[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20180091766A - Method for providing the information for diagnosing of prostate cancer - Google Patents

Method for providing the information for diagnosing of prostate cancer Download PDF

Info

Publication number
KR20180091766A
KR20180091766A KR1020180014784A KR20180014784A KR20180091766A KR 20180091766 A KR20180091766 A KR 20180091766A KR 1020180014784 A KR1020180014784 A KR 1020180014784A KR 20180014784 A KR20180014784 A KR 20180014784A KR 20180091766 A KR20180091766 A KR 20180091766A
Authority
KR
South Korea
Prior art keywords
value
pixel
hounsfield unit
average
prostate cancer
Prior art date
Application number
KR1020180014784A
Other languages
Korean (ko)
Other versions
KR102027772B1 (en
Inventor
정병하
이광석
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of KR20180091766A publication Critical patent/KR20180091766A/en
Application granted granted Critical
Publication of KR102027772B1 publication Critical patent/KR102027772B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

The present invention relates to a method for providing information about prostate cancer, which can diagnose the prostate cancer using an image obtained using transrectal ultrasonography, and can provide information related to the malignancy of the prostate cancer, thereby being accessorily applied to various fields related to the diagnosis of the prostate cancer. It is expected to very easily understand and apply an evaluation result because of quantitative calculation.

Description

전립선암 진단에 관한 정보제공방법{Method for providing the information for diagnosing of prostate cancer}The present invention relates to a method for diagnosing prostate cancer,

본 발명은 전립선암 진단에 관한 정보제공방법에 관한 것이다.The present invention relates to a method for providing information on diagnosis of prostate cancer.

전립선(prostate) 또는 전립샘은 샘조직과 섬유근조직으로 구성된 부속생식샘으로, 정액을 생성, 분비하는 역할을 하고 있다. 전립선액은 정액의 약 1.5~2%를 차지하고 있는데 다량의 구연산염(citrate), 아연(zinc), 전립선 특이항원(prostate specific antigen; PSA) 등으로 구성되어 있다. 이 중 전립선 특이항원은 정액의 액화와 관여되는 것으로 알려져 있고, 최근에는 전립선암(prostate cancer)을 진단하는데도 사용되고 있다. 고령화 사회가 되어가며 지난 20년간 우리나라에서도 전립선암 발생률이 급격하게 증가되고 있는 추세이며, 이에 따라 전립선암에 대한 관심이 증가되고 있다.Prostate or prostate gland is a gonadal gland composed of glandular tissue and fibroid tissue, which is responsible for the production and secretion of semen. Prostate fluid accounts for about 1.5% to 2% of semen, and it is composed of citrate, zinc and prostate specific antigen (PSA). Among these, prostate specific antigen is known to be involved in liquefaction of semen, and recently it is also used to diagnose prostate cancer. As an aging society, the incidence of prostate cancer has risen sharply in Korea for the last 20 years, and interest in prostate cancer is increasing.

전립선암이란, 전립선에 발생하는 모든 암을 의미하며, 대부분은 샘 세포(조직에서 분비물을 가지고 있거나 밖으로 내보내는 세포로 세포질의 항상성을 유지하는 세포를 의미함)에서 발생되고 있으며, 샘 세포에서 발생되는 암을 생암종이라고 합니다. 이외에도 육종, 소세포 암종, 이행세포 암종 등 다양한 종류가 있습니다.Prostate cancer refers to all cancers that occur in the prostate gland. Most of them occur in glandular cells (cells that have secretions in tissues or cells that excrete them, meaning cells that maintain cytostatic homeostasis) Cancer is called live carcinoma. In addition, there are various kinds such as sarcoma, small cell carcinoma, transitional cell carcinoma.

전립선암을 진단하는 방법은 현재 국제적인 임상 가이드라인에 따라 전립선 특이항체를 통해 진단하고 있으며, 조기 진단적인 목적에 따라 국제 권고안에 따라 PSA 수치가 3 이상인 사람에 대해서는 전립선 조직 검사를 권고하고 있습니다. 그러나 PSA 10 미만의 환자에게서 전립선암이 진단될 확률은 20%가 되지 않습니다. 최근 전립선 조직 검사를 받는 환자들의 약 70% 이상이 PSA 10 미만 임을 고려할 때 상당수의 환자들이 불필요한 조직 검사를 받고 있다는 것을 알 수 있습니다. 또한, PSA 수치가 4 미만인 환자 중 전립선암일 경우도 15%에 달하기 때문에 PSA 수치 만으로는 전립선암을 정확히 진단하기에는 어려운 실정이다. 이를 해결하기 위하여 전립선암을 진단하기 위한 다양한 바이오마커들이 활발히 개발되고 있지만(국내등록특허 10-1141190), 실생활에 직접 이용될 수 있는 바이오마커의 수는 매우 한정적일 뿐만 아니라, 검사 가격이 100만원을 호가하기 때문에 환자들이 쉽게 접하기 어려운 실정이다. 이외에 경직장 초음파 검사(trans-rectal ultrasonography; TRUS)를 통하여 진단하는 방법이 있지만, 전립선암의 경우에는 다른 갑상선암, 간암 등과 다르게 음영이 낮아지지 않는 경우도 다수이고, 암이 아니라 염증 등의 다른 원인에 의해서도 음영이 낮아지기 때문에 진단 정확성이 43.0 정도 밖에 되지 않기 때문에 경직장 초음파 검사 만으로는 전립선암을 진단하기에는 한계가 있다.Diagnosis of prostate cancer is based on current international clinical guidelines and is recommended for prostate biopsy for those with an PSA level of 3 or more according to international recommendations for early diagnostic purposes. However, the probability of having prostate cancer diagnosed in a patient under 10 PSA is not 20%. Considering that more than 70% of patients undergoing prostate biopsy are under PSA 10, a significant number of patients are undergoing unnecessary biopsy. In addition, PSA levels in prostate cancer patients are less than 4% of the prostate cancer reaches 15%, so it is difficult to accurately diagnose prostate cancer by PSA alone. In order to solve this problem, various biomarkers for diagnosing prostate cancer have been actively developed (Korean Patent No. 10-1141190), but the number of biomarkers that can be directly used in real life is very limited, And it is difficult for patients to easily access. In addition, transrectal ultrasonography (TRUS) can be used to diagnose prostate cancer. However, in contrast to other thyroid cancer and liver cancer, there are many cases in which the shadow is not lowered. The diagnostic accuracy is only about 43.0 because the shadow is lowered. Therefore, it is not enough to diagnose prostate cancer by only transrectal ultrasonography.

이에 본 발명자들은 용이한 경직장 초음파 검사를 통하여 전립선암을 진단하기 위하여, 객관적이고 정확성을 증가시킬 수 있는 진단용 알고리즘을 개발하고자 노력하였다. Therefore, the present inventors have sought to develop a diagnostic algorithm that can increase the objectivity and accuracy in order to diagnose prostate cancer through an easy transrectal ultrasound examination.

본 발명은 상기와 같은 종래 기술상의 문제점을 해결하기 위해 안출된 것으로, 경직장초음파 영상을 이용하여 전립선암에 관한 정보를 제공하는 방법 및 이를 이용한 진단 장치를 제공하는 것을 그 목적으로 한다.Disclosure of Invention Technical Problem [8] The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a method for providing information on prostate cancer using a transrectal ultrasound image and a diagnostic apparatus using the same.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.

이하, 본원에 기재된 다양한 구체예가 도면을 참조로 기재된다. 하기 설명에서, 본 발명의 완전한 이해를 위해서, 다양한 특이적 상세사항, 예컨대, 특이적 형태, 조성물, 및 공정 등이 기재되어 있다. 그러나, 특정의 구체예는 이들 특이적 상세 사항 중 하나 이상 없이, 또는 다른 공지된 방법 및 형태와 함께 실행될 수 있다. 다른 예에서, 공지된 공정 및 제조 기술은 본 발명을 불필요하게 모호하게 하지 않게 하기 위해서, 특정의 상세사항으로 기재되지 않는다. "한 가지 구체예" 또는 "구체예"에 대한 본 명세서 전체를 통한 참조는 구체예와 결부되어 기재된 특별한 특징, 형태, 조성 또는 특성이 본 발명의 하나 이상의 구체예에 포함됨을 의미한다. 따라서, 본 명세서 전체에 걸친 다양한 위치에서 표현된 "한 가지 구체예에서" 또는 "구체예"의 상황은 반드시 본 발명의 동일한 구체예를 나타내지는 않는다. 추가로, 특별한 특징, 형태, 조성, 또는 특성은 하나 이상의 구체예에서 어떠한 적합한 방법으로 조합될 수 있다.Hereinafter, various embodiments described herein will be described with reference to the drawings. In the following description, for purposes of complete understanding of the present invention, various specific details are set forth, such as specific forms, compositions, and processes, and the like. However, certain embodiments may be practiced without one or more of these specific details, or with other known methods and forms. In other instances, well-known processes and techniques of manufacture are not described in any detail, in order not to unnecessarily obscure the present invention. Reference throughout this specification to "one embodiment" or "embodiment" means that a particular feature, form, composition, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. Accordingly, the appearances of the phrase " in one embodiment "or" an embodiment "in various places throughout this specification are not necessarily indicative of the same embodiment of the present invention. In addition, a particular feature, form, composition, or characteristic may be combined in any suitable manner in one or more embodiments.

명세서에서 특별한 정의가 없으면 본 명세서에 사용된 모든 과학적 및 기술적인 용어는 본 발명이 속하는 기술분야에서 당업자에 의하여 통상적으로 이해되는 것과 동일한 의미를 가진다.Unless defined otherwise in the specification, all scientific and technical terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

본 명세서에 있어서, "전립선암(prostate cancer)"이란 전립선에서 발생하는 종양을 총칭하며, 바람직하게는 악성 종양을 의미하나, 전립선에서 발생된 종양이라면 이에 제한되지 않는다. 본 명세서 내에는 전립선암, proatate cancer(+) 등으로 표시될 수 있으며, 대조군으로는 전립선암이 아닌 양성암(benign cancer), prostate cancer(-) 등으로 표시될 수 있으나, 당업자에게 있어서 전립선암을 표시하는 기재라면 이에 제한되지 않는다.As used herein, the term "prostate cancer" refers to tumors originating from the prostate gland, preferably malignant tumors, but not limited thereto. The prostate cancer may be represented by prostate cancer, prostate cancer (+), etc. The control group may be represented by benign cancer, prostate cancer (-) or the like rather than prostate cancer. But the present invention is not limited thereto.

본 명세서에 있어서, "병변(lesion)"이란, 병적 작용으로 인해 변화가 일어난 조직, 체액 등을 의미하며, 바람직하게는 내시경, 경직장초음파, 자기공명영상 하에서 다른 일반 조직과 다르게 음영이 다르거나, 명암이 다르거나, 출혈이 관찰되거나, 빛의 투과율이 다르거나, 미세혈관이 집중되어 있거나 하는 등, 일반적인 다른 조직과 차이를 보이는 모든 부위를 의미하며, 바람직하게는 저음영(low shade) 부위이나, 영상에서 차이를 관찰할 수 있다면 이에 제한되지 않는다. 다른 말로는 병소라고도 한다.As used herein, the term " lesion " refers to a tissue, body fluids, or the like that has undergone a change due to a pathological action. Preferably, the lesion differs from other general tissues under endoscopic, Refers to any site that differs from other tissues in general such that the contrast is different, bleeding is observed, the light transmittance is different, microvessels are concentrated, or the like, preferably low shade, But the present invention is not limited thereto as long as the difference can be observed in the image. In other words, it is also called a lesion.

본 명세서에 있어서, "진단 장치"란, 내시경, 경직장초음파(TRUS), 자기공명영상(MRI) 등에서 습득한 영상으로부터 질환 진단, 질환 정보 제공이 가능한 장비를 의미하며, 영상을 수치화하여 분석할 수 있는 형태라면 제한이 없다. 바람직하게는 (a) 획득한 전립선 영상을 저장하는 저장부; (b) 상기 영상 중 병변(lesion) 영역의 영상을 선별하는 필터부; (c) 상기 선별된 영상의 적색 평균값(pixel R), 녹색 평균값(pixel G), 청색 평균값(pixel B), 적색 평균값에 대한 청색 평균값의 비율(Ratio R to B), 병변 역역의 픽셀수(pixel count), 하운스필드 유닛의 최소값(pixel minimum Hounsfield unit), 하운스필드 유닛의 최대값(pixel maximum Hounsfield unit), 하운스필드 유닛의 평균값(pixel average Hounsfield unit), 및 하운스필드 유닛의 표준편차(pixel standard deviation Hounsfield unit)를 각각 산출하는 산출부; (d) 상기 산출된 값을 수식에 대입하는 연산부; 및 (e) 상기 연산부의 결과값을 보여주는 표시부로 구성된다면 이에 제한되지 않는다. 상기 선별은 영상을 통해 다른 부위와 다른 특이사항이 인식될 수 있는, 색, 명암, 음영, 미세혈관, 출혈 등으로 인한 차이로 발생하는 부위를 선별하는 것을 의미하며, 영상에서 차이를 확인할 수 있다면 제한이 없다. 바람직하게는 저음영 부위이나, 이에 제한되지 않는다.In the present specification, the term "diagnosis device " means equipment capable of diagnosing diseases and providing disease information from images acquired by an endoscope, TRUS, magnetic resonance imaging (MRI) There is no restriction in the form. (A) a storage unit for storing the acquired prostate image; (b) a filter unit for selecting an image in a lesion region of the image; (c) a ratio of a blue average value (Ratio R to B) to a red average value (pixel R), a green average value (pixel G), a blue average value (pixel B) pixel count, a pixel minimum Hounsfield unit, a pixel maximum Hounsfield unit, a pixel average Hounsfield unit, and a Hounsfield unit. A calculation unit for calculating a pixel standard deviation Hounsfield unit; (d) an operation unit for substituting the calculated value into an equation; And (e) a display unit for displaying the result of the operation unit. The selection means to select a region where differences due to color, contrast, shade, micro-vein, hemorrhage and the like can be recognized from other regions through the image, and if the difference can be confirmed in the image no limits. Preferably, it is a low-sound region, but is not limited thereto.

본 발명은 (a) 경직장초음파(transrectal ultrasonography; TRUS)를 통해 전립선 영상을 획득하는 단계; (b) 상기 획득된 영상에서 병변(lesion) 영역의 영상을 추출하는 단계; (c) 상기 추출된 영상에서 적색 평균값(pixel R), 녹색 평균값(pixel G), 청색 평균값(pixel B), 적색 평균값에 대한 청색 평균값의 비율(Ratio R to B), 병변 역역의 픽셀수(pixel count), 하운스필드 유닛의 최소값(pixel minimum Hounsfield unit), 하운스필드 유닛의 최대값(pixel maximum Hounsfield unit), 하운스필드 유닛의 평균값(pixel average Hounsfield unit), 및 하운스필드 유닛의 표준편차(pixel standard deviation Hounsfield unit)를 각각 산출하는 단계; 및 (d) 상기 산출된 값을 수식 "X= K1*Ratio R to B + K2*pixel G + K3*pixel B + K4*pixel count + K5* pixel minimum Hounsfield unit + K6*pixel maximum Hounsfield unit + K7*pixel average Hounsfield unit + K8*pixel standard deviation Hounsfield unit + K9"에 적용하는 단계를 포함하는, 전립선암 진단에 관한 정보제공방법을 제공한다. 바람직하게는 상기 X 값은 0 내지 1의 값이며, 상기 K1은 -18.777 내지 0의 값이며, 상기 K2는 -1.273 내지 -0.154의 값이며, 상기 K3은 0 내지 1.114의 값이며, 상기 K4는 -0.010 내지 0의 값이며, 상기 K5는 0 내지 0.043의 값이며, 상기 K6은 0 내지 0.066의 값이며, 상기 K7은 -0.059 내지 0의 값이며, 상기 K8은 -0.511 내지 0의 값이며, 상기 K9는 -7.233 내지 21.306의 값이나, 이에 제한되지 않는다.(A) acquiring a prostate image through transrectal ultrasonography (TRUS); (b) extracting an image of a lesion region from the acquired image; (c) a ratio of a blue average value to a red average value (Ratio R to B), a number of pixels in a lesion region ((R), pixel count, a pixel minimum Hounsfield unit, a pixel maximum Hounsfield unit, a pixel average Hounsfield unit, and a Hounsfield unit. Calculating a pixel standard deviation Hounsfield unit; And (d) calculating the calculated value by the following equation: X = K 1 * Ratio R to B + K 2 * pixel G + K 3 * pixel B + K 4 * pixel count + K 5 * pixel minimum Hounsfield unit + K 6 * provides a pixel maximum Hounsfield unit + K 7 * pixel average Hounsfield unit + K 8 * pixel standard deviation Hounsfield unit + K 9 provides information about the "prostate cancer, comprising the step of applying the method. Preferably, the X value is a value of 0 to 1, K 1 is a value of -18.777 to 0, K 2 is a value of -1.273 to -0.154, K 3 is a value of 0 to 1.114, the K 4 is the value of -0.010 to 0, wherein K 5 is a value of 0 to 0.043, wherein the K 6 is a value of 0 to 0.066, wherein the K is 7, and the value of -0.059 to 0, wherein K 8 is -0.511 to 0, and K 9 is a value of -7.233 to 21.306, but is not limited thereto.

본 발명의 일 구체예에서, 상기 (d) 단계의 수식의 K1은 0이며, K2는 -0.650 내지 -0.652이며, K3은 0.551 내지 0.553이며, K4는 0이며, K5는 0.041 내지 0.043이며, K6은 0.027 내지 0.029이며, K7은 -0.044 내지 -0.046이며, K8은 -0.130 내지 -0.132이며, K9는 -1.832 내지 -1.834인 것을 특징으로 하는, 전립선암 진단에 관한 정보제공방법에 있어서, 상기 X값이 0 이상의 값을 가질 때 전립선암으로 진단하는 것을 특징으로 한다.In one embodiment of the present invention, K 1 of the formula (d) is 0, K 2 is -0.650 to -0.652, K 3 is 0.551 to 0.553, K 4 is 0, K 5 is 0.041 To 0.043, K 6 is 0.027 to 0.029, K 7 is -0.044 to -0.046, K 8 is -0.130 to -0.132, and K 9 is -1.832 to -1.834. Wherein the diagnosis of prostate cancer is made when the X value has a value of 0 or more.

본 발명의 다른 구체예에서, 상기 (d) 단계의 수식의 K1은 -18.777 내지 -18.779이며, K2는 -1.272 내지 -1.274이며, K3은 1.112 내지 1.114이며, K4는 -0.008 내지 -0.010이며, K5는 0이며, K6은 0.064 내지 0.066이며, K7은 -0.057 내지 -0.059이며, K8은 -0.509 내지 -0.511이며, K9는 21.304 내지 21.306인 것을 특징으로 하는, 전립선암 진단에 관한 정보제공방법에 있어서, 상기 X값이 -1 이상의 값을 가질 때 전립선암으로 진단하는 것을 특징으로 하며, 상기 정보제공방법은 전립선특이항원(prostate specific antigen; PSA) 수치가 10ng/mL 이하의 환자를 대상으로 하는 것을 특징으로 한다.In another embodiment of the present invention, K 1 of the formula (d) is -18.777 to -18.779, K 2 is -1.272 to -1.274, K 3 is 1.112 to 1.114, K 4 is -0.008 -0.010, K 5 is 0, K 6 is 0.064 to 0.066, K 7 is -0.057 to -0.059, K 8 is -0.509 to -0.511, and K 9 is 21.304 to 21.306. A method for providing information on diagnosis of prostate cancer, the method comprising diagnosing prostate cancer when the X value is equal to or greater than -1, wherein the prostate specific antigen (PSA) level is 10 ng / mL < / RTI >

본 발명의 또 다른 구체예에서, 상기 정보제공방법은 추가로 하기 (e) 단계를 포함할 수 있다. (e) 상기 수식에 의하여 전립선암으로 선별된 환자에 대하여 수식 "X= K1*Ratio R to B + K2*pixel G + K3*pixel B + K4*pixel count + K5* pixel minimum Hounsfield unit + K6*pixel maximum Hounsfield unit + K7*pixel average Hounsfield unit + K8*pixel standard deviation Hounsfield unit + K9"에 적용하는 단계로서, 상기 (e) 단계의 수식의 K1은 0이며, K2는 -0.154 내지 -0.156이며, K3은 0이며, K4는 0이며, K5는 0이며, K6은 0이며, K7은 0이며, K8은 0이며, K9는 -7.231 내지 -7.233인 것을 특징으로 하며, 상기 X값이 -18 초과의 값을 가질 때 전립선암의 글리슨 등급(Gleason Score)이 7 내지 10으로 진단하는 것을 특징으로 한다.In another embodiment of the present invention, the information providing method may further include the following step (e). (e) For a patient selected as prostate cancer by the above formula, the formula "X = K1 * Ratio R to B + K2 * pixel G + K3 * pixel B + K4 * pixel count + K5 * pixel minimum Hounsfield unit + K6 * pixel standard deviation Hounsfield unit + K9 ", wherein K1 of the equation of step (e) is 0, K2 is -0.154 to-0.156, K3 is 0, K4 is 0, K5 is 0, K6 is 0, K7 is 0, K8 is 0, and K9 is -7.231 to -7.233. The Gleason score of the prostate cancer is diagnosed as 7 to 10.

또한, 본 발명은 (a) 경직장초음파(transrectal ultrasonography; TRUS)를 통해 획득한 전립선 영상을 저장하는 저장부; (b) 상기 영상 중 병변(lesion) 영역의 영상을 선별하는 필터부; (c) 상기 선별된 영상의 적색 평균값(pixel R), 녹색 평균값(pixel G), 청색 평균값(pixel B), 적색 평균값에 대한 청색 평균값의 비율(Ratio R to B), 병변 역역의 픽셀수(pixel count), 하운스필드 유닛의 최소값(pixel minimum Hounsfield unit), 하운스필드 유닛의 최대값(pixel maximum Hounsfield unit), 하운스필드 유닛의 평균값(pixel average Hounsfield unit), 및 하운스필드 유닛의 표준편차(pixel standard deviation Hounsfield unit)를 각각 산출하는 산출부; (d) 상기 산출된 값을 수식 " X= K1*Ratio R to B + K2*pixel G + K3*pixel B + K4*pixel count + K5* pixel minimum Hounsfield unit + K6*pixel maximum Hounsfield unit + K7*pixel average Hounsfield unit + K8*pixel standard deviation Hounsfield unit + K9"에 대입하는 연산부; 및 (e) 상기 연산부의 결과값을 보여주는 표시부로 구성되는, 전립선암 진단 장치를 제공한다. 바람직하게는 상기 X 값은 0 내지 1의 값이며, 상기 K1은 -18.777 내지 0의 값이며, 상기 K2는 -1.273 내지 -0.154의 값이며, 상기 K3은 0 내지 1.114의 값이며, 상기 K4는 -0.010 내지 0의 값이며, 상기 K5는 0 내지 0.043의 값이며, 상기 K6은 0 내지 0.066의 값이며, 상기 K7은 -0.059 내지 0의 값이며, 상기 K8은 -0.511 내지 0의 값이며, 상기 K9는 -7.233 내지 21.306의 값이나, 이에 제한되지 않는다.(A) a storage unit for storing a prostate image acquired through transrectal ultrasonography (TRUS); (b) a filter unit for selecting an image in a lesion region of the image; (c) a ratio of a blue average value (Ratio R to B) to a red average value (pixel R), a green average value (pixel G), a blue average value (pixel B) pixel count, a pixel minimum Hounsfield unit, a pixel maximum Hounsfield unit, a pixel average Hounsfield unit, and a Hounsfield unit. A calculation unit for calculating a pixel standard deviation Hounsfield unit; (d) the formula the calculated value "X = K 1 * Ratio R to B + K 2 * pixel G + K 3 * pixel B + K 4 * pixel count + K 5 * pixel minimum Hounsfield unit + K 6 * pixel maximum Hounsfield unit + K 7 * pixel average Hounsfield unit + K 8 * pixel standard deviation Hounsfield unit + K 9 " And (e) a display unit for displaying a result value of the operation unit. Preferably, the X value is a value of 0 to 1, K 1 is a value of -18.777 to 0, K 2 is a value of -1.273 to -0.154, K 3 is a value of 0 to 1.114, the K 4 is the value of -0.010 to 0, wherein K 5 is a value of 0 to 0.043, wherein the K 6 is a value of 0 to 0.066, wherein the K is 7, and the value of -0.059 to 0, wherein K 8 is -0.511 to 0, and K 9 is a value of -7.233 to 21.306, but is not limited thereto.

본 발명의 일 구체예에서, 상기 (d) 단계의 수식의 K1은 0이며, K2는 -0.650 내지 -0.652이며, K3은 0.551 내지 0.553이며, K4는 0이며, K5는 0.041 내지 0.043이며, K6은 0.027 내지 0.029이며, K7은 -0.044 내지 -0.046이며, K8은 -0.130 내지 -0.132이며, K9는 -1.832 내지 -1.834인 것을 특징으로 하는, 전립선암 진단 장치에 있어서, 상기 X값이 0 이상의 값을 가질 때 전립선암으로 진단하는 것을 특징으로 한다.In one embodiment of the present invention, K 1 of the formula (d) is 0, K 2 is -0.650 to -0.652, K 3 is 0.551 to 0.553, K 4 is 0, K 5 is 0.041 and to 0.043, K 6 is 0.027 to 0.029, -0.044 to -0.046 and K 7 is, K 8 is a -0.130 to -0.132, K is 9, a prostate cancer diagnostic apparatus characterized in that the -1.832 to -1.834 Wherein the diagnosis of prostate cancer is made when the X value has a value of 0 or more.

본 발명의 다른 구체예에서, 상기 (d) 단계의 수식의 K1은 -18.777 내지 -18.779이며, K2는 -1.272 내지 -1.274이며, K3은 1.112 내지 1.114이며, K4는 -0.008 내지 -0.010이며, K5는 0이며, K6은 0.064 내지 0.066이며, K7은 -0.057 내지 -0.059이며, K8은 -0.509 내지 -0.511이며, K9는 21.304 내지 21.306인 것을 특징으로 하는, 전립선암 진단 장치에 있어서, 상기 X값이 -1 이상의 값을 가질 때 전립선암으로 진단하는 것을 특징으로 하며, 상기 진단 장치는 상기 진단 장치는 전립선특이항원(prostate specific antigen; PSA) 수치가 10ng/mL 이하의 환자를 대상으로 하는 것을 특징으로 한다.In another embodiment of the present invention, K 1 of the formula (d) is -18.777 to -18.779, K 2 is -1.272 to -1.274, K 3 is 1.112 to 1.114, K 4 is -0.008 -0.010, K 5 is 0, K 6 is 0.064 to 0.066, K 7 is -0.057 to -0.059, K 8 is -0.509 to -0.511, and K 9 is 21.304 to 21.306. The prostate cancer diagnostic apparatus according to any one of claims 1 to 3, wherein the diagnostic apparatus diagnoses prostate cancer when the X value is equal to or greater than -1, wherein the diagnostic apparatus comprises a prostate specific antigen (PSA) mL or less.

본 발명의 또 다른 구체예에서, 상기 진단 장치는 추가로 하기 단계 (e)에 의해 글리슨 등급을 추가로 진단할 수 있다. (e) 상기 수식에 의하여 전립선암으로 진단된 경우 수식 "X= K1*Ratio R to B + K2*pixel G + K3*pixel B + K4*pixel count + K5* pixel minimum Hounsfield unit + K6*pixel maximum Hounsfield unit + K7*pixel average Hounsfield unit + K8*pixel standard deviation Hounsfield unit + K9"에 적용하는 단계로서, 상기 (d) 단계의 수식의 K1은 0이며, K2는 -0.154 내지 -0.156이며, K3은 0이며, K4는 0이며, K5는 0이며, K6은 0이며, K7은 0이며, K8은 0이며, K9는 -7.231 내지 -7.233인 것을 특징으로 하며, 상기 X값이 -18 초과의 값을 가질 때 전립선암의 글리슨 등급(Gleason Score)이 7 내지 10으로 진단하는 것을 특징으로 한다.In yet another embodiment of the present invention, the diagnostic device may further diagnose the Gleason grade by the following step (e). (e) When diagnosed as prostate cancer by the above formula, the formula "X = K1 * Ratio R to B + K2 * pixel G + K3 * pixel B + K4 * pixel count + K5 * pixel minimum Hounsfield unit + K6 * pixel maximum Wherein K1 is 0, K2 is -0.154 to -0.156, and K3 is an average of K0, K3, and K3. 0, K4 is 0, K5 is 0, K6 is 0, K7 is 0, K8 is 0, and K9 is -7.231 to -7.233. (Gleason score) of the prostate cancer is diagnosed as 7 to 10. [

본원 발명의 정보제공방법은 단순히 경직장초음파 또는 자기공명영상을 통하여 획득된 영상을 수치화하고 이를 적용한 알고리즘을 이용하여 객관적으로 전립선암에 관한 정보를 제공할 수 있기 때문에, 불필요한 검사를 줄일 수 있을 뿐만 아니라, 영상 획득과 동시에 객관적인 진단 결과를 볼 수 있기 때문에 진단에 소요되는 시간을 단축시킬 수 있다. 또한, 기존의 다른 전립선암 검사와 보조적으로 이용할 경우 진단 정확성을 현저히 향상시킬 수 있기 때문에 평가 결과에 대한 이해 및 적용이 매우 용이할 것으로 기대된다.Since the information providing method of the present invention can provide information about the prostate cancer objectively by using numerical values obtained by merely using the transverse ultrasound or magnetic resonance images and using an algorithm using the numerical values, unnecessary examinations can be reduced , It is possible to shorten the time required for diagnosis since the objective diagnosis result can be seen at the same time as the image acquisition. In addition, it is expected that understanding and application of the evaluation results will be very easy because it can significantly improve the diagnostic accuracy when used in conjunction with other existing prostate cancer tests.

도 1은 본 발명의 일 실시예에 따른 자기공명영상(MRI)를 이용하여 획득한 전립선 영상을 나타낸 도면이다.1 is a view showing a prostate image obtained using a magnetic resonance imaging (MRI) according to an embodiment of the present invention.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It will be apparent to those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example

실시예 1: 영상 획득 및 알고리즘 확인Example 1: Image acquisition and algorithm verification

우선 전립선암으로 의심되는 환자 46명을 대상으로 하여 전립선 특이항원(PSA)의 수치를 측정하고, 경직장 초음파(TRUS-PBx)를 시행하였다. 초음파 관찰 시 저음영 부위(이상 징후를 보이는 지역; 병변(lesion); target Bx)들 중 각각 세 지점을 무작위로 선정하여 최종적으로 157 지역의 영상을 획득할 수 있었다. 그리고 실험 정확성을 높이기 위하여 동일한 저음영 부위 안에서 3 point의 값을 측정하였으며, 서로 다른 영역의 저음영 부위 3 부위(1 point)를 각각 측정하였다. Picture archiving and communication system(PACS)에 의하여 각각의 영상에서 자동적으로 획득되는 적색(Red; R), 녹색(Green; G), 청색(Blue; B) 값 및 흑백 모드(gray scale)를 통하여 빛의 투과성 정도를 나타내는 하운스필드 유닛(hounsfield unit; HU)을 이용하여 진단 알고리즘을 작성하였다. 진단의 정확성 여부를 확인하기 위하여, 회귀선(Y=X)으로 설명된 부분(SSR)이 총변동(SST) 중에서 어느 정도 차지하는지를 나타내는 값, 즉, 분석 결과 값이 회귀선에 얼마나 가깝게 적합한지를 보여주는 R-square(R') 값을 이용하였으며, R-square 값이 1에 가까울수록 적합하다는 것을 의미한다. 신뢰성을 확인하기 위하여 독립표본 t-검정(independent sample t-test)을 수행하였으며, "p<0.05"이면 유의성이 있는 것으로 분석하였고, 진단 알고리즘 작성을 위해서는 단순 선형 회귀 분석(Simple linear regression analysis) 모형 및 로지스틱 회귀분석을 이용하였으며, 0 ≤ Z ≤ 1로 정의하였고, B 값은 로지스틱 회귀분석에 나오는 B값으로 정의하여 알고리즘을 작성하였다(http://www.cbgstat.com/method_logistic_regression_analysis/logistic_regression_analysis.php). 실시예의 모든 통계분석은 IBM PSS statistics ver. 21(IBM Korea corporation, Seoul, Korea) 및 MedCalc Ver. 11.6(MedCalc Software)을 이용하여 실시하였다. 각각의 진단 알고리즘은 하기와 같으며, 하기 알고리즘에서 “pixel R”은 각각의 영상에서 획득한 1X1 픽셀의 평균 적색값(R)을 의미하며, “pixel G”는 각각의 영상에서 획득한 1X1 픽셀의 평균 녹색값(G)을 의미하며, “pixel B”는 각각의 영상에서 획득한 1X1 픽셀의 평균 청색값(B)을 의미하며, “pixel count”는 하운스필드 유닛 값이 측정된 부위의 총 픽셀 수를 의미하며, “pixel minimum Hounsfield unit”은 하운스필드 유닛 측정 값 중 최소값을 의미하며, “pixel maximum Hounsfield unit”은 하운스필드 유닛 측정 값 중 최대값을 의미하며, “pixel average Hounsfield unit”은 하운스필드 유닛 측정값의 평균값을 의미하며, “pixel standard deviation Hounsfield unit”은 하운스필드 유닛값의 평균값에 대한 표준편차를 의미한다. 또한, “Delta R to B”는 평균 적색값(R)에서 평균 청색값(B)을 뺀 값을 의미하며, “Ratio R to B”는 평균 청색값(B)을 평균 적색값(R)으로 나눈 값을 의미한다. 획득된 각각의 값을 단순 선형 회귀 분석에 적용하여 각각의 진단용 알고리즘을 작성하였다.First, in 46 patients suspected of having prostate cancer, prostate-specific antigen (PSA) levels were measured and transrectal ultrasound (TRUS-PBx) was performed. Ultrasonographic images were obtained by randomly choosing three points of the low-frequency region (lesion; target Bx) and 157 regions. In order to improve the accuracy of the experiment, 3 points were measured in the same low frequency region and 3 points (1 point) in the low frequency region were measured. (R), green (G), blue (B) values and a gray scale, which are automatically acquired from each image by a picture archiving and communication system (PACS) A diagnostic algorithm was constructed using a hounsfield unit (HU), which represents the degree of permeability. In order to check the accuracy of the diagnosis, a value indicating how much the portion (SSR) described by the regression line (Y = X) occupies in the total variation (SST), that is, R The value of -quare (R ') is used, and the closer the value of R-square is to 1, the more suitable. The independent sample t-test was performed to confirm the reliability, and it was analyzed that "p <0.05" was significant. For the writing of the diagnostic algorithm, a simple linear regression analysis And logistic regression were used, and 0 ≤ Z ≤ 1, and the B value was defined as the B value in the logistic regression analysis (http://www.cbgstat.com/method_logistic_regression_analysis/logistic_regression_analysis.php ). All statistical analyzes of the examples were performed using IBM PSS statistics ver. 21 (IBM Korea corporation, Seoul, Korea) and MedCalc Ver. 11.6 (MedCalc Software). Each of the diagnostic algorithms is as follows. In the following algorithm, &quot; pixel R &quot; means an average red color value (R) of 1x1 pixels obtained in each image, &quot; pixel G &quot; Pixel B &quot; means an average blue value (B) of 1 x 1 pixels obtained in each image, and &quot; pixel count &quot; means an average green value Pixel minimum Hounsfield unit &quot; means the minimum value among the Hounsfield unit measurements, &quot; pixel maximum Hounsfield unit &quot; means the maximum value among the Hounsfield unit measurements, and &quot; pixel average Hounsfield quot; unit &quot; means the average value of the Hounsfield unit measurement, and &quot; pixel standard deviation Hounsfield unit &quot; means the standard deviation of the mean value of the Hounsfield unit value. "Ratio R to B" means a value obtained by subtracting the average blue value B from the average red value R, and "Ratio R to B" means a value obtained by subtracting the average blue value B from the average red value R It means divided value. Each of the obtained values was applied to simple linear regression analysis, and each diagnostic algorithm was created.

(1) TRUS를 이용한 양성(benign)암(prostate cancer(-)) 또는 전립선암(prostate cancer(+)) 진단용 알고리즘: (1) Diagnosis algorithm for benign cancer (prostate cancer (-)) or prostate cancer (+) using TRUS:

F(pixel R, pixel G, pixel B, pixel count, pixel minimum Hounsfield unit, pixel maximum Hounsfield unit, pixel average Hounsfield unit, pixel standard deviation Hounsfield unit)F (pixel R, pixel G, pixel B, pixel count, pixel minimum Hounsfield unit, pixel maximum Hounsfield unit, pixel average Hounsfield unit, pixel standard deviation Hounsfield unit)

= -0.651*pixel G + 0.552*pixel B + 0.042*pixel minimum Hounsfield unit + 0.028*pixel maximum Hounsfield unit - 0.045*pixel average Hounsfield unit - 0.0131*pixel standard deviation Hounsfield unit - 1.833= -0.651 * pixel G + 0.552 * pixel B + 0.042 * pixel minimum Hounsfield unit + 0.028 * pixel maximum Hounsfield unit - 0.045 * pixel average Hounsfield unit - 0.0131 * pixel standard deviation Hounsfield unit - 1.833

TRUS 영상을 통해 획득한 각각의 값을 대입하였을 때, 0 미만일 때는 양성, 0 이상의 값을 가질 때는 전립선암으로 진단할 수 있다는 것을 확인하였다(p<0.05).When TRUS images were obtained, it was confirmed that prostate cancer can be diagnosed when positive values are less than 0 and values are more than 0 (p <0.05).

(2) PSA 값이 10ng/mL 이하의 환자의 TRUS 영상을 이용한 양성(benign)암 또는 전립선암 진단용 알고리즘:(2) Algorithm for the diagnosis of benign or prostate cancer using TRUS images of patients with a PSA value of <10 ng / mL:

F(Delta R to B, Ratio R to B, pixel R, pixel G, pixel B, pixel count, pixel minimum Hounsfield unit, pixel maximum Hounsfield unit, pixel average Hounsfield unit, pixel standard deviation Hounsfield unit)Hounsfield unit, pixel average Hounsfield unit, pixel average Hounsfield unit, pixel standard deviation Hounsfield unit, pixel standard R,

=-18.778*Ratio R to B - 1.273*pixel G + 1.113*pixel B - 0.009*pixel count + 0.065*pixel maximum Hounsfield unit - 0.058*pixel average Hounsfield unit - 0.510*pixel standard deviation Hounsfield unit + 21.305= -18.778 * Ratio R to B - 1.273 * pixel G + 1.113 * pixel B - 0.009 * pixel count + 0.065 * pixel maximum Hounsfield unit - 0.058 * pixel average Hounsfield unit - 0.510 * pixel standard deviation Hounsfield unit + 21.305

PSA 값이 10ng/mL 이하의 환자의 TRUS 영상에서 획득한 각각의 값을 대입하였을 때, -1 미만일 때는 양성, -1 이상의 값을 가질 때는 전립선암으로 진단할 수 있다는 것을 확인하였다(p<0.001).When the PSA values were less than 10 ng / mL, the values obtained from the TRUS images were positive and positive, while those with a value of -1 or greater were diagnosed as prostate cancer (p <0.001) ).

(3) PSA 값이 10ng/mL 이하의 환자의 TRUS 영상을 이용한 전립선암의 악성도 진단용 알고리즘:(3) Algorithm for the diagnosis of malignancy of prostate cancer using TRUS image of patients with PSA value less than 10 ng / mL:

F(pixel R, pixel G, pixel B, pixel count, pixel minimum Hounsfield unit, pixel maximum Hounsfield unit, pixel average Hounsfield unit, pixel standard deviation Hounsfield unit)F (pixel R, pixel G, pixel B, pixel count, pixel minimum Hounsfield unit, pixel maximum Hounsfield unit, pixel average Hounsfield unit, pixel standard deviation Hounsfield unit)

= -0.155*pixel G - 7.232= -0.155 * pixel G-7.232

PSA 값이 10ng/mL 이하의 환자에서 (2) 수식에 의하여 전립선암으로 분류된 환자를 대상으로 하여 TRUS 영상에서 획득한 각각의 값을 대입하였을 때, -18 초과의 값을 가질 때는 글리슨 등급 7 내지 10으로 진단할 수 있다는 것을 확인하였다(p<0.05).In patients with PSA less than or equal to 10 ng / mL, (2) patients who were classified as prostate cancer by the formula, and those values obtained from the TRUS image were assigned to values greater than -18, Gleason grade 7 To 10 (p < 0.05).

TRUS를 이용한 분석 결과는 표 1에 나타내었다.The results of analysis using TRUS are shown in Table 1.

  TotalTotal Prostate cancer(-)Prostate cancer (-) Prostate cancer(+)Prostate cancer (+) p-valuep-value No. of patients (n. %)No. of patients (n.%) 4646 No. of cases (n. %)No. of cases (n.%) 157157 80(51.0)80 (51.0) 77(49.0)77 (49.0) Age (years) (median, IQR)Age (years) (median, IQR) 67.1(59.5-71.8)67.1 (59.5-71.8) 66.5(58.8-71.8)66.5 (58.8-71.8) 70.3(64.8-77.2)70.3 (64.8-77.2) <0.001 <0.001 BMI (kg/m2) (median, IQR)BMI (kg / m 2 ) (median, IQR) 24.3(21.9-25.9)24.3 (21.9-25.9) 24.4(21.9-25.9)24.4 (21.9-25.9) 23.6(22.4-24.3)23.6 (22.4-24.3) 0.857 0.857 Diabetes mellitus (n. %)Diabetes mellitus (n.%) 6(5.4)6 (5.4) 5(6.3)5 (6.3) 1(9.1)1 (9.1) 0.538 0.538 Previous prostate biopsy history (n. %)Previous prostate biopsy history (n.%) 30(1507)30 (1507) 11(13.8)11 (13.8) 19(9.1)19 (9.1) 0.459 0.459 PSA (ng/ml) (median, IQR)PSA (ng / ml) (median, IQR) 5.62(4.46-7.26)5.62 (4.46-7.26) 5.62(4.46-7.26)5.62 (4.46-7.26) 5.55(4.51-7.64)5.55 (4.51-7.64) 0.824 0.824 Prostate volume (cc) (median, IQR)Prostate volume (cc) (median, IQR) 40.4(29.7-48.6)40.4 (29.7-48.6) 42.0(34.7-49.3)42.0 (34.7-49.3) 23.8(19.9-29.4)23.8 (19.9-29.4) <0.001<0.001 PSA density (ng/ml/cc) (median, IQR)PSA density (ng / ml / cc) (median, IQR) 0.15(0.12-0.23)0.15 (0.12-0.23) 0.14(0.11-0.18)0.14 (0.11-0.18) 0.25(0.23-0.40)0.25 (0.23-0.40) <0.001<0.001 Height of lesion (cm)Height of lesion (cm) 0.94(0.80-1.26)0.94 (0.80-1.26) 0.97(0.79-1.42)0.97 (0.79-1.42) 0.90(0.80-1.09)0.90 (0.80-1.09) 0.342 0.342 Width of lesion (cm)Width of lesion (cm) 0.80(0.60-1.09)0.80 (0.60-1.09) 0.80(0.54-1.20)0.80 (0.54-1.20) 0.75(0.65-0.80)0.75 (0.65-0.80) 0.135 0.135 Length of lesion (cm)Length of lesion (cm) 0.58(0.50-0.76)0.58 (0.50-0.76) 0.60(0.50-0.86)0.60 (0.50-0.86) 0.50(0.49-0.60)0.50 (0.49-0.60) 0.002 0.002 Delta Red to BlueDelta Red to Blue 10.5(7.0-14.8)10.5 (7.0-14.8) 10.0(7.0-14.0)10.0 (7.0-14.0) 13.0(9.0-15.0)13.0 (9.0-15.0) 0.020 0.020 Ratio Red to BlueRatio Red to Blue 1.19(1.18-1.20)1.19 (1.18-1.20) 1.19(1.18-1.20)1.19 (1.18-1.20) 1.19(1.19-1.20)1.19 (1.19-1.20) 0.764 0.764 Average of R value for 3 point of lesion in TRUS (median, IQR)Average of R value for 3 points of lesion in TRUS (median, IQR) 56.2(37.8-77.1)56.2 (37.8-77.1) 53.0(35.7-78.3)53.0 (35.7-78.3) 67.0(46.0-73.3)67.0 (46.0-73.3) 0.003 0.003 Average of G value for 3 point of lesion in TRUS (median, IQR)Average of G value for 3 points of lesion in TRUS (median, IQR) 55.0(37.8-78.1)55.0 (37.8-78.1) 53.0(35.7-78.3)53.0 (35.7-78.3) 61.0(46.0-73.3)61.0 (46.0-73.3) 0.016 0.016 Average of B value for 3 point of lesion in TRUS (median, IQR)Average of B value for 3 points of lesion in TRUS (median, IQR) 66.8(45.3-91.8)66.8 (45.3-91.8) 63.3(43..0-93.3)63.3 (43.0-93.3) 79.8(54.7-87.3)79.8 (54.7-87.3) 0.003 0.003 Average of pixel number for 3 point of lesion in TRUS (median, IQR)Average of pixel number for 3 points of lesion in TRUS (median, IQR) 114.0(75.6-236.8)114.0 (75.6-236.8) 110.7(70.7-233.0)110.7 (70.7-233.0) 132.7(78.3-244.0)132.7 (78.3-244.0) 0.071 0.071 Average of minimum hounsfield unit value for 3 point of lesion in TRUS (median, IQR)Average of minimum hounsfield unit value for 3 points of lesion in TRUS (median, IQR) 31.8(18.8-53.3)31.8 (18.8-53.3) 29.5(16.7-50.0)29.5 (16.7-50.0) 40.5(28.3-55.0)40.5 (28.3-55.0) <0.001<0.001 Average of maximum hounsfield unit value for 3 point of lesion in TRUS (median, IQR)Average of maximum hounsfield unit value for 3 points of lesion in TRUS (median, IQR) 93.8(71.3-127.2)93.8 (71.3-127.2) 89.2(68.0-125.7)89.2 (68.0-125.7) 107.8(86.0-134.3)107.8 (86.0-134.3) <0.001<0.001 Average of average hounsfield unit value for 3 point of lesion in TRUS (median, IQR)Average of average hounsfield unit value for 3 points of lesion in TRUS (median, IQR) 57.5(41.4-85.7)57.5 (41.4-85.7) 55.3(40.5-87.0)55.3 (40.5-87.0) 61.29(51.8-76.0)61.29 (51.8-76.0) 0.006 0.006 Average of standard deviation for hounsfield unit value for 3 point of lesion in TRUS (median, IQR)Average of standard deviation for hounsfield unit value for 3 points of lesion in TRUS (median, IQR) 11.6(9.8-14.7)11.6 (9.8-14.7) 11.6(9.9-14.4)11.6 (9.9-14.4) 11.7(8.6-15.0)11.7 (8.6-15.0) 0.764 0.764 R value for 1 point of lesion in TRUS (median, IQR)R value for 1 point of lesion in TRUS (median, IQR) 54.(35.3-78.0)54. (35.3-78.0) 51.0(34.0-80.0)51.0 (34.0-80.0) 67.59(43.0-77.0)67.59 (43.0-77.0) 0.012 0.012 G value for 1 point of lesion in TRUS (median, IQR)G value for 1 point of lesion in TRUS (median, IQR) 54.0(35.0-78.0)54.0 (35.0-78.0) 51.0(34.0-80.0)51.0 (34.0-80.0) 67.5(41.0-77.0)67.5 (41.0-77.0) 0.048 0.048 B value for 1 point of lesion in TRUS (median, IQR)B value for 1 point of lesion in TRUS (median, IQR) 65.0(43.0-93.0)65.0 (43.0-93.0) 61.0(42.0-94.0)61.0 (42.0-94.0) 80.59(51.0-92.0)80.59 (51.0-92.0) 0.012 0.012 Fixel number for 1 point of lesion in TRUS (median, IQR)Fixel number for 1 point of lesion in TRUS (median, IQR) 115.0(70.0-238.0)115.0 (70.0-238.0) 108.0(68.0-200.0)108.0 (68.0-200.0) 124.0(78.0-247.0)124.0 (78.0-247.0) 0.074 0.074 Minimum hounsfield unit value for 1 point of lesion in TRUS (median, IQR)Minimum hounsfield unit value for 1 point of lesion in TRUS (median, IQR) 33.0(17.0-53.0)33.0 (17.0-53.0) 28.5(15.0-49.0)28.5 (15.0-49.0) 35.0(23.0-60.0)35.0 (23.0-60.0) 0.001 0.001 Maximum hounsfield unit value for 1 point of lesion in TRUS (median, IQR)Maximum hounsfield unit value for 1 point of lesion in TRUS (median, IQR) 90.0(67.3-121.8)90.0 (67.3-121.8) 86.0(65.0-122.0)86.0 (65.0-122.0) 98.0(74.0-120.0)98.0 (74.0-120.0) 0.003 0.003 Average hounsfield unit value for 1 point of lesion in TRUS (median, IQR)Average hounsfield unit value for 1 point of lesion in TRUS (median, IQR) 58.3(37.9-85.2)58.3 (37.9-85.2) 56.4(36.9-83.4)56.4 (36.9-83.4) 62.4(46.9-85.2)62.4 (46.9-85.2) 0.027 0.027 Standard deviation for hounsfield unit value for 1 point of lesion in TRUS (median, IQR)Standard deviation for hounsfield unit value for 1 point of lesion in TRUS (median, IQR) 10.1(8.9-13.9)10.1 (8.9-13.9) 11.39(9.0-13.9)11.39 (9.0-13.9) 10.0(8.7-13.6)10.0 (8.7-13.6) 0.089 0.089 PathologyPathology Gleason score 6-7 (n. %)Gleason score 6-7 (n.%) 24(72.7)24 (72.7) 24(72.7)24 (72.7) Gleason score 8-10 (n. %)Gleason score 8-10 (n.%) 9(27.3)9 (27.3)   9(27.3)9 (27.3)  

각각의 모든 요인(factor)들에 따른 R-square 값, 신뢰성 여부(95% CI, P value), 콕스비례위험모형(Cox proportional hazard model)을 이용하여 HR을 확인하였다. 그 결과는 하기 표 2 내지 4에 나타내었다. 나이(Age), BMI, 당뇨병여부(Diabetes mellitus), 생검여부(Previous prostate biopsy history), PSA 값 등 의학적인 요소들(Clinical factors)만을 고려하였을 때 R square 값은 0.423이고, 내시경(TRUS)을 이용하여 획득한 영상 요소들(Image factors)만을 고려하였을 때 R square 값은 0.336이고, 의학적인 요소들과 영상 요소들을 모두 합하여 복합 분석한 경우의 R square 값은 0.42로 TRUS를 통한 전립선암 진단에 관한 정확성이 낮은 것을 확인하였다. 의학적 요소 중에는 나이, PSA 및 PV(prostate volume)의 경우 전립선암 진단과 연관관계가 있는 것을 확인하였다. 그러나 PSA 값이 10 이하인 환자들만을 대상으로 하여 분석한 결과는 의학적인 요소들만을 고려하였을 때의 R square 값은 0.453, 영상 요소들만을 고려하였을 때는 0.395이나, 의학적 요소들과 영상 요소들을 모두 복합적으로 분석한 경우에는 0.866으로 정확성이 현저히 증가되는 것을 확인하였다. 상기 결과를 통하여, 기존의 PSA 수치를 이용한 전립선암 진단에 영상 분석을 복합적으로 이용할 경우 전립선암 진단 정확성이 증가되는 것을 확인할 수 있었으며, 본원 발명의 "(2) PSA 값이 10ng/mL 이하의 환자의 TRUS 영상을 이용한 양성(benign)암 또는 전립선암 진단용 알고리즘"을 이용하여 전립선암을 진단할 수 있다는 것을 확인할 수 있었다.HR was confirmed using R-square, reliability (95% CI, P value), and Cox proportional hazard model for each factor. The results are shown in Tables 2 to 4 below. When the clinical factors such as age, BMI, diabetes mellitus, previous prostate biopsy history, and PSA were considered, R square value was 0.423 and endoscopy (TRUS) The R square value was 0.336 when only the image factors were used, and the R square value when the combined medical and image factors were combined was 0.42. And the accuracy of the results is low. Among the medical factors, age, PSA and PV (prostate volume) were found to be associated with diagnosis of prostate cancer. However, only the patients with PSA values of 10 or less were analyzed. The R square value was 0.453 when the medical factors were considered, and 0.395 when the image factors were considered. , It was confirmed that the accuracy was significantly increased to 0.866. From the above results, it can be confirmed that the accuracy of diagnosis of prostate cancer is increased when the image analysis is combined with the diagnosis of prostate cancer using the existing PSA level. (2) The patient with PSA value of less than 10 ng / mL Of prostate cancer can be diagnosed using the "algorithm for the diagnosis of benign cancer or prostate cancer using TRUS image".

  The all factors  : Nagelkerke R Square (0.420)The all factors: Nagelkerke R Square (0.420) The all factors in PSA≤10 : Nagelkerke R Square (0.866)The all factors in PSA ≤ 10: Nagelkerke R Square (0.866) UnivariateUnivariate MultivariateMultivariate UnivariateUnivariate MultivariateMultivariate   HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp Age*Age * 1.087 1.087 1.061 1.061 1.114 1.114 <0.001<0.001 1.067 1.067 1.033 1.033 1.102 1.102 <0.001<0.001 1.082 1.082 1.049 1.049 1.116 1.116 <0.001<0.001 14.835 14.835 3.119 3.119 70.556 70.556 0.001 0.001 BMI*BMI * 0.956 0.956 0.901 0.901 1.015 1.015 0.137 0.137 1.021 1.021 0.944 0.944 1.104 1.104 0.606 0.606 Diabetes mellitus*Diabetes mellitus * 3.324 3.324 2.152 2.152 5.133 5.133 <0.001<0.001 10.183 10.183 5.056 5.056 20.511 20.511 <0.001<0.001 3.444 3.444 1.928 1.928 6.153 6.153 <0.001<0.001 Previous prostate biopsy history*Previous prostate biopsy history * 0.602 0.602 0.360 0.360 1.007 1.007 0.053 0.053 0.607 0.607 0.298 0.298 1.236 1.236 0.169 0.169 PSA*PSA * 1.028 1.028 1.017 1.017 1.039 1.039 <0.001<0.001 0.832 0.832 0.796 0.796 0.870 0.870 <0.001<0.001 1.126 1.126 1.002 1.002 1.266 1.266 0.046 0.046 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 Prostate volume*Prostate volume * 0.933 0.933 0.919 0.919 0.947 0.947 <0.001<0.001 1.015 1.015 0.987 0.987 1.044 1.044 0.293 0.293 0.862 0.862 0.837 0.837 0.887 0.887 <0.001<0.001 0.146 0.146 0.046 0.046 0.465 0.465 0.001 0.001 PSA density*PSA density * 1.002 1.002 1.002 1.002 1.003 1.003 <0.001<0.001 1.010 1.010 1.008 1.008 1.013 1.013 <0.001<0.001 1.012 1.012 1.010 1.010 1.015 1.015 <0.001<0.001 1.267 1.267 1.106 1.106 1.451 1.451 0.001 0.001 Delta Red to Blue*Delta Red to Blue * 1.041 1.041 1.004 1.004 1.080 1.080 0.032 0.032 1.008 1.008 0.932 0.932 1.090 1.090 0.849 0.849 1.081 1.081 1.030 1.030 1.135 1.135 0.002 0.002 Ratio Red to Blue*Ratio Red to Blue * 0.904 0.904 0.006 0.006 142.939 142.939 0.969 0.969 0.000 0.000 0.000 0.000 8.405 8.405 0.123 0.123 Average of R value for 3 point of lesion in TRUS*Average of R value for 3 points of lesion in TRUS * 1.006 1.006 0.999 0.999 1.013 1.013 0.092 0.092 1.015 1.015 1.005 1.005 1.024 1.024 0.002 0.002 Average of G value for 3 point of lesion in TRUS*Average of G value for 3 points of lesion in TRUS * 1.004 1.004 0.997 0.997 1.011 1.011 0.243 0.243 1.011 1.011 1.002 1.002 1.021 1.021 0.019 0.019 0.825 0.825 0.753 0.753 0.904 0.904 <0.001<0.001 Average of B value for 3 point of lesion in TRUS*Average of B value for 3 points of lesion in TRUS * 1.006 1.006 0.999 0.999 1.012 1.012 0.073 0.073 1.013 1.013 1.005 1.005 1.021 1.021 0.002 0.002 Average of fixel number for 3 point of lesion in TRUS*Average of fixel number for 3 points of lesion in TRUS * 1.000 1,000 0.998 0.998 1.001 1.001 0.828 0.828 0.994 0.994 0.990 0.990 0.998 0.998 0.003 0.003 Average of minimum hounsfield unit value for 3 point of lesion in TRUS*Average of minimum hounsfield unit value for 3 points of lesion in TRUS * 1.009 1.009 1.001 1.001 1.017 1.017 0.033 0.033 1.006 1.006 0.994 0.994 1.019 1.019 0.315 0.315 1.019 1.019 1.009 1.009 1.030 1.030 <0.001<0.001 Average of maximum hounsfield unit value for 3 point of lesion in TRUS*Average of maximum hounsfield unit value for 3 points of lesion in TRUS * 1.011 1.011 1.005 1.005 1.017 1.017 <0.001<0.001 1.015 1.015 1.007 1.007 1.022 1.022 <0.001<0.001 1.011 1.011 1.003 1.003 1.019 1.019 0.007 0.007 1.138 1.138 1.076 1.076 1.203 1.203 <0.001<0.001 Average of average hounsfield unit value for 3 point of lesion in TRUS*Average of average hounsfield unit value for 3 points of lesion in TRUS * 1.005 1.005 0.998 0.998 1.012 1.012 0.147 0.147 1.011 1.011 1.002 1.002 1.021 1.021 0.016 0.016 Average of standard deviation for hounsfield unit value for 3 point of lesion in TRUS*Average of standard deviation for hounsfield unit value for 3 points of lesion in TRUS * 0.989 0.989 0.946 0.946 1.033 1.033 0.616 0.616 0.916 0.916 0.847 0.847 0.991 0.991 0.028 0.028 R value for 1 point of lesion in TRUS*R value for 1 point of lesion in TRUS * 1.005 1.005 0.999 0.999 1.012 1.012 0.119 0.119 1.013 1.013 1.004 1.004 1.022 1.022 0.004 0.004 G value for 1 point of lesion in TRUS*G value for 1 point of lesion in TRUS * 1.004 1.004 0.997 0.997 1.010 1.010 0.283 0.283 1.010 1.010 1.001 1.001 1.018 1.018 0.030 0.030 B value for 1 point of lesion in TRUS*B value for 1 point of lesion in TRUS * 1.005 1.005 0.999 0.999 1.010 1.010 0.097 0.097 1.011 1.011 1.004 1.004 1.019 1.019 0.003 0.003 Fixel number for 1 point of lesion in TRUS*Fixel number for 1 point of lesion in TRUS * 1.000 1,000 0.998 0.998 1.001 1.001 0.831 0.831 0.995 0.995 0.991 0.991 0.998 0.998 0.003 0.003 Minimum hounsfield unit value for 1 point of lesion in TRUS*Minimum hounsfield unit value for 1 point of lesion in TRUS * 1.007 1.007 1.000 1,000 1.015 1.015 0.047 0.047 1.000 1,000 0.974 0.974 1.026 1.026 0.999 0.999 1.017 1.017 1.007 1.007 1.027 1.027 0.001 0.001 Maximum hounsfield unit value for 1 point of lesion in TRUS*Maximum hounsfield unit value for 1 point of lesion in TRUS * 1.005 1.005 1.002 1.002 1.009 1.009 0.006 0.006 1.000 1,000 0.993 0.993 1.007 1.007 >0.999> 0.999 1.005 1.005 1.000 1,000 1.010 1.010 0.057 0.057 Average hounsfield unit value for 1 point of lesion in TRUS*Average hounsfield unit value for 1 point of lesion in TRUS * 1.004 1.004 0.998 0.998 1.011 1.011 0.182 0.182 1.010 1.010 1.001 1.001 1.019 1.019 0.023 0.023 Standard deviation for hounsfield unit value for 1 point of lesion in TRUS*Standard deviation for hounsfield unit value for 1 point of lesion in TRUS * 0.996 0.996 0.969 0.969 1.023 1.023 0.765 0.765         0.960 0.960 0.904 0.904 1.019 1.019 0.183 0.183        

