중 하나 이상 포함하는 것을 특징으로 하는 전극소재.
- 구리(Cu) 50~60 중량% 및 몰리브덴(Mo) 40~50 중량%를 포함하는 제1 혼합분말을 제조하는 단계; 및
상기 제1 혼합분말을 방전 플라즈마 소결하는 단계;를 포함하는 것을 특징으로 하는 전극소재 제조방법.
- 텅스텐(W) 48~58 중량% 및 구리(Cu) 42~52 중량%를 포함하는 제2 혼합분말을 제조하는 단계; 및
상기 제2 혼합분말을 방전 플라즈마 소결하는 단계;를 포함하는 것을 특징으로 하는 전극소재 제조방법.
- 제3항 및 제4항중 어느 한 항에 있어서, 상기 방전 플라즈마 소결은 10~60MPa으로 가압하면서, 800~950℃까지 승온하여 소결하는 것을 특징으로 하는 전극소재 제조방법.
- 제5항에 있어서, 상기 승온은 10~300℃/min의 승온속도로 실시하는 것을 특징으로 하는 전극소재 제조방법.
- 제3항에 있어서, 상기 제1 혼합분말의 평균입경은 10㎛ 이하인 것을 특징으로 하는 전극소재 제조방법.
- 제4항에 있어서, 상기 제2 혼합분말의 평균입경은 10㎛ 이하인 것을 특징으로 하는 전극소재 제조방법.
- 제1항의 전극소재; 및
상기 전극소재에 접합된, 열팽창계수가 10.3 X 10-6/℃ 내지 10.5 X 10-6/℃인 스커터루다이트계 열전소재;를 포함하는 열전발전모듈.
- 제9항에 있어서, 상기 스커터루다이트계(skutterudite) 열전소재는 CoSb3계, FeSb3계 및 (Fe-Co-Ni)Sb3계 중 하나 이상 포함하는 것을 특징으로 하는 열전발전모듈.
- 제9항에 있어서, 상기 접합은 은(Ag)을 포함하는 페이스트 조성물로 접합되는 것을 특징으로 하는 열전발전모듈.
- 제9항에 있어서, 상기 스커터루다이트계 열전소재 및 전극소재의 열팽창계수 차이는, 1.5 X 10-6/℃ 이하인 것을 특징으로 하는 열전발전모듈.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180043715A KR102107960B1 (ko) | 2018-04-16 | 2018-04-16 | 열전발전모듈용 전극소재 및 그 제조방법 |
PCT/KR2018/007172 WO2019203392A1 (ko) | 2018-04-16 | 2018-06-25 | 열전발전모듈용 전극소재 및 그 제조방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180043715A KR102107960B1 (ko) | 2018-04-16 | 2018-04-16 | 열전발전모듈용 전극소재 및 그 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190120484A true KR20190120484A (ko) | 2019-10-24 |
KR102107960B1 KR102107960B1 (ko) | 2020-05-07 |
Family
ID=68239597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180043715A KR102107960B1 (ko) | 2018-04-16 | 2018-04-16 | 열전발전모듈용 전극소재 및 그 제조방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102107960B1 (ko) |
WO (1) | WO2019203392A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114497335A (zh) * | 2022-01-20 | 2022-05-13 | 济南大学 | 一种方钴矿热电材料电极以及方钴矿热电材料与电极的连接方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060017170A1 (en) * | 2004-07-23 | 2006-01-26 | Lidong Chen | CoSb3-based thermoelectric device fabrication method |
KR101801367B1 (ko) * | 2017-09-01 | 2017-11-24 | 한밭대학교 산학협력단 | 열전소자의 제조 방법 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130247953A1 (en) * | 2012-03-23 | 2013-09-26 | Trustees Of Boston College | Electrode materials and configurations for thermoelectric devices |
JP6193709B2 (ja) * | 2013-09-30 | 2017-09-06 | 日本サーモスタット株式会社 | 熱電変換モジュール |
WO2017057259A1 (ja) * | 2015-09-28 | 2017-04-06 | 三菱マテリアル株式会社 | 熱電変換モジュール及び熱電変換装置 |
KR102067712B1 (ko) * | 2015-12-24 | 2020-01-17 | 주식회사 엘지화학 | 열전 모듈 및 그 제조 방법 |
-
2018
- 2018-04-16 KR KR1020180043715A patent/KR102107960B1/ko active IP Right Grant
- 2018-06-25 WO PCT/KR2018/007172 patent/WO2019203392A1/ko active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060017170A1 (en) * | 2004-07-23 | 2006-01-26 | Lidong Chen | CoSb3-based thermoelectric device fabrication method |
KR101801367B1 (ko) * | 2017-09-01 | 2017-11-24 | 한밭대학교 산학협력단 | 열전소자의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
WO2019203392A1 (ko) | 2019-10-24 |
KR102107960B1 (ko) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102094995B1 (ko) | 열전모듈, 이를 구비한 열전장치, 및 열전모듈의 제조방법 | |
JP4285665B2 (ja) | 熱電変換素子 | |
TW201004003A (en) | Thermoelectric conversion module and method of manufacturing the same | |
US20190245129A1 (en) | Polycrystalline magnesium silicide and use thereof | |
KR102429486B1 (ko) | 열전재료 및 이의 제조방법 | |
KR102101474B1 (ko) | 금속 페이스트 및 열전 모듈 | |
US9960335B2 (en) | Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element | |
KR102107960B1 (ko) | 열전발전모듈용 전극소재 및 그 제조방법 | |
KR101683911B1 (ko) | 열전소자 및 열전소자의 제조 방법 | |
KR101468991B1 (ko) | 열전 소자 재료, 그 제조 방법, 및 그를 포함하는 열전 소자 장치 | |
CN109560185B (zh) | 热电材料及其制备方法 | |
JP4584034B2 (ja) | 熱電モジュール | |
KR20130054888A (ko) | 구리 전극을 포함하는 열전소자 및 그 제조방법 | |
JP2006339284A (ja) | 熱電モジュール | |
KR101375620B1 (ko) | 계면 정합이 우수한 열전소자 및 그 제조방법 | |
KR102485319B1 (ko) | Mg-Si계 열전재료 및 이의 제조방법 | |
KR101368400B1 (ko) | 계면 정합 특성이 개선된 열전소자 및 그 제조방법 | |
KR102383432B1 (ko) | Mg-Si계 열전재료 및 이의 제조방법 | |
JP4524383B2 (ja) | 電極を一体化した熱電素子及びその作製方法 | |
KR102045716B1 (ko) | 열전모듈용 전극소재, 이를 포함하는 열전모듈 및 이의 제조방법 | |
JP2021158171A (ja) | 熱電変換素子の製造方法 | |
KR101825302B1 (ko) | 고온 접합성능이 우수한 전자부품 접합용 합금 및 그 페이스트 | |
JP2005191431A (ja) | 熱電変換器 | |
JP4643371B2 (ja) | 熱電モジュール | |
JP4415640B2 (ja) | 熱電変換素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |