KR20180031392A - Process Of Producing High―Tenacity Brading Tube Fraim Using Carbon Tow Fiber Prepreg - Google Patents
Process Of Producing High―Tenacity Brading Tube Fraim Using Carbon Tow Fiber Prepreg Download PDFInfo
- Publication number
- KR20180031392A KR20180031392A KR1020160119945A KR20160119945A KR20180031392A KR 20180031392 A KR20180031392 A KR 20180031392A KR 1020160119945 A KR1020160119945 A KR 1020160119945A KR 20160119945 A KR20160119945 A KR 20160119945A KR 20180031392 A KR20180031392 A KR 20180031392A
- Authority
- KR
- South Korea
- Prior art keywords
- carbon fiber
- braiding
- fiber tow
- tow prepreg
- type
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title description 3
- 229910052799 carbon Inorganic materials 0.000 title description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 62
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 60
- 239000004917 carbon fiber Substances 0.000 claims abstract description 60
- 238000009954 braiding Methods 0.000 claims abstract description 30
- 229920005989 resin Polymers 0.000 claims abstract description 21
- 239000011347 resin Substances 0.000 claims abstract description 21
- 239000007788 liquid Substances 0.000 claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 claims abstract description 17
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 15
- 239000003795 chemical substances by application Substances 0.000 claims description 23
- 239000003822 epoxy resin Substances 0.000 claims description 19
- 229920000647 polyepoxide Polymers 0.000 claims description 19
- 239000003085 diluting agent Substances 0.000 claims description 9
- 229930185605 Bisphenol Natural products 0.000 claims description 7
- 125000002723 alicyclic group Chemical group 0.000 claims description 7
- 150000001412 amines Chemical class 0.000 claims description 7
- 150000004982 aromatic amines Chemical class 0.000 claims description 7
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 7
- 229920003986 novolac Polymers 0.000 claims description 7
- DPRMFUAMSRXGDE-UHFFFAOYSA-N ac1o530g Chemical compound NCCN.NCCN DPRMFUAMSRXGDE-UHFFFAOYSA-N 0.000 claims description 6
- 239000004841 bisphenol A epoxy resin Substances 0.000 claims description 6
- 239000004593 Epoxy Substances 0.000 claims description 4
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- YSUQLAYJZDEMOT-UHFFFAOYSA-N 2-(butoxymethyl)oxirane Chemical compound CCCCOCC1CO1 YSUQLAYJZDEMOT-UHFFFAOYSA-N 0.000 claims description 3
- -1 oxypropylene group Chemical group 0.000 claims description 3
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 claims description 2
- 150000004984 aromatic diamines Chemical class 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000012783 reinforcing fiber Substances 0.000 claims 1
- 238000000465 moulding Methods 0.000 abstract description 14
- 239000000835 fiber Substances 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 7
- 230000007797 corrosion Effects 0.000 abstract description 2
- 238000005260 corrosion Methods 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract description 2
- 238000004904 shortening Methods 0.000 abstract 2
- 239000002131 composite material Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000005470 impregnation Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000009745 resin transfer moulding Methods 0.000 description 6
- 238000003892 spreading Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920001431 Long-fiber-reinforced thermoplastic Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
- B29C70/46—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
- B29C70/48—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/54—Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D12/00—Producing frames
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2063/00—Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2307/00—Use of elements other than metals as reinforcement
- B29K2307/04—Carbon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Epoxy Resins (AREA)
Abstract
Description
본 발명은 탄소섬유 토우 프리프레그를 브레이딩하여 다축섬유 구조의 프리폼을 프레임 금형에 안착한 후, 열경화형수지액에 함침한 후 고온경화 후 탈형하여 탄소섬유 토우프리프레그 브레이딩 튜브 프레임을 제조하는 방법이다.The present invention relates to a method of manufacturing a carbon fiber tow prepreg braiding tube frame by impregnating a thermosetting resin liquid after placing a preform of a multiaxial fiber structure on a frame mold by braiding a carbon fiber tow prepreg, to be.
최근 들어 가장 각광을 받고 있는 브레이드 성형품, 골프, 낚시대 등의 레져 및 동·하계 스포츠 용품과 관련하여 고기능성, 초경량성의 용품에 대한 수요자의 관심이 급증되고 있다. 특히, 레저 스포츠용 브레이드 성형품의 대명사로 알려진 산악용 브레이드성형품(Mountain Bike)의 경우, 초기 모델의 대부분은 스틸(Steel, 강철)소재의 프레임으로 제작되었으며, 이러한 스틸은 값 싸고 용접이 쉬워 쉽게 프레임을 만들 수 있다는 장점이 있었지만 무게가 무겁고 쉽게 녹이 스는 단점이 있었다. In recent years, interest in high functional and ultra lightweight products has been increasing rapidly in relation to leisure products such as braided molding products, golf clubs, fishing rods, and sports articles for the winter and summer, which are most popular. Particularly in mountain bikes, which are synonymous with leisure sports braided parts, most of the early models are made of steel, which is cheap and easy to weld, It has the advantage of being able to be made, but it is heavy and easily rusty.