  The clinical factors : Nagelkerke R Square (0.423)The clinical factors: Nagelkerke R Square (0.423) The clinical  factors in PSA≤10 : Nagelkerke R Square (0.453)The clinical factors in PSA ≤ 10: Nagelkerke R Square (0.453) UnivariateUnivariate MultivariateMultivariate UnivariateUnivariate MultivariateMultivariate   HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp Age*Age * 1.087 1.087 1.061 1.061 1.114 1.114 <0.001<0.001 1.056 1.056 1.029 1.029 1.083 1.083 <0.001<0.001 1.082 1.082 1.049 1.049 1.116 1.116 <0.001<0.001 1.104 1.104 1.067 1.067 1.142 1.142 <0.001<0.001 BMI*BMI * 0.956 0.956 0.901 0.901 1.015 1.015 0.137 0.137 1.021 1.021 0.944 0.944 1.104 1.104 0.606 0.606 Diabetes mellitus*Diabetes mellitus * 3.324 3.324 2.152 2.152 5.133 5.133 <0.001<0.001 5.714 5.714 3.431 3.431 9.515 9.515 <0.001<0.001 3.444 3.444 1.928 1.928 6.153 6.153 <0.001<0.001 3.112 3.112 1.541 1.541 6.285 6.285 0.002 0.002 Previous prostate biopsy history*Previous prostate biopsy history * 0.602 0.602 0.360 0.360 1.007 1.007 0.053 0.053 0.607 0.607 0.298 0.298 1.236 1.236 0.169 0.169 PSA*PSA * 1.028 1.028 1.017 1.017 1.039 1.039 <0.001<0.001 0.858 0.858 0.820 0.820 0.899 0.899 <0.001<0.001 1.126 1.126 1.002 1.002 1.266 1.266 0.046 0.046 0.856 0.856 0.715 0.715 1.026 1.026 0.092 0.092 Prostate volume*Prostate volume * 0.933 0.933 0.919 0.919 0.947 0.947 <0.001<0.001 0.968 0.968 0.946 0.946 0.991 0.991 0.006 0.006 0.862 0.862 0.837 0.837 0.887 0.887 <0.001<0.001 0.864 0.864 0.815 0.815 0.917 0.917 <0.001<0.001 PSA density*PSA density * 1.002 1.002 1.002 1.002 1.003 1.003 <0.001<0.001 1.009 1.009 1.006 1.006 1.011 1.011 <0.001<0.001 1.012 1.012 1.010 1.010 1.015 1.015 <0.001<0.001 1.004 1.004 1.000 1,000 1.008 1.008 0.077 0.077

  The image factors : Nagelkerke R Square (0.036)The image factors: Nagelkerke R Square (0.036) The image factors in PSA≤10 : Nagelkerke R Square (0.395)The image factors in PSA≤10: Nagelkerke R Square (0.395) UnivariateUnivariate MultivariateMultivariate UnivariateUnivariate MultivariateMultivariate   HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp Delata Red to Blue*Delata Red to Blue * 1.041 1.041 1.004 1.004 1.080 1.080 0.032 0.032 0.995 0.995 0.951 0.951 1.041 1.041 0.839 0.839 1.081 1.081 1.030 1.030 1.135 1.135 0.002 0.002 Ratio Red to Blue*Ratio Red to Blue * 0.904 0.904 0.006 0.006 142.939 142.939 0.969 0.969 0.000 0.000 0.000 0.000 8.405 8.405 0.123 0.123 Average of R value for 3 point of lesion in TRUS*Average of R value for 3 points of lesion in TRUS * 1.006 1.006 0.999 0.999 1.013 1.013 0.092 0.092 1.015 1.015 1.005 1.005 1.024 1.024 0.002 0.002 Average of G value for 3 point of lesion in TRUS*Average of G value for 3 points of lesion in TRUS * 1.004 1.004 0.997 0.997 1.011 1.011 0.243 0.243 1.011 1.011 1.002 1.002 1.021 1.021 0.019 0.019 0.377 0.377 0.185 0.185 0.771 0.771 0.008 0.008 Average of B value for 3 point of lesion in TRUS*Average of B value for 3 points of lesion in TRUS * 1.006 1.006 0.999 0.999 1.012 1.012 0.073 0.073 1.013 1.013 1.005 1.005 1.021 1.021 0.002 0.002 2.356 2.356 1.270 1.270 4.371 4.371 0.007 0.007 Average of fixel number for 3 point of lesion in TRUS*Average of fixel number for 3 points of lesion in TRUS * 1.000 1,000 0.998 0.998 1.001 1.001 0.828 0.828 0.994 0.994 0.990 0.990 0.998 0.998 0.003 0.003 0.989 0.989 0.983 0.983 0.996 0.996 0.002 0.002 Average of minimum hounsfield unit value for 3 point of lesion in TRUS*Average of minimum hounsfield unit value for 3 points of lesion in TRUS * 1.009 1.009 1.001 1.001 1.017 1.017 0.033 0.033 1.011 1.011 1.005 1.005 1.017 1.017 <0.001<0.001 1.019 1.019 1.009 1.009 1.030 1.030 <0.001<0.001 0.935 0.935 0.888 0.888 0.984 0.984 0.009 0.009 Average of maximum hounsfield unit value for 3 point of lesion in TRUS*Average of maximum hounsfield unit value for 3 points of lesion in TRUS * 1.011 1.011 1.005 1.005 1.017 1.017 <0.001<0.001 1.011 1.011 1.004 1.004 1.019 1.019 0.940 0.940 1.011 1.011 1.003 1.003 1.019 1.019 0.007 0.007 1.080 1.080 1.044 1.044 1.117 1.117 <0.001<0.001 Average of average hounsfield unit value for 3 point of lesion in TRUS*Average of average hounsfield unit value for 3 points of lesion in TRUS * 1.005 1.005 0.998 0.998 1.012 1.012 0.147 0.147 1.011 1.011 1.002 1.002 1.021 1.021 0.016 0.016 0.510 0.510 0.395 0.395 0.657 0.657 <0.001<0.001 Average of standard deviation for hounsfield unit value for 3 point of lesion in TRUS*Average of standard deviation for hounsfield unit value for 3 points of lesion in TRUS * 0.989 0.989 0.946 0.946 1.033 1.033 0.616 0.616 0.916 0.916 0.847 0.847 0.991 0.991 0.028 0.028 R value for 1 point of lesion in TRUS*R value for 1 point of lesion in TRUS * 1.005 1.005 0.999 0.999 1.012 1.012 0.119 0.119 1.013 1.013 1.004 1.004 1.022 1.022 0.004 0.004 G value for 1 point of lesion in TRUS*G value for 1 point of lesion in TRUS * 1.004 1.004 0.997 0.997 1.010 1.010 0.283 0.283 1.010 1.010 1.001 1.001 1.018 1.018 0.030 0.030 B value for 1 point of lesion in TRUS*B value for 1 point of lesion in TRUS * 1.005 1.005 0.999 0.999 1.010 1.010 0.097 0.097 1.011 1.011 1.004 1.004 1.019 1.019 0.003 0.003 Fixel number for 1 point of lesion in TRUS*Fixel number for 1 point of lesion in TRUS * 1.000 1,000 0.998 0.998 1.001 1.001 0.831 0.831 0.995 0.995 0.991 0.991 0.998 0.998 0.003 0.003 Minimum hounsfield unit value for 1 point of lesion in TRUS*Minimum hounsfield unit value for 1 point of lesion in TRUS * 1.007 1.007 1.000 1,000 1.015 1.015 0.047 0.047 1.000 1,000 0.980 0.980 1.020 1.020 0.999 0.999 1.017 1.017 1.007 1.007 1.027 1.027 0.001 0.001 Maximum hounsfield unit value for 1 point of lesion in TRUS*Maximum hounsfield unit value for 1 point of lesion in TRUS * 1.005 1.005 1.002 1.002 1.009 1.009 0.006 0.006 1.000 1,000 0.995 0.995 1.005 1.005 >0.999> 0.999 1.005 1.005 1.000 1,000 1.010 1.010 0.057 0.057 Average hounsfield unit value for 1 point of lesion in TRUS*Average hounsfield unit value for 1 point of lesion in TRUS * 1.004 1.004 0.998 0.998 1.011 1.011 0.182 0.182 1.010 1.010 1.001 1.001 1.019 1.019 0.023 0.023 Standard deviation for hounsfield unit value for 1 point of lesion in TRUS*Standard deviation for hounsfield unit value for 1 point of lesion in TRUS * 0.996 0.996 0.969 0.969 1.023 1.023 0.765 0.765         0.960 0.960 0.904 0.904 1.019 1.019 0.183 0.183        

TRUS를 이용하여 전립선암의 악성도를 감별한 분석 결과는 표 5에 나타내었다.Table 5 shows the results of discriminating the malignancy of prostate cancer using TRUS.

  Gleason score 7 미만Gleason score less than 7 Gleason score 7-10Gleason score 7-10 p-valuep-value Age (years) (median, IQR)Age (years) (median, IQR) 72.6(66.9-77.2)72.6 (66.9-77.2) 65.1(64.8-65.3)65.1 (64.8-65.3) <0.001<0.001 BMI (kg/m2) (median, IQR)BMI (kg / m 2 ) (median, IQR) 23.4(22.4-24.3)23.4 (22.4-24.3) 23.3(22.4-24.2)23.3 (22.4-24.2) 0.258 0.258 Diabetes mellitus (n. %)Diabetes mellitus (n.%) 6(22.2)6 (22.2) 0(0.0)0 (0.0) <0.001<0.001 Previous prostate biopsy history (n. %)Previous prostate biopsy history (n.%) 3(11.1)3 (11.1) 1(11.1)1 (11.1) 0.165 0.165 PSA (ng/ml) (median, IQR)PSA (ng / ml) (median, IQR) 4.71(4.51-7.64)4.71 (4.51-7.64) 5.90(5.55-6.24)5.90 (5.55-6.24) 0.202 0.202 Prostate volume (cc) (median, IQR)Prostate volume (cc) (median, IQR) 23.3919.9-29.4)23.3919.9-29.4) 24.6(23.8-25.4)24.6 (23.8-25.4) <0.001<0.001 PSA density (ng/ml/cc) (median, IQR)PSA density (ng / ml / cc) (median, IQR) 0.36(0.23-0.40)0.36 (0.23-0.40) 0.24(0.23-0.25)0.24 (0.23-0.25) <0.001<0.001 Hight of lesion (cm)Hight of lesion (cm) 0.90(0.65-1.17)0.90 (0.65-1.17) 0.95(0.90-1.00)0.95 (0.90-1.00) 0.084 0.084 Width of lesion (cm)Width of lesion (cm) 0.80(0.61-0.95)0.80 (0.61-0.95) 0.70(0.70-0.70)0.70 (0.70-0.70) 0.0110.011 Length of lesion (cm)Length of lesion (cm) 0.50(0.42-0.60)0.50 (0.42-0.60) 0.50(0.50-0.50)0.50 (0.50-0.50) <0.001<0.001 Delta Red to BlueDelta Red to Blue 14.0(12.0-16.0)14.0 (12.0-16.0) 12.0(12.0-15.0)12.0 (12.0-15.0) <0.001<0.001 Ratio Red to BlueRatio Red to Blue 1.19(1.18-1.19)1.19 (1.18-1. 19) 1.19(1.18-1.19)1.19 (1.18-1. 19) 0.179 0.179 Average of R value for 3 point of lesion in TRUS (median, IQR)Average of R value for 3 points of lesion in TRUS (median, IQR) 73.3(73.0-83.3)73.3 (73.0-83.3) 68.3(68.3-68.3)68.3 (68.3-68.3) <0.001<0.001 Average of G value for 3 point of lesion in TRUS (median, IQR)Average of G value for 3 points of lesion in TRUS (median, IQR) 73.3(73.0-83.3)73.3 (73.0-83.3) 48.7(48.7)48.7 (48.7) <0.001<0.001 Average of B value for 3 point of lesion in TRUS (median, IQR)Average of B value for 3 points of lesion in TRUS (median, IQR) 87.3(86.7-99.0)87.3 (86.7-99.0) 81.3(81.3)81.3 (81.3) 0.009 0.009 Average of fixel number for 3 point of lesion in TRUS (median, IQR)Average of fixer number for 3 point of lesion in TRUS (median, IQR) 78.3(70.7-144.0)78.3 (70.7-144.0) 104.0(104.0-104.0)104.0 (104.0-104.0) <0.001<0.001 Average of minimum hounsfield unit value for 3 point of lesion in TRUS (median, IQR)Average of minimum hounsfield unit value for 3 points of lesion in TRUS (median, IQR) 55.0(38.3-64.0)55.0 (38.3-64.0) 44.0(44.0-44.0)44.0 (44.0-44.0) <0.001<0.001 Average of maximum hounsfield unit value for 3 point of lesion in TRUS (median, IQR)Average of maximum hounsfield unit value for 3 points of lesion in TRUS (median, IQR) 103.8(97.3-134-3)103.8 (97.3-134-3) 117.0(117.0-117.0)117.0 (117.0-117.0) 0.003 0.003 Average of average hounsfield unit value for 3 point of lesion in TRUS (median, IQR)Average of average hounsfield unit value for 3 points of lesion in TRUS (median, IQR) 76.0(59.7-88.8)76.0 (59.7-88.8) 65.9(65.9-65.9)65.9 (65.9-65.9) 0.008 0.008 Average of standard deviation for hounsfield unit value for 3 point of lesion in TRUS (median, IQR)Average of standard deviation for hounsfield unit value for 3 points of lesion in TRUS (median, IQR) 9.25(8.63-14.0)9.25 (8.63-14.0) 14.3(14.3-14.3)14.3 (14.3-14.3) <0.001<0.001 R value for 1 point of lesion in TRUS (median, IQR)R value for 1 point of lesion in TRUS (median, IQR) 73.5(65.0-81.0)73.5 (65.0-81.0) 65.0(62.0-78.0)65.0 (62.0-78.0) <0.001<0.001 G value for 1 point of lesion in TRUS (median, IQR)G value for 1 point of lesion in TRUS (median, IQR) 73.5(65.0-81.0)73.5 (65.0-81.0) 62.0(6.0-78.0)62.0 (6.0-78.0) <0.001<0.001 B value for 1 point of lesion in TRUS (median, IQR)B value for 1 point of lesion in TRUS (median, IQR) 87.5(77.0-97.0)87.5 (77.0-97.0) 77.0(74.0-93.0)77.0 (74.0-93.0) <0.001<0.001 Fixel number for 1 point of lesion in TRUS (median, IQR)Fixel number for 1 point of lesion in TRUS (median, IQR) 81.0(67.0-164.0)81.0 (67.0-164.0) 104.0(104.0-104.0)104.0 (104.0-104.0) 0.014 0.014 Minimum hounsfield unit value for 1 point of lesion in TRUS (median, IQR)Minimum hounsfield unit value for 1 point of lesion in TRUS (median, IQR) 54.0(34.0-65.0)54.0 (34.0-65.0) 39.0(33.0-60.0)39.0 (33.0-60.0) <0.001<0.001 Maximum hounsfield unit value for 1 point of lesion in TRUS (median, IQR)Maximum hounsfield unit value for 1 point of lesion in TRUS (median, IQR) 108.0(86.0-114.0)108.0 (86.0-114.0) 85.0(11.0-255.0)85.0 (11.0-255.0) 0.028 0.028 Average hounsfield unit value for 1 point of lesion in TRUS (median, IQR)Average hounsfield unit value for 1 point of lesion in TRUS (median, IQR) 81.9(62.4-87.0)81.9 (62.4-87.0) 58.9(56.8-81.9)58.9 (56.8-81.9) 0.005 0.005 Standard deviation for hounsfield unit value for 1 point of lesion in TRUS (median, IQR)Standard deviation for hounsfield unit value for 1 point of lesion in TRUS (median, IQR) 9.6(8.4-10.5)9.6 (8.4-10.5) 11.7910.0-21.3)11.7910.0-21.3) 0.007 0.007

상기 표 5의 결과에 대하여 각각의 모든 요인(factor)들에 따른 R-square 값, 신뢰성 여부(95% CI, P value), 콕스비례위험모형(Cox proportional hazard model)을 이용하여 HR을 확인하였다. 그 결과는 하기 표 6 내지 8에 나타내었다. 글리슨 등급에 따라 전립선암의 악성도를 분석한 결과, 의학적인 요소들만을 대상으로한 R square 값은 0.725이고, 영상 요소들만을 대상으로 하였을 때의 R square 값은 0.596이며, 의학적인 요소들과 영상 요소들을 복합적으로 분석한 경우의 R square 값은 0.636인 것을 확인하였다. 또한, PSA 값이 10 이하인 환자들만을 대상으로 하여 의학적인 요소들을 고려하였을 때의 R square 값은 0.300이고, 영상 요소들을 고려하였을 때는 0.522이고, 의학적인 요소들과 영상적인 요소들을 복합적으로 분석한 경우에는 0.522인 것을 확인하였다. 상기 결과를 통하여, PSA 값이 10 이하인 환자들에 대하여 내시경을 이용한 영상 분석 결과를 복합적으로 이용할 경우 전립선암의 악성도 측정에 대한 정확성이 증가되는 것을 확인할 수 있었으며, 본원 발명의 "(3) PSA 값이 10ng/mL 이하의 환자의 TRUS 영상을 이용한 전립선암의 악성도 진단용 알고리즘"을 이용하여 본원 발명의 수식 (2)에 의해 전립선암으로 분류된 환자의 전립선암의 악성도를 진단할 수 있다는 것을 확인할 수 있었다.HR was confirmed using the R-square value, the reliability (95% CI, P value), and the Cox proportional hazard model according to all the factors of Table 5 above . The results are shown in Tables 6 to 8 below. According to the Gleason grade, the R square value for the medical factors was 0.725, the R square value for the image elements only was 0.596, and the medical factors The R square value was 0.636 when the image elements were analyzed in a composite manner. In addition, the R square value was 0.300 when the medical factors were considered only for the patients with PSA value of 10 or less, 0.522 when the image elements were considered, and the medical factors and the imaging factors were analyzed in combination , It was confirmed that it was 0.522. From the above results, it was confirmed that the accuracy of the measurement of the malignancy of the prostate cancer is increased when the endoscopic image analysis results are used for the patients whose PSA value is 10 or less. (2) of the present invention can be used to diagnose the malignancy of prostate cancer in a patient classified as prostate cancer using the " algorithm for diagnosing malignancy of prostate cancer using TRUS image of a patient whose value is 10 ng / mL or less " .

  The all factors  : Nagelkerke R Square (0.636)The all factors: Nagelkerke R Square (0.636) The all factors in patients with PSA≤10 : Nagelkerke R Square (0.522)The all factors in patients with PSA ≤ 10: Nagelkerke R Square (0.522) UnivariateUnivariate MultivariateMultivariate UnivariateUnivariate MultivariateMultivariate   HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp Age*Age * 0.998 0.998 0.949 0.949 1.050 1.050 0.952 0.952         0.863 0.863 0.786 0.786 0.949 0.949 0.002 0.002         BMI*BMI * 1.093 1.093 0.977 0.977 1.224 1.224 0.122 0.122 0.842 0.842 0.660 0.660 1.074 1.074 0.166 0.166 Diabetes mellitus*Diabetes mellitus * 2.750 2.750 1.291 1.291 5.860 5.860 0.009 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.998 Previous prostate biopsy history*Previous prostate biopsy history * 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.999 PSA*PSA * 1.172 1.172 1.097 1.097 1.252 1.252 <0.001<0.001 0.941 0.941 0.734 0.734 1.206 1.206 0.628 0.628 Prostate volume*Prostate volume * 1.115 1.115 1.074 1.074 1.157 1.157 <0.001<0.001 1.061 1.061 1.013 1.013 1.112 1.112 0.012 0.012 0.974 0.974 0.904 0.904 1.049 1.049 0.486 0.486 PSA density*PSA density * 1.003 1.003 1.001 1.001 1.004 1.004 0.001 0.001 0.994 0.994 0.989 0.989 0.999 0.999 0.016 0.016 Delata Red to Blue*Delata Red to Blue * 1.028 1.028 0.936 0.936 1.128 1.128 0.566 0.566 0.923 0.923 0.717 0.717 1.187 1.187 0.531 0.531 Ratio Red to Blue*Ratio Red to Blue * 0.010 0.010 0.000 0.000 27108.000 27108.000 0.545 0.545 무한infinite 0.000 0.000 무한infinite 0.436 0.436 Average of R value for 3 point of lesion in TRUS*Average of R value for 3 points of lesion in TRUS * 1.005 1.005 0.987 0.987 1.025 1.025 0.577 0.577 0.856 0.856 0.769 0.769 0.953 0.953 0.005 0.005 Average of G value for 3 point of lesion in TRUS*Average of G value for 3 points of lesion in TRUS * 0.995 0.995 0.977 0.977 1.014 1.014 0.600 0.600 0.856 0.856 0.769 0.769 0.953 0.953 0.005 0.005 0.856 0.856 0.769 0.769 0.953 0.953 0.005 0.005 Average of B value for 3 point of lesion in TRUS*Average of B value for 3 points of lesion in TRUS * 1.005 1.005 0.989 0.989 1.021 1.021 0.566 0.566 0.980 0.980 0.935 0.935 1.026 1.026 0.385 0.385 Average of fixel number for 3 point of lesion in TRUS*Average of fixel number for 3 points of lesion in TRUS * 1.024 1.024 1.016 1.016 1.032 1.032 <0.001<0.001 1.020 1.020 1.011 1.011 1.028 1.028 <0.001<0.001 0.100 0.100 0.983 0.983 1.012 1.012 0.754 0.754 Average of minimum hounsfield unit value for 3 point of lesion in TRUS*Average of minimum hounsfield unit value for 3 points of lesion in TRUS * 0.986 0.986 0.964 0.964 1.008 1.008 0.217 0.217 0.956 0.956 0.904 0.904 1.011 1.011 0.113 0.113 Average of maximum hounsfield unit value for 3 point of lesion in TRUS*Average of maximum hounsfield unit value for 3 points of lesion in TRUS * 0.995 0.995 0.981 0.981 1.010 1.010 0.521 0.521 1.016 1.016 0.983 0.983 1.050 1.050 0.347 0.347 Average of average hounsfield unit value for 3 point of lesion in TRUS*Average of average hounsfield unit value for 3 points of lesion in TRUS * 1.006 1.006 0.987 0.987 1.025 1.025 0.531 0.531 0.955 0.955 0.903 0.903 1.009 1.009 0.101 0.101 Average of standard deviation for hounsfield unit value for 3 point of lesion in TRUS*Average of standard deviation for hounsfield unit value for 3 points of lesion in TRUS * 1.063 1.063 0.960 0.960 1.177 1.177 0.242 0.242 2.075 2.075 1.099 1.099 3.918 3.918 0.024 0.024 R value for 1 point of lesion in TRUS*R value for 1 point of lesion in TRUS * 1.004 1.004 0.988 0.988 1.021 1.021 0.624 0.624 0.982 0.982 0.935 0.935 1.031 1.031 0.457 0.457 G value for 1 point of lesion in TRUS*G value for 1 point of lesion in TRUS * 0.997 0.997 0.981 0.981 1.012 1.012 0.663 0.663 0.953 0.953 0.920 0.920 0.986 0.986 0.006 0.006 B value for 1 point of lesion in TRUS*B value for 1 point of lesion in TRUS * 1.004 1.004 0.990 0.990 1.018 1.018 0.615 0.615 0.985 0.985 0.946 0.946 1.026 1.026 0.468 0.468 Fixel number for 1 point of lesion in TRUS*Fixel number for 1 point of lesion in TRUS * 1.023 1.023 1.016 1.016 1.031 1.031 <0.001<0.001 0.998 0.998 0.985 0.985 1.011 1.011 0.772 0.772 Minimum hounsfield unit value for 1 point of lesion in TRUS*Minimum hounsfield unit value for 1 point of lesion in TRUS * 0.990 0.990 0.972 0.972 1.009 1.009 0.311 0.311 0.974 0.974 0.934 0.934 1.015 1.015 0.204 0.204 Maximum hounsfield unit value for 1 point of lesion in TRUS*Maximum hounsfield unit value for 1 point of lesion in TRUS * 0.999 0.999 0.992 0.992 1.006 1.006 0.751 0.751 1.003 1.003 0.989 0.989 1.017 1.017 0.668 0.668 Average hounsfield unit value for 1 point of lesion in TRUS*Average hounsfield unit value for 1 point of lesion in TRUS * 1.004 1.004 0.988 0.988 1.021 1.021 0.589 0.589 0.975 0.975 0.938 0.938 1.013 1.013 0.188 0.188 Standard deviation for hounsfield unit value for 1 point of lesion in TRUS*Standard deviation for hounsfield unit value for 1 point of lesion in TRUS * 1.022 1.022 0.962 0.962 1.086 1.086 0.479 0.479         1.140 1.140 1.002 1.002 1.296 1.296 0.046 0.046        

