[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20180077528A - Corynebacteria producing L-lysine and a method of producing L-lysine using the same - Google Patents

Corynebacteria producing L-lysine and a method of producing L-lysine using the same Download PDF

Info

Publication number
KR20180077528A
KR20180077528A KR1020160181968A KR20160181968A KR20180077528A KR 20180077528 A KR20180077528 A KR 20180077528A KR 1020160181968 A KR1020160181968 A KR 1020160181968A KR 20160181968 A KR20160181968 A KR 20160181968A KR 20180077528 A KR20180077528 A KR 20180077528A
Authority
KR
South Korea
Prior art keywords
lysine
ala
gly
leu
sequence
Prior art date
Application number
KR1020160181968A
Other languages
Korean (ko)
Other versions
KR101917480B1 (en
Inventor
허란
최향
김형준
이성근
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to KR1020160181968A priority Critical patent/KR101917480B1/en
Priority to PCT/KR2017/014369 priority patent/WO2018124533A1/en
Publication of KR20180077528A publication Critical patent/KR20180077528A/en
Application granted granted Critical
Publication of KR101917480B1 publication Critical patent/KR101917480B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 출원은 L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 L-라이신 생산 방법에 관한 것이다.The present application relates to a microorganism belonging to the genus Corynebacterium which produces L-lysine and a method for producing L-lysine using the microorganism.

Description

L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 L-라이신의 생산방법{Corynebacteria producing L-lysine and a method of producing L-lysine using the same}L-lysine and a method for producing L-lysine using the same, and a method for producing L-lysine using the same,

본 출원은 L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 L-라이신의 생산 방법에 관한 것이다.The present application relates to a microorganism belonging to the genus Corynebacterium which produces L-lysine and a method for producing L-lysine using the microorganism.

L-라이신(L-lysine)은 생체 내에서 합성되지 않는 필수 아미노산 중의 하나로서 소아 발육성장 촉진, 칼슘대사 관여, 호르몬 및 항체 형성, 위액 분비촉진 및 병에 대한 저항력 증가에 필요한 것으로 알려져 있다. 산업적으로는 동물사료, 의약품 및 화장품 제조에 사용되며, L-라이신의 효율적 생산을 위하여 고효율 생산균주 및 발효공정기술 개발을 위한 다양한 연구들이 수행되고 있다. 이러한 연구에는 L-라이신 생합성에 관여하는 효소를 암호화하는 유전자의 발현을 증가시키거나 또는 생합성에 불필요한 유전자를 제거하는 것과 같은 목적 물질 특이적 접근 방법이 주로 이용되고 있다(대한민국 등록특허 제10-0838038호).L-lysine is one of the essential amino acids that are not synthesized in vivo and is known to be necessary for accelerating growth of pediatric growth, involvement of calcium metabolism, formation of hormones and antibodies, promotion of gastric secretion and increase of resistance to diseases. In industry, it is used in the production of animal feed, medicine, and cosmetics. Various studies are being conducted to develop high efficiency production strains and fermentation process technology for efficient production of L-lysine. In such studies, a specific substance-specific approach such as increasing the expression of a gene encoding an enzyme involved in L-lysine biosynthesis or removing a gene unnecessary for biosynthesis has been mainly used (Korean Patent No. 10-0838038 number).

또한, 생합성 경로 관련 유전자 이외에도 특정 유전자의 활성이 강화된 코리네박테리움 균주 및 이를 이용한 L-라이신 생산방법이 알려져 있다. 예를 들면, 대한민국 특허출원 제10-2014-0042397호에는 내재적 활성과 비교하여 아세트산 키나아제 활성이 강화된 코리네박테리움 속 미생물 및 이를 이용한 L-라이신 생산 방법이 개시되어 있다. 또한, 대한민국 등록특허 제10-1498630호에는 코리네박테리움 글루타미쿰의 NCg10862 유전자가 과발현되도록 변형되어 L-라이신 생산능이 향상된 코리네 박테리움 속 미생물 및 이를 이용한 L-라이신 생산 방법이 개시되어 있다.Further, in addition to biosynthetic pathway-related genes, Corynebacterium strains having enhanced specific gene activity and a method for producing L-lysine using the same are known. For example, Korean Patent Application No. 10-2014-0042397 discloses a microorganism belonging to the genus Corynebacterium having enhanced acetic acid kinase activity as compared with the intrinsic activity, and a method for producing L-lysine using the same. Korean Patent No. 10-1498630 discloses a microorganism of the genus Corynebacterium which is modified to overexpress the NCg10862 gene of Corynebacterium glutamicum to enhance L-lysine producing ability and a method for producing L-lysine using the same .

본 발명자들은 L-라이신 생산능을 증가시킬 수 있는 유효 형질을 탐색하기 위하여 코리네박테리움 속 미생물의 내재적 유전자를 무작위적으로 도입시킴으로써, 특정 유전자의 발현량을 증가시킬 경우 L-라이신 생산능이 증가한다는 사실을 확인하였다.The present inventors randomly introduced an endogenous gene of Corynebacterium sp. Microorganism in order to search for an effective trait that can increase L-lysine production ability. When the expression level of a specific gene is increased, the productivity of L-lysine is increased .

대한민국 등록특허 제10-0838038호Korean Patent No. 10-0838038 대한민국 특허출원 제10-2014-0042397호Korean Patent Application No. 10-2014-0042397 대한민국 등록특허 제10-1498630호Korean Patent No. 10-1498630

본 출원의 일 양상은 서열번호 1의 폴리펩티드의 활성이 강화되어 L-라이신을 생산하는 코리네박테리움 속 미생물을 제공하는 것이다.One aspect of the present application is to provide a microorganism of the genus Corynebacterium which enhances the activity of the polypeptide of SEQ ID NO: 1 to produce L-lysine.

본 출원의 다른 양상은 상기 코리네박테리움 속 미생물을 이용한 L-라이신 생산방법을 제공하는 것이다.Another aspect of the present application is to provide a method for producing L-lysine using the microorganism of the genus Corynebacterium.

본 출원의 일 양상은 서열번호 1의 폴리펩티드의 활성이 강화되어 L-라이신을 생산하는 코리네박테리움 속 미생물을 제공한다.One aspect of the present application provides a microorganism of the genus Corynebacterium which enhances the activity of the polypeptide of SEQ ID NO: 1 to produce L-lysine.

본 출원에서 사용된 용어, "L-라이신(L-lysine)"은 염기성 α-아미노산의 하나로 체내에서 합성되지 않는 필수 아미노산이다. L-라이신은 옥살아세트산(oxaloacetate)으로부터 라이신 생합성 경로를 통해 생합성되며, NADPH 의존성 환원효소가 라이신 생합성을 위한 중간과정을 촉매한다. 1 분자의 L-라이신 생합성 과정에서 3 분자의 NADPH가 당 효소들에 의해 직접적으로 소모되며, 1 분자의 NADPH가 간접적으로 이용된다.The term "L-lysine ", as used herein, is an essential amino acid that is not synthesized in the body as one of the basic alpha -amino acids. L-lysine is biosynthesized from oxaloacetate via the lysine biosynthetic pathway, and NADPH-dependent reductase catalyzes the intermediate process for lysine biosynthesis. In the L-lysine biosynthesis process of one molecule, three molecules of NADPH are directly consumed by the sugar enzymes, and one molecule of NADPH is indirectly used.

구체적으로, 상기 서열번호 1의 아미노산 서열로 이루어진 폴리펩티드는 상기 아미노산 서열에 대하여 실질적인 동일성(substantial identity)를 나타내는 아미노산 서열을 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 출원의 아미노산 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인(align)하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 70%의 상동성, 구체적으로는 80% 이상의 상동성, 보다 구체적으로는 90% 이상의 상동성, 보다 더욱 구체적으로는 95% 이상의 상동성을 나타내는 서열을 포함할 수 있다. Specifically, the polypeptide consisting of the amino acid sequence of SEQ ID NO: 1 is interpreted to include an amino acid sequence that exhibits substantial identity to the amino acid sequence. The above-mentioned substantial identity is determined by aligning the amino acid sequence of the present application with any other sequence as much as possible and analyzing the aligned sequence using an algorithm commonly used in the art, A sequence that exhibits at least 70% homology, specifically at least 80% homology, more specifically at least 90% homology, even more specifically at least 95% homology.

예를 들어, 이러한 상동성을 가지며, 서열번호 1의 아미노산 서열의 폴리펩타이드에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 가지더라도 본 출원의 범위 내에 포함됨은 자명하다. 또한, 분자의 활성을 전체적으로 변경시키지 않는 단백질 및 펩티드에서의 아미노산 교환도 본 출원의 범위내에 포함된다. 상기 기술은 당해 분야에 공지되어 있다(H. Neurath, R. L. Hill, The Proteins, Academic Press, New York(1979)).For example, an amino acid sequence having such homology and exhibiting an effect corresponding to the polypeptide of the amino acid sequence of SEQ ID NO: 1 may have an amino acid sequence that is deleted, modified, substituted or added in some sequence, Included is self-explanatory. Also included within the scope of the present application are amino acid exchanges in proteins and peptides that do not globally alter the activity of the molecule. Such techniques are known in the art (H. Neurath, R. L. Hill, The Proteins, Academic Press, New York (1979)).

본 출원에서 사용된 용어, "실질적인 동일성 또는 상동성"은 두 개의 폴리뉴클레오티드 또는 폴리펩티드 모이어티 사이의 동일성의 퍼센트를 말한다. 하나의 모이어티로부터 다른 하나의 모이어티까지의 서열 간 상동성은 알려진 당해 기술에 의해 결정될 수 있다. 서열 비교를 위한 얼라인먼트 방법은 당업계에 공지되어 있다. 얼라인먼트에 대한 다양한 방법 및 알고리즘은 Smith and Waterman, Adv. Appl. Math. 2:482(1981); Needleman and Wunsch, J. Mol. Bio. 48:443(1970); Pearson and Lipman, Methods in Mol. Biol. 24: 307-31(1988); Higgins and Sharp, Gene 73:237-44(1988); Higgins and Sharp, CABIOS 5:151-3(1989); Corpet et al., Nuc. Acids Res. 16:10881-90(1988); Huang et al., Comp. Appl. BioSci. 8:155-65(1992) 및 Pearson et al., Meth. Mol. Biol. 24:307-31(1994)에 개시되어 있다. NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al., J. Mol. Biol. 215:403-10(1990))은 NCBI (National Center for Biological Information) 등에서 접근 가능하며, 인터넷에서 blastp, blasm, blastx, tblastn 및 tblastx와 같은 서열 분석 프로그램과 연동되어 이용할 수 있다. BLAST는 http://www.ncbi.nlm.nih.gov/BLAST/에서 접속 가능하다. 이 프로그램을 이용한 서열 상동성 비교 방법은 http://www.ncbi.nlm.nih.gov/BLAST/blast_help.html에서 확인할 수 있다.As used herein, the term "substantial identity or homology" refers to the percentage of identity between two polynucleotides or polypeptide moieties. The homology between sequences from one moiety to another may be determined by known techniques. Alignment methods for sequence comparison are well known in the art. Various methods and algorithms for alignment are described by Smith and Waterman, Adv. Appl. Math. 2: 482 (1981); Needleman and Wunsch, J. Mol. Bio. 48: 443 (1970); Pearson and Lipman, Methods in Mol. Biol. 24: 307-31 (1988); Higgins and Sharp, Gene 73: 237-44 (1988); Higgins and Sharp, CABIOS 5: 151-3 (1989); Corpet et al., Nuc. Acids Res. 16: 10881-90 (1988); Huang et al., Comp. Appl. BioSci. 8: 155-65 (1992) and Pearson et al., Meth. Mol. Biol. 24: 307-31 (1994). The NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al., J. Mol. Biol. 215: 403-10 (1990)) is accessible from NCBI (National Center for Biological Information) It can be used in conjunction with sequencing programs such as blastx, tblastn and tblastx. BLAST is available at http://www.ncbi.nlm.nih.gov/BLAST/. A method for comparing sequence homology using this program can be found at http://www.ncbi.nlm.nih.gov/BLAST/blast_help.html.

본 출원의 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드는 서열번호 1의 폴리펩티드를 코딩하는 폴리뉴클레오티드의 염기 서열이며, 코돈 축퇴성(codon degeneracy)에 의해 상기 폴리펩티드로 번역될 수 있는 폴리뉴클레오티드 역시 본 출원의 발명에 포함될 수 있음은 자명하다. 뿐만 아니라, 그 서열에 상보적인(complementary) 서열도 포함한다. 상기 상보적인 서열은 완벽하게 상보적인 서열(perfectly complementary sequence)뿐만 아니라, 실질적으로 상보적인 서열(substantially complementary sequence)도 포함한다. 실질적으로 상보적인 서열은 당업계에 공지된 엄격 조건(stringent conditions) 하에서 상기 폴리뉴클레오티드의 염기 서열과 혼성화될 수 있는 서열을 의미한다. 본 출원에서 사용되는 용어, "엄격 조건(stringent conditions)"은 Joseph Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.(2001)에 개시되어 있으며, 상기 엄격 조건은 온도, 이온 세기(완충액 농도) 및 유기 용매와 같은 화합물의 존재 등을 조절하여 결정될 수 있고, 혼성화되는 서열에 따라 다르게 결정될 수 있다. The polynucleotide encoding the polypeptide of the present application is a nucleotide sequence of a polynucleotide encoding the polypeptide of SEQ ID NO: 1, and a polynucleotide capable of being translated into the polypeptide by codon degeneracy is also disclosed in the present invention It is obvious that it can be included. It also includes sequences complementary to the sequence. The complementary sequence includes not only a perfectly complementary sequence, but also a substantially complementary sequence. Substantially complementary sequences refer to sequences that can hybridize with the nucleotide sequences of the polynucleotides under stringent conditions known in the art. The term "stringent conditions" as used in this application is disclosed in Joseph Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (2001) The stringency conditions can be determined by controlling the temperature, the ionic strength (buffer concentration) and the presence of a compound such as an organic solvent, and the like, and can be determined differently depending on the sequence to be hybridized.

예를 들어, 상기 폴리뉴클레오티드는 서열번호 2의 염기서열을 가지는 폴리뉴클레오티드일 수 있으며, 최소 70%의 상동성, 구체적으로는 80% 이상의 상동성, 보다 구체적으로는 90% 이상의 상동성, 보다 더욱 구체적으로는 95% 이상의 상동성을 나타내는 서열을 포함할 수 있다.For example, the polynucleotide may be a polynucleotide having the nucleotide sequence of SEQ ID NO: 2 and has a homology of at least 70%, specifically at least 80% homology, more specifically at least 90% homology, Specifically, it may include a sequence showing a homology of 95% or more.

본 출원에서 사용된 용어, "뉴클레오티드(nucleotide)"는 단일가닥 또는 이중가닥 형태로 존재하는 디옥시리보뉴클레오티드 또는 리보뉴클레오티드로서, RNA 게놈 서열, cDNA 및 이로부터 전사되는 RNA 서열을 포괄하며, 다르게 특별하게 언급되어 있지 않은 한 자연의 뉴클레오티드의 유사체를 포함한다 (Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews, 90:543-584(1990)).As used herein, the term "nucleotide" refers to a deoxyribonucleotide or ribonucleotide present in the form of a single strand or a double strand, encompassing RNA genomic sequences, cDNA and RNA sequences transcribed therefrom, (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews, 90: 543-584 (1990)).