결국 업계는 알루미늄 합금으로 눈을 돌리게 되었고, 1983년 캐논데일(Cannondale)이 알루미늄을 사용한 MTB를 대량생산하기에 이르렀으며, 80년대 중반부터는 티타늄과 카본이 새로운 프레임 소재로 등장하였는데 이들 중 탄소섬유를 이용한 복합재료 소재는 80년대 중반에 이르러 일부 부품과 프레임 소재로 일반인에게 소개되었고, 이후 경량성, 강성, 내구성, 내충격성 등 우수한 기계적 성능을 강조하며 확산되기 시작되었다.Ultimately, the industry turned to aluminum alloys, and Cannondale was able to mass-produce aluminum-based MTBs in 1983. From the mid-'80s titanium and carbon emerged as new frame materials, Composite materials used were introduced to the general public with some parts and frame materials in the mid 80 's and then started spreading with emphasis on excellent mechanical properties such as light weight, rigidity, durability and impact resistance.
최근 들어 가장 각광을 받고 있는 브레이드성형품, 골프, 낚시대 등의 레져 및 동·하계 스포츠 용품과 관련하여 섬유소재를 이용한 복합재료의 적용은 1960년대 후반의 스키의 GFRP(Glass Fiber Reinforced Plastics), 1970년대 전반의 골프클럽에의 CFRP (Carbon Fiber Reinforced Plastics) 적용을 시작으로 다양한 스포츠 용품에 각종 선진 신소재가 사용되고 있다. 브레이드성형품 관련 산업에서 섬유소재를 이용한 복합소재의 활용은 1970년대 중반 브레이드성형품 프레임에 탄소섬유(Carbon fiber bicycle frame)가 처음 적용되면서 1980년대에 들어 섬유강화 복합재료(fibrous composite)를 이용한 브레이드성형품 프레임의 활용에 관한 연구가 집중되고 있다.In recent years, the application of composite materials using fiber materials in relation to the most popular items such as braided molding products, golf clubs, fishing gear, and sports equipment for winter and winter has been applied to GFRP (Glass Fiber Reinforced Plastics) Starting with CFRP (Carbon Fiber Reinforced Plastics) applied to golf clubs in the first half, advanced new materials are being used in various sports goods. The application of composite materials using fiber materials in the related industries of the braided molding products was first applied to the carbon fiber bicycle frame in the middle of the 1970s, and since the 1980s, the use of the fiber reinforced composite (fibrous composite) Research on the use of
현재 탄소섬유 복합재료는 대부분 카본 직조물에 폴리머를 합침 하는 형태로서 고가이며 생산속도가 상대적으로 느리다. 최근에는 탄소섬유 복합재료 핵심요소기술로 고속성형 기술이 요구되고 있는데, 장섬유 열가소성 복합재료의 경우 생산속도가 월등하고 디자인 자유도가 매우 높다.Currently, most of carbon fiber composite materials are high cost and relatively slow production rate because they form a polymer in a carbon fiber. In recent years, high-speed molding technology is required as a core element technology of carbon fiber composite material. In the case of long fiber thermoplastic composite material, production speed is high and design freedom is very high.
기존의 탄소복합재료를 이용한 튜브타입의 복합재료를 제조하는 주요공법은 prepreg lay up공정으로서 제품생산시간이 길고 생산공정 코스트가 높은 문제점이 있었다. 특히 탄소섬유제품은 수지의 함침이 어려워 최종제품의 인장강도 및 접착력이 약한 문제점이 있었다.The main method of manufacturing a tube type composite material using a conventional carbon composite material is a prepreg lay up process, which has a problem that the production time is long and the production process cost is high. In particular, carbon fiber products have difficulty in impregnating the resin, resulting in weak tensile strength and adhesion of the final product.
그러므로 본 발명에 의하면 탄소섬유토우 프리프레그를 브레이딩 소재로 활용하여 기존의 탄소섬유에 대한 수지함침의 공정이 갖고 있는 문제점을 해결하였으며, 열성형시 10분 이내로 성형시간을 단축시킬 수 있는 RTM(Resin transfer molding)성형용 열경화형수지액을 주입하여 함침하여 고속성형이 가능하면서도 인장강도 및 수지와 탄소섬유간의 접착력이 우수한 고강도 탄소섬유토우 프리프레그 브레이딩 튜브 프레임의 제조방법을 제공하는 것을 기술적과제로 한다.Therefore, according to the present invention, the problem of the resin impregnation process for the existing carbon fiber is solved by using the carbon fiber tow prepreg as the braiding material, and the RTM (which can shorten the molding time within 10 minutes in the thermoforming) A method of manufacturing a high strength carbon fiber toe prepreg braiding tube frame excellent in tensile strength and adhesion between resin and carbon fiber, which is capable of high speed molding by impregnation with a thermosetting resin liquid for molding. .
그러므로 본 발명에 의하면, 비스페놀형, 노블락형, 방향족 아민형, 지환형 중 어느 하나 이상인 에폭시 수지 30~60중량%, 잔부로 비 반응성 용제를 혼합하여 탄소섬유토우를 함침한 후, 80~100℃에서 오픈 건조하여 고화시켜 표면의 점성이 20~50gf인 탄소섬유토우 프리프레그를 만든 후,According to the present invention, 30 to 60% by weight of an epoxy resin, which is at least one of a bisphenol type, a novolac type, an aromatic amine type and an alicyclic type, is mixed with a nonreactive solvent and the carbon fiber tow is impregnated. And then solidified to prepare a carbon fiber tow prepreg having a surface viscosity of 20 to 50 gf,
상기 탄소섬유토우 프리프레그를 브레이딩머신(Braiding machine)을 이용하여 삼차원적인 넷트형태(Net-Shape)로 탄소섬유브레이드를 제조한 후,The carbon fiber tow prepreg was formed into a carbon fiber braid in a three-dimensional net shape using a braiding machine,
비스페놀형, 노블락형, 방향족 아민형, 지환형 중 어느 하나 이상인 에폭시 수지 50~80중량%, 반응형 희석제 5~15중량%, 경화제로서 주쇄에 옥시프로필렌기를 가지는 에폭시 상온경화제인 Polyetheramine과 Cycloaliphatic amine을 혼합한 경화제를 15~35중량%를 함유한 열경화형 에폭시 수지액을 준비한 후, 50 to 80% by weight of an epoxy resin having at least one of a bisphenol type, a novolac type, an aromatic amine type and an alicyclic type, 5 to 15% by weight of a reactive diluent, a polyetheramine and a cycloaliphatic amine as epoxy curing agents having an oxypropylene group in the main chain as a curing agent After preparing a thermosetting epoxy resin liquid containing 15 to 35% by weight of a mixed curing agent,
상기 탄소섬유브레이드를 금형에 안착한 후, After the carbon fiber braid is seated on a mold,
상기 금형내부에 상기 열경화형수지액을 주입하여 탄소섬유브레이드에 RTM공법으로 함침한 후,The thermosetting resin liquid was injected into the mold, impregnated into the carbon fiber braid by the RTM method,
120~140℃, 3~6분에서 고온경화후 탈형하는 것을 특징으로 하는 고강도 탄소섬유토우 프리프레그 브레이딩 튜브 프레임의 제조방법이 제공된다. Strength carbon fiber toe prepreg braiding tube frame is characterized in that the high-strength carbon fiber tow prepreg braiding tube frame is demolded after high-temperature curing at 120 to 140 ° C for 3 to 6 minutes.
이하 본 발명을 보다 상세히 설명하기로 한다. Hereinafter, the present invention will be described in more detail.
본 발명의 고강도 탄소섬유토우 프리프레그 브레이딩 튜브 프레임의 제조방법은 탄소섬유를 원료로 하여 탄소섬유토우 프리프레그를 제조한 후 이를 이용하여 탄소섬유브레이드를 만든후 금형에 안착시켜 열경화형수지액을 함침하여 RTM공법으로 함침하는 방법이다. The method for manufacturing a high strength carbon fiber toe prepreg braiding tube frame of the present invention comprises the steps of preparing a carbon fiber tow prepreg using carbon fiber as a raw material, making a carbon fiber braid using the carbon fiber tow prepreg, Impregnation and impregnation by RTM method.
먼저 탄소섬유토우 프리프레그를 제조하기 위해, 비스페놀형, 노블락형, 방향족 아민형, 지환형 중 어느 하나 이상인 에폭시 수지 30~60중량%, 잔부로 비 반응성 용제를 혼합하여 탄소섬유토우를 함침한 후, 80~100℃에서 오픈 건조하여 고화시켜 표면의 점성이 20~50gf인 탄소섬유토우 프리프레그를 만든다. 상기 에폭시 수지는 비스페놀형, 노블락형, 방향족 아민형, 지환형 중 어느 하나를 사용할 수 도 있고, 하나이상을 혼합하여 사용할수도 있다. 상기 비 반응성 용제는 아세톤, 자일렌, 톨루엔 중 어느 하나를 사용할 수 있다.First, in order to prepare a carbon fiber tow prepreg, 30 to 60% by weight of an epoxy resin having at least one of bisphenol type, novolac type, aromatic amine type and alicyclic type is mixed with a nonreactive solvent to impregnate the carbon fiber tow , And then dried and solidified at a temperature of 80 to 100 ° C to obtain a carbon fiber tow prepreg having a surface viscosity of 20 to 50 gf. The epoxy resin may be any one of bisphenol type, novolak type, aromatic amine type and alicyclic type, and one or more of them may be used in combination. The non-reactive solvent may be any one of acetone, xylene, and toluene.
에폭시 수지 30중량%미만에서는 섬유 펼침현상이 심하여 토우섬유다발이 흐트러지는 문제점이 발생하며, 60중량%초과에서는 토우 프리프레그 표면의 점성(tackness)이 향상되어 브레이딩(braiding) 작업 시에 토우 프리프레그의 점착특성에 의해 브레이드제작에 문제점이 발생하며, 함량이 높아질수록 상온 고화현상이 발생하여 저장안정성 및 소재 자체의 취성(brittle)이 증가하여 브레이딩 공정시 제직에 문제점이 발생한다. When the epoxy resin is less than 30% by weight, there is a problem that the bundle of the tow fibers is disturbed due to a severe fiber spreading phenomenon. When the amount exceeds 60% by weight, tackness of the surface of the tow prepreg is improved, Problems occur in the production of braids due to the adhesive properties of the legs. As the content is increased, solidification at room temperature occurs, resulting in increased storage stability and brittleness of the material itself, resulting in problems in weaving in the braiding process.
본 발명에서 탄소섬유 프레임의 주요구성인 탄소섬유 3~12K 토우 필라멘트사를 섬유펼침(spreading)공정으로 제조한 탄소섬유토우 프리프레그를 사용하여 브레이딩머신(Braiding machine)을 이용하여 삼차원적인 넷트형태(Net-Shape)로 제조하는데, 상기 브레이딩머신(Braiding machine)은 Triaxial Over Braiding machine으로서 권취장치를 로봇을 이용함으로써 왕복이동 모션을 통해 두께 방향으로 여러 겹을 제조할 수 있는 Braiding System으로 Braiding Angle, 권취속도, Braiding Horn Gear 회전속도 등의 변수 등을 고려하여 다축섬유 구조 프리폼인 삼차원적인 넷트형태(Net-Shape)의 탄소섬유브레이드를 제조한다.In the present invention, a carbon fiber tow prepreg prepared by a fiber spreading process of a carbon fiber 3 to 12K tofilament yarn, which is a main constituent of a carbon fiber frame, is used to form a three-dimensional net shape using a braiding machine (Braiding machine) is a triaxial over braiding machine. It is a braiding system that can manufacture multiple layers in the thickness direction through reciprocating motion by using a robot as a winding device. It is composed of Braiding Angle, (Net-shape) carbon fiber braid, which is a multifiber fiber structure preform, is manufactured in consideration of the factors such as the winding speed, the winding speed, and the rotational speed of the braiding horn gear.
이후 탄소섬유브레이드에 RTM공법으로 함침하기 위한 열경화형 에폭시 수지액을 준비하는데, 본 발명에서는 에폭시 수지 50~80중량%, 반응형 희석제 5~15중량%, 경화제로서 주쇄에 옥시프로필렌기를 가지는 에폭시 상온경화제인 Polyetheramine과 Cycloaliphatic amine을 혼합한 경화제를 15~35중량%를 함유한 열경화형 에폭시 수지액을 사용한다. 상기 에폭시 수지는 비스페놀형, 노블락형, 방향족 아민형, 지환형 중 어느 하나를 사용할 수 도 있고, 하나이상을 혼합하여 사용할 수도 있다. Thereafter, a thermosetting epoxy resin liquid for impregnating the carbon fiber braid with the RTM method is prepared. In the present invention, 50 to 80% by weight of an epoxy resin and 5 to 15% by weight of a reactive diluent are mixed with an epoxy room temperature A thermosetting epoxy resin liquid containing 15 to 35% by weight of a curing agent obtained by mixing a polyetheramine as a curing agent and a cycloaliphatic amine is used. The epoxy resin may be any one of bisphenol type, novolak type, aromatic amine type and alicyclic type, and one or more of them may be used in combination.
상기 에폭시 수지 50중량%미만에서는 주제와 경화제간의 폭발적인 반응에 의해 함침이 불균일하게 되는 문제점이 발생하며, 80중량%초과에서는 경화반응이 서서히 일어나 생산성에 문제점이 발생한다. 반응형 희석제 5중량%미만에서는 수지의 점도변화가 나타나지 않는 문제점이 발생하며, 15중량%초과에서는 수지의 점성이 감소하여 금형외부로 오버플로우(Over flow)현상이 발생하는 문제점 및 경화반응을 저하하여 물성이 저하되는 문제점이 발생한다. 경화제 15중량%미만에서는 경화제가 주제와의 충분한 경화반응이 일어나지 않아 경화 물성이 낮아지는 문제점이 발생하며, 35중량%초과에서는 경화속도가 증가함에 따라 에폭시 수지의 결정화 속도가 빨라지고 이에 따라 수지가 brittle해 지는 문제점이 발생한다.If the epoxy resin is less than 50% by weight, the impregnation becomes uneven due to the explosive reaction between the epoxy resin and the curing agent. When the epoxy resin is more than 80% by weight, the curing reaction slowly occurs and the productivity is deteriorated. If the content of the reactive diluent is less than 5% by weight, the viscosity of the resin is not changed. If the content of the reactive diluent is more than 15% by weight, the viscosity of the resin is decreased to cause overflow to the outside of the mold. Resulting in deterioration of physical properties. When the amount of the curing agent is less than 15% by weight, the curing agent does not sufficiently cure to the subject and the curing property is lowered. When the curing agent is more than 35% by weight, the crystallization speed of the epoxy resin becomes faster as the curing rate increases. Problems arise.
상기 열경화형 에폭시 수지액의 에폭시 수지 중 액상 Bisphenol-A 에폭시 수지는 상온 혼합점도가 1,000 ~ 1,500cps 내외의 저점도 수지이며 prepolymer의 구조에 의하여 분자말단에 있는 epoxy기가 반응성이 아주 풍부하여 경화제와 변성성분의 선택여하에 따라 아주 광범위한 경화 물성을 얻을 수 있으며, 경화반응이 중부가 반응 또는 개환중합임으로 다른 열경화성 수지에 비해 경화 수축이 적은 특징을 가져 특히 바람직하다.The liquid bisphenol-A epoxy resin in the epoxy resin of the thermosetting epoxy resin liquid is a low-viscosity resin having a mixed viscosity at room temperature of about 1,000 to 1,500 cps. Due to the structure of the prepolymer, the epoxy group at the molecular end is highly reactive, A very wide range of curing properties can be obtained depending on the choice of the components, and the curing reaction is particularly preferable because the curing reaction is a reaction or a ring-opening polymerization and the curing shrinkage is less than that of the other thermosetting resins.
상기 반응형 희석제는 방향족 아민(DDS: diaminodiphenyl sulphone), 변성 지방족 아민 경화제(TETA: Triethylenetetramine, DETA: diethylenetriamine, MXDA : m-Xylenediamine), 방향족 3급 아민(BDMA: Dimethylbenzylamine ), Butyl Glycidyl Ether, Aromatic GlycidylAmine 중 어느 하나 것을 사용하는 것이 주제인 액상 Bisphenol-A 에폭시 수지의 점도인 1,000~ 5,000 cps 달성을 위해 특히 바람직하다. 반응형 희석제의 특성상 과량 투입 시 물성 저하가 발생한다.The reactive diluent may be selected from the group consisting of aromatic diamine (DDS), diethylenetetramine (DETA), m-xylenediamine (DETA), dimethylbenzylamine (BDMA), butyl glycidyl ether Is particularly preferred for achieving a viscosity of from 1,000 to 5,000 cps, which is the viscosity of a liquid bisphenol-A epoxy resin. Due to the nature of the reactive diluent, there is a drop in the physical properties when the excess is added.
상기 경화제는 경화제로서 주쇄에 옥시프로필렌기를 가지는 에폭시 상온경화제로서 바람직하기로는 하기 화학식 1에 도시된 것과 화학식 2의 Cycloaliphatic amine을 혼합한 경화제를 사용할 수 있다.The curing agent is an epoxy room temperature curing agent having an oxypropylene group in its main chain as a curing agent, preferably a curing agent obtained by mixing a cyclic aliphatic amine represented by the following formula (1) and a cycloaliphatic amine represented by the following formula (2).
[화학식1][Chemical Formula 1]
[화학식2](2)
상기 경화제는 상온에서의 보관 안정성이 우수하고, 경화온도 (125℃)에서 경화가 진행되는 경화제로서, Polyetheramine과 Cycloaliphatic amine이 중량비로 50:50 ~ 75:25으로 혼합되는 것이 경화속도의 단축과 발열온도 측면에서 바람직하다. 상기 주제인 액상 Bisphenol-A 에폭시 수지 100당량에 상기 경화제가 15~25당량의 비율로 혼합되는 것이 경화시간, 점도, 반응성 조절이 용이하며, 안정적인 경화반응 및 경화물성 특히 바람직하다.The curing agent is excellent in storage stability at room temperature and is hardened at a curing temperature (125 ° C). When a mixture of polyetheramine and cycloaliphatic amine in a weight ratio of 50:50 to 75:25 is used, Which is preferable in terms of temperature. It is particularly preferable that the curing time, viscosity, and reactivity are easily controlled by mixing the curing agent in an amount of 15 to 25 equivalents to 100 equivalents of the liquid bisphenol-A epoxy resin, and the curing reaction and curing properties are particularly preferable.
이후 상기 탄소섬유토우 프리프레그로 이루어진 삼차원적인 넷트형태(Net-Shape) 다축섬유구조의 탄소섬유브레이드를 금형에 안착한 후, 상기 금형내부에 상기 열경화형수지액을 주입하고 진공탈포하여, 금형온도 80~120℃, 수지온도 50~80℃로 조절하며, 수지주입시간 20~50초간 RTM공법으로 성형을 실시하여 탄소섬유브레이드에 함침하게 된다.Then, the carbon fiber braid having a three-dimensional net-shaped multiaxial fiber structure made of the carbon fiber tow prepreg was placed in a mold, and the thermosetting resin liquid was injected into the mold and vacuum degassed to obtain a mold temperature 80 To 120 ° C and a resin temperature of 50 to 80 ° C, and molding is carried out by the RTM method for 20 to 50 seconds for the resin injection time to impregnate the carbon fiber braid.
상기 함침 후 120~140℃, 3~6분 동안 고온경화후 탈형하여 본 발명의 고강도 탄소섬유토우 프리프레그 브레이딩 튜브 프레임을 제조하게 된다. After the impregnation, high temperature curing is carried out at 120 to 140 ° C for 3 to 6 minutes to form a high strength carbon fiber toe prepreg braiding tube frame of the present invention.
그러므로 본 발명에 의하면, 고탄성 탄소섬유 원사를 사용한 삼차원적인 넷트형태(Net-Shape)의 탄소섬유브레이드를 사용하여, 열경화형수지액을 함침함으로써 초경량, 고강도, 내부식성, 고내구성의 특성을 지닌 성형품을 고속성형할 수 있다. 또한, 강화재에 매트릭스를 반경화상태(B stage)로 처리한 프리프레그 제품의 기능 향상 및 수지주입 및 경화속도향상을 통한 성형준비시간의 단축, 성형공정 부자재 절감, 성형공정 축소, 생산품의 재현성을 확보하여 고속생산 및 자동화를 통한 짧은 제조시간과 공정 코스트가 저감된 브레이딩 및 RTM공정으로 자전거 프레임, 자동차용 프로펠러샤프트, 천연가스 차의 CNG 탱크, 고속 철도 프레임, 비행기 마루 빔(floor beam), 수직, 수평미익(stabilizer), 랜딩기어 도어등에 활용할 수 있는 고강도 탄소섬유 브레이드성형품을 생산할 수 있다.Therefore, according to the present invention, a three-dimensional net-shaped carbon fiber braid using a high-elasticity carbon fiber yarn is used to impregnate a thermosetting resin liquid to obtain a molded article having light weight, high strength, corrosion resistance and high durability Can be formed at a high speed. In addition, it is possible to improve the function of the prepreg product in which the matrix is semi-cured (B stage) in the reinforcing material, to shorten the molding preparation time by improving the resin injection and curing speed, to reduce the molding process, Blending frame and RTM process with short production time and process cost through high speed production and automation, can be used for bicycle frame, car propeller shaft, CNG tank of natural gas car, high speed rail frame, floor beam, It is possible to produce high strength carbon fiber braid moldings that can be used for vertical, horizontal stabilizer, and landing gear door.