  The factors related with prostate : Nagelkerke R Square (0.725)The factors related with prostate: Nagelkerke R Square (0.725) The factors related with prostate in patients with PSA≤10 : Nagelkerke R Square (0.300)The factors related to prostate in patients with PSA≤10: Nagelkerke R Square (0.300) UnivariateUnivariate MultivariateMultivariate UnivariateUnivariate MultivariateMultivariate   HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp Age*Age * 0.998 0.998 0.949 0.949 1.050 1.050 0.952 0.952         0.863 0.863 0.786 0.786 0.949 0.949 0.002 0.002 0.851 0.851 0.773 0.773 0.937 0.937 0.001 0.001 BMI*BMI * 1.093 1.093 0.977 0.977 1.224 1.224 0.122 0.122 0.842 0.842 0.660 0.660 1.074 1.074 0.166 0.166 Diabetes mellitus*Diabetes mellitus * 2.750 2.750 1.291 1.291 5.860 5.860 0.009 0.009 0.004 0.004 0.000 0.000 0.371 0.371 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.998 Previous prostate biopsy history*Previous prostate biopsy history * 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.999 PSA*PSA * 1.172 1.172 1.097 1.097 1.252 1.252 <0.001<0.001 17.576 17.576 1.149 1.149 268.796 268.796 0.039 0.039 0.941 0.941 0.734 0.734 1.206 1.206 0.628 0.628 Prostate volume*Prostate volume * 1.115 1.115 1.074 1.074 1.157 1.157 <0.001<0.001 0.563 0.563 0.311 0.311 1.019 1.019 0.058 0.058 0.974 0.974 0.904 0.904 1.049 1.049 0.486 0.486 PSA density*PSA density * 1.003 1.003 1.001 1.001 1.004 1.004 0.001 0.001 0.895 0.895 0.799 0.799 1.002 1.002 0.054 0.054 0.994 0.994 0.989 0.989 0.999 0.999 0.016 0.016 0.992 0.992 0.986 0.986 0.998 0.998 0.011 0.011

  The factors related with Image : Nagelkerke R Square (0.596)The factors related with Image: Nagelkerke R Square (0.596) The factors related with Image in patients with PSA≤10 : Nagelkerke R Square (0.522)The factors related with Image in patients with PSA≤10: Nagelkerke R Square (0.522) UnivariateUnivariate MultivariateMultivariate UnivariateUnivariate MultivariateMultivariate   HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp HRHR 95% CI95% CI pp Delata Red to Blue*Delata Red to Blue * 1.028 1.028 0.936 0.936 1.128 1.128 0.566 0.566 0.923 0.923 0.717 0.717 1.187 1.187 0.531 0.531 Ratio Red to Blue*Ratio Red to Blue * 0.010 0.010 0.000 0.000 27108.000 27108.000 0.545 0.545 무한infinite 0.000 0.000 무한infinite 0.436 0.436 Average of R value for 3 point of lesion in TRUS*Average of R value for 3 points of lesion in TRUS * 1.005 1.005 0.987 0.987 1.025 1.025 0.577 0.577 0.856 0.856 0.769 0.769 0.953 0.953 0.005 0.005 Average of G value for 3 point of lesion in TRUS*Average of G value for 3 points of lesion in TRUS * 0.995 0.995 0.977 0.977 1.014 1.014 0.600 0.600 0.856 0.856 0.769 0.769 0.953 0.953 0.005 0.005 Average of B value for 3 point of lesion in TRUS*Average of B value for 3 points of lesion in TRUS * 1.005 1.005 0.989 0.989 1.021 1.021 0.566 0.566 0.980 0.980 0.935 0.935 1.026 1.026 0.385 0.385 Average of fixel number for 3 point of lesion in TRUS*Average of fixel number for 3 points of lesion in TRUS * 1.024 1.024 1.016 1.016 1.032 1.032 <0.001<0.001 1.024 1.024 1.016 1.016 1.032 1.032 <0.001<0.001 0.100 0.100 0.983 0.983 1.012 1.012 0.754 0.754 Average of minimum hounsfield unit value for 3 point of lesion in TRUS*Average of minimum hounsfield unit value for 3 points of lesion in TRUS * 0.986 0.986 0.964 0.964 1.008 1.008 0.217 0.217 0.956 0.956 0.904 0.904 1.011 1.011 0.113 0.113 Average of maximum hounsfield unit value for 3 point of lesion in TRUS*Average of maximum hounsfield unit value for 3 points of lesion in TRUS * 0.995 0.995 0.981 0.981 1.010 1.010 0.521 0.521 1.016 1.016 0.983 0.983 1.050 1.050 0.347 0.347 Average of average hounsfield unit value for 3 point of lesion in TRUS*Average of average hounsfield unit value for 3 points of lesion in TRUS * 1.006 1.006 0.987 0.987 1.025 1.025 0.531 0.531 0.955 0.955 0.903 0.903 1.009 1.009 0.101 0.101 Average of standard deviation for hounsfield unit value for 3 point of lesion in TRUS*Average of standard deviation for hounsfield unit value for 3 points of lesion in TRUS * 1.063 1.063 0.960 0.960 1.177 1.177 0.242 0.242 2.075 2.075 1.099 1.099 3.918 3.918 0.024 0.024 R value for 1 point of lesion in TRUS*R value for 1 point of lesion in TRUS * 1.004 1.004 0.988 0.988 1.021 1.021 0.624 0.624 0.982 0.982 0.935 0.935 1.031 1.031 0.457 0.457 G value for 1 point of lesion in TRUS*G value for 1 point of lesion in TRUS * 0.997 0.997 0.981 0.981 1.012 1.012 0.663 0.663 0.953 0.953 0.920 0.920 0.986 0.986 0.006 0.006 0.856 0.856 0.769 0.769 0.953 0.953 0.005 0.005 B value for 1 point of lesion in TRUS*B value for 1 point of lesion in TRUS * 1.004 1.004 0.990 0.990 1.018 1.018 0.615 0.615 0.985 0.985 0.946 0.946 1.026 1.026 0.468 0.468 Fixel number for 1 point of lesion in TRUS*Fixel number for 1 point of lesion in TRUS * 1.023 1.023 1.016 1.016 1.031 1.031 <0.001<0.001 0.998 0.998 0.985 0.985 1.011 1.011 0.772 0.772 Minimum hounsfield unit value for 1 point of lesion in TRUS*Minimum hounsfield unit value for 1 point of lesion in TRUS * 0.990 0.990 0.972 0.972 1.009 1.009 0.311 0.311 0.974 0.974 0.934 0.934 1.015 1.015 0.204 0.204 Maximum hounsfield unit value for 1 point of lesion in TRUS*Maximum hounsfield unit value for 1 point of lesion in TRUS * 0.999 0.999 0.992 0.992 1.006 1.006 0.751 0.751 1.003 1.003 0.989 0.989 1.017 1.017 0.668 0.668 Average hounsfield unit value for 1 point of lesion in TRUS*Average hounsfield unit value for 1 point of lesion in TRUS * 1.004 1.004 0.988 0.988 1.021 1.021 0.589 0.589 0.975 0.975 0.938 0.938 1.013 1.013 0.188 0.188 Standard deviation for hounsfield unit value for 1 point of lesion in TRUS*Standard deviation for hounsfield unit value for 1 point of lesion in TRUS * 1.022 1.022 0.962 0.962 1.086 1.086 0.479 0.479         1.140 1.140 1.002 1.002 1.296 1.296 0.046 0.046        

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims (10)

(a) 경직장초음파(transrectal ultrasonography; TRUS)를 통해 전립선 영상을 획득하는 단계;
(b) 상기 획득된 영상에서 병변(lesion) 영역의 영상을 추출하는 단계;
(c) 상기 추출된 영상에서 적색 평균값(pixel R), 녹색 평균값(pixel G), 청색 평균값(pixel B), 적색 평균값에 대한 청색 평균값의 비율(Ratio R to B), 병변 영역의 픽셀수(pixel count), 하운스필드 유닛의 최소값(pixel minimum Hounsfield unit), 하운스필드 유닛의 최대값(pixel maximum Hounsfield unit), 하운스필드 유닛의 평균값(pixel average Hounsfield unit), 및 하운스필드 유닛의 표준편차(pixel standard deviation Hounsfield unit)를 각각 산출하는 단계; 및
(d) 상기 산출된 값을 수식 "X= K1*Ratio R to B + K2*pixel G + K3*pixel B + K4*pixel count + K5* pixel minimum Hounsfield unit + K6*pixel maximum Hounsfield unit + K7*pixel average Hounsfield unit + K8*pixel standard deviation Hounsfield unit + K9"에 적용하는 단계를 포함하는, 전립선암 진단에 관한 정보제공방법에 있어서,
상기 K1은 -18.777 내지 0의 값이며, 상기 K2는 -1.273 내지 -0.154의 값이며, 상기 K3은 0 내지 1.114의 값이며, 상기 K4는 -0.010 내지 0.010의 값이며, 상기 K5는 0 내지 0.043의 값이며, 상기 K6은 0 내지 0.066의 값이며, 상기 K7은 -0.059 내지 0의 값이며, 상기 K8은 -0.511 내지 0의 값이며, 상기 K9는 -7.233 내지 21.306의 값인, 전립선암 진단에 관한 정보제공방법.
(a) acquiring a prostate image through transrectal ultrasonography (TRUS);
(b) extracting an image of a lesion region from the acquired image;
(c) a ratio of a blue average value to a red average value (Ratio R to B), a number of pixels in a lesion area (pixel R), a green average value (pixel G), a blue average value (pixel B) pixel count, a pixel minimum Hounsfield unit, a pixel maximum Hounsfield unit, a pixel average Hounsfield unit, and a Hounsfield unit. Calculating a pixel standard deviation Hounsfield unit; And
(d) the formula the calculated value "X = K 1 * Ratio R to B + K 2 * pixel G + K 3 * pixel B + K 4 * pixel count + K 5 * pixel minimum Hounsfield unit + K 6 * pixel A method for providing information on diagnosis of prostate cancer, comprising the step of applying a maximum Hounsfield unit + K 7 * pixel average Hounsfield unit + K 8 * pixel standard deviation Hounsfield unit + K 9 "
Wherein K 1 is a value of -18.777 to 0, K 2 is a value of -1.273 to -0.154, K 3 is a value of 0 to 1.114, K 4 is a value of -0.010 to 0.010, K 5 is a value of 0 to 0.043, wherein the K 6 is a value of 0 to 0.066, wherein the K is 7, and the value of -0.059 to 0, wherein K 8 is the value of -0.511 to 0, wherein K is a 9 -7.233 To 21.306. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
제 1 항에 있어서,
상기 (d) 단계의 수식의 K1은 0이며, K2는 -0.650 내지 -0.652이며, K3은 0.551 내지 0.553이며, K4는 0이며, K5는 0.041 내지 0.043이며, K6은 0.027 내지 0.029이며, K7은 -0.044 내지 -0.046이며, K8은 -0.130 내지 -0.132이며, K9는 -1.832 내지 -1.834인 것을 특징으로 하는, 전립선암 진단에 관한 정보제공방법에 있어서,
상기 X값이 0 이상의 값을 가질 때 전립선암으로 진단하는 것을 특징으로 하는, 전립선암 진단에 관한 정보제공방법.
The method according to claim 1,
K 1 of the formula (d) is 0, K 2 is -0.650 to -0.652, K 3 is 0.551 to 0.553, K 4 is 0, K 5 is 0.041 to 0.043, K 6 is 0.027 To 0.029, K 7 is from -0.044 to -0.046, K 8 is from -0.130 to -0.132, and K 9 is from -1.832 to -1.834. In the method for providing information on diagnosis of prostate cancer,
Wherein the diagnosis of prostate cancer is made when the value X has a value of 0 or more.
제 1 항에 있어서,
상기 (d) 단계의 수식의 K1은 -18.777 내지 -18.779이며, K2는 -1.272 내지 -1.274이며, K3은 1.112 내지 1.114이며, K4는 -0.008 내지 -0.010이며, K5는 0이며, K6은 0.064 내지 0.066이며, K7은 -0.057 내지 -0.059이며, K8은 -0.509 내지 -0.511이며, K9는 21.304 내지 21.306인 것을 특징으로 하는, 전립선암 진단에 관한 정보제공방법에 있어서,
상기 X값이 -1 이상의 값을 가질 때 전립선암으로 진단하는 것을 특징으로 하는, 전립선암 진단에 관한 정보제공방법.
The method according to claim 1,
K 1 of the equation (d) is -18.777 to -18.779, K 2 is -1.272 to -1.274, K 3 is 1.112 to 1.114, K 4 is -0.008 to -0.010, and K 5 is 0 , K 6 is 0.064 to 0.066, K 7 is -0.057 to -0.059, K 8 is -0.509 to -0.511, and K 9 is 21.304 to 21.306. In this case,
Wherein the diagnosis of prostate cancer is made when the X value is equal to or greater than -1.
제 3 항에 있어서,
상기 정보제공방법은 전립선특이항원(prostate specific antigen; PSA) 수치가 10ng/mL 이하의 환자를 대상으로 하는 것을 특징으로 하는, 전립선암 진단에 관한 정보제공방법.
The method of claim 3,
Wherein the information providing method is for a patient whose prostate specific antigen (PSA) level is 10 ng / mL or less.
제 1 항에 있어서,
상기 정보제공방법은 추가로 하기 단계를 포함하는, 전립선암 진단에 관한 정보제공방법:
(e) 상기 수식에 의하여 전립선암으로 선별된 환자에 대하여 수식 "X= K1*Ratio R to B + K2*pixel G + K3*pixel B + K4*pixel count + K5* pixel minimum Hounsfield unit + K6*pixel maximum Hounsfield unit + K7*pixel average Hounsfield unit + K8*pixel standard deviation Hounsfield unit + K9"에 적용하는 단계로서,
상기 (e) 단계의 수식의 K1은 0이며, K2는 -0.154 내지 -0.156이며, K3은 0이며, K4는 0이며, K5는 0이며, K6은 0이며, K7은 0이며, K8은 0이며, K9는 -7.231 내지 -7.233인 것을 특징으로 하며,
상기 X값이 -18 초과의 값을 가질 때 전립선암의 글리슨 등급(Gleason Score)이 7 내지 10으로 진단하는 것을 특징으로 하는, 전립선암 진단에 관한 정보제공방법.
The method according to claim 1,
Wherein the information providing method further comprises the steps of: providing information about diagnosis of prostate cancer,
(e) formula with respect to the patient selected from prostate cancer by the formula "X = K 1 * Ratio R to B + K 2 * pixel G + K 3 * pixel B + K 4 * pixel count + K 5 * pixel minimum Hounsfield unit + K 6 * pixel maximum Hounsfield unit + K 7 * pixel average Hounsfield unit + K 8 * pixel standard deviation Hounsfield unit + K 9 "
Wherein K 1 of the formula (e) is 0, K 2 is -0.154 to -0.156, K 3 is 0, K 4 is 0, K 5 is 0, K 6 is 0, and K 7 Is 0, K 8 is 0, and K 9 is -7.231 to -7.233,
Wherein the Gleason score of the prostate cancer is diagnosed as 7 to 10 when the X value is greater than -18.
(a) 경직장초음파(transrectal ultrasonography; TRUS)를 통해 획득한 전립선 영상을 저장하는 저장부;
(b) 상기 영상 중 병변(lesion) 영역의 영상을 선별하는 필터부;
(c) 상기 선별된 영상의 적색 평균값(pixel R), 녹색 평균값(pixel G), 청색 평균값(pixel B), 적색 평균값에 대한 청색 평균값의 비율(Ratio R to B), 병변 역역의 픽셀수(pixel count), 하운스필드 유닛의 최소값(pixel minimum Hounsfield unit), 하운스필드 유닛의 최대값(pixel maximum Hounsfield unit), 하운스필드 유닛의 평균값(pixel average Hounsfield unit), 및 하운스필드 유닛의 표준편차(pixel standard deviation Hounsfield unit)를 각각 산출하는 산출부;
(d) 상기 산출된 값을 수식 " X= K1*Ratio R to B + K2*pixel G + K3*pixel B + K4*pixel count + K5* pixel minimum Hounsfield unit + K6*pixel maximum Hounsfield unit + K7*pixel average Hounsfield unit + K8*pixel standard deviation Hounsfield unit + K9"에 대입하는 연산부; 및
(e) 상기 연산부의 결과값을 보여주는 표시부로 구성되는, 전립선암 진단 장치에 있어서,
상기 X 값은 0 내지 1의 값이며, 상기 K1은 -18.777 내지 0의 값이며, 상기 K2는 -1.273 내지 -0.154의 값이며, 상기 K3은 0 내지 1.114의 값이며, 상기 K4는 -0.010 내지 0의 값이며, 상기 K5는 0 내지 0.043의 값이며, 상기 K6은 0 내지 0.066의 값이며, 상기 K7은 -0.059 내지 0의 값이며, 상기 K8은 -0.511 내지 0의 값이며, 상기 K9는 -7.233 내지 21.306의 값인, 전립선암 진단 장치
(a) a storage unit for storing a prostate image acquired through transrectal ultrasonography (TRUS);
(b) a filter unit for selecting an image in a lesion region of the image;
(c) a ratio of a blue average value (Ratio R to B) to a red average value (pixel R), a green average value (pixel G), a blue average value (pixel B) pixel count, a pixel minimum Hounsfield unit, a pixel maximum Hounsfield unit, a pixel average Hounsfield unit, and a Hounsfield unit. A calculation unit for calculating a pixel standard deviation Hounsfield unit;
(d) the formula the calculated value "X = K 1 * Ratio R to B + K 2 * pixel G + K 3 * pixel B + K 4 * pixel count + K 5 * pixel minimum Hounsfield unit + K 6 * pixel maximum Hounsfield unit + K 7 * pixel average Hounsfield unit + K 8 * pixel standard deviation Hounsfield unit + K 9 " And
(e) a display unit for displaying a result value of the arithmetic unit, the apparatus comprising:
The X value is a value of 0 to 1, wherein K 1 is the value of -18.777 to 0, the K 2 is a value of -1.273 to -0.154, wherein K 3 is a value of 0 to 1.114, wherein the K 4 is a value of -0.010 to 0, wherein K 5 is a value of 0 to 0.043, wherein the K 6 is a value of 0 to 0.066, wherein the K is 7, and the value of -0.059 to 0, wherein K 8 is -0.511 to the value of 0, the K-value of 9 is -7.233 to 21.306, a prostate cancer diagnosis device
제 6 항에 있어서,
상기 (d) 단계의 수식의 K1은 0이며, K2는 -0.650 내지 -0.652이며, K3은 0.551 내지 0.553이며, K4는 0이며, K5는 0.041 내지 0.043이며, K6은 0.027 내지 0.029이며, K7은 -0.044 내지 -0.046이며, K8은 -0.130 내지 -0.132이며, K9는 -1.832 내지 -1.834인 것을 특징으로 하는, 전립선암 진단 장치 에 있어서,
상기 X값이 0 이상의 값을 가질 때 전립선암으로 진단하는 것을 특징으로 하는, 전립선암 진단 장치.
The method according to claim 6,
K 1 of the formula (d) is 0, K 2 is -0.650 to -0.652, K 3 is 0.551 to 0.553, K 4 is 0, K 5 is 0.041 to 0.043, K 6 is 0.027 To 0.029, K 7 is from -0.044 to -0.046, K 8 is from -0.130 to -0.132, and K 9 is from -1.832 to -1.834.
Wherein the diagnosis of prostate cancer is made when the X value has a value of 0 or more.
제 6 항에 있어서,
상기 (d) 단계의 수식의 K1은 -18.777 내지 -18.779이며, K2는 -1.272 내지 -1.274이며, K3은 1.112 내지 1.114이며, K4는 -0.008 내지 -0.010이며, K5는 0이며, K6은 0.064 내지 0.066이며, K7은 -0.057 내지 -0.059이며, K8은 -0.509 내지 -0.511이며, K9는 21.304 내지 21.306인 것을 특징으로 하는, 전립선암 진단 장치에 있어서,
상기 X값이 -1 이상의 값을 가질 때 전립선암으로 진단하는 것을 특징으로 하는, 전립선암 진단 장치.
The method according to claim 6,
K 1 of the equation (d) is -18.777 to -18.779, K 2 is -1.272 to -1.274, K 3 is 1.112 to 1.114, K 4 is -0.008 to -0.010, and K 5 is 0 , Wherein K 6 is from 0.064 to 0.066, K 7 is from -0.057 to -0.059, K 8 is from -0.509 to -0.511, and K 9 is from 21.304 to 21.306,
Wherein the diagnosis of prostate cancer is made when the value X has a value of -1 or more.
제 8 항에 있어서,
상기 진단 장치는 전립선특이항원(prostate specific antigen; PSA) 수치가 10ng/mL 이하의 환자를 대상으로 하는 것을 특징으로 하는, 전립선암 진단 장치.
9. The method of claim 8,
Wherein the diagnostic device is for a patient having a prostate specific antigen (PSA) level of 10 ng / mL or less.
제 8 항에 있어서,
상기 진단 장치는 추가로 하기 단계에 의해 글리슨 등급을 진단하는 것을 특징으로 하는 전립선암 진단 장치:
(e) 상기 수식에 의하여 전립선암으로 진단된 경우 수식 "X= K1*Ratio R to B + K2*pixel G + K3*pixel B + K4*pixel count + K5* pixel minimum Hounsfield unit + K6*pixel maximum Hounsfield unit + K7*pixel average Hounsfield unit + K8*pixel standard deviation Hounsfield unit + K9"에 적용하는 단계로서,
상기 (e) 단계의 수식의 K1은 0이며, K2는 -0.154 내지 -0.156이며, K3은 0이며, K4는 0이며, K5는 0이며, K6은 0이며, K7은 0이며, K8은 0이며, K9는 -7.231 내지 -7.233인 것을 특징으로 하며,
상기 X값이 -18 초과의 값을 가질 때 전립선암의 글리슨 등급(Gleason Score)이 7 내지 10으로 진단하는 것을 특징으로 하는, 전립선암 진단 장치.
9. The method of claim 8,
Wherein the diagnostic device further diagnoses the Gleason grade by the following steps:
(e) When diagnosed as prostate cancer by the above formula, the equation "X = K 1 * Ratio R to B + K 2 * pixel G + K 3 * pixel B + K 4 * pixel count + K 5 * pixel minimum Hounsfield unit + K 6 * pixel maximum Hounsfield unit + K 7 * pixel average Hounsfield unit + K 8 * pixel standard deviation Hounsfield unit + K 9 "
Wherein K 1 of the formula (e) is 0, K 2 is -0.154 to -0.156, K 3 is 0, K 4 is 0, K 5 is 0, K 6 is 0, and K 7 Is 0, K 8 is 0, and K 9 is -7.231 to -7.233,
Wherein the Gleason score of the prostate cancer is diagnosed as 7 to 10 when the X value is greater than -18.
KR1020180014784A 2017-02-07 2018-02-06 Method for providing the information for diagnosing of prostate cancer KR102027772B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170016796 2017-02-07
KR20170016796 2017-02-07

Publications (2)

Publication Number Publication Date
KR20180091766A true KR20180091766A (en) 2018-08-16
KR102027772B1 KR102027772B1 (en) 2019-10-04

Family

ID=63443383

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180014784A KR102027772B1 (en) 2017-02-07 2018-02-06 Method for providing the information for diagnosing of prostate cancer

Country Status (1)

Country Link
KR (1) KR102027772B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210017290A (en) 2019-08-07 2021-02-17 가톨릭대학교 산학협력단 Method and apparatus for generating enhanced image for prostate cancer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102376340B1 (en) * 2020-04-20 2022-03-18 연세대학교 산학협력단 Movable disease inspection apparatus and method for determining to transfer a self-isolation patient to hospital

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040094936A (en) * 2003-05-06 2004-11-12 임현수 Method and apparatus for diagnosis of photodynamic cancer
KR100933569B1 (en) * 2008-04-21 2009-12-29 서울여자대학교 산학협력단 Prostate cancer diagnosis method and device using histopathology and magnetic resonance imaging
KR101595718B1 (en) * 2014-02-04 2016-02-19 한국디지털병원수출사업협동조합 Scan position guide method of three dimentional ultrasound system
KR101669793B1 (en) * 2016-10-06 2016-11-09 사회복지법인 삼성생명공익재단 Information providing method and system for clinical diagnosis
JP2017500537A (en) * 2013-10-18 2017-01-05 モレキュラ インサイト ファーマシューティカルズ インコーポレイテッド Method of using SPECT / CT analysis to determine cancer stage
KR101862167B1 (en) * 2016-12-15 2018-05-29 연세대학교 산학협력단 Method for providing the information for diagnosing of the disease related to bladder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040094936A (en) * 2003-05-06 2004-11-12 임현수 Method and apparatus for diagnosis of photodynamic cancer
KR100933569B1 (en) * 2008-04-21 2009-12-29 서울여자대학교 산학협력단 Prostate cancer diagnosis method and device using histopathology and magnetic resonance imaging
JP2017500537A (en) * 2013-10-18 2017-01-05 モレキュラ インサイト ファーマシューティカルズ インコーポレイテッド Method of using SPECT / CT analysis to determine cancer stage
KR101595718B1 (en) * 2014-02-04 2016-02-19 한국디지털병원수출사업협동조합 Scan position guide method of three dimentional ultrasound system
KR101669793B1 (en) * 2016-10-06 2016-11-09 사회복지법인 삼성생명공익재단 Information providing method and system for clinical diagnosis
KR101862167B1 (en) * 2016-12-15 2018-05-29 연세대학교 산학협력단 Method for providing the information for diagnosing of the disease related to bladder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210017290A (en) 2019-08-07 2021-02-17 가톨릭대학교 산학협력단 Method and apparatus for generating enhanced image for prostate cancer

Also Published As

Publication number Publication date
KR102027772B1 (en) 2019-10-04

Similar Documents

Publication Publication Date Title
Iglesias-Garcia et al. Quantitative elastography associated with endoscopic ultrasound for the diagnosis of chronic pancreatitis
Suo et al. Non-Gaussian water diffusion kurtosis imaging of prostate cancer
Del Vescovo et al. Dynamic contrast enhanced magnetic resonance imaging of the terminal ileum: differentiation of activity of Crohn’s disease
Tsuji et al. Diagnostic potential of endoscopic ultrasonography‐elastography for gastric submucosal tumors: a pilot study
Yoshimoto et al. Cyst fluid iron-related compounds as useful markers to distinguish malignant transformation from benign endometriotic cysts
Fleury et al. Appearence of breast masses on sonoelastography with special focus on the diagnosis of fibroadenomas
Guazzaroni et al. Value of strain-ratio on thyroid real-time sonoelastography
Otto et al. Value of endorectal magnetic resonance imaging at 3T for the local staging of prostate cancer
Itatani et al. Clinical utility of the normalized apparent diffusion coefficient for preoperative evaluation of the aggressiveness of prostate cancer
Bruzoni et al. Pancreatic incidentalomas: clinical and pathologic spectrum
Wang et al. Regular-shaped hematomas predict a favorable outcome in patients with hypertensive intracerebral hemorrhage following stereotactic minimally invasive surgery
Brito et al. Ex-vivo imaging of upper tract urothelial carcinoma using novel pH low insertion peptide (variant 3), a molecular imaging probe
KR102027772B1 (en) Method for providing the information for diagnosing of prostate cancer
Qin et al. Application of CT perfusion imaging to the histological differentiation of adrenal gland tumors
Xiong et al. Value of MRI texture analysis for predicting high-grade prostate cancer
Wang et al. Increases in plasma corin levels following experimental myocardial infarction reflect the severity of ischemic injury
Cecchini et al. Combination of multiparametric magnetic resonance imaging with elastic-fusion biopsy has a high sensitivity in detecting clinically significant prostate cancer in daily practice
Kjellman et al. Predictors of outcome in patients with papillary thyroid carcinoma
Strieth et al. Dynamic contrast-enhanced ultrasound for differential diagnosis of submandibular gland disease
Cetinalp et al. The predictors of postoperative cerebrospinal fluid leak in endoscopic endonasal pituitary surgery: the role of tumor volume
KR102049319B1 (en) Method for providing the information for diagnosing of prostate cancer
Tomita et al. Analysis of diffusion-weighted mr images based on a gamma distribution model to differentiate prostate cancers with different gleason score
Lemelin et al. A prospective trial of central versus bilateral celiac plexus bloc/neurolysis in 160 patients: bilateral injection is safe and is more effective
Ho et al. Evaluation of power Doppler ultrasonography for prostate biopsy in men with elevated serum prostate specific antigen levels
Pike et al. Imaging evidence of the relationship between atherosclerosis and chronic obstructive pulmonary disease

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right