본 출원에서 용어, '활성의 강화'는 서열번호 1의 아미노산 서열을 갖는 폴리펩티드의 활성이 이에 상응하는 숙주 미생물의 내재적 또는 비변이 폴리펩타이드의 활성에 비하여 증가된 것을 의미한다. 본 출원에서, 용어 “활성 증가”는 “활성 강화”와 병용하여 사용될 수 있다. 나아가, 본 출원의 폴리펩티드의 활성을 강화하는 경우 야생형, 천연형 또는 비변이 미생물에 비해 결과적으로 더 높은 수준으로 L-라이신을 생산할 수 있다.As used herein, the term " enhanced activity " means that the activity of a polypeptide having the amino acid sequence of SEQ ID NO: 1 is increased relative to the activity of the corresponding intrinsic or non-variable polypeptide of the host microorganism. In the present application, the term " activity increase " can be used in combination with " activity enhancement ". Furthermore, enhancing the activity of the polypeptide of the present application can result in higher levels of L-lysine than wild-type, native or non-mutant microorganisms.

구체적으로, 본원에서 활성 증가는,Specifically, the activity increase in the present application means that,

1) 상기 단백질을 암호화하는 폴리뉴클레오티드의 카피수 증가,1) increase in the number of copies of the polynucleotide encoding the protein,

2) 상기 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형,2) modification of the expression control sequence to increase the expression of the polynucleotide,

3) 상기 단백질의 활성이 강화되도록 염색체 상의 폴리뉴클레오티드 서열의 변형,3) modification of the polynucleotide sequence on the chromosome so as to enhance the activity of the protein,

4) 상기 단백질의 활성을 나타내는 외래 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드의 코돈 최적화된 변이형 폴리뉴클레오티드의 도입, 또는4) introduction of an exogenous polynucleotide exhibiting the activity of the protein or a polynucleotide with a codon-optimized mutated polynucleotide of the polynucleotide, or

5) 이의 조합에 의해 강화되도록 변형하는 방법 등에 의하여 수행될 수 있으나, 이에 제한되지 않는다.5), and a method of modifying it so as to be strengthened by a combination of these methods. However, the present invention is not limited thereto.

상기 1) 폴리뉴클레오티드의 카피수 증가는, 특별히 이에 제한되지 않으나, 벡터에 작동 가능하게 연결된 형태로 수행되거나, 숙주세포 내의 염색체 내로 삽입됨으로써 수행될 수 있다. 구체적으로, 숙주와 무관하게 복제되고 기능할 수 있는 벡터에 본원의 단백질을 암호화하는 폴리뉴클레오티드가 작동 가능하게 연결되어 숙주세포 내에 도입됨으로써 수행될 수 있거나, 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터에 상기 폴리뉴클레오티드가 작동 가능하게 연결되어 숙주세포 내에 도입됨으로써 상기 숙주세포의 염색체 내 상기 폴리뉴클레오티드의 카피수를 증가하는 방법으로 수행될 수 있다.The copy number increase of the 1) polynucleotide can be carried out in a form that is not particularly limited but is operably linked to a vector or inserted into a chromosome in a host cell. Specifically, a polynucleotide encoding the protein of the present invention may be operatively linked to a vector capable of being replicated and functioned independently of the host, and introduced into the host cell. Alternatively, the polynucleotide may be inserted into a chromosome in the host cell The polynucleotide may be operably linked to a vector capable of being introduced into the host cell to increase the number of copies of the polynucleotide in the chromosome of the host cell.

다음으로, 2) 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 발현조절 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 가지는 핵산 서열로 교체함에 의하여 수행될 수 있다. 상기 발현조절 서열은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다.Next, 2) modification of the expression control sequence so that the expression of the polynucleotide is increased is not particularly limited. However, the nucleic acid sequence may be deleted, inserted, non-conserved or conservative substitution, or the like to enhance the activity of the expression control sequence. , Or by replacing with a nucleic acid sequence having more potent activity. The expression regulatory sequence may include, but is not limited to, promoters, operator sequences, sequences encoding ribosomal binding sites, sequences regulating the termination of transcription and translation, and the like.

상기 폴리뉴클레오티드 발현 단위의 상부에는 본래의 프로모터 대신 강력한 이종 프로모터가 연결될 수 있는데, 상기 강력한 프로모터의 예로는 CJ7 프로모터, lysCP1 프로모터, EF-Tu 프로모터, groEL 프로모터, aceA 혹은 aceB 프로모터, lysCP1 프로모터 (WO2009/096689) 혹은 CJ7 프로모터 (대한민국 등록특허 제0620092호 및 WO2006/065095) 등이 있으나, 이에 한정되지 않는다. A strong heterologous promoter may be connected to the polynucleotide expression unit in place of the original promoter. Examples of the strong promoter include CJ7 promoter, lysCP1 promoter, EF-Tu promoter, groEL promoter, aceA or aceB promoter, lysCP1 promoter 096689) or CJ7 promoter (Korea Patent No. 0620092 and WO2006 / 065095), but the present invention is not limited thereto.

아울러, 3) 염색체 상의 폴리뉴클레오티드 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 폴리뉴클레오티드 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함에 의하여 수행될 수 있다.In addition, 3) modification of the polynucleotide sequence on the chromosome is not particularly limited. However, modification of the nucleotide sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof may be used to further enhance the activity of the polynucleotide sequence. , Or by replacing the polynucleotide sequence with an improved polynucleotide sequence so as to have stronger activity.

또한, 4) 외래 폴리뉴클레오티드 서열의 도입은, 상기 단백질과 동일/유사한 활성을 나타내는 단백질을 암호화하는 외래 폴리뉴클레오티드, 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드를 숙주세포 내로 도입하여 수행될 수 있다. 상기 외래 폴리뉴클레오티드는 상기 단백질과 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한 없이 사용될 수 있다. 또한, 도입된 상기 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화하여 숙주세포 내로 도입할 수 있다. 상기 도입은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 단백질이 생성되어 그 활성이 증가될 수 있다.4) introduction of an exogenous polynucleotide sequence can be carried out by introducing into a host cell an exogenous polynucleotide encoding a protein exhibiting the same / similar activity as the protein, or a codon-optimized mutant polynucleotide thereof. The foreign polynucleotide can be used without limitation in its sequence or sequence as long as it exhibits the same / similar activity as the protein. In addition, the introduced foreign polynucleotide can be introduced into the host cell by optimizing its codon so that transcription and translation are optimized in the host cell. Such introduction can be carried out by appropriately selecting a person skilled in the art by a known transformation method, and by expressing the introduced polynucleotide in a host cell, a protein can be produced and its activity can be increased.

마지막으로, 5) 상기 1) 내지 4)의 조합에 의해 강화되도록 변형하는 방법은, 상기 단백질을 암호화하는 폴리뉴클레오티드의 카피수 증가, 이의 발현이 증가하도록 발현조절 서열의 변형, 염색체 상의 상기 폴리뉴클레오티드 서열의 변형 및 상기 단백질의 활성을 나타내는 외래 폴리뉴클레오티드 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드의 변형 중 하나 이상의 방법을 함께 적용하여 수행될 수 있다.Finally, 5) a method of modifying to enhance by the combination of 1) to 4) above comprises: increasing the number of copies of the polynucleotide encoding the protein; modifying the expression control sequence so that expression thereof increases; A modification of the sequence and an exogenous polynucleotide expressing the activity of the protein or a modification of the codon optimized mutated polynucleotide thereof.

본 출원에서 용어, "벡터(vector)"는 목적 유전자나 DNA를 발현 시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 유전자나 NDA 서열을 함유하는 DNA 제조물을 의미하며, 다시 말해 이를 숙주세포로 전달하여 많은 수로 복제되거나, 단백질로 발현될 수 있도록 하는 운반체를 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다. 상기 벡터는 숙주세포 내로의 도입 또는 염색체 내로 삽입되었는지 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있으며, 이러한 선별 마커는 약물 내성, 영양 요구성, 세포 독성제에 의한 내성 또는 표면 단백질의 발현과 같은 선택 가능한 표현형을 부여하는 다양한 마커들이 사용될 수 있다. 선택제가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나, 다른 표현 형질을 나타내므로 형질전환된 세포를 선별할 수 있다.As used herein, the term "vector" means a DNA product containing the desired gene or NDA sequence operably linked to a suitable regulatory sequence so as to express the desired gene or DNA, that is, Transfected to a large number, or expressed in a protein. The regulatory sequence may include a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence controlling the termination of transcription and translation. The vector may be transcribed into an appropriate host cell and then cloned or functioned independently of the host genome and integrated into the genome itself. The vector may further comprise a selection marker for confirming whether it has been introduced into the host cell or inserted into the chromosome, and the selectable marker is selected from the group consisting of a drug resistance, an auxotrophy, Various markers can be used that confer a selectable phenotype, such as the expression of surface proteins. In the selective treatment environment, only the cells expressing the selection marker survive or express different phenotypes, so that the transformed cells can be selected.

본 출원의 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 예를 들어, 본 출원의 벡터가 발현 벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예를 들어, tac 프로모터, lac 프로모터, lacUV5 프로모터, lpp 프로모터, pLλ 프로모터, pRλ 프로모터, rac5 프로모터, amp 프로모터, recA 프로모터, SP6 프로모터, trp 프로모터 및 T7 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함할 수 있다. 한편, 본 출원에 이용될 수 있는 벡터는 당업계에서 공지된 플라스미드 (예를 들어, pSC101, ColE1, pBR322, pUC8/9, pHC79, pUC19, pET 등)를 사용할 수 있으며, 이에 제한되는 것은 아니다.The vector of the present application is typically constructed as a vector for cloning or as a vector for expression. But is not particularly limited, and any vector known in the art can be used. Examples of commonly used vectors include plasmids, cosmids, viruses and bacteriophages in their natural or recombinant state. PWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A and Charon21A can be used as the phage vector or cosmid vector, and as the plasmid vector, pBR, pUC, pBluescriptII, pGEM, pTZ system, pCL system, pET system, or the like can be used. For example, when the vector of the present application is an expression vector and a prokaryotic cell is used as a host, a strong promoter capable of promoting transcription (for example, tac promoter, lac promoter, lacUV5 promoter, lpp promoter, pL 貫 promoter, pR? promoter, rac5 promoter, amp promoter, recA promoter, SP6 promoter, trp promoter and T7 promoter, etc.), a ribosome binding site for initiation of detoxification and a transcription / Alternatively, plasmids known in the art (for example, pSC101, ColE1, pBR322, pUC8 / 9, pHC79, pUC19, pET, etc.) can be used as the vectors used in the present invention.

본 출원에서 용어, "작동 가능하게 연결된(operatively linked)"은 폴리뉴클레오티드의 발현 조절 서열(예를 들어, 프로모터 서열)과 다른 폴리뉴클레오티드 사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절 서열은 상기 다른 폴리뉴클레오티드의 전사 및/또는 해독을 조절하게 된다.As used herein, the term "operatively linked" means a functional linkage between an expression control sequence (e.g., a promoter sequence) of a polynucleotide and another polynucleotide, Thereby controlling the transcription and / or translation of other polynucleotides.

본 출원에서 사용된 용어, "형질전환(transformation)"은 폴리뉴클레오티드를 숙주로 도입하여 폴리뉴클레오티드가 게놈 외 인자로서 또는 게놈에 삽입되어 원하는 유전자를 복제 가능하도록 유도하는 방법을 의미한다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다.The term "transformation ", as used herein, refers to a method of introducing a polynucleotide into a host to induce the polynucleotide to be inserted into the genome as an extra genomic or capable of replicating a desired gene. For example, the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all the elements necessary for its expression. The expression cassette can typically include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal. The expression cassette may be in the form of an expression vector capable of self-replication. Also, the polynucleotide may be introduced into the host cell in its own form and operatively linked to the sequence necessary for expression in the host cell, but is not limited thereto.

형질전환 과정에 있어서 상기 벡터 등을 숙주세포 내로 운반하는 방법은, 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 숙주 세포가 원핵 세포인 경우, CaCl2 방법 (Cohen, S.N. et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114(1973)), 하나한 방법 (Cohen, S.N. et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114(1973); 및 Hanahan, D., J. Mol. Biol., 166:557-580(1983)) 및 전기 펄스 방법 (Dower, W.J. et al., Nucleic. Acids Res., 16:6127-6145(1988)) 등에 의해 실시될 수 있으나, 이에 제한 되는 것은 아니다. The method of transferring the vector or the like into a host cell in the transformation process includes any method of introducing the nucleic acid into a cell and may be carried out by selecting a suitable standard technique as known in the art depending on the host cell . For example, when the host cell is a prokaryotic cell, the CaCl 2 method (Cohen, SN et al., Proc. Natl. Acac. Sci. USA, 9: 2110-2114 167: 557-580 (1983)) and the electric pulse method (see, for example, Kang et al., Proc. Natl. Acac. Sci. USA, 9: 2110-2114 Dower, WJ et al., Nucleic Acids Res., 16: 6127-6145 (1988)), but are not limited thereto.

상기 숙주 세포로는 DNA의 도입 효율이 높고, 도입된 DNA의 발현 효율이 높은 숙주를 사용하는 것이 좋은데, 예를 들어 코리네박테리움 속 미생물일 수 있다.As the host cell, it is preferable to use a host having a high introduction efficiency of DNA and a high efficiency of expression of the introduced DNA, for example, a microorganism belonging to the genus Corynebacterium.

본 출원에서 사용된 용어, "L-라이신을 생산하는 미생물"은 본원의 목적상 L-라이신을 생산 또는 분비할 수 있는 미생물 균주로서, 본원에 따른 조작에 의해 야생형 또는 모균주보다 대량으로 또는 고농도로 배양 배지에 L-라이신을 생산하고 축적시킬 수 있는 미생물일 수 있다. 상기 미생물은 본원의 서열번호1의 아미노산 서열을 갖는 폴리펩티드의 활성이 내재적 활성에 비하여 강화된 모든 코리네박테리움 속 미생물을 포함할 수 있으며, 그 예로 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum), 코리네박테리움 암모니아게네스 (Corynebacterium ammoniagenes), 코리네박테리움 써모아미노게네스 (Corynebacterium thermoaminogenes), 브레비박테리움 플라붐 (Brevibacterium flavum), 또는 브레비박테리움 페르멘툼 (Brevibacterium fermentum) 등이 사용될 수 있으나, 이에 제한되지는 않는다. 그 한 예로, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 사용할 수 있으며, 구체적으로 본 출원에 개시된 코리네박테리움 글루타미쿰(기탁번호 KCCM11877P)을 사용할 수 있다. 이들 예에 한정되는 것은 아니며, 이 외에도 공지된 L-라이신 생산능을 갖는 코리네박테리움 속 미생물이 사용될 수 있다.The term "L-lysine producing microorganism " as used in the present application means a microorganism strain capable of producing or secreting L-lysine for the purpose of the present application, and can be produced by a process according to the present invention in a larger amount or in a higher concentration Lt; / RTI > can be a microorganism capable of producing and accumulating L-lysine in a culture medium. The microorganism may include all the Corynebacterium sp. Microorganisms whose activity of the polypeptide having the amino acid sequence of SEQ ID NO: 1 herein is enhanced as compared with the intrinsic activity. Examples thereof include Corynebacterium glutamicum , Corynebacterium ammoniagenes to Ness (Corynebacterium ammoniagenes), Corynebacterium thermo amino to Ness (Corynebacterium thermoaminogenes), Brevibacterium Plastic boom (Brevibacterium flavum), or Brevibacterium lactofermentum Pere (Brevibacterium fermentum , and the like may be used, but the present invention is not limited thereto. One example, the microorganism of the genus Corynebacterium is Corynebacterium glutamicum (Corynebacterium glutamicum ) can be used. Specifically, Corynebacterium glutamicum disclosed in the present application (Accession No. KCCM11877P) can be used. The present invention is not limited to these examples, and microorganisms of the genus Corynebacterium having L-lysine producing ability known in the art may be used.

또한, 상기 공지된 L-라이신 생산능을 갖는 코리네박테리움 속 미생물의 예로는 대한민국 등록특허 제10-0397322호, 대한민국 등록특허 제10-0924065호, 대한민국 등록특허 제10-0073610호, 또는/및 Binder et al., Genome Biology 2012, 13:R40에 기술된 미생물이 있으며, 상기 문헌의 내용 전체는 본원에 참고자료로서 전문이 포함된다.Examples of the Corynebacterium sp. Microorganism having L-lysine production ability include Korean Patent No. 10-0397322, Korean Patent No. 10-0924065, Korean Patent No. 10-0073610, and / And Binder et al., Genome Biology 2012, 13: R40, the entire contents of which are incorporated herein by reference in their entirety.

본 출원의 또 다른 양상은 상기 코리네박테리움 속 미생물을 배지에서 배양하는 단계; 및 상기 배양된 미생물, 배양 배지 또는 상기 배양된 미생물 및 배양 배지의 혼합물로부터 L-라이신을 회수하는 단계를 포함하는 L-라이신을 생산하는 방법을 제공한다.Another aspect of the present application relates to a method for producing microorganisms which comprises culturing the microorganism belonging to the genus Corynebacterium in a medium; And recovering the L-lysine from the cultured microorganism, the culture medium or a mixture of the cultured microorganism and the culture medium.

본 출원에서 사용되는 용어, "배양(culture)"은 미생물을 적당히 조절한 환경조건에서 생육시키는 것을 의미한다. 본 출원의 미생물을 배양하는 방법은 당업계에 널리 알려져 있는 적당한 배지와 배양조건에 따라 수행할 수 있으며, 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 구체적으로, 상기 배양 방법의 예로는, 회분식 배양(batch culture), 연속식 배양(continuous culture) 및 유가식 배양(fed-batchculture)이 포함되나, 여기에 한정되는 것은 아니다. 이러한 다양한 방법은, 예를 들면, "Biochemical Engineering" (James M. Lee, Prentice-Hall International Editions, pp138-176, 1991) 등에 개시되어 있다.The term "culture" as used in the present application means that the microorganism is grown under moderately controlled environmental conditions. The method of culturing the microorganism of the present application can be carried out according to a suitable culture medium and culture conditions well known in the art and can be easily adjusted by those skilled in the art depending on the selected strain. Specifically, examples of the culture method include, but are not limited to, a batch culture, a continuous culture, and a fed-batch culture. These various methods are disclosed, for example, in "Biochemical Engineering" (James M. Lee, Prentice-Hall International Editions, pp. 138-176, 1991).

본 출원에서 사용되는 용어, "배지(media)"는 박테리아, 특히, 상기 형질전환된 코리네박테리움 속 미생물의 배양에 사용되는 것으로서, 상기 미생물이 L-라이신을 생산할 수 있도록 탄소원, 질소원 및 무기염류를 포함하는 배지를 의미한다. 상기 배지는 상기 변이주의 배양을 위해 조성된 배지 성분과 함께 미생물이 생육 중에 배지 내로 배출시킨 다양한 물질을 포함할 수 있으며, 구체적으로는 목적 물질인 L-라이신이 포함된 것일 수 있다. As used herein, the term "media" is used in the cultivation of bacteria, particularly the transformed Corynebacterium sp. Microorganism, wherein the microorganism is a source of carbon, nitrogen, Means a medium containing salts. The culture medium may include a culture medium prepared for culturing the mutant strain, and various substances in which the microorganism is released into the culture medium during growth. Specifically, the culture medium may contain L-lysine as a target substance.

배양에 사용되는 배지는 적절한 방식으로 특정 균주의 요건을 충족해야 한다. 코리네박테리아 속 미생물에 대한 배양 배지는 공지되어 있다(예를 들면, Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981). 상기 배지에서 탄소원은 예를 들어, 포도당(glucose), 설탕(sucrose), 구연산염(sodium citrate), 과당(fructose), 젖당(lactose) 또는 엿당(maltose)과 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함될 수 있으나, 이에 제한되지 않는다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다.The medium used for the culture should meet the requirements of the particular strain in an appropriate manner. Culture media for microorganisms of the genus Corynebacterium are known (see, for example, Manual of Methods for General Bacteriology, American Society for Bacteriology, Washington D.C., USA, 1981). The carbon source in the medium may be, for example, sugars and carbohydrates such as glucose, sucrose, sodium citrate, fructose, lactose or maltose, soybean oil, sunflower oil, But are not limited to, oils and fats such as castor oil, coconut oil and the like, fatty acids such as palmitic acid, stearic acid, linoleic acid, alcohols such as glycerol, ethanol, and organic acids such as acetic acid. These materials may be used individually or as a mixture.

상기 배지에서 질소원은 예를 들어, 펩톤, 육류 추출물, 효모 추출물, 건조된 효모, 옥수수 침지액, 대두 케이크, 우레아, 티오우레아, 암모늄염, 질산염 및 기타 유기 또는 무기 질소를 포함하는 화합물이 사용될 수 있으나, 이에 한정되지는 않는다. 상기 배지에 포함되는 무기염류는 마그네슘, 망간, 칼륨, 칼슘, 철, 아연, 코발트 등을 포함하는 화합물이 사용될 수 있으나, 이에 한정되지는 않는다.The nitrogen source in the medium may be, for example, a compound including peptone, meat extract, yeast extract, dried yeast, corn steep liquor, soybean cake, urea, thiourea, ammonium salt, nitrate and other organic or inorganic nitrogen , But is not limited thereto. The inorganic salts contained in the culture medium may include, but are not limited to, compounds including magnesium, manganese, potassium, calcium, iron, zinc, cobalt and the like.

상기 배지에 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함될 수 있으나, 이에 제한되지 않는다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 포함할 수 있다. 상기 화합물들은 개별적으로 또는 혼합물로써 사용될 수 있으며, 이에 제한되는 것은 아니다.The number of people that can be used in the culture medium may include, but is not limited to, potassium dihydrogenphosphate or dipotassium hydrogenphosphate or a corresponding sodium-containing salt. In addition, the culture medium may contain a metal salt such as magnesium sulfate or iron sulfate necessary for growth. The compounds may be used individually or as a mixture, but are not limited thereto.

또한, 상기 탄소원, 질소원 및 무기염류의 성분 이외에 아미노산, 비타민, 핵산 및 그와 관련된 화합물들이 본 출원의 배지에 추가적으로 첨가될 수 있다. 상기된 원료들은 배양과정에서 배지에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있다. In addition to the components of carbon source, nitrogen source and inorganic salts, amino acids, vitamins, nucleic acids and related compounds may be additionally added to the medium of the present application. The above-mentioned raw materials can be added to the medium in a batch manner or in a continuous manner by an appropriate method.

한편, 수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배지의 pH를 조절할 수 있다. 또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 배지 내로 산소 또는 산소-함유 기체(예를 들어, 공기)를 주입할 수 있다. 배양물의 온도는 20 내지 45℃일 수 있으나 이에 제한 되는 것은 아니다. 배양은 원하는 L-라이신의 생성량이 최대로 얻어질 때까지 계속될 수 있으며, 10 내지 160시간에서 달성될 수 있으나, 이에 제한되는 것은 아니다. 생성된 L-라이신은 배양 배지 중으로 배출되거나, 미생물 중에 포함되어 있을 수 있다. 상기 미생물을 배양한 배지, 상기 미생물, 또는 배양된 미생물 및 배양배지의 혼합물로부터 L-라이신을 회수하는 단계는 당업계에 널리 알려진 다양한 방법, 예를 들어, 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으나, 이에 한정되지는 않는다. 또한, 상기 회수 단계는 정제 공정을 포함할 수 있다.On the other hand, the pH of the medium can be adjusted by using a basic compound such as sodium hydroxide, potassium hydroxide, ammonia or an acid compound such as phosphoric acid or sulfuric acid in a suitable manner. In addition, bubble formation can be suppressed by using a defoaming agent such as a fatty acid polyglycol ester. Oxygen or an oxygen-containing gas (e.g., air) may be injected into the medium to maintain the exhalation state. The temperature of the culture may be 20 to 45 캜, but is not limited thereto. The culture may continue until the desired amount of L-lysine is produced, and may be accomplished in 10 to 160 hours, but is not limited thereto. The resulting L-lysine may be released into the culture medium or contained in the microorganism. The step of recovering the L-lysine from the medium in which the microorganism has been cultured, the microorganism or the mixture of the cultured microorganism and the culture medium may be carried out by various methods well known in the art, for example, centrifugation, filtration, anion exchange chromatography, Crystallization and HPLC may be used, but are not limited thereto. Further, the recovering step may include a purification step.

본 출원에 따른 재조합 벡터를 도입한 코리네박테리움 속 미생물은 향상된 L-라이신 생산능을 가진다.The Corynebacterium sp. Microorganism introducing the recombinant vector according to the present application has improved L-lysine producing ability.

이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, one or more embodiments will be described in more detail by way of examples. However, these embodiments are intended to illustrate one or more embodiments, and the scope of the present invention is not limited to these embodiments.

실시예Example 1:  One: 코리네박테리움Corynebacterium 글루타미쿰의Glutamicum 야생형 DNA 라이브러리 제작 Production of wild-type DNA library

코리네박테리움 글루타미쿰(Corynebacterium glutamicum)의 야생형 DNA 라이브러리를 제작하기 위하여 하기와 같이 실험하였다. Corynebacterium < RTI ID = 0.0 > glutamicum ) was prepared as follows.

구체적으로, 코리네박테리움 글루타미쿰 ATCC13032에서 genomic DNA를 추출한 후, 제한효소 Sau3AI(Takara)를 처리하여 2 내지 4 kb의 DNA 절편들을 선택적으로 획득하였다. 이를 제한효소 BamHI 말단을 가지는 pECCG117(대한민국 등록특허 제10-0057684호) 벡터와 연결한 후 대장균 DH5α에 도입하고, 카나마이신(25㎎/ℓ)이 포함된 LB 고체배지에 도말하여 형질전환된 콜로니를 획득하였다. 무작위로 100개의 콜로니를 선택하여 서열번호 5 및 서열번호 6의 프라이머를 이용하여 PCR을 수행한 결과, 목적한 2 내지 4 kb 가량의 DNA 절편이 삽입된 벡터를 포함하는 콜로니의 비율이 90% 이상임을 확인하였다. 획득한 모든 콜로니를 카나마이신(25㎎/ℓ)이 포함된 LB 액체배지에 접종하여 혼합 배양하고, 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 추출하여 코리네박테리움 글루타미쿰 ATCC13032의 genomic DNA 라이브러리를 완성하였다.Specifically, genomic DNA was extracted from Corynebacterium glutamicum ATCC13032, and DNA fragments of 2 to 4 kb were selectively obtained by treating with restriction enzyme Sau3AI (Takara). The resultant was ligated with pECCG117 (Korean Patent No. 10-0057684) vector having a restriction endonuclease BamHI end and then introduced into E. coli DH5α and transformed into LB solid medium containing kanamycin (25 mg / L) . When 100 colonies were randomly selected and PCR was carried out using the primers of SEQ ID NOS: 5 and 6, it was found that the ratio of the colonies containing the target DNA fragment inserted with 2 to 4 kb DNA fragments was 90% or more Respectively. All the obtained colonies were inoculated into an LB liquid medium containing kanamycin (25 mg / L), mixed and cultured, and plasmids were extracted using a conventionally known plasmid extraction method to obtain a genomic DNA library of Corynebacterium glutamicum ATCC13032 Completed.

서열번호 5: 5'-ACGACGGGATCAGTACCGA - 3'SEQ ID NO: 5: 5'-ACGACGGGATCAGTACCGA-3 '

서열번호 6: 5'-AGCTATCTGTCGCAGCGCC - 3'SEQ ID NO: 6: 5'-AGCTATCTGTCGCAGCGCC-3 '

실시예Example 2:  2: genomicgenomic DNA 라이브러리를 도입하여  By introducing a DNA library 라이신Lysine 생산능을Production capacity 가지는  Branch 코리네박테리움 속Corynebacterium genus 균주 제작 Strain production

상기 실시예 1에서 제작한 genomic DNA 라이브러리를 통상적으로 알려진 전기펄스법을 이용하여 라이신 생산균주인 코리네박테리움 글루타미쿰 KCCM11016P에 도입하였다(상기 미생물은 KFCC010881로 공개되었다가, 부다페스트 조약 하에 국제기탁기관에 재기탁되어 KCCM11016P로 기탁번호를 부여받았음. 대한민국 등록특허 제10-0159812호). 이후 genomic DNA 라이브러리가 도입된 코리네박테리움 글루타미쿰 KCCM11016P를 카나마이신(25㎎/ℓ)이 포함된 복합평판 배지에 도말하고, 30에서 24시간 동안 배양하여 콜로니 약 2,000개를 획득하였다. 이후 96-웰 세포 배양 플레이트의 각 웰에 복합액체배지 200㎕를 분주하고, 획득한 콜로니를 각각 접종한 후 30℃ 및 1,200 rpm의 조건에서 24시간 동안 진탕 배양하였다. 배양액을 원심분리하여 균체와 상등액을 분리하고, 상등액 50㎕를 라이신 옥시데이즈(lysine oxidase)를 함유하는 반응액과 혼합하였다.The genomic DNA library prepared in Example 1 was introduced into Corynebacterium glutamicum KCCM11016P, which is a lysine-producing strain, by using a known electric pulse method (the microorganism was disclosed as KFCC010881, and under the Budapest Treaty, And has been deposited with KCCM 11016P and deposited with the Korean Patent No. 10-0159812. Then, Corynebacterium glutamicum KCCM11016P into which a genomic DNA library was introduced was plated on a composite plate medium containing kanamycin (25 mg / L) and cultured for 30 to 24 hours to obtain about 2,000 colonies. Then, 200 쨉 l of the complex liquid medium was dispensed into each well of the 96-well cell culture plate, and the obtained colonies were inoculated respectively, followed by shaking culture at 30 째 C and 1,200 rpm for 24 hours. The culture was centrifuged to separate the cells and the supernatant, and 50 μl of the supernatant was mixed with the reaction solution containing lysine oxidase.

<복합평판 배지 조성: 증류수 1L 기준><Composition of composite plate culture medium: 1 L of distilled water>

포도당 20g, (NH4)2SO4 50g, 펩톤 10g, 효모추출물 5g, 요소 1.5g, KH2PO4 5g, K2HPO4 10g, MgSO47H2O 0.5g, 바이오틴 100㎍, 티아민 염산염 1,000㎍, 칼슘-판토텐산 2,000㎍, 니코틴아미드 2,000㎍, 한천 20g Glucose 20g, (NH 4) 2 SO 4 50g, 10g peptone, 5g yeast extract, urea 1.5g, KH 2 PO 4 5g, K 2 HPO 4 10g, MgSO 4 7H 2 O 0.5g, 100㎍ biotin, 1,000 of thiamine hydrochloride Mu g, calcium-pantothenic acid 2,000 g, nicotinamide 2,000 g, agar 20 g

<복합액체배지 조성: 증류수 1L 기준><Compositional liquid medium composition: based on 1 L of distilled water>

포도당 20g, 펩톤 10g, 효모추출물 5g, 요소 1.5g, KH2PO4 4g, K2HPO4 8g, MgSO47H2O 0.5g, 바이오틴 100㎍, 티아민 HCl 1,000㎍, 칼슘-판토텐산 2,000㎍, 니코틴아미드 2,000㎍ Glucose 20g, peptone 10g, 5g yeast extract, urea 1.5g, KH 2 PO 4 4g, K 2 HPO 4 8g, MgSO 4 7H 2 O 0.5g, 100㎍ biotin, thiamine HCl 1,000㎍, calcium pantothenate 2,000㎍, nicotine Amide 2,000 g

<반응액 조성: Potassium phosphate buffer 1ml 기준><Reaction solution composition: Based on 1 ml of potassium phosphate buffer>

라이신 옥시데이즈(lysine oxidase, Sigma-Aldrich) 0.02 unit, 과산화효소(Peroxidase, Sigma-Aldrich) 0.2 unit, ABTS 2mg 0.02 unit of lysine oxidase (Sigma-Aldrich), 0.2 unit of peroxidase (Sigma-Aldrich), 2 mg of ABTS

상등액 및 반응액을 혼합한 후, OD405에서의 흡광도를 30분간 분석하여 대조군(KCCM11016P/pECCG117)보다 높은 흡광도를 나타내는 14종의 실험군를 선별하였다. 각 실험군의 라이신 생산능을 확인하기 위해, 종배지 25㎖을 함유하는 250㎖ 코너-바플 플라스크에 각 균주를 접종하고, 30 및 200 rpm의 조건에서 20시간 동안 진탕 배양하여 종배양액을 만들었다. 이후, 생산배지 24㎖을 함유하는 250㎖ 코너-바플 플라스크에 상기 종배양액 1㎖을 접종하고, 37 및 200 rpm에서 96시간 동안 진탕 배양하였다. 배양을 종료한 후, HPLC를 이용하여 L-라이신의 농도를 분석하였다(표 1).After mixing the supernatant and the reaction solution, the absorbance at OD 405 was analyzed for 30 minutes and 14 kinds of test groups showing higher absorbance than the control group (KCCM11016P / pECCG117) were selected. Each strain was inoculated into a 250 ml corn-baffle flask containing 25 ml of the seed medium and cultured under shaking conditions at 30 and 200 rpm for 20 hours to prepare a seed culture. Then, 1 ml of the seed culture was inoculated in a 250 ml corn-baffle flask containing 24 ml of the production medium, and cultured with shaking at 37 and 200 rpm for 96 hours. After completion of the culture, the concentration of L-lysine was analyzed by HPLC (Table 1).

<종배지 조성: 증류수 1L 기준><Composition of seed medium: 1 L of distilled water>

포도당 20g, (NH4)2SO4 40g, 펩톤 10g, 효모추출물 5g, 요소 1.5g, KH2PO4 4g, K2HPO4 8g, MgSO47H2O 0.5g, 이오틴 100㎍, 티아민 HCl 1000㎍, 칼슘-판토텐산 2,000㎍, 니코틴아미드 2,000㎍ Glucose 20g, (NH 4) 2 SO 4 40g, 10g peptone, 5g yeast extract, urea 1.5g, KH 2 PO 4 4g, K 2 HPO 4 8g, MgSO 4 7H 2 O 0.5g, EO tin 100㎍, thiamine HCl 2,000 g of calcium-pantothenic acid, 2,000 g of nicotinamide

<생산배지(pH 7.0) 조성: 증류수 1L 기준><Production medium (pH 7.0) Composition: 1 liter of distilled water>

포도당 100g, (NH4)2SO4 40g, 대두 단백질 2.5g, 옥수수 침지 고형분(Corn Steep Solids) 5g, 요소 3g, KH2PO4 1g, MgSO47H2O O 0.5g, 바이오틴 100㎍, 티아민 염산염 1,000㎍, 칼슘-판토텐산 2,000㎍, 니코틴아미드 3,000㎍, CaCO3 30g Glucose 100g, (NH 4) 2 SO 4 40g, 2.5g of soy protein, corn steep solids (Corn Steep Solids) 5g, urea 3g, KH 2 PO 4 1 g of MgSO 4 7H 2 OO, 100 g of biotin, 1,000 g of thiamine hydrochloride, 2,000 g of calcium-pantothenic acid, 3,000 g of nicotinamide, 30 g of CaCO 3

Figure pat00001
Figure pat00001

상기 결과로부터 대조군 대비 라이신 생산능 증가 효과를 보이는 KCCM11016P/2-254 및 KCCM11016P/5-95를 선택하고, 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 추출하였다. 그 후, 서열번호 5 및 6의 프라이머를 이용하여 염기서열 분석을 실시하고, KCCM11016P/2-254에서 유래한 플라스미드는 pEC-2-254, KCCM11016P/5-95에서 유래한 플라스미드는 pEC-5-95로 명명하였다.From the above results, KCCM11016P / 2-254 and KCCM11016P / 5-95 showing the effect of increasing lysine production ability compared to the control group were selected and the plasmid was extracted using a conventionally known plasmid extraction method. The plasmids derived from KCCM11016P / 2-254 were pEC-2-254, and the plasmids derived from KCCM11016P / 5-95 were pEC-5- 95 &lt; / RTI &gt;

서열 분석 결과, 플라스미드 pEC-2-254는 서열번호 17의 뉴클레오티드 서열을 포함하고, 플라스미드 pEC-5-95는 서열번호 18의 뉴클레오티드 서열을 포함하고 있었으며, 이를 통해 상기 2종의 플라스미드에는 서열번호 1의 아미노산 서열을 암호화하는 서열번호 2의 뉴클레오티드 서열 및 서열번호 3의 아미노산 서열을 암호화하는 서열번호 4의 뉴클레오티드 서열이 공통적으로 포함되어 있음을 확인하였다. 서열번호 1의 아미노산 서열을 암호화하는 유전자를 HL1622, 서열번호 3의 아미노산 서열을 암호화하는 유전자를 HL1623로 명명하고, 이하 HL1622 및 HL1623로 표기하였다.As a result of sequencing, the plasmid pEC-2-254 contained the nucleotide sequence of SEQ ID NO: 17 and the plasmid pEC-5-95 contained the nucleotide sequence of SEQ ID NO: 18, whereby the two plasmids contained SEQ ID NO: 2, which encodes the amino acid sequence of SEQ ID NO: 3, and the nucleotide sequence of SEQ ID NO: 4, which encodes the amino acid sequence of SEQ ID NO: 3. The gene encoding the amino acid sequence of SEQ ID NO: 1 is referred to as HL1622, and the gene encoding the amino acid sequence of SEQ ID NO: 3 is referred to as HL1623, hereinafter referred to as HL1622 and HL1623.

실시예Example 3: HL1622, HL1623 유전자 염색체 추가 삽입용 벡터 제작 3: Vector construction for additional insertion of HL1622, HL1623 gene chromosome

상기 실시예 2에서 확인한 HL1622 및 HL1623 유전자의 L-라이신 생산능 증가 효과를 분석하기 위하여, pDZTn 벡터(대한민국 등록특허 제10-1126041호)를 기본 벡터로 사용하여 두 유전자를 각각 또는 함께 코리네박테리움의 염색체에 추가 삽입하였다.In order to analyze the effect of the HL1622 and HL1623 genes confirmed in Example 2 on the L-lysine production enhancing effect, pDZTn vector (Korean Patent No. 10-1126041) was used as a basic vector, Was added to the chromosome of the leiomyum.

실시예Example 3-1: HL1622 유전자 염색체 추가 삽입용 벡터 제작 3-1: Vector construction for additional insertion of HL1622 gene chromosome

HL1622 추가 삽입용 벡터를 제작하기 위하여, 보고된 염기서열에 근거하여 5' 말단에 SpeI 제한효소 부위를 삽입한 프라이머(서열번호 7 및 8)를 합성하고, ATCC13032의 염색체를 주형으로 PCR을 수행하여 HL1622 개시코돈의 상단 500 bp 부위에서 종결코돈의 하단 약 149 bp를 포함하는 약 1,520 bp의 DNA 단편을 획득하였다. In order to prepare a vector for further insertion of HL1622, a primer (SEQ ID NOS: 7 and 8) having a SpeI restriction enzyme site inserted at the 5 'end was synthesized based on the reported nucleotide sequence and PCR was performed using the chromosome of ATCC13032 as a template A DNA fragment of about 1,520 bp containing about 149 bp of the lower end of the termination codon was obtained at the upper 500 bp region of the HL1622 start codon.

서열번호 7: 5'-AAACTAGTGCGGAGTACTAGGTCGTG-3'SEQ ID NO: 7: 5'-AA ACTAGT GCGGAGTACTAGGTCGTG-3 '

서열번호 8: 5'-AAACTAGTTTATGAATTCGGCTCCAA-3'SEQ ID NO: 8: 5'-AA ACTAGT TTATGAATTCGGCTCCAA-3 '

(염기서열상의 밑줄 친 부분은 제한효소에 대한 인식 부위를 나타낸다.)(The underlined part of the base sequence indicates the recognition site for the restriction enzyme.)

PCR은 94℃에서 5분간 변성 후, 94℃ 30초 변성, 56℃ 30초 어닐링 및 72℃ 90초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응 하여 수행하였다. PCR로 증폭된 DNA 단편을 제한효소 SpeI으로 처리하여 각각의 DNA 절편을 획득한 후, 이를 제한효소 SpeI 말단을 가지는 pDZTn 벡터에 연결한 후 대장균 DH5α에 형질전환하고, 25㎎/ℓ의 카나마이신이 포함된 LB 고체배지에 도말하였다. PCR을 이용하여 목적 유전자가 삽입된 벡터로 형질전환된 콜로니를 선별한 후, 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하였으며, 이를 pDZTn-HL1622라 명명하였다.The denaturation at 94 ° C for 5 minutes, denaturation at 94 ° C for 30 seconds, annealing at 56 ° C for 30 seconds, and polymerization at 72 ° C for 90 seconds were repeated 30 times, followed by polymerization at 72 ° C for 7 minutes. The DNA fragment amplified by PCR was treated with restriction enzyme SpeI to obtain each DNA fragment. The DNA fragment was ligated to a pDZTn vector having a restriction enzyme SpeI terminal and transformed into E. coli DH5α, and 25 mg / l of kanamycin was contained Lt; / RTI &gt; solid medium. After selecting the colonies transformed with the vector into which the desired gene was inserted by PCR, a plasmid was obtained using a conventionally known plasmid extraction method and named pDZTn-HL1622.

실시예Example 3-2: HL1623 유전자 염색체 추가 삽입용 벡터 제작 3-2: Construction of Vector for Additional Insertion of HL1623 Gene Chromosome

HL1623 추가 삽입용 벡터를 제작하기 위하여, 보고된 염기서열에 근거하여 5' 말단에 SpeI 제한효소 부위를 삽입한 프라이머(서열번호 9 및 10)를 합성하고, 실시예 3-1과 동일한 조건으로 PCR을 수행하여 HL1623 개시코돈의 상단 500 bp 부위에서부터 종결코돈의 하단 150 bp를 포함하는 약 1,304 bp 길이의 DNA 단편을 획득하였다. 이를 제한효소 SpeI 말단을 가지는 pDZTn 벡터에 연결한 후 대장균 DH5α에 형질전환하고, 25㎎/ℓ의 카나마이신이 포함된 LB 고체배지에 도말하였다.In order to prepare a vector for further insertion of HL1623, primers (SEQ ID NOS: 9 and 10) in which a SpeI restriction enzyme site was inserted at the 5 'end were synthesized based on the reported nucleotide sequences and PCR To obtain a DNA fragment of about 1,304 bp in length including the lower 150 bp of the termination codon from the upper 500 bp region of the HL1623 start codon. The resultant was ligated to a pDZTn vector having a restriction enzyme SpeI terminus, transformed into E. coli DH5α, and plated on LB solid medium containing 25 mg / L of kanamycin.

서열번호 9: 5'-AAACTAGTGGAATCGGCGGTTTAGTG-3'SEQ ID NO: 9: 5'-AA ACTAGT GGAATCGGCGGTTTAGTG-3 '

서열번호 10: 5'-AAACTAGTCTGATCAATAACCTCC-3'SEQ ID NO: 10: 5'-AA ACTAGT CTGATCAATAACCTCC-3 '

(염기서열상의 밑줄 친 부분은 제한효소에 대한 인식 부위를 나타낸다.)(The underlined part of the base sequence indicates the recognition site for the restriction enzyme.)

PCR을 이용하여 목적 유전자가 삽입된 벡터로 형질 전환된 콜로니를 선별한 후, 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하였으며, 이를 pDZTn-HL1623라 명명하였다.After selecting the colonies transformed with the vector into which the desired gene was inserted by PCR, a plasmid was obtained using a conventionally known plasmid extraction method and named pDZTn-HL1623.

실시예Example 3-3: HL1622 및 HL1623 유전자 염색체 동시 삽입용 벡터 제작 3-3: Vector construction for simultaneous insertion of HL1622 and HL1623 gene chromosomes

HL1622 및 HL1623 동시 삽입용 벡터를 제작하기 위하여, 서열번호 7 및 서열번호 10의 프라이머를 이용하여 ATCC13032의 염색체를 주형으로 PCR을 수행하여 HL1622 개시코돈의 상단 500 bp 및 HL1622와 HL1623이 연결된 2,473 bp의 DNA 단편을 증폭하였다. 이때, PCR은 94℃에서 5분간 변성 후, 94℃ 30초 변성, 56℃ 30초 어닐링 및 72℃에서 120초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응하여 수행하였다. PCR로 증폭된 DNA 단편을 상기와 동일한 방법으로 pDZTn 벡터에 연결하여 대장균 DH5α에 형질전환하고, 25㎎/ℓ의 카나마이신이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적 유전자가 삽입된 벡터로 형질 전환된 콜로니를 선별한 후, 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하였으며, 이를 pDZTn-HL1622-HL1623라 명명하였다.In order to construct a vector for simultaneous insertion of HL1622 and HL1623, PCR was performed using the primers of SEQ ID NO: 7 and SEQ ID NO: 10 as a template of the ATCC13032 chromosome to generate a 500 bp upper portion of the HL1622 start codon and a 2,473 bp DNA fragments were amplified. The denaturation at 94 ° C for 5 minutes, the denaturation at 94 ° C for 30 seconds, the annealing at 56 ° C for 30 seconds, and the polymerization at 72 ° C for 120 seconds were repeated 30 times, followed by a polymerization reaction at 72 ° C for 7 minutes. The DNA fragment amplified by PCR was ligated to a pDZTn vector in the same manner as above to transform E. coli DH5α and plated on LB solid medium containing 25 mg / l of kanamycin. After selecting the colonies transformed with the vector into which the desired gene was inserted through PCR, a plasmid was obtained using a conventionally known plasmid extraction method and named pDZTn-HL1622-HL1623.

실시예Example 4: HL1622, HL1623 및 상기 두 유전자 삽입 균주의  4: HL1622, HL1623 and of the two gene insertion strains 라이신Lysine 생산능Production capacity 분석 analysis

상기 실시예 3에서 제작한 3종의 벡터인 pDZTn-HL1622, pDZTn-HL1623 및 pDZTn-HL1622-HL1623의 라이신 생산능을 분석하기 위하여 전기펄스법을 이용하여 코리네박테리움 글루타미쿰 KCCM11016P에 각각 형질전환시켰다. 이후 염색체상에 목적 유전자가 삽입된 균주를 PCR을 이용하여 선택적으로 분리하고, KCCM11016P::HL1622(Tn), KCCM11016P::HL1623(Tn) 및 KCCM11016P::HL1622-HL1623(Tn)으로 명명하였다.In order to analyze the lysine production ability of the three vectors pDZTn-HL1622, pDZTn-HL1623 and pDZTn-HL1622-HL1623 prepared in Example 3, Corynebacterium glutamicum KCCM11016P Respectively. Then, the strains in which the desired gene was inserted on the chromosome were selectively separated by PCR and named KCCM11016P :: HL1622 (Tn), KCCM11016P :: HL1623 (Tn) and KCCM11016P :: HL1622-HL1623 (Tn).

상기 균주 3종과 KCCM11016P 균주를 종배지 25㎖을 함유하는 250㎖ 코너-바플 플라스크에 접종하고, 30℃ 및 200 rpm에서 20시간 동안 진탕 배양하여 종배양액을 만들었다. 그 후, 1㎖의 종배양액을 하기의 생산배지 24㎖을 함유하는 250㎖ 코너-바플 플라스크에 접종하고, 37℃ 및 200 rpm에서 96시간 동안 진탕 배양한 후 각 배양물에 포함된 L-라이신의 농도를 측정하여 비교하였다(표 2).A 250 ml Corner-Baffle flask containing 3 strains and KCCM11016P strain as a seed medium was inoculated and cultured by shaking at 30 DEG C and 200 rpm for 20 hours. Thereafter, 1 ml of the seed culture was inoculated into 250 ml of a corn-baffle flask containing 24 ml of the following production medium, and cultured at 37 DEG C and 200 rpm for 96 hours. Then, L-lysine Were measured and compared (Table 2).

<생산배지(pH 7.0): 증류수 1리터 기준><Production medium (pH 7.0): 1 liter of distilled water>

포도당 100g, 암모늄 아세트산 7.1g(첨가 혹은 비첨가), (NH4)2SO4 40g, 대두 단백질 2.5g, 옥수수 침지 고형분 5g, 요소 3g, KH2PO4 1g, MgSO47H2O 0.5g, 바이오틴 100㎍, 티아민 염산염 1,000㎍, 칼슘-판토텐산 2,000㎍, 니코틴아미드 3,000㎍, CaCO3 30g (NH 4 ) 2 SO 4 40 g, soybean protein 2.5 g, corn steep solids 5 g, urea 3 g, KH 2 PO 4 1 g, MgSO 4 7H 2 O 0.5 g, and ammonium acetate 7.1 g (with or without addition) 100 μg of biotin, 1,000 μg of thiamine hydrochloride, 2,000 μg of calcium-pantothenic acid, 3,000 μg of nicotinamide, 30 g of CaCO 3

Figure pat00002
Figure pat00002

L-라이신의 농도 분석 결과, 대조군 KCCM11016P 균주와 비교하여 L-라이신 생산능이 KCCM11016P::HL1622(Tn) 균주는 6%, KCCM11016P::HL1622-HL1623(Tn) 균주는 5% 증가하는 것을 확인하였다. HL1623 유전자가 추가 삽입된 KCCM11016P::HL1623(Tn) 균주는 L-라이신 생산능이 대조군 균주와 비교하여 동등하였다. 상기 결과를 통해 HL1622 유전자만이 L-라이신 생산능 증가에 효과가 있음을 확인하였다. As a result of analysis of L-lysine concentration, it was confirmed that 6% of KCCM11016P :: HL1622 (Tn) and 5% of KCCM11016P :: HL1622-HL1623 (Tn) were increased in L-lysine production ability as compared with the control KCCM11016P strain. The KCCM11016P :: HL1623 (Tn) strain into which the HL1623 gene was further inserted was equivalent to the L-lysine producing ability in comparison with the control strain. The above results confirmed that only the HL1622 gene was effective in increasing L-lysine production ability.

실시예Example 5: 강력한 프로모터에 의한 HL1622 과발현 균주 제작 및 효과 확인 5: Production of HL1622 overexpressing strain by strong promoter and confirmation of effect

HL1622를 과발현하는 경우 L-라이신 생산능이 증가하는지 확인하기 위하여 기존에 보고된 강력한 프로모터인 pcj7 프로모터(WO 2009/096689)를 HL1622 상부에 삽입하였다. pDZ 벡터를 기본 벡터로 하여 염색체 삽입용 벡터를 제작하였다.To confirm whether HL1622 overexpression increased L-lysine production ability, the previously reported strong promoter pcj7 promoter (WO 2009/096689) was inserted in the upper part of HL1622. A pDZ vector was used as a basic vector to construct a chromosome insertion vector.

구체적으로, 5' 말단에 XhoI 제한효소 부위를 삽입한 프라이머(서열번호 11) 및 5' 말단에 Nde 제한효소 부위를 삽입한 프라이머(서열번호 12)를 합성하고, 코리네박테리움 글루타미쿰 pcj7 균주의 염색체 DNA를 주형으로 PCR을 수행하여 약 297 bp 길이의 프로모터 부위를 증폭하였다. 이때, PCR은 94℃에서 5분간 변성 후, 94℃ 30초 변성, 56℃ 30초 어닐링 및 72℃ 30초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응 하여 수행하였다.Specifically, a primer (SEQ ID NO: 11) inserted with an XhoI restriction enzyme site at the 5 'end and a primer (SEQ ID NO: 12) inserted at the 5' end with an Nde restriction enzyme site were synthesized and Corynebacterium glutamicum pcj7 PCR was performed using the chromosomal DNA of the strain as a template to amplify a promoter region of about 297 bp in length. At this time, the PCR was performed at 94 ° C for 5 minutes, followed by denaturation at 94 ° C for 30 seconds, annealing at 56 ° C for 30 seconds, and polymerization at 72 ° C for 30 seconds, followed by polymerization at 72 ° C for 7 minutes.

서열번호 11: 5'-AACTCGAGATAGGGAGCGTTGACCTT-3'SEQ ID NO: 11: 5'-AA CTCGAG ATAGGGAGCGTTGACCTT-3 '

서열번호 12: 5'-GGCATATGTGTTTCCTTTCGTTGGG-3'SEQ ID NO: 12: 5'-GG CATATG TGTTTCCTTTCGTTGGG-3 '

(염기서열상의 밑줄 친 부분은 제한효소에 대한 인식 부위를 나타낸다.)(The underlined part of the base sequence indicates the recognition site for the restriction enzyme.)

이후, 5' 말단에 NdeI 제한효소 부위를 삽입한 프라이머(서열번호 13) 및 5' 말단에 SpeI 제한효소 부위를 삽입한 프라이머(서열번호 14)를 합성하고, ATCC 13032의 염색체를 주형으로 상기와 동일한 조건에서 PCR을 수행하여 약 495 bp 길이의 HL1622의 DNA 단편을 증폭하였다. Thereafter, a primer (SEQ ID NO: 13) inserted with an NdeI restriction enzyme site at the 5 'end and a primer (SEQ ID NO: 14) inserted with the SpeI restriction enzyme site at the 5' end were synthesized and the chromosome of ATCC 13032 was used as a template PCR was performed under the same conditions to amplify a DNA fragment of HL1622 of about 495 bp in length.

서열번호 13: 5'-CACATATGCCCAAATACATTGCCAT-3'SEQ ID NO: 13: 5'-CA CATATG CCCAAATACATTGCCAT-3 '

서열번호 14: 5'-AAACTAGTATCCAGCTTCAGGTTTCGCA-3'SEQ ID NO: 14: 5'-AA ACTAGT ATCCAGCTTCAGGTTTCGCA-3 '

(염기서열상의 밑줄 친 부분은 제한효소에 대한 인식 부위를 나타낸다.)(The underlined part of the base sequence indicates the recognition site for the restriction enzyme.)

또한, 5' 말단에 XbaI 제한효소 부위를 삽입한 프라이머(서열번호 15) 및 5' 말단에 XhoI 제한효소 부위를 삽입한 프라이머(서열번호 16)를 합성하고, ATCC13032 염색체를 주형으로 상기와 동일한 조건에서 PCR을 수행하여 496 bp 길이의 HL1622 상부 부위를 증폭하였다. Also, a primer (SEQ ID NO: 15) inserted with an XbaI restriction site at the 5 'end and a primer (SEQ ID NO: 16) inserted with the XhoI restriction site at the 5' end were synthesized and the ATCC13032 chromosome was used as a template PCR amplification was performed to amplify the 496 bp HL1622 upstream region.

서열번호 15: 5'-AATCTAGAAGTACTAGGTCGTGTGCTGT-3'SEQ ID NO: 15: 5'-AA TCTAGA AGTACTAGGTCGTGTGCTGT-3 '

서열번호 16: 5'-AACTCGAGTTGGTTCTGCTTTCACTAAA-3'SEQ ID NO: 16: 5'-AA CTCGAG TTGGTTCTGCTTTCACTAAA-3 '

(염기서열상의 밑줄 친 부분은 제한효소에 대한 인식 부위를 나타낸다.)(The underlined part of the base sequence indicates the recognition site for the restriction enzyme.)

PCR로 증폭된 상기 HL1622 상부 DNA 단편을 XbaI 및 XhoI으로 처리하여 얻은 DNA 절편, pcj7 DNA 단편을 제한효소 XhoI 및 NdeI으로 처리하여 획득한 DNA 절편, 및 HL1622 DNA 단편을 제한효소 NdeI과 SpeI으로 처리하여 얻은 DNA 절편을 함께 제한효소 XbaI 말단을 가지는 pDZ 벡터에 연결한 후 대장균 DH5α에 형질전환하고, 25㎎/ℓ의 카나마이신이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자가 삽입된 벡터로 형질전환된 콜로니를 선별한 후 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하여 pDZ-pcj7_HL1622라 명명하였다.DNA fragment obtained by treating the upper DNA fragment of HL1622 amplified by PCR with XbaI and XhoI, DNA fragment obtained by treating pcj7 DNA fragment with restriction enzymes XhoI and NdeI, and HL1622 DNA fragment were treated with restriction enzymes NdeI and SpeI The resulting DNA fragment was ligated to a pDZ vector having a restriction endonuclease XbaI end, transformed into E. coli DH5α, and plated on LB solid medium containing 25 mg / L of kanamycin. After selecting the colonies transformed with the vector into which the desired gene was inserted through PCR, the plasmid was obtained using a conventionally known plasmid extraction method and named pDZ-pcj7_HL1622.

제작한 벡터 pDZ-pcj7_HL1622를 염색체상에서의 상동 재조합에 의해 L-라이신 생산균주인 코리네박테리움 글루타미쿰 KCCM11016P에 형질전환시켰다. PCR을 통해 HL1622 유전자의 프로모터가 pcj로 교체된 콜로니를 선택적으로 분리하고, KCCM11016P::pcj7_HL1622이라고 명명하였다.The constructed vector pDZ-pcj7_HL1622 was transformed into L-lysine producing strain, Corynebacterium glutamicum KCCM11016P by homologous recombination on the chromosome. The colonies in which the promoter of the HL1622 gene was replaced with pcj by PCR were selectively separated and named KCCM11016P :: pcj7_HL1622.

KCCM11016P::pcj7_HL1622 균주 및 대조군 KCCM11016P 균주를 실시예 2와 동일한 방법으로 배양한 후 각 배양물에 포함된 라이신의 농도를 측정하여 비교하였다. 그 결과, KCCM11016P::pcj7-HL1622 균주의 L-라이신 생산능이 대조군 KCCM11016P 균주와 비교하여 8% 증가함을 확인하였으며, 이는 HL1622 발현량이 증가할수록 L-라이신 생산능이 증가함을 다시 한번 확인하였다(표3).The KCCM11016P :: pcj7_HL1622 strain and the control KCCM11016P strain were cultured in the same manner as in Example 2, and the concentrations of lysine contained in each culture were measured and compared. As a result, it was confirmed that the L-lysine production capacity of the KCCM11016P :: pcj7-HL1622 strain was increased by 8% as compared with that of the control KCCM11016P strain, and it was once again confirmed that the L-lysine production capacity was increased as the HL1622 expression level was increased 3).

Figure pat00003
Figure pat00003

이에, 본 발명자들은 상기 L-라이신 생산능이 증가한 KCCM11016P::pcj7-HL1622 균주를 코리네박테리움 글루타미쿰 "CA01-2300"로 명명하고, 2016년 8월 2일자로 부다페스트 조약 하의 국제기탁기관인 한국미생물보존센터(KCCM)에 기탁하여, 기탁번호 KCCM11877P를 부여받았다.Accordingly, the present inventors named the KCCM11016P :: pcj7-HL1622 strain having increased L-lysine production ability as Corynebacterium glutamicum "CA01-2300", and as an international depositary institution under the Budapest Treaty on August 2, 2016 Deposited at the Microbial Conservation Center (KCCM) Accession number KCCM11877P.

실시예Example 6:  6: KCCM10770P에서From KCCM10770P HL1622이 과발현된 미생물을 이용한  Using HL1622 over-expressed microorganisms 라이신Lysine 생산 production

상기 실시예 5에서 제조한 벡터 pDZ-pcj7_HL1622를 L-라이신 생합성 경로 관련 유전자 3종이 염색체에 삽입된 라이신 생산균주인 코리네박테리움 글루타미쿰 KCCM10770P(대한민국 등록특허 제10-0924065호)에 형질전환시켰다. 그 후 PCR 방법으로 콜로니를 선택적으로 분리하고, KCCM10770P::pcj7- HL1622라고 명명하였다. 상기 실시예 2와 동일한 방법으로 균주를 배양하고, 배양액 중의 L-라이신의 농도를 분석하였다. 그 결과, 표 4에 나타난 바와 같이 KCCM10770P::pcj7-HL1622 균주의 L-라이신 생산능이 대조군 KCCM10770P 균주와 비교하여 5% 증가함을 확인하였다(표 4).The vector pDZ-pcj7_HL1622 prepared in Example 5 was transformed into 3 lines of L-lysine biosynthesis pathway-related genes into Corynebacterium glutamicum KCCM10770P (Korea Patent No. 10-0924065), a lysine-producing strain inserted into the chromosome . The colonies were then selectively isolated by PCR and named KCCM10770P :: pcj7- HL1622. The strain was cultured in the same manner as in Example 2, and the concentration of L-lysine in the culture broth was analyzed. As a result, as shown in Table 4, it was confirmed that the L-lysine production ability of the KCCM10770P :: pcj7-HL1622 strain was increased by 5% as compared with the control KCCM10770P strain (Table 4).

Figure pat00004
Figure pat00004

실시예Example 7:  7: CJ3P에서From CJ3P HL1622이 과발현된 미생물을 이용한  Using HL1622 over-expressed microorganisms 라이신Lysine 생산  production

상기 실시예 5에서 제조한 벡터 pDZ-pcj7_HL1622를 L-라이신 생산능 향상 관련 유전자 3종이 염색체에 삽입된 라이신 생산균주인 코리네박테리움 글루타미쿰 CJ3P(Binder et al. Genome Biology 2012, 13:R40)에 형질전환시켰다. 그 후 PCR을 통해 콜로니를 선택적으로 분리하여 CJ3P::pcj7-HL1622라고 명명하였다. 상기 실시예 2와 동일한 방법으로 균주를 배양하고, 이로부터 회수된 L-라이신의 농도를 분석하였다. 그 결과, CJ3P::pcj7-HL1622 균주의 L-라이신 생산능이 대조군 CJ3P 균주와 비교하여 32% 증가함을 확인하였다(표 5). The vector pDZ-pcj7_HL1622 prepared in Example 5 was inoculated to three chromosome-producing lysine-producing strains Corynebacterium glutamicum CJ3P (Binder et al. Genome Biology 2012, 13: R40 ). The colonies were then selectively isolated by PCR and named CJ3P :: pcj7-HL1622. The strain was cultured in the same manner as in Example 2, and the concentration of the recovered L-lysine was analyzed. As a result, it was confirmed that the L-lysine production capacity of the CJ3P :: pcj7-HL1622 strain was increased by 32% as compared with that of the control CJ3P strain (Table 5).

Figure pat00005
Figure pat00005

실시예Example 8:  8: KFCC10750에서At KFCC10750 HL1622이 과발현 미생물을 이용한  Using HL1622 over-expressing microorganisms 라이신Lysine 생산  production

상기 실시예 5에서 제조한 벡터 pDZ-pcj7_HL1622를 L-라이신 생산능 향상 관련 유전자 3종이 염색체 삽입된 라이신 생산균주인 코리네박테리움 글루타미쿰 KCCM11347P에 형질전환시켰다(상기 미생물은 KFCC10750으로 공개되었다가 부다페스트 조약 하의 국제기탁기관에 재기탁되어 KCCM11347P를 부여받았음. 대한민국 등록특허 제10-0073610호). 그 후 PCR을 통해 콜로니를 선택적으로 분리하여 KCCM11347P::pcj7-HL1622라고 명명하고, 실시예 2와 동일한 방법으로 배양하여 이로부터 회수된 L-라이신의 농도를 분석하였다. 그 결과, KCCM11347P::pcj7-HL1622 균주의 L-라이신 생산능이 대조군 KCCM11347P 균주와 비교하여 32% 증가함을 확인하였다(표 6).The vector pDZ-pcj7_HL1622 prepared in Example 5 was transformed into 3 types of L-lysine productivity-improving genes, Corynebacterium glutamicum KCCM11347P, a chromosomally inserted lysine producing strain (the microorganism was disclosed as KFCC10750 It has been re-deposited with the international depositary under the Budapest Treaty and granted KCCM 11347P. Korean Patent No. 10-0073610). Then, the colonies were selectively separated by PCR and named KCCM11347P :: pcj7-HL1622, and cultured in the same manner as in Example 2, and the concentration of the recovered L-lysine was analyzed. As a result, it was confirmed that the L-lysine production capacity of the KCCM11347P :: pcj7-HL1622 strain was increased by 32% as compared with that of the control KCCM11347P strain (Table 6).

Figure pat00006
Figure pat00006

이상의 설명으로부터, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 예시적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 변형된 형태는 본 발명에 포함된 것으로 해석되어야 할 것이다.From the above description, it will be understood by those skilled in the art that the present invention may be embodied in various other forms without departing from the essential characteristics thereof. Therefore, the disclosed embodiments should be considered in an illustrative rather than a restrictive sense. The scope of the present invention is defined by the appended claims rather than by the foregoing description, and all modified forms falling within the scope of the claims shall be construed as being included in the present invention.

한국미생물보존센터(국외)Korea Microorganism Conservation Center (overseas) KCCM11877PKCCM11877P 2016080220160802

<110> CJ CheilJedang Corporation <120> Corynebacteria producing L-lysine and a method of producing L-lysine using the same <130> PN150224 <160> 18 <170> KoPatentIn 3.0 <210> 1 <211> 339 <212> PRT <213> Corynebacterium glutamicum <400> 1 Met Pro Lys Tyr Ile Ala Met Gln Val Ser Glu Ser Gly Ala Pro Leu 1 5 10 15 Ala Ala Asn Leu Val Gln Pro Ala Pro Leu Lys Ser Arg Glu Val Arg 20 25 30 Val Glu Ile Ala Ala Ser Gly Val Cys His Ala Asp Ile Gly Thr Ala 35 40 45 Ala Ala Ser Gly Lys His Thr Val Phe Pro Val Thr Pro Gly His Glu 50 55 60 Ile Ala Gly Thr Ile Ala Glu Ile Gly Glu Asn Val Ser Arg Trp Thr 65 70 75 80 Val Gly Asp Arg Val Ala Ile Gly Trp Phe Gly Gly Asn Cys Gly Asp 85 90 95 Cys Ala Phe Cys Arg Ala Gly Asp Pro Val His Cys Arg Glu Arg Lys 100 105 110 Ile Pro Gly Val Ser Tyr Ala Gly Gly Trp Ala Gln Asn Ile Val Val 115 120 125 Pro Ala Glu Ala Leu Ala Ala Ile Pro Asp Gly Met Asp Phe Tyr Glu 130 135 140 Ala Ala Pro Met Gly Cys Ala Gly Val Thr Thr Phe Asn Ala Leu Arg 145 150 155 160 Asn Leu Lys Leu Asp Pro Gly Ala Ala Val Ala Val Phe Gly Ile Gly 165 170 175 Gly Leu Val Arg Leu Ala Ile Gln Phe Ala Ala Lys Met Gly Tyr Arg 180 185 190 Thr Ile Thr Ile Ala Arg Gly Leu Glu Arg Glu Glu Leu Ala Arg Gln 195 200 205 Leu Gly Ala Asn His Tyr Ile Asp Ser Asn Asp Leu His Pro Gly Gln 210 215 220 Ala Leu Phe Glu Leu Gly Gly Ala Asp Leu Ile Leu Ser Thr Ala Ser 225 230 235 240 Thr Thr Glu Pro Leu Ser Glu Leu Ser Thr Gly Leu Ser Ile Gly Gly 245 250 255 Gln Leu Thr Ile Ile Gly Val Asp Gly Gly Asp Ile Thr Val Ser Ala 260 265 270 Ala Gln Leu Met Met Asn Arg Gln Ile Ile Thr Gly His Leu Thr Gly 275 280 285 Ser Ala Asn Asp Thr Glu Gln Thr Met Lys Phe Ala His Leu His Gly 290 295 300 Val Lys Pro Leu Ile Glu Arg Met Pro Leu Asp Gln Ala Asn Glu Ala 305 310 315 320 Ile Ala Arg Ile Ser Ala Gly Lys Pro Arg Phe Arg Ile Val Leu Glu 325 330 335 Pro Asn Ser <210> 2 <211> 1020 <212> DNA <213> Corynebacterium glutamicum <400> 2 atgcccaaat acattgccat gcaggtatcc gaatccggtg caccgttagc cgcgaatctc 60 gtgcaacctg ctccgttgaa atcgagggaa gtccgcgtgg aaatcgctgc tagtggtgtg 120 tgccatgcag atattggcac ggcagcagca tcggggaagc acactgtttt tcctgttacc 180 cctggtcatg agattgcagg aaccatcgcg gaaattggtg aaaacgtatc tcggtggacg 240 gttggtgatc gcgttgcaat cggttggttt ggtggcaatt gcggtgactg cgctttttgt 300 cgtgcaggtg atcctgtgca ttgcagagag cggaagattc ctggcgtttc ttatgcgggt 360 ggttgggcac agaatattgt tgttccagcg gaggctcttg ctgcgattcc agatggcatg 420 gacttttacg aggccgcccc gatgggctgc gcaggtgtga caacattcaa tgcgttgcga 480 aacctgaagc tggatcccgg tgcggctgtc gcggtctttg gaatcggcgg tttagtgcgc 540 ctagctattc agtttgctgc gaaaatgggt tatcgaacca tcaccatcgc ccgcggttta 600 gagcgtgagg agctagctag gcaacttggc gccaaccact acatcgatag caatgatctg 660 caccctggcc aggcgttatt tgaacttggc ggggctgact tgatcttgtc tactgcgtcc 720 accacggagc ctctttcgga gttgtctacc ggtctttcta ttggcgggca gctaaccatt 780 atcggagttg atgggggaga tatcaccgtt tcggcagccc aattgatgat gaaccgtcag 840 atcatcacag gtcacctcac tggaagtgcg aatgacacgg aacagactat gaaatttgct 900 catctccatg gcgtgaaacc gcttattgaa cggatgcctc tcgatcaagc caacgaggct 960 attgcacgta tttcagctgg taaaccacgt ttccgtattg tcttggagcc gaattcataa 1020 1020 <210> 3 <211> 267 <212> PRT <213> Corynebacterium glutamicum <400> 3 Met Pro Thr Ala Ser Pro Ile Tyr Asp Val Val Val Val Gly Ala Gly 1 5 10 15 Ile Ser Gly Leu Ile Ala Thr Gln Leu Leu Asp Arg Ala Gly Leu Asn 20 25 30 Ile Lys Cys Phe Glu Ala Cys Ser Arg Val Gly Gly Arg Ala Val Ser 35 40 45 Val Gln Gln Ser Asp Leu Phe Leu Asp Leu Gly Ala Thr Trp Phe Trp 50 55 60 Leu Asn Glu Pro Leu Val Gln Gln Leu Val Asn Asn Leu Gly Leu Gly 65 70 75 80 Thr Phe Pro Gln Ala Ile Glu Gly Asp Ala Leu Phe Glu Thr Leu Val 85 90 95 Asp Ala Pro Ser Arg Leu Arg Gly Asn Pro Ile Asp Ala Ala Ser Gly 100 105 110 Arg Phe Gln Ala Gly Ala Ser Ser Leu Ala Leu Gly Leu Ala Ala Gln 115 120 125 Leu Lys Pro Gly Val Leu Glu Leu Gly Asp Pro Val His Ser Leu Ser 130 135 140 Glu Glu Asp Gly Glu Ile Val Val Lys Ser Ser Lys Gln Ile Val Arg 145 150 155 160 Ala Lys His Val Ile Ile Ala Val Pro Pro Ala Leu Ala Ala Glu Leu 165 170 175 Ile Gly Phe Thr Leu Asp Leu Pro Ala Asp Val Arg Lys Ala Ala His 180 185 190 Pro Gln His Ile Ala Val Met Asn Trp Ala Lys Glu Lys Tyr Thr Leu 195 200 205 Pro Thr Gln Ala Ala Ser Ala Gly Gly Phe Gly His Glu Leu Phe Gln 210 215 220 Gln Pro Leu Gly His Gly Arg Ile His Trp Ala Ser Thr Glu Val Ala 225 230 235 240 Thr Glu Phe Gly Gly His Leu Glu Gly Ala Val Arg Ala Gly Ile Gln 245 250 255 Ala Ala Leu Gln Thr Gly Phe Asn Leu Lys Ser 260 265 <210> 4 <211> 804 <212> DNA <213> Corynebacterium glutamicum <400> 4 atgccaacag caagcccaat ttatgatgtc gttgtcgtcg gagccggcat ttctggcctc 60 atcgccacgc aactgttgga ccgcgcaggt ctaaacatca aatgcttcga agcctgctca 120 agagttggcg gccgagcagt gtctgtccaa cagtccgatt tgttcctgga cctcggcgca 180 acatggttct ggctcaacga accacttgtg cagcaactcg tcaataatct cggcctcggc 240 acattccctc aggccatcga gggtgatgcg ctttttgaga cgcttgtcga cgccccgagc 300 cgcctgcggg gtaaccccat agacgctgct tcaggcaggt tccaagcagg ggcctcctcg 360 cttgcgctcg ggcttgcagc ccagctcaag ccaggagttt tagaactcgg ggaccccgtc 420 cattctctca gtgaggaaga tggggaaatc gttgtgaagt cttccaaaca gattgtgagg 480 gcaaagcacg tcatcattgc ggttccaccg gcactcgctg ccgagttgat tggtttcacc 540 ctagatttac cagctgacgt gcgaaaagca gcgcatccac aacatatagc tgtgatgaat 600 tgggcaaagg agaaatacac cttacccaca caagccgcat cggctggggg ttttgggcat 660 gagctgttcc aacaaccact cggacatggg cgaattcatt gggcatcaac ggaagttgcc 720 actgagtttg gtggacacct tgaaggcgca gttcgtgcag gaattcaggc tgcgcttcaa 780 acaggattta atctaaaatc ttaa 804 <210> 5 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 5 acgacgggat cagtaccga 19 <210> 6 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 6 agctatctgt cgcagcgcc 19 <210> 7 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 7 aaactagtgc ggagtactag gtcgtg 26 <210> 8 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 8 aaactagttt atgaattcgg ctccaa 26 <210> 9 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 9 aaactagtgg aatcggcggt ttagtg 26 <210> 10 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 10 aaactagtct gatcaataac ctcc 24 <210> 11 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 11 aactcgagat agggagcgtt gacctt 26 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 12 ggcatatgtg tttcctttcg ttggg 25 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 13 cacatatgcc caaatacatt gccat 25 <210> 14 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 14 aaactagtat ccagcttcag gtttcgca 28 <210> 15 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 15 aatctagaag tactaggtcg tgtgctgt 28 <210> 16 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 16 aactcgagtt ggttctgctt tcactaaa 28 <210> 17 <211> 2195 <212> DNA <213> Corynebacterium glutamicum <400> 17 ttccagtttg gcgatgccgt tggatagcgc aggttgggtg actccgtatt cgcgggctgc 60 tgcgctgaat gagtgagttt ctgcgacggc ctgcgcatag cggagccctt caaggctgag 120 ccgtttggtc ataactatat gttatccccc ttattcagag tgatggtcta ccggagaagt 180 acccagacca atagcatcga ccaacgatag cgcgctcaga agttctttag tgaaagcaga 240 accaaatgcc caaatacatt gccatgcagg tatccgaatc cggtgcaccg ttagccgcga 300 atctcgtgca acctgctccg ttgaaatcga gggaagtccg cgtggaaatc gctgctagtg 360 gtgtgtgcca tgcagatatt ggcacggcag cagcatcggg gaagcacact gtttttcctg 420 ttacccctgg tcatgagatt gcaggaacca tcgcggaaat tggtgaaaac gtatctcggt 480 ggacggttgg tgatcgcgtt gcaatcggtt ggtttggtgg caattgcggt gactgcgctt 540 tttgtcgtgc aggtgatcct gtgcattgca gagagcggaa gattcctggc gtttcttatg 600 cgggtggttg ggcacagaat attgttgttc cagcggaggc tcttgctgcg attccagatg 660 gcatggactt ttacgaggcc gccccgatgg gctgcgcagg tgtgacaaca ttcaatgcgt 720 tgcgaaacct gaagctggat cccggtgcgg ctgtcgcggt ctttggaatc ggcggtttag 780 tgcgcctagc tattcagttt gctgcgaaaa tgggttatcg aaccatcacc atcgcccgcg 840 gtttagagcg tgaggagcta gctaggcaac ttggcgccaa ccactacatc gatagcaatg 900 atctgcaccc tggccaggcg ttatttgaac ttggcggggc tgacttgatc ttgtctactg 960 cgtccaccac ggagcctctt tcggagttgt ctaccggtct ttctattggc gggcagctaa 1020 ccattatcgg agttgatggg ggagatatca ccgtttcggc agcccaattg atgatgaacc 1080 gtcagatcat cacaggtcac ctcactggaa gtgcgaatga cacggaacag actatgaaat 1140 ttgctcatct ccatggcgtg aaaccgctta ttgaacggat gcctctcgat caagccaacg 1200 aggctattgc acgtatttca gctggtaaac cacgtttccg tattgtcttg gagccgaatt 1260 cataatgcca acagcaagcc caatttatga tgtcgttgtc gtcggagccg gcatttctgg 1320 cctcatcgcc acgcaactgt tggaccgcgc aggtctaaac atcaaatgct tcgaagcctg 1380 ctcaagagtt ggcggccgag cagtgtctgt ccaacagtcc gatttgttcc tggacctcgg 1440 cgcaacatgg ttctggctca acgaaccact tgtgcagcaa ctcgtcaata atctcggcct 1500 cggcacattc cctcaggcca tcgagggtga tgcgcttttt gagacgcttg tcgacgcccc 1560 gagccgcctg cggggtaacc ccatagacgc tgcttcaggc aggttccaag caggggcctc 1620 ctcgcttgcg ctcgggcttg cagcccagct caagccagga gttttagaac tcggggaccc 1680 cgtccattct ctcagtgagg aagatgggga aatcgttgtg aagtcttcca aacagattgt 1740 gagggcaaag cacgtcatca ttgcggttcc accggcactc gctgccgagt tgattggttt 1800 caccctagat ttaccagctg acgtgcgaaa agcagcgcat ccacaacata tagctgtgat 1860 gaattgggca aaggagaaat acaccttacc cacacaagcc gcatcggctg ggggttttgg 1920 gcatgagctg ttccaacaac cactcggaca tgggcgaatt cattgggcat caacggaagt 1980 tgccactgag tttggtggac accttgaagg cgcagttcgt gcaggaattc aggctgcgct 2040 tcaaacagga tttaatctaa aatcttaaac ctcgtatttt ccctgatagg ctcagatgcg 2100 cctgaaatcg ggcttgttga ggggagaggt gtgtgacatg aaagagttgg aactgggcga 2160 ggcgagggac gtcgctgcaa cgttggaagc gatgc 2195 <210> 18 <211> 2792 <212> DNA <213> Corynebacterium glutamicum <400> 18 cgagtccaag tgtggcccac tgttcgagta cttggtagct ggctgcttcg ccggaatagg 60 cgtttaatgc caggtcattt gtttcaaaca gttgattggt gaaagtggtt aaaccgcatg 120 tgtcgggtac cagaatgaac ggttcgtgct gagtctcgcg aagttctatg gggtcggtgc 180 tgtcctgggt ggattcgacg ataacgactg gttcggagtc aatgatgcgg tgttcaaaat 240 ggggtagtgg tttcactgcg ggaatgagaa ttacattaag ttcacctgca agaagtcctt 300 catgtagttc tttcatgttt gcttcgcgga gtactaggtc gtgtgctgtg ggaagctcac 360 gaaccgcggt atatgttcgt gcaaccagtt gagggttgat aagtggggag attccaactc 420 gaatgctgcg tgcttctgag ttaatcaaac ggtgcgcttc cgcggtgatt gcgtcgattt 480 cagtcagcgc gcgttggatc agggggagga tgtggaggcc aaaggacgtc ggggtgacgc 540 cttgagtaga tcgatcgaag agttgttcac cgagccgatc ttccagtttg gcgatgccgt 600 tggatagcgc aggttgggtg actccgtatt cgcgggctgc tgcgctgaat gagtgagttt 660 ctgcgacggc ctgcgcatag cggagccctt caaggctgag ccgtttggtc ataactatat 720 gttatccccc ttattcagag tgatggtcta ccggagaagt acccagacca atagcatcga 780 ccaacgatag cgcgctcaga agttctttag tgaaagcaga accaaatgcc caaatacatt 840 gccatgcagg tatccgaatc cggtgcaccg ttagccgcga atctcgtgca acctgctccg 900 ttgaaatcga gggaagtccg cgtggaaatc gctgctagtg gtgtgtgcca tgcagatatt 960 ggcacggcag cagcatcggg gaagcacact gtttttcctg ttacccctgg tcatgagatt 1020 gcaggaacca tcgcggaaat tggtgaaaac gtatctcggt ggacggttgg tgatcgcgtt 1080 gcaatcggtt ggtttggtgg caattgcggt gactgcgctt tttgtcgtgc aggtgatcct 1140 gtgcattgca gagagcggaa gattcctggc gtttcttatg cgggtggttg ggcacagaat 1200 attgttgttc cagcggaggc tcttgctgcg attccagatg gcatggactt ttacgaggcc 1260 gccccgatgg gctgcgcagg tgtgacaaca ttcaatgcgt tgcgaaacct gaagctggat 1320 cccggtgcgg ctgtcgcggt ctttggaatc ggcggtttag tgcgcctagc tattcagttt 1380 gctgcgaaaa tgggttatcg aaccatcacc atcgcccgcg gtttagagcg tgaggagcta 1440 gctaggcaac ttggcgccaa ccactacatc gatagcaatg atctgcaccc tggccaggcg 1500 ttatttgaac ttggcggggc tgacttgatc ttgtctactg cgtccaccac ggagcctctt 1560 tcggagttgt ctaccggtct ttctattggc gggcagctaa ccattatcgg agttgatggg 1620 ggagatatca ccgtttcggc agcccaattg atgatgaacc gtcagatcat cacaggtcac 1680 ctcactggaa gtgcgaatga cacggaacag actatgaaat ttgctcatct ccatggcgtg 1740 aaaccgctta ttgaacggat gcctctcgat caagccaacg aggctattgc acgtatttca 1800 gctggtaaac cacgtttccg tattgtcttg gagccgaatt cataatgcca acagcaagcc 1860 caatttatga tgtcgttgtc gtcggagccg gcatttctgg cctcatcgcc acgcaactgt 1920 tggaccgcgc aggtctaaac atcaaatgct tcgaagcctg ctcaagagtt ggcggccgag 1980 cagtgtctgt ccaacagtcc gatttgttcc tggacctcgg cgcaacatgg ttctggctca 2040 acgaaccact tgtgcagcaa ctcgtcaata atctcggcct cggcacattc cctcaggcca 2100 tcgagggtga tgcgcttttt gagacgcttg tcgacgcccc gagccgcctg cggggtaacc 2160 ccatagacgc tgcttcaggc aggttccaag caggggcctc ctcgcttgcg ctcgggcttg 2220 cagcccagct caagccagga gttttagaac tcggggaccc cgtccattct ctcagtgagg 2280 aagatgggga aatcgttgtg aagtcttcca aacagattgt gagggcaaag cacgtcatca 2340 ttgcggttcc accggcactc gctgccgagt tgattggttt caccctagat ttaccagctg 2400 acgtgcgaaa agcagcgcat ccacaacata tagctgtgat gaattgggca aaggagaaat 2460 acaccttacc cacacaagcc gcatcggctg ggggttttgg gcatgagctg ttccaacaac 2520 cactcggaca tgggcgaatt cattgggcat caacggaagt tgccactgag tttggtggac 2580 accttgaagg cgcagttcgt gcaggaattc aggctgcgct tcaaacagga tttaatctaa 2640 aatcttaaac ctcgtatttt ccctgatagg ctcagatgcg cctgaaatcg ggcttgttga 2700 ggggagaggt gtgtgacatg aaagagttgg aactgggcga ggcgagggac gtcgctgcaa 2760 cgttggaagc gatgccgatc caggaggtta tt 2792 <110> CJ CheilJedang Corporation <120> Corynebacteria producing L-lysine and a method of producing          L-lysine using the same <130> PN150224 <160> 18 <170> KoPatentin 3.0 <210> 1 <211> 339 <212> PRT <213> Corynebacterium glutamicum <400> 1 Met Pro Lys Tyr Ile Ala Met Gln Val Ser Glu Ser Gly Ala Pro Leu   1 5 10 15 Ala Ala Asn Leu Val Gln Pro Ala Pro Leu Lys Ser Arg Glu Val Arg              20 25 30 Val Glu Ile Ala Ala Ser Gly Val Cys His Ala Asp Ile Gly Thr Ala          35 40 45 Ala Ala Ser Gly Lys His Thr Val Phe Pro Val Thr Pro Gly His Glu      50 55 60 Ile Ala Gly Thr Ile Ala Glu Ile Gly Glu Asn Val Ser Arg Trp Thr  65 70 75 80 Val Gly Asp Arg Val Ala Ile Gly Trp Phe Gly Gly Asn Cys Gly Asp                  85 90 95 Cys Ala Phe Cys Arg Ala Gly Asp Pro Val His Cys Arg Glu Arg Lys             100 105 110 Ile Pro Gly Val Ser Tyr Ala Gly Gly Trp Ala Gln Asn Ile Val Val         115 120 125 Pro Ala Glu Ala Lea Ala Ale Pro Asp Gly Met Asp Phe Tyr Glu     130 135 140 Ala Ala Pro Met Gly Cys Ala Gly Val Thr Thr Phe Asn Ala Leu Arg 145 150 155 160 Asn Leu Lys Leu Asp Pro Gly Ala Ala Val Ala Val Phe Gly Ile Gly                 165 170 175 Gly Leu Val Arg Leu Ala Ile Gln Phe Ala Ala Lys Met Gly Tyr Arg             180 185 190 Thr Ile Thr Ile Ala Arg Gly Leu Glu Arg Glu Glu Leu Ala Arg Gln         195 200 205 Leu Gly Ala Asn His Tyr Ile Asp Ser Asn Asp Leu His Pro Gly Gln     210 215 220 Ala Leu Phe Glu Leu Gly Gly Ala Asp Leu Ile Leu Ser Thr Ala Ser 225 230 235 240 Thr Thr Glu Pro Leu Ser Glu Leu Ser Thr Gly Leu Ser Ile Gly Gly                 245 250 255 Gln Leu Thr Ile Ile Gly Val Asp Gly Asp Ile Thr Val Ser Ala             260 265 270 Ala Gln Leu Met Met Asn Arg Gln Ile Ile Thr Gly His Leu Thr Gly         275 280 285 Ser Ala Asn Asp Thr Glu Gln Thr Met Lys Phe Ala His Leu His Gly     290 295 300 Val Lys Pro Leu Ile Glu Arg Met Pro Leu Asp Gln Ala Asn Glu Ala 305 310 315 320 Ile Ala Arg Ile Ser Ala Gly Lys Pro Arg Phe Arg Ile Val Leu Glu                 325 330 335 Pro Asn Ser             <210> 2 <211> 1020 <212> DNA <213> Corynebacterium glutamicum <400> 2 cgcgaatctc 60 gtgcaacctg ctccgttgaa atcgagggaa gtccgcgtgg aaatcgctgc tagtggtgtg 120 tgccatgcag atattggcac ggcagcagca tcggggaagc acactgtttt tcctgttacc 180 cctggtcatg agattgcagg aaccatcgcg gaaattggtg aaaacgtatc tcggtggacg 240 gttggtgatc gcgttgcaat cggttggttt ggtggcaatt gcggtgactg cgctttttgt 300 cgtgcaggtg atcctgtgca ttgcagagag cggaagattc ctggcgtttc ttatgcgggt 360 ggttgggcac agaatattgt tgttccagcg gaggctcttg ctgcgattcc agatggcatg 420 gacttttacg aggccgcccc gatgggctgc gcaggtgtga caacattcaa tgcgttgcga 480 aacctgaagc tggatcccgg tgcggctgtc gcggtctttg gaatcggcgg tttagtgcgc 540 ctagctattc agtttgctgc gaaaatgggt tatcgaacca tcaccatcgc ccgcggttta 600 gagcgtgagg agctagctag gcaacttggc gccaaccact acatcgatag caatgatctg 660 caccctggcc aggcgttatt tgaacttggc ggggctgact tgatcttgtc tactgcgtcc 720 accacggagc ctctttcgga gttgtctacc ggtctttcta ttggcgggca gctaaccatt 780 atcggagttg atgggggaga tatcaccgtt tcggcagccc aattgatgat gaaccgtcag 840 atcatcacag gtcacctcac tggaagtgcg aatgacacgg aacagactat gaaatttgct 900 catctccatg gcgtgaaacc gcttattgaa cggatgcctc tcgatcaagc caacgaggct 960 attgcacgta tttcagctgg taaaccacgt ttccgtattg tcttggagcc gaattcataa 1020                                                                         1020 <210> 3 <211> 267 <212> PRT <213> Corynebacterium glutamicum <400> 3 Met Pro Thr Ala Ser Pro Ile Tyr Asp Val Val Val Gly Ala Gly   1 5 10 15 Ile Ser Gly Leu Ile Ala Thr Gln Leu Leu Asp Arg Ala Gly Leu Asn              20 25 30 Ile Lys Cys Phe Glu Ala Cys Ser Arg Val Gly Gly Arg Ala Val Ser          35 40 45 Val Gln Gln Ser Asp Leu Phe Leu Asp Leu Gly Ala Thr Trp Phe Trp      50 55 60 Leu Asn Glu Pro Leu Val Gln Gln Leu Val Asn Asn Leu Gly Leu Gly  65 70 75 80 Thr Phe Pro Gln Ale Ile Glu Gly Asp Ala Leu Phe Glu Thr Leu Val                  85 90 95 Asp Ala Pro Ser Arg Leu Arg Gly Asn Pro Ile Asp Ala Ala Ser Gly             100 105 110 Arg Phe Gln Ala Gly Ala Ser Ser Leu Ala Leu Gly Leu Ala Ala Gln         115 120 125 Leu Lys Pro Gly Val Leu Glu Leu Gly Asp Pro Val His Ser Leu Ser     130 135 140 Glu Glu Asp Gly Glu Ile Val Val Lys Ser Ser Lys Gln Ile Val Arg 145 150 155 160 Ala Lys His Val Ile Ile Ala Val Pro Ala Leu Ala Ala Glu Leu                 165 170 175 Ile Gly Phe Thr Leu Asp Leu Pro Ala Asp Val Arg Lys Ala Ala His             180 185 190 Pro Gln His Ile Ala Val Met Asn Trp Ala Lys Glu Lys Tyr Thr Leu         195 200 205 Pro Thr Gln Ala Ala Ser Ala Gly Gly Phe Gly His Glu Leu Phe Gln     210 215 220 Gln Pro Leu Gly His Gly Arg Ile His Trp Ala Ser Thr Glu Val Ala 225 230 235 240 Thr Glu Phe Gly Gly His Leu Glu Gly Ala Val Arg Ala Gly Ile Gln                 245 250 255 Ala Ala Leu Gln Thr Gly Phe Asn Leu Lys Ser             260 265 <210> 4 <211> 804 <212> DNA <213> Corynebacterium glutamicum <400> 4 atgccaacag caagcccaat ttatgatgtc gttgtcgtcg gagccggcat ttctggcctc 60 atcgccacgc aactgttgga ccgcgcaggt ctaaacatca aatgcttcga agcctgctca 120 agagttggcg gccgagcagt gtctgtccaa cagtccgatt tgttcctgga cctcggcgca 180 acatggttct ggctcaacga accacttgtg cagcaactcg tcaataatct cggcctcggc 240 acattccctc aggccatcga gggtgatgcg ctttttgaga cgcttgtcga cgccccgagc 300 cgcctgcggg gtaaccccat agacgctgct tcaggcaggt tccaagcagg ggcctcctcg 360 cttgcgctcg ggcttgcagc ccagctcaag ccaggagttt tagaactcgg ggaccccgtc 420 cattctctca gtgaggaaga tggggaaatc gttgtgaagt cttccaaaca gattgtgagg 480 gcaaagcacg tcatcattgc ggttccaccg gcactcgctg ccgagttgat tggtttcacc 540 ctagatttac cagctgacgt gcgaaaagca gcgcatccac aacatatagc tgtgatgaat 600 tgggcaaagg agaaatacac cttacccaca caagccgcat cggctggggg ttttgggcat 660 gagctgttcc aacaaccact cggacatggg cgaattcatt gggcatcaac ggaagttgcc 720 actgagtttg gtggacacct tgaaggcgca gttcgtgcag gaattcaggc tgcgcttcaa 780 acaggattta atctaaaatc ttaa 804 <210> 5 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 5 acgacgggat cagtaccga 19 <210> 6 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 6 agctatctgt cgcagcgcc 19 <210> 7 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 7 aaactagtgc ggagtactag gtcgtg 26 <210> 8 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 8 aaactagttt atgaattcgg ctccaa 26 <210> 9 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 9 aaactagtgg aatcggcggt ttagtg 26 <210> 10 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 10 aaactagtct gatcaataac ctcc 24 <210> 11 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 11 aactcgagat agggagcgtt gacctt 26 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 12 ggcatatgtg tttcctttcg ttggg 25 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 13 cacatatgcc caaatacatt gccat 25 <210> 14 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 14 aaactagtat ccagcttcag gtttcgca 28 <210> 15 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 15 aatctagaag tactaggtcg tgtgctgt 28 <210> 16 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> synthetic polynucleotide <400> 16 aactcgagtt ggttctgctt tcactaaa 28 <210> 17 <211> 2195 <212> DNA <213> Corynebacterium glutamicum <400> 17 ttccagtttg gcgatgccgt tggatagcgc aggttgggtg actccgtatt cgcgggctgc 60 tgcgctgaat gagtgagttt ctgcgacggc ctgcgcatag cggagccctt caaggctgag 120 ccgtttggtc ataactatat gttatccccc ttattcagag tgatggtcta ccggagaagt 180 acccagacca atagcatcga ccaacgatag cgcgctcaga agttctttag tgaaagcaga 240 accaaatgcc caaatacatt gccatgcagg tatccgaatc cggtgcaccg ttagccgcga 300 atctcgtgca acctgctccg ttgaaatcga gggaagtccg cgtggaaatc gctgctagtg 360 gtgtgtgcca tgcagatatt ggcacggcag cagcatcggg gaagcacact gtttttcctg 420 ttacccctgg tcatgagatt gcaggaacca tcgcggaaat tggtgaaaac gtatctcggt 480 ggacggttgg tgatcgcgtt gcaatcggtt ggtttggtgg caattgcggt gactgcgctt 540 tttgtcgtgc aggtgatcct gtgcattgca gagagcggaa gattcctggc gtttcttatg 600 cgggtggttg ggcacagaat attgttgttc cagcggaggc tcttgctgcg attccagatg 660 gcatggactt ttacgaggcc gccccgatgg gctgcgcagg tgtgacaaca ttcaatgcgt 720 tgcgaaacct gaagctggat cccggtgcgg ctgtcgcggt ctttggaatc ggcggtttag 780 tgcgcctagc tattcagttt gctgcgaaaa tgggttatcg aaccatcacc atcgcccgcg 840 gtttagagcg tgaggagcta gctaggcaac ttggcgccaa ccactacatc gatagcaatg 900 atctgcaccc tggccaggcg ttatttgaac ttggcggggc tgacttgatc ttgtctactg 960 cgtccaccac ggagcctctt tcggagttgt ctaccggtct ttctattggc gggcagctaa 1020 ccattatcgg agttgatggg ggagatatca ccgtttcggc agcccaattg atgatgaacc 1080 gtcagatcat cacaggtcac ctcactggaa gtgcgaatga cacggaacag actatgaaat 1140 ttgctcatct ccatggcgtg aaaccgctta ttgaacggat gcctctcgat caagccaacg 1200 aggctattgc acgtatttca gctggtaaac cacgtttccg tattgtcttg gagccgaatt 1260 cataatgcca acagcaagcc caatttatga tgtcgttgtc gtcggagccg gcatttctgg 1320 cctcatcgcc acgcaactgt tggaccgcgc aggtctaaac atcaaatgct tcgaagcctg 1380 ctcaagagtt ggcggccgag cagtgtctgt ccaacagtcc gatttgttcc tggacctcgg 1440 cgcaacatgg ttctggctca acgaaccact tgtgcagcaa ctcgtcaata atctcggcct 1500 cggcacattc cctcaggcca tcgagggtga tgcgcttttt gagacgcttg tcgacgcccc 1560 gagccgcctg cggggtaacc ccatagacgc tgcttcaggc aggttccaag caggggcctc 1620 ctcgcttgcg ctcgggcttg cagcccagct caagccagga gttttagaac tcggggaccc 1680 cgtccattct ctcagtgagg aagatgggga aatcgttgtg aagtcttcca aacagattgt 1740 gagggcaaag cacgtcatca ttgcggttcc accggcactc gctgccgagt tgattggttt 1800 cccctagat ttaccagctg acgtgcgaaa agcagcgcat ccacaacata tagctgtgat 1860 gaattgggca aaggagaaat acaccttacc cacacaagcc gcatcggctg ggggttttgg 1920 gcatgagctg ttccaacaac cactcggaca tgggcgaatt cattgggcat caacggaagt 1980 tgccactgag tttggtggac accttgaagg cgcagttcgt gcaggaattc aggctgcgct 2040 tcaaacagga tttaatctaa aatcttaaac ctcgtatttt ccctgatagg ctcagatgcg 2100 cctgaaatcg ggcttgttga ggggagaggt gtgtgacatg aaagagttgg aactgggcga 2160 ggcgagggac gtcgctgcaa cgttggaagc gatgc 2195 <210> 18 <211> 2792 <212> DNA <213> Corynebacterium glutamicum <400> 18 cgagtccaag tgtggcccac tgttcgagta cttggtagct ggctgcttcg ccggaatagg 60 cgtttaatgc caggtcattt gtttcaaaca gttgattggt gaaagtggtt aaaccgcatg 120 tgtcgggtac cagaatgaac ggttcgtgct gagtctcgcg aagttctatg gggtcggtgc 180 tgtcctgggt ggattcgacg ataacgactg gttcggagtc aatgatgcgg tgttcaaaat 240 ggggtagtgg tttcactgcg ggaatgagaa ttacattaag ttcacctgca agaagtcctt 300 catgtagttc tttcatgttt gcttcgcgga gtactaggtc gtgtgctgtg ggaagctcac 360 gaaccgcggt atatgttcgt gcaaccagtt gagggttgat aagtggggag attccaactc 420 gaatgctgcg tgcttctgag ttaatcaaac ggtgcgcttc cgcggtgatt gcgtcgattt 480 cagtcagcgc gcgttggatc agggggagga tgtggaggcc aaaggacgtc ggggtgacgc 540 cttgagtaga tcgatcgaag agttgttcac cgagccgatc ttccagtttg gcgatgccgt 600 tggatagcgc aggttgggtg actccgtatt cgcgggctgc tgcgctgaat gagtgagttt 660 ctgcgacggc ctgcgcatag cggagccctt caaggctgag ccgtttggtc ataactatat 720 gttatccccc ttattcagag tgatggtcta ccggagaagt acccagacca atagcatcga 780 ccaacgatag cgcgctcaga agttctttag tgaaagcaga accaaatgcc caaatacatt 840 gccatgcagg tatccgaatc cggtgcaccg ttagccgcga atctcgtgca acctgctccg 900 ttgaaatcga gggaagtccg cgtggaaatc gctgctagtg gtgtgtgcca tgcagatatt 960 ggcacggcag cagcatcggg gaagcacact gtttttcctg ttacccctgg tcatgagatt 1020 gcaggaacca tcgcggaaat tggtgaaaac gtatctcggt ggacggttgg tgatcgcgtt 1080 gcaatcggtt ggtttggtgg caattgcggt gactgcgctt tttgtcgtgc aggtgatcct 1140 gtgcattgca gagagcggaa gattcctggc gtttcttatg cgggtggttg ggcacagaat 1200 attgttgttc cagcggaggc tcttgctgcg attccagatg gcatggactt ttacgaggcc 1260 gccccgatgg gctgcgcagg tgtgacaaca ttcaatgcgt tgcgaaacct gaagctggat 1320 cccggtgcgg ctgtcgcggt ctttggaatc ggcggtttag tgcgcctagc tattcagttt 1380 gctgcgaaaa tgggttatcg aaccatcacc atcgcccgcg gtttagagcg tgaggagcta 1440 gctaggcaac ttggcgccaa ccactacatc gatagcaatg atctgcaccc tggccaggcg 1500 ttatttgaac ttggcggggc tgacttgatc ttgtctactg cgtccaccac ggagcctctt 1560 tcggagttgt ctaccggtct ttctattggc gggcagctaa ccattatcgg agttgatggg 1620 ggagatatca ccgtttcggc agcccaattg atgatgaacc gtcagatcat cacaggtcac 1680 ctcactggaa gtgcgaatga cacggaacag actatgaaat ttgctcatct ccatggcgtg 1740 aaaccgctta ttgaacggat gcctctcgat caagccaacg aggctattgc acgtatttca 1800 gctggtaaac cacgtttccg tattgtcttg gagccgaatt cataatgcca acagcaagcc 1860 caatttatga tgtcgttgtc gtcggagccg gcatttctgg cctcatcgcc acgcaactgt 1920 tggaccgcgc aggtctaaac atcaaatgct tcgaagcctg ctcaagagtt ggcggccgag 1980 cagtgtctgt ccaacagtcc gatttgttcc tggacctcgg cgcaacatgg ttctggctca 2040 acgaaccact tgtgcagcaa ctcgtcaata atctcggcct cggcacattc cctcaggcca 2100 tcgagggtga tgcgcttttt gagacgcttg tcgacgcccc gagccgcctg cggggtaacc 2160 ccatagacgc tgcttcaggc aggttccaag caggggcctc ctcgcttgcg ctcgggcttg 2220 cagcccagct caagccagga gttttagaac tcggggaccc cgtccattct ctcagtgagg 2280 aagatgggga aatcgttgtg aagtcttcca aacagattgt gagggcaaag cacgtcatca 2340 ttgcggttcc accggcactc gctgccgagt tgattggttt caccctagat ttaccagctg 2400 acgtgcgaaa agcagcgcat ccacaacata tagctgtgat gaattgggca aaggagaaat 2460 acaccttacc cacacaagcc gcatcggctg ggggttttgg gcatgagctg ttccaacaac 2520 cactcggaca tgggcgaatt cattgggcat caacggaagt tgccactgag tttggtggac 2580 accttgaagg cgcagttcgt gcaggaattc aggctgcgct tcaaacagga tttaatctaa 2640 aatcttaaac ctcgtatttt ccctgatagg ctcagatgcg cctgaaatcg ggcttgttga 2700 ggggagaggt gtgtgacatg aaagagttgg aactgggcga ggcgagggac gtcgctgcaa 2760 cgttggaagc gatgccgatc caggaggtta tt 2792