도 1은 본 발명에 의해 제조된 고강도 탄소섬유토우 프리프레그 브레이딩 튜브 프레임의 사진이며,
도 2는 본 발명의 고강도 탄소섬유 토우 프리프레그 브레이딩 튜브 프레임의 제조시 중간물질인 탄소섬유 토우 프리프레그의 단면현미경사진이다.1 is a photograph of a high strength carbon fiber tow prepreg braiding tube frame manufactured by the present invention,
2 is a cross-sectional micrograph of a carbon fiber tow prepreg, which is an intermediate material in the production of the high strength carbon fiber tow prepreg braiding tube frame of the present invention.
다음의 실시예에서는 본 발명의 고강도 탄소섬유토우 프리프레그 브레이딩 튜브 프레임을 제조하는 비한정적인 예시를 하고 있다.The following examples illustrate non-limiting examples of making the high strength carbon fiber tow prepreg braiding tube frame of the present invention.
[실시예 1][Example 1]
탄소섬유는 3~12K 토우 필라멘트사를 섬유펼침(spreading)공정으로 제조된 토우 프리프레그를 사용하여 브레이딩머신(Braiding machine)을 이용하여 삼차원적인 넷트형태(Net-Shape)로 제조하는데, Triaxial Over Braiding machine을 이용하여 다축섬유 구조 프리폼을 제조하며, 프리폼에 함침될 열경화형수지액은 액상 Bisphenol-A 에폭시 수지 (국도화학 YD-128, EEW187) 75중량%, 반응형 희석제(Butyl Glycidyl Ether (BGE)) 5중량%, 경화제로서 Polyetheramine(Jeffamine D230)과 Cycloaliphatic amine(Isophorondiamine)을 중량비로 75:25으로 혼합한 경화제를 20중량%를 함유한다. 상기 주제인 액상 Bisphenol-A 에폭시 수지 100당량에 상기 경화제가 20당량의 비율로 혼합하였다. 이후 상기 탄소섬유브레이드를 금형에 안착한 후, 상기 금형내부에 상기 열경화형수지액을 주입하고 진공탈포하며, 금형온도 100℃, 수지온도 60℃로 조절하며, 수지주입시간 20~50초간 탄소섬유브레이드에 함침한 후 20min/125℃에서 고온경화후 탈형하여 본 발명의 고강도 탄소섬유토우 프리프레그 브레이딩 튜브 프레임을 제조하였다. The carbon fiber is manufactured in a three-dimensional net shape using a braiding machine using a toe prepreg manufactured by a fiber spreading process of 3 to 12 K tofilament yarns. The triaxial over The thermosetting resin liquid to be impregnated in the preform was prepared by mixing 75 wt% of a liquid bisphenol-A epoxy resin (KODO CHEMICAL YD-128, EEW187), a reactive diluent (BGE ), 20 wt% of a curing agent prepared by mixing Polyetheramine (Jeffamine D230) and Cycloaliphatic amine (Isophorondiamine) as a curing agent at a weight ratio of 75:25. 20 equivalents of the curing agent was added to 100 equivalents of the liquid bisphenol-A epoxy resin. Then, the thermosetting resin liquid was injected into the mold and vacuum degassed. The mold temperature was adjusted to 100 ° C and the resin temperature was set to 60 ° C, and the carbon fiber braid Followed by high temperature curing at 20 min / 125 캜, followed by demolding to produce a high strength carbon fiber tow prepreg braiding tube frame of the present invention.
제조된 프리폼의 인장강도(KS M ISO 527-4) 측정 결과 인장강도가 838 MPa로 우수하게 나타났으며, 충격강도(KS M ISO 179-1)측정결과 196 KJ/㎡, 굽힘강도(KS M ISO 178) 579MPa, 전단강도(KS M ISO 3386) 419MPa로 우수하게 나타났다. 수지와 탄소섬유간 계면 접착력을 판단하기 위하여 시편을 ASTM D 3410법을 적용하여 압축 시험을 진행한 결과 31.5MPa로 우수하게 나타났다.The tensile strength of the prepared preform was measured as KS M ISO 527-4. The tensile strength of the preform was 838 MPa. The impact strength (KS M ISO 179-1) was 196 KJ / ㎡ and the bending strength KS M ISO 178) of 579 MPa, and shear strength (KS M ISO 3386) of 419 MPa. In order to determine the interfacial adhesion between the resin and the carbon fiber, the specimen was subjected to a compression test using ASTM D 3410, and the result was excellent at 31.5 MPa.