Claims (4)

서열번호 1의 폴리펩티드의 활성이 강화된 L-라이신을 생산하는 코리네박테리움 속 미생물.
A Corynebacterium sp. Microorganism producing L-lysine with enhanced activity of the polypeptide of SEQ ID NO: 1.
제1항에 있어서, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰인, 코리네박테리움 속 미생물.
The microorganism of claim 1, wherein the microorganism belonging to the genus Corynebacterium is Corynebacterium glutamicum.
제1항의 코리네박테리움 속 미생물을 배지에서 배양하는 단계; 및
상기 배양된 미생물, 배양 배지 또는 상기 배양된 미생물 및 배양 배지의 혼합물로부터 L-라이신을 회수하는 단계를 포함하는 L-라이신을 생산하는 방법.
Culturing the microorganism of genus Corynebacterium according to claim 1 in a medium; And
And recovering L-lysine from the cultured microorganism, the culture medium or a mixture of the cultured microorganism and the culture medium.
제3항에 있어서, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰인, L-라이신을 생산하는 방법.4. The method according to claim 3, wherein the Corynebacterium sp. Microorganism produces Corynebacterium glutamicum, L-lysine.
KR1020160181968A 2016-12-29 2016-12-29 Corynebacteria producing L-lysine and a method of producing L-lysine using the same KR101917480B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160181968A KR101917480B1 (en) 2016-12-29 2016-12-29 Corynebacteria producing L-lysine and a method of producing L-lysine using the same
PCT/KR2017/014369 WO2018124533A1 (en) 2016-12-29 2017-12-08 Corynebacterium sp. microorganism for producing l-lysine and method for producing l-lysine by using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160181968A KR101917480B1 (en) 2016-12-29 2016-12-29 Corynebacteria producing L-lysine and a method of producing L-lysine using the same

Publications (2)

Publication Number Publication Date
KR20180077528A true KR20180077528A (en) 2018-07-09
KR101917480B1 KR101917480B1 (en) 2018-11-09

Family

ID=62709592

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160181968A KR101917480B1 (en) 2016-12-29 2016-12-29 Corynebacteria producing L-lysine and a method of producing L-lysine using the same

Country Status (2)

Country Link
KR (1) KR101917480B1 (en)
WO (1) WO2018124533A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090077738A (en) * 1999-12-16 2009-07-15 교와 핫꼬 기린 가부시키가이샤 Novel polypeptides

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9169502B2 (en) * 2010-06-15 2015-10-27 Paik Kwang Industrial Co., Ltd. Method of producing L-lysine using a Corynebacterium glutamicum microorganism
KR101539370B1 (en) * 2014-05-14 2015-07-24 씨제이제일제당 주식회사 A microorganism of corynebacterium genus having enhanced L-lysine productivity and method for producing L-lysine using the same
KR101760219B1 (en) * 2016-09-26 2017-07-21 씨제이제일제당 (주) A microorganism having enhanced L-lysine productivity and a method of producing L-lysine using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090077738A (en) * 1999-12-16 2009-07-15 교와 핫꼬 기린 가부시키가이샤 Novel polypeptides

Also Published As

Publication number Publication date
WO2018124533A1 (en) 2018-07-05
KR101917480B1 (en) 2018-11-09

Similar Documents

Publication Publication Date Title
CN113544141B (en) Microorganism comprising mutant LysE and method for producing L-amino acid using the same
RU2733425C1 (en) Novel promoter and use thereof
KR101776375B1 (en) Pyruvate dehydrogenase variants, a microorganism comprising the same and a method for producing L-amino acid using the same
CN113046288B (en) Microorganism of corynebacterium genus producing L-amino acid and method for producing L-amino acid using the same
AU2016284767B2 (en) Microorganisms for producing putrescine or ornithine and process for producing putrescine or ornithine using them
JP6286571B2 (en) Corynebacterium microorganism having improved L-lysine production ability, and L-lysine production method using the same
US11104925B2 (en) Microorganism producing L-lysine and method for producing L-lysine using the same
KR101530819B1 (en) A microorganism having enhanced l-lysine productivity and method of producing l-lysine using the same
KR101766964B1 (en) A microorganism of corynebacterium genus having L-lysine productivity and method for producing L-lysine using the same
KR20220003476A (en) Microorganism having inhanced activity of 3-methyl-2-oxobutanoate hydroxymethyltransferase and uses thereof
KR101740807B1 (en) A microorganism of corynebacterium genus having L-lysine productivity and method for producing L-lysine using the same
JP6859437B2 (en) Corynebacterium microorganisms that produce L-lysine and methods for producing L-lysine using them
KR101601404B1 (en) A microorganism having enhanced L-lysine productivity and a method of producing L-lysine using the same
JP2024506841A (en) Prephenate dehydratase mutant and branched chain amino acid production method using the same
CN110234767B (en) Microorganism of corynebacterium genus for producing L-arginine and method for producing L-arginine using the same
KR101917480B1 (en) Corynebacteria producing L-lysine and a method of producing L-lysine using the same
KR102589135B1 (en) Microorganism having inhanced activity of 3-methyl-2-oxobutanoate hydroxymethyltransferase and uses thereof
CN115175993B (en) Novel modified polypeptide having reduced citrate synthase activity and method for producing L-amino acid using the same
CN114134062A (en) Corynebacterium glutamicum mutant strain having improved L-lysine productivity and method for producing L-lysine using the same
KR101755767B1 (en) A microorganism having enhanced L-lysine productivity and a method of producing L-lysine using the same
KR102703188B1 (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
EP4446417A1 (en) Corynebacterium glutamicum variant having improved l-lysine production ability and method for producing l-lysine by using same
KR20220083557A (en) Mutant ATP-dependent protease and method for producing L-amino acid using the same
JP2024515389A (en) Corynebacterium glutamicum mutant with improved L-lysine production ability and method for producing L-lysine using the same
KR101495742B1 (en) Recombinant vector comprising sod promoter derived from coryneform bacteria, transformed host cell and method for producing amino acid using the same

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20161229

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20180403

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20181029

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20181105

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20181105

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20210823

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20220825

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20240822

Start annual number: 7

End annual number: 7