Claims (3)
상기 탄소섬유토우 프리프레그를 브레이딩머신(Braiding machine)을 이용하여 삼차원적인 넷트형태(Net-Shape)로 탄소섬유브레이드를 제조한 후,
비스페놀형, 노블락형, 방향족 아민형, 지환형 중 어느 하나 이상인 에폭시 수지 50~80중량%, 반응형 희석제 5~15중량%, 경화제로서 주쇄에 옥시프로필렌기를 가지는 에폭시 상온경화제인 Polyetheramine과 Cycloaliphatic amine을 혼합한 경화제를 15~35중량%를 함유한 열경화형 에폭시 수지액을 준비한 후,
상기 탄소섬유브레이드를 금형에 안착한 후,
상기 금형내부에 상기 열경화형수지액을 주입하여 탄소섬유브레이드에 RTM공법으로 함침한 후,
120~140℃, 3~6분에서 고온경화후 탈형하는 것을 특징으로 하는 고강도 탄소섬유토우 프리프레그 브레이딩 튜브 프레임의 제조방법.30 to 60% by weight of an epoxy resin having at least one of a bisphenol type, a novolac type, an aromatic amine type, and an alicyclic type, the non-reactive solvent is mixed with the remainder, the carbon fiber tow is impregnated, After making a carbon fiber tow prepreg having a surface viscosity of 20 to 50 gf,
The carbon fiber tow prepreg was formed into a carbon fiber braid in a three-dimensional net shape using a braiding machine,
50 to 80% by weight of an epoxy resin having at least one of a bisphenol type, a novolac type, an aromatic amine type and an alicyclic type, 5 to 15% by weight of a reactive diluent, a polyetheramine and a cycloaliphatic amine as an epoxy room temperature curing agent having an oxypropylene group in the main chain as a curing agent After preparing a thermosetting epoxy resin liquid containing 15 to 35% by weight of a mixed curing agent,
After the carbon fiber braid is seated on a mold,
The thermosetting resin liquid was injected into the mold, impregnated into the carbon fiber braid by the RTM method,
Characterized in that the high-strength carbon fiber tow prepreg braiding tube frame is demolded after high-temperature curing at 120 to 140 ° C for 3 to 6 minutes.
상기 반응형 희석제는 방향족 아민(DDS: diaminodiphenyl sulphone), 변성 지방족 아민 경화제(TETA: Triethylenetetramine, DETA: diethylenetriamine, MXDA : m-Xylenediamine), 방향족 3급 아민(BDMA: Dimethylbenzylamine ), Butyl Glycidyl Ether, Aromatic GlycidylAmine 중 어느 하나인 것을 특징으로 하는 고강도 탄소섬유토우 프리프레그 브레이딩 튜브 프레임의 제조방법.The method according to claim 1,
The reactive diluent may be selected from the group consisting of aromatic diamine (DDS), diethylenetetramine (DETA), m-xylenediamine (DETA), dimethylbenzylamine (BDMA), butyl glycidyl ether Wherein the reinforcing fiber reinforced carbon fiber tow prepreg braiding tube frame is formed of a high strength carbon fiber to prepreg reinforced tube frame.
상기 경화제는 Polyetheramine과 Cycloaliphatic amine이 중량비로 50:50 ~ 75:25으로 혼합되고, 상기 주제인 액상 Bisphenol-A 에폭시 수지 100당량에 상기 경화제가 15~25당량의 비율로 혼합되는 것을 특징으로 하는 고강도 탄소섬유토우 프리프레그 브레이딩 튜브 프레임의 제조방법.The method according to claim 1,
Wherein the curing agent is a mixture of Polyetheramine and Cycloaliphatic amine in a weight ratio of 50:50 to 75:25 and the curing agent is mixed in a ratio of 100 to 1 equivalent of the liquid bisphenol-A epoxy resin in a ratio of 15 to 25 equivalents Method of manufacturing a carbon fiber tow prepreg braiding tube frame.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160119945A KR20180031392A (en) | 2016-09-20 | 2016-09-20 | Process Of Producing High―Tenacity Brading Tube Fraim Using Carbon Tow Fiber Prepreg |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160119945A KR20180031392A (en) | 2016-09-20 | 2016-09-20 | Process Of Producing High―Tenacity Brading Tube Fraim Using Carbon Tow Fiber Prepreg |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20180031392A true KR20180031392A (en) | 2018-03-28 |
Family
ID=61901773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160119945A KR20180031392A (en) | 2016-09-20 | 2016-09-20 | Process Of Producing High―Tenacity Brading Tube Fraim Using Carbon Tow Fiber Prepreg |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20180031392A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210039276A (en) | 2019-10-01 | 2021-04-09 | 주식회사 케이지에프 | The resin binder composition for producing tow preg, Method of using the same and Tow prepreg produced by using the same |
CN114016294A (en) * | 2021-11-30 | 2022-02-08 | 青岛天邦线业有限公司 | Preparation method and application of functional carbon fiber cord |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06219392A (en) * | 1992-12-23 | 1994-08-09 | Eurocopter France | Thermoplastic composite material made vane for duct-equipped rear rotary wing of helicopter and method of injection molding of said vane |
JPH06219393A (en) * | 1992-12-23 | 1994-08-09 | Eurocopter France | Thermoplastic composite material made vane for duct-equipped rotary wing of helicopter and method for production thereof |
JP2948435B2 (en) * | 1993-02-16 | 1999-09-13 | 株式会社次世代航空機基盤技術研究所 | Method of forming composite material blade |
JP2948434B2 (en) * | 1993-02-16 | 1999-09-13 | 株式会社次世代航空機基盤技術研究所 | Method and apparatus for forming composite material blade |
JP2008534764A (en) * | 2005-04-04 | 2008-08-28 | アルケマ フランス | Polymer materials containing dispersed carbon nanotubes |
JP4504374B2 (en) * | 2003-08-22 | 2010-07-14 | シコルスキー エアクラフト コーポレイション | Braided girder of rotor blade and method for manufacturing the same |
JP2012071805A (en) * | 2010-09-30 | 2012-04-12 | Society Of Japanese Aerospace Co Inc | Aerofoil structure using fiber reinforced composite material, and manufacturing method therefor |
JP2013244344A (en) * | 2012-05-29 | 2013-12-09 | Mitsubishi Rayon Co Ltd | Golf shaft and method of manufacturing the same |
KR101420832B1 (en) * | 2014-02-20 | 2014-07-17 | 최용현 | The manufacturing methods of a pole which is using a braiding method |
JP2014148572A (en) * | 2013-01-31 | 2014-08-21 | Mitsubishi Rayon Co Ltd | Prepreg, fiber-reinforced composite material, production method of the prepreg, and production method of the material |
-
2016
- 2016-09-20 KR KR1020160119945A patent/KR20180031392A/en not_active Application Discontinuation
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06219392A (en) * | 1992-12-23 | 1994-08-09 | Eurocopter France | Thermoplastic composite material made vane for duct-equipped rear rotary wing of helicopter and method of injection molding of said vane |
JPH06219393A (en) * | 1992-12-23 | 1994-08-09 | Eurocopter France | Thermoplastic composite material made vane for duct-equipped rotary wing of helicopter and method for production thereof |
JP2948435B2 (en) * | 1993-02-16 | 1999-09-13 | 株式会社次世代航空機基盤技術研究所 | Method of forming composite material blade |
JP2948434B2 (en) * | 1993-02-16 | 1999-09-13 | 株式会社次世代航空機基盤技術研究所 | Method and apparatus for forming composite material blade |
JP4504374B2 (en) * | 2003-08-22 | 2010-07-14 | シコルスキー エアクラフト コーポレイション | Braided girder of rotor blade and method for manufacturing the same |
JP2008534764A (en) * | 2005-04-04 | 2008-08-28 | アルケマ フランス | Polymer materials containing dispersed carbon nanotubes |
JP2012071805A (en) * | 2010-09-30 | 2012-04-12 | Society Of Japanese Aerospace Co Inc | Aerofoil structure using fiber reinforced composite material, and manufacturing method therefor |
JP2013244344A (en) * | 2012-05-29 | 2013-12-09 | Mitsubishi Rayon Co Ltd | Golf shaft and method of manufacturing the same |
JP2014148572A (en) * | 2013-01-31 | 2014-08-21 | Mitsubishi Rayon Co Ltd | Prepreg, fiber-reinforced composite material, production method of the prepreg, and production method of the material |
KR101420832B1 (en) * | 2014-02-20 | 2014-07-17 | 최용현 | The manufacturing methods of a pole which is using a braiding method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210039276A (en) | 2019-10-01 | 2021-04-09 | 주식회사 케이지에프 | The resin binder composition for producing tow preg, Method of using the same and Tow prepreg produced by using the same |
CN114016294A (en) * | 2021-11-30 | 2022-02-08 | 青岛天邦线业有限公司 | Preparation method and application of functional carbon fiber cord |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3178861B1 (en) | Latent epoxy resin formulations for liquid impregnation processes for making fibre reinforced composite materials | |
EP1819503B1 (en) | Continuous pultrusion process for producing high performance structural profiles | |
TWI586735B (en) | Fiber reinforced high modulus polymer composite with a reinforced interphase | |
EP3178862B1 (en) | Latent epoxy resin formulations for liquid impregnation processes for the manufacture of fiber reinforced composites | |
US8231820B2 (en) | Epoxy resin composition | |
CN107530985A (en) | The preparation method of fibre-reinforced composite article, gained composite article and application thereof | |
CN103917574B (en) | Fiber reinforced composite material two-liquid type composition epoxy resin and fiber reinforced composite material | |
FR2487371A1 (en) | LIQUID BINDER SYSTEM BASED ON EPOXY RESIN AND CURING AMINO, AND ITS APPLICATION TO THE PRODUCTION OF FIBER REINFORCED PLASTIC MATERIALS | |
CN107236250B (en) | Make the resin combination of body parts prepreg high speed curable by extrusion and comprising its prepreg product | |
TWI785141B (en) | Epoxy resin curing agent, epoxy resin composition and cured product thereof, and fiber reinforced composite | |
KR20180031392A (en) | Process Of Producing High―Tenacity Brading Tube Fraim Using Carbon Tow Fiber Prepreg | |
JP6956300B1 (en) | Reinforced fiber stitch base material, preform material, and fiber reinforced composite material, and methods for manufacturing them. | |
JP5074673B2 (en) | Method for molding fiber reinforced thermoplastic resin | |
JP2012031293A (en) | Epoxy resin composition for high cycle formation, cured resin and fiber-reinforced composite material | |
AU2018388985B2 (en) | Curable epoxy system | |
JP7279869B1 (en) | Epoxy resin composition and its cured product, fiber reinforced composite material, high pressure gas container | |
KR101884606B1 (en) | Epoxy resin composition for fiber reinforced composite with high impact resistance and high strength | |
CN112996836A (en) | Epoxy resin composition for fiber-reinforced composite material, cured epoxy resin, preform, and fiber-reinforced composite material | |
KR101790110B1 (en) | Prepreg of high speed curing system and fiber reinforced composites for compression molding | |
US20230212356A1 (en) | Sulfur-containing material and use thereof | |
JPWO2017104445A1 (en) | Preform binder resin composition, binder particles, reinforced fiber substrate, preform and fiber reinforced composite material | |
KR101790109B1 (en) | Prepreg of high speed curing system and fiber reinforced composites for compression molding | |
Kim et al. | Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization | |
JP2020196896A5 (en) | Prepreg and fiber reinforced composite materials, and their manufacturing methods | |
WO2023063000A1 (en) | Epoxy resin composition, cured product thereof, prepreg, fiber-reinforced composite material, and high-pressure gas container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |