[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20180020278A - Flux amount - Google Patents

Flux amount Download PDF

Info

Publication number
KR20180020278A
KR20180020278A KR1020187002185A KR20187002185A KR20180020278A KR 20180020278 A KR20180020278 A KR 20180020278A KR 1020187002185 A KR1020187002185 A KR 1020187002185A KR 20187002185 A KR20187002185 A KR 20187002185A KR 20180020278 A KR20180020278 A KR 20180020278A
Authority
KR
South Korea
Prior art keywords
tube
flux
fin
pin
colloidal silica
Prior art date
Application number
KR1020187002185A
Other languages
Korean (ko)
Inventor
카오루 우에다
카나 오기하라
Original Assignee
가부시키가이샤 유에이씨제이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 유에이씨제이 filed Critical 가부시키가이샤 유에이씨제이
Publication of KR20180020278A publication Critical patent/KR20180020278A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/203Fluxing, i.e. applying flux onto surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3607Silica or silicates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • B23K2201/14
    • B23K2203/10
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

튜브와 핀을 납땜 접합하여 이루어진 열교환기의 친수성 및 이의 지속성을 향상시킬 수 있는 동시에, 납땜성을 향상시킬 수 있는 플럭스액을 제공하는 것. 알루미늄으로 이루어진 튜브(3)와, 알루미늄으로 이루어진 핀(2)을 납땜 접합함으로써 열교환기를 제조하기 위해 사용되는 플럭스액(101)이다. 플럭스액(101)은 불화물계 플럭스와, 콜로이달 실리카와, 분산매를 함유한다. 불화물계 플럭스에 대한 콜로이달 실리카의 질량비는 1/200 내지 1/15이다.Providing a flux liquid capable of improving the hydrophilicity and sustainability of a heat exchanger formed by brazing a tube and a fin by soldering and improving solderability. Is a flux liquid 101 used for manufacturing a heat exchanger by brazing a tube 3 made of aluminum and a fin 2 made of aluminum. The flux liquid 101 contains a fluoride-based flux, colloidal silica, and a dispersion medium. The mass ratio of colloidal silica to the fluoride-based flux is 1/200 to 1/15.

Description

플럭스액Flux amount

본 발명은 알루미늄으로 이루어진 튜브와, 알루미늄으로 이루어진 핀을 납땜 접합하여 열교환기를 제조하기 위해 사용되는 플럭스액에 관한 것이다.The present invention relates to a flux liquid used for manufacturing a heat exchanger by brazing a tube made of aluminum and a fin made of aluminum.

일반적으로, 올 알루미늄제의 열교환기는 냉매가 흐르는 알루미늄 튜브와, 튜브의 외측 공기 사이에서 열교환을 행하기 위한 알루미늄 핀을 갖고 있고, 튜브와 핀은 서로 접합되어 있다. 열교환기의 열교환 성능에는 핀의 친수성이 크게 영향을 주기 때문에, 표면에 친수성의 도막이 형성된 핀이 자주 사용되고 있다. 이러한 친수성의 도막을 갖는 핀과 튜브의 접합에는, 예를 들면 납땜 접합이 이용된다.Generally, the all-aluminum heat exchanger has an aluminum tube through which the refrigerant flows and an aluminum fin for exchanging heat between the outside air of the tube, and the tube and the pin are joined to each other. Since the heat exchange performance of the heat exchanger greatly affects the hydrophilicity of the fin, a pin having a hydrophilic coating film on its surface is frequently used. For example, brazing is used to bond the pin and the tube having such a hydrophilic coating film.

그러나, 일반적인 수지계 또는 무기계의 도막은 납땜시의 가열 온도로 변질 또는 분해되어 버리기 때문에, 납땜 후에 충분한 친수성을 발휘할 수 없다. 또한, 플럭스를 사용하여 납땜을 행할 경우에는, 도막이 존재하면 플럭스 작용이 저해되어, 납땜 접합이 불충분해질 우려가 있다. 따라서, 납땜에 의해 열교환기를 제조할 경우에는, 예를 들면 특허문헌 1에 나타나 있는 바와 같이, 납땜 후에 도막의 형성이 행하여지고 있었다. 그러나, 이 경우에는, 전용의 도막 형성 설비가 필요하기 때문에 제조 비용이 증대하거나, 열교환기의 대형화에 대한 대응이 곤란해진다는 문제가 있다.However, since a general resin or inorganic coating film is denatured or decomposed at the heating temperature during soldering, sufficient hydrophilic property can not be exhibited after soldering. Further, when soldering is carried out using flux, the presence of a coating film may inhibit the fluxing action, which may result in insufficient solder jointing. Therefore, when a heat exchanger is manufactured by soldering, as shown in, for example, Patent Document 1, a coating film is formed after soldering. In this case, however, there is a problem in that a dedicated coating film forming equipment is required, which increases the manufacturing cost and makes it difficult to cope with the enlargement of the heat exchanger.

그래서, 친수성의 향상을 목적으로서, 예를 들면 특허문헌 2에는, 납땜 전에 도막이 프리코트된 핀재로서 규산염을 주성분으로 하는 도막을 갖는 핀재가 제안되어 있다. 또한, 특허문헌 3에는, 납땜 전에, 크실렌 등의 지지체나 실리콘 오일 등의 규소계 결합제 등을 포함하는 피막을 미리 형성한 핀을 사용하여 열교환기를 제작하는 방법이 제안되어 있다.Thus, for the purpose of improving the hydrophilicity, for example, Patent Document 2 proposes a pin material having a coating film mainly composed of silicate as a fin material in which a coating film is pre-coated before soldering. Patent Document 3 proposes a method of manufacturing a heat exchanger using a fin previously provided with a coating film including a support such as xylene or a silicon-based binder such as silicone oil before soldering.

특허문헌Patent literature

특허문헌 1: 일본 공개특허공보 특개2004-347314호Patent Document 1: JP-A-2004-347314

특허문헌 2: 일본 공개특허공보 특개2013-137153호Patent Document 2: JP-A-2013-137153

특허문헌 3: 일본 공개특허공보 특표2008-508103호Patent Document 3: JP-A-2008-508103

그러나, 상술한 도막이나 피막이 프리코트된 핀을 사용하여 제조되는 열교환기에 있어서도, 플럭스를 사용한 납땜 후의 친수성에 개량의 여지가 있고, 초기의 친수성이나 이의 지속성에 추가의 향상이 요구되고 있다. 또한, 프리코트된 도막이나 피막의 존재에 의해, 플럭스를 사용한 핀과 튜브의 납땜 접합이 불충분해질 우려가 있다.However, even in the heat exchanger manufactured using the above-mentioned coating film or film-coated pre-coated fin, there is room for improvement in hydrophilicity after soldering using flux, and further improvement in initial hydrophilicity and persistence thereof is required. In addition, the presence of the precoated coating film or coating may lead to insufficient solder jointing of the fin and the tube using the flux.

본 발명은 이러한 배경을 감안하여 이루어진 것으로, 튜브와 핀을 납땜 접합하여 이루어진 열교환기의 친수성 및 이의 지속성을 향상시킬 수 있는 동시에, 납땜성을 향상시킬 수 있는 플럭스액을 제공하고자 하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a flux liquid which can improve the hydrophilicity and sustainability of a heat exchanger formed by brazing a tube and a fin and improve solderability.

본 발명의 일 형태는 알루미늄으로 이루어진 튜브와, 알루미늄으로 이루어진 핀을 납땜 접합하여 열교환기를 제조하기 위해 사용되는 플럭스액으로서,One aspect of the present invention is a flux liquid used for manufacturing a heat exchanger by brazing a tube made of aluminum and a fin made of aluminum,

불화물계 플럭스와, 콜로이달 실리카와, 상기 불화물계 플럭스 및 상기 콜로이달 실리카를 분산시키는 분산매를 함유하고,A fluoride-based flux, a colloidal silica, and a dispersion medium for dispersing the fluoride-based flux and the colloidal silica,

상기 불화물계 플럭스에 대한 상기 콜로이달 실리카의 질량비가 1/200 내지 1/15인, 플럭스액에 있다.Wherein the mass ratio of the colloidal silica to the fluoride-based flux is in the range of 1/200 to 1/15.

상기 플럭스액은 불화물계 플럭스와, 콜로이달 실리카와, 이들을 분산시키는 분산매를 함유하고, 콜로이달 실리카의 함유량이 불화물계 플럭스에 대한 질량비로 상기 소정의 범위로 조제되어 있다. 그러므로, 납땜 접합에서의 납땜성을 향상시킬 수 있는 동시에, 핀 등에 친수성을 부여할 수 있다. 즉, 납땜성의 향상 효과와 친수성의 향상 효과를 겸비한다. 그러므로, 플럭스액은 알루미늄으로 이루어진 핀의 표면에 친수성의 도막을 갖는 프리코트 타입의 핀(이하, 적절히 「프리코트 핀」이라고 한다)뿐만 아니라, 도막을 갖고 있지 않은 베어 타입의 핀(이하, 적절히 「베어 핀」이라고 한다)에 대하여도 사용하는 것이 가능하고, 어느 경우에 있어서도 납땜성의 향상 효과와 함께, 핀의 친수성의 향상 효과를 발휘할 수 있다. 또한, 플럭스액을 베어 핀에 사용한 경우에는, 도막의 존재에 의해 납땜성이 손상되는 것도 방지할 수 있다. 또한, 플럭스액에 의해 친수성이 부여되기 때문에, 납땜 후에 반드시 친수성을 부여하기 위한 도막을 형성할 필요도 없어진다. 그러므로, 전용의 도막 형성 설비도 필요로 하지 않고, 제조 비용의 증대를 방지하고, 열교환기의 대형화에 대한 대응도 가능해진다. 또한, 플럭스액에 의한 상술한 친수성의 향상 효과에는 사용 초기의 친수성의 향상 효과뿐만 아니라, 초기의 친수성의 지속 효과도 포함된다.The flux liquid contains a fluoride-based flux, colloidal silica, and a dispersion medium for dispersing the fluoride-based flux and the colloidal silica, and the content of the colloidal silica is adjusted to the above-mentioned predetermined range by mass ratio to the fluoride-based flux. Therefore, solderability in soldering can be improved and hydrophilicity can be imparted to the pin. That is, it has an effect of improving solderability and an effect of improving hydrophilicity. Therefore, the flux liquid is formed not only of a pre-coat type pin having a hydrophilic coating film on the surface of an aluminum fin (hereinafter referred to as "precoat fin" as appropriate) but also a bare type pin (Hereinafter referred to as " bear pin "). In either case, the effect of improving the hydrophilicity of the pin can be exhibited, together with the effect of improving the solderability. In addition, when the flux liquid is used for the bare pin, the solderability can be prevented from being impaired by the presence of the coating film. Further, since the hydrophilic property is imparted by the flux liquid, it is not necessary to form a coating film for imparting hydrophilicity to the film after soldering. Therefore, it is not necessary to provide a dedicated coating film forming equipment, and it is possible to prevent an increase in manufacturing cost, and also to cope with the enlargement of the heat exchanger. In addition, the effect of improving the hydrophilicity by the flux liquid includes not only the effect of improving the hydrophilicity at the initial stage of use but also the effect of continuing the initial hydrophilicity.

도 1은 실시예 1에서의 열교환기의 코어부(미니코어)의 사시도.
도 2는 실시예 1에서의 열교환기의 코어부(미니코어)의 단면도.
도 3은 실시예 1에서의 열교환기의 핀의 확대 단면도.
도 4는 실시예 1에서의 납땜 접합 전의 핀과 튜브의 단면 구조를 도시한 설명도(a), 납땜 접합 후의 핀과 튜브의 단면 구조를 도시한 설명도(b).
도 5는 실시예 2에서의 열교환기의 정면도.
도 6은 변형예 1에서의 열교환기의 코어부(미니코어)의 사시도.
도 7은 변형예 1에서의 열교환기의 코어부(미니코어)의 단면도.
도 8은 변형예 1에서의 열교환기의 핀의 확대 단면도.
도 9는 변형예 1에서의 납땜 접합 전의 핀과 튜브의 단면 구조를 도시한 설명도(a), 납땜 접합 후의 핀과 튜브의 단면 구조를 도시한 설명도(b).
1 is a perspective view of a core portion (minicore) of a heat exchanger according to Embodiment 1. Fig.
Fig. 2 is a sectional view of a core portion (minicore) of the heat exchanger according to Embodiment 1. Fig.
3 is an enlarged cross-sectional view of the fin of the heat exchanger in the first embodiment.
FIG. 4 is an explanatory view (a) illustrating a cross-sectional structure of a fin and a tube before soldering and a cross-sectional structure of a pin and a tube after soldering; FIG.
5 is a front view of the heat exchanger in Embodiment 2. Fig.
6 is a perspective view of a core portion (minicore) of a heat exchanger in Modification 1. Fig.
7 is a sectional view of a core portion (minicore) of the heat exchanger in Modification 1. Fig.
8 is an enlarged cross-sectional view of a fin of a heat exchanger in Modification 1;
FIG. 9 is an explanatory view (a) showing a cross-sectional structure of a fin and a tube before soldering and a cross-sectional structure of a pin and a tube after soldering; FIG.

본 명세서에 있어서, 「알루미늄」은 순 알루미늄뿐만 아니라 알루미늄 합금을 포함하는 개념이다. 즉, 튜브의 재질은 순 알루미늄뿐만 아니라 알루미늄 합금을 포함하고, 핀의 재질도, 순 알루미늄뿐만 아니라 알루미늄 합금을 포함한다. 구체적으로는, A1000계의 순 알루미늄, A3000계의 알루미늄 합금 등을 사용할 수 있다.In this specification, " aluminum " is a concept including pure aluminum as well as aluminum alloy. That is, the material of the tube includes pure aluminum as well as aluminum alloy, and the material of the fin includes not only pure aluminum but also aluminum alloy. Specifically, pure aluminum of A1000 series, aluminum alloy of A3000 series, and the like can be used.

튜브로서는 환관(丸管) 또는 편평관 등의 형상을 채용할 수 있다. 튜브 안에는 내부를 복수의 통로로 구획하는 내주(內柱)가 형성되어 있어도 좋다. 더 구체적으로는, 튜브로서는 예를 들면 편평 다공관을 채용할 수 있다.As the tube, a shape such as a round tube or a flat tube can be adopted. The inner tube may be formed in the tube to partition the inside into a plurality of passages. More specifically, for example, a flat pillar can be employed as the tube.

튜브로서는, 예를 들면 브레이징 시트를 환관 형상 또는 편평관 형상으로 가공하여 이루어진 튜브를 사용할 수 있다. 브레이징 시트는 알루미늄으로 이루어진 심재에, 납재를 클래드하여 이루어지고, 편면 클래드라도 양면 클래드라도 좋다. 이러한 브레이징 시트를 가공하여 이루어진 튜브를 사용할 경우에는, 접합시에 별도 납재를 사용할 필요가 없어진다. 따라서, 튜브는 표면에 납재가 클래드된 클래드 튜브인 것이 바람직하다. 심재에 클래드되는 납재로서는, 예를 들면 Al-Si계 합금 분말, Si 분말, Al-Si-Zn계 합금 분말 등이 사용된다. 또한, 납재의 분말 중, Si 분말은 납땜 가열시에, 튜브 및/또는 핀 중에 포함되는 Al과 Al-Si계 합금을 형성함으로써 납재로서의 기능을 발휘할 수 있다. 또한, 상술한 납재에는 플럭스나 바인더 수지를 혼합할 수도 있다. 플럭스로서는 예를 들면 플루오로알루민산칼륨, 플루오로아연산칼륨 등의 불화물계 플럭스 분말 등이 사용된다. 바인더 수지로서는 예를 들면 아크릴계 수지 등이 사용된다. 또한, 튜브로서는 납재 등이 클래드되지 않은 베어 튜브를 사용할 수도 있다.As the tube, for example, a tube formed by processing a brazing sheet into an annular tube shape or a flat tube shape can be used. The brazing sheet is made by cladding a brazing material to a core made of aluminum, and may be a one-side clad or a two-side clad. When a tube made by processing such a brazing sheet is used, it is not necessary to use a separate brazing material at the time of bonding. Therefore, it is preferable that the tube is a clad tube in which a brazing material is clad on the surface. As the brazing material to be clad in the core material, for example, Al-Si based alloy powder, Si powder, Al-Si-Zn based alloy powder and the like are used. Further, in the powder of the brazing material, the Si powder can exhibit its function as a brazing material by forming an Al-Si-based alloy contained in the tube and / or the fin when heating the brazing material. In addition, flux or a binder resin may be mixed with the above-mentioned brazing material. As the flux, for example, a fluoride-based flux powder such as potassium fluoroaluminate or potassium fluoroacetate is used. As the binder resin, for example, acrylic resin or the like is used. As the tube, a bear tube without cladding may be used.

핀으로서는 코루게이트(corrugate) 핀, 플레이트 핀, 핀(pin) 핀 등의 형상을 채용할 수 있다. 열교환 성능의 향상을 위해 핀은 슬릿을 갖고 있어도 좋다. 또한, 핀으로서는, 표면에 납재가 클래드된 클래드 핀을 사용할 수도 있고, 표면에 친수성 도막이 형성된 프리코트 핀을 사용할 수도 있고, 납재나 도막 등이 형성되어 있지 않은 베어 핀을 사용할 수도 있다. 클래드 핀을 사용할 경우에는, 납재로서는, 상술한 분말과 동일한 재료를 사용할 수 있고, 또한, 납재에는 상술한 플럭스, 바인더 수지를 혼합할 수도 있다. 클래드 핀은 편면 클래드라도 양면 클래드라도 좋다. 프리코트 핀을 사용할 경우에는, 친수성 도막은 콜로이달 실리카를 포함하는 도료를 도포하여 건조시킴으로써 형성할 수 있다. 친수성 도막 형성용의 도료는 또한 물유리 및/또는 유기 수지를 함유하고 있어도 좋다. 프리코트 핀에서의 친수성 도막은 편면에 형성되어 있어도, 양면에 형성되어 있어도 좋다.As the pin, a shape such as a corrugate pin, a plate pin, a pin pin, or the like can be adopted. In order to improve the heat exchange performance, the fin may have a slit. As the fins, a clad pin having a cladding of a brazing material on the surface thereof, a precoat pin having a hydrophilic coating film formed on its surface, or a bare pin having no brazing material or a coating film may be used. When a clad pin is used, the same material as the above powder can be used as the brazing material, and the above-mentioned flux and binder resin may be mixed with the brazing material. The clad pin may be a one-side clad or a two-side clad. In the case of using a precoat fin, the hydrophilic coating film can be formed by applying a paint containing colloidal silica and drying it. The coating material for forming a hydrophilic coating film may also contain water glass and / or an organic resin. The hydrophilic coating film on the precoat fin may be formed on one side or on both sides.

바람직하게는, 핀은 클래드 핀 또는 베어 핀인 것이 좋다. 이 경우에는, 플럭스액의 친수성 부여 효과를 충분히 살려 친수성 도막을 갖지 않는 핀에 대해서도 친수성을 부여할 수 있다는 효과를 갖는다. 또한, 클래드 핀의 경우에는, 접합시에 별도 납재를 사용할 필요가 없어진다.Preferably, the pin is a clad pin or a bare pin. In this case, the effect of imparting the hydrophilic property of the flux liquid can be fully utilized, so that the hydrophilic property can be imparted even to the pin having no hydrophilic coating film. Further, in the case of the clad pin, it is not necessary to use a separate brazing material at the time of bonding.

튜브와 핀을 납땜 접합함으로써 열교환기를 얻을 수 있다. 납땜 접합은 튜브와 핀의 접합부에 납재를 공급하고, 접합부나 핀 등에 플럭스액을 공급하여, 접합부를 가열함으로써 행할 수 있다. 납재가 클래드된 튜브 또는 핀을 사용할 경우에는, 납재가 접합부에 이미 공급되기 때문에, 별도 납재를 사용할 필요가 없어진다.A heat exchanger can be obtained by solder joining the tube and the fin. The soldering can be performed by supplying a brazing material to the joining portion of the tube and the fin and supplying the flux liquid to the joining portion or the fins and heating the joining portion. When a tube or a pin in which a brazing material is clad is used, since the brazing material is already supplied to the joint, it is not necessary to use a separate brazing material.

플럭스액은 불화물계 플럭스와, 콜로이달 실리카와, 이들을 분산시키기 위한 분산매를 함유한다. 분산매로서는, 예를 들면 물을 사용할 수 있다. 불화물계 플럭스로서는, 예를 들면 KAlF4, K2AlF5, K3AlF6 등의 플루오로알루민산칼륨을 사용할 수 있다. 또한, 불화물계 플럭스로서는, KZnF3 등의 플루오로아연산칼륨을 사용할 수도 있다. 불화물계 플럭스로서는, 상술한 화합물을 단독으로 사용할 수도 있고, 병용하여도 좋다. 불화물계 플럭스로서는, 예를 들면 평균 1차 입자 직경 1 내지 50nm인 것을 사용할 수 있다. 불화물계 플럭스의 평균 1차 입자 직경은 레이저 회절·산란법에 의해 구한 입도 분포에서의 체적 적산값 50%에서의 입자 직경을 의미한다.The flux liquid contains a fluoride-based flux, colloidal silica, and a dispersion medium for dispersing them. As the dispersion medium, for example, water can be used. As the fluoride-based flux, for example, potassium fluoroaluminate such as KAlF 4 , K 2 AlF 5 , and K 3 AlF 6 can be used. As the fluoride-based flux, potassium fluoroacetate such as KZnF 3 may also be used. As the fluoride-based flux, the above-mentioned compounds may be used singly or in combination. As the fluoride-based flux, for example, those having an average primary particle diameter of 1 to 50 nm can be used. The average primary particle diameter of the fluoride-based flux means the particle diameter at a volume integration value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.

플럭스액에서는 불화물계 플럭스에 대한 콜로이달 실리카의 질량비가 1/200 내지 1/15인 것이 바람직하다. 즉, 불화물계 플럭스의 함유량 CF(질량부)와 콜로이달 실리카의 함유량 CS(질량부)가 1/200≤CS/CF≤1/15라고 하는 관계를 만족하는 것이 바람직하다. CS/CF<1/200의 경우에는, 콜로이달 실리카의 함유량이 지나치게 적기 때문에, 플럭스액을 사용하여 제작한 열교환기의 친수 지속성이 불충분해질 우려가 있다. 친수 지속성을 보다 향상시킨다고 하는 관점에서 CS/CF≥1/150인 것이 보다 바람직하고, CS/CF≥1/100인 것이 더욱 바람직하다. 한편, CS/CF>1/15의 경우에는, 콜로이달 실리카에 대한 불화물계 플럭스의 양이 지나치게 적어서, 납땜성이 불충분해질 우려가 있다. 납땜성을 보다 향상시킨다는 관점에서 CS/CF≤1/20인 것이 보다 바람직하다. 또한, 본 명세서에서의 바람직한 수치 범위에 대해서는 상한 및 하한의 모든 조합으로부터 결정할 수 있다.In the flux liquid, it is preferable that the mass ratio of the colloidal silica to the fluoride-based flux is 1/200 to 1/15. That is, it is preferable that the content C F (mass part) of the fluoride-based flux and the content C S (mass part) of the colloidal silica satisfy 1/200? C S / C F ? In the case of C S / C F <1/200, since the content of the colloidal silica is too small, there is a possibility that the hydrophilic persistence of the heat exchanger produced using the flux liquid becomes insufficient. It is more preferable that C S / C F ≥1 / 150 and C S / C F ≥ 1/100 from the viewpoint of further improving hydrophilicity sustainability. On the other hand, in the case of C S / C F > 1/15, the amount of the fluoride-based flux relative to the colloidal silica is too small and the solderability may become insufficient. And more preferably C S / C F &lt; / 20 from the viewpoint of further improving the solderability. Further, the preferred numerical ranges in this specification can be determined from all combinations of the upper limit and the lower limit.

콜로이달 실리카의 1차 입자의 평균 입자 직경(즉, 평균 1차 입자 직경)은 1 내지 800nm인 것이 바람직하다. 이 경우에는, 납땜성과 친수성을 보다 높은 레벨로 향상시킬 수 있다. 납땜성과 친수성을 보다 확실하고 또한 더욱 높은 레벨로 향상시킨다고 하는 관점에서, 콜로이달 실리카의 평균 1차 입자 직경은 1 내지 500nm인 것이 보다 바람직하다. 콜로이달 실리카의 평균 1차 입자 직경은 콜로이달 실리카를 건조하고, BET법을 사용하여 그 비표면적을 구하고, 중량과 밀도로부터 역산함으로써 구해진다. 콜로이달 실리카는, 예를 들면 입자 단체 또는 입자의 응집체로서 플럭스액 중에 분산되어 있다.The average particle diameter (that is, the average primary particle diameter) of the primary particles of the colloidal silica is preferably 1 to 800 nm. In this case, solderability and hydrophilicity can be improved to a higher level. The average primary particle diameter of the colloidal silica is more preferably 1 to 500 nm from the viewpoint of improving solderability and hydrophilicity to a more reliable and higher level. The average primary particle diameter of the colloidal silica is determined by drying the colloidal silica, determining its specific surface area using the BET method, and inversely calculating the weight and density from the specific surface area. The colloidal silica is dispersed in the flux liquid, for example, as a single particle or as an aggregate of particles.

납땜시의 가열은, 예를 들면 불활성 가스 분위기 중에서 570℃ 내지 610℃의 최고 도달 온도에서 행하여진다. 이 가열에 의해, 핀과 튜브의 접촉부에서 납재를 용융시키고, 그 후의 냉각에 의해 용융한 납재를 경화시킨다. 이로써, 핀과 튜브의 납땜 접합이 가능해진다.Heating at the time of soldering is performed, for example, at an ultimate temperature of 570 캜 to 610 캜 in an inert gas atmosphere. By this heating, the brazing material is melted at the contact portion between the fin and the tube, and the melted brazing material is hardened by the subsequent cooling. This enables solder jointing of the pin and the tube.

열교환기는 핀과, 이 핀에 납땜 접합된 튜브로 이루어진 코어부를 갖는다. 열교환기의 구체적인 예는 후술하는 실시예에서 도면을 참조하여 설명하지만, 열교환기는 코어부에 헤더, 사이드 서포트, 출입구관 등을 조립함으로써 제조된다.The heat exchanger has a core portion made up of a fin and a tube brazed to the fin. A specific example of the heat exchanger will be described with reference to the drawings in the following embodiments, but the heat exchanger is manufactured by assembling a header, a side support, an inlet / outlet tube, etc. to the core portion.

열교환기는 예를 들면 공조기, 냉장고에 사용할 수 있다. 또한, 자동차의 콘덴서, 에바포레이터, 라디에이터, 히터, 인터쿨러, 오일쿨러 등에 사용할 수도 있다. 또한, 하이브리드 자동차나 전기 자동차의 구동용 모터를 제어하는 인버터 유닛에 구비된 IGBT(Insulated Gate Bipolar Transistor) 등의 발열체를 냉각하기 위한 냉각 장치에 사용할 수도 있다.The heat exchanger can be used, for example, in an air conditioner or a refrigerator. Also, it can be used for a capacitor, an evaporator, a radiator, a heater, an intercooler, an oil cooler, and the like of an automobile. It may also be used as a cooling device for cooling a heating element such as an IGBT (Insulated Gate Bipolar Transistor) provided in an inverter unit for controlling a driving motor for a hybrid vehicle or an electric vehicle.

실시예Example

(실시예 1)(Example 1)

본 예는 실시예 및 비교예에 따른 복수의 플럭스액을 제작하고, 이의 성능을 비교 평가하는 예이다. 구체적으로는, 이들 플럭스액을 각각 사용하여 열교환기용 코어부를 제작하고, 납땜성 및 친수성(즉, 초기 친수성 및 친수 지속성)의 평가를 행한다. 본 예에서는 코어부로서 시험용 미니코어를 제작한다.This example is an example in which a plurality of flux solutions according to the examples and the comparative examples are manufactured and the performance thereof is compared and evaluated. Concretely, the core portions for a heat exchanger are manufactured by using these flux solutions, respectively, and solderability and hydrophilicity (that is, initial hydrophilicity and hydrophilicity persistence) are evaluated. In this example, a test mini core is manufactured as a core part.

도 1 및 도 2에 도시된 바와 같이, 미니코어(1)는 핀(2)과 튜브(3)를 갖고, 코루게이트(corrugate) 형상의 핀(2)이 튜브(3)에 끼워져 있다. 또한, 도 1에서는, 핀(2)의 코루게이트 형상을 명시하기 위해서, 핀(2)을 끼우는 2개의 튜브(3)의 한쪽을 파선으로 표시해 두었다. 도 1 내지 도 3에 도시된 바와 같이, 핀(2)은 코루게이트 형상으로 성형된 알루미늄판으로 이루어진 핀재(21)와, 핀재(21)의 양면에 클래드된 납재층(22)을 갖는다.As shown in Figs. 1 and 2, the minicore 1 has a fin 2 and a tube 3, and a pin 2 in the form of a corrugate is fitted in the tube 3. 1, one of the two tubes 3 that sandwich the fin 2 is indicated by a dashed line in order to specify the corrugated shape of the fin 2. As shown in Fig. 1 to 3, the fin 2 has a fin material 21 made of an aluminum plate molded in a corrugated shape and a brazing filler metal layer 22 clad on both sides of the fin material 21.

도 1 및 도 2에 도시된 바와 같이, 튜브(3)는 알루미늄 합금제의 편평 다공관으로 이루어진다. 튜브(3)는 냉매를 유통시키기 위한 다수의 냉매 유로(311)를 갖고 있다. 미니코어(1)에서는 도 4(b)에 도시된 바와 같이, 핀(2)과 튜브(3)는 납땜 접합되어 있고, 양자 사이에는 접합부(100)가 형성되어 있다.As shown in Figs. 1 and 2, the tube 3 is made of a flat pore tube made of an aluminum alloy. The tube (3) has a plurality of refrigerant flow paths (311) for circulating the refrigerant. In the mini core 1, as shown in Fig. 4 (b), the fins 2 and the tube 3 are solder jointed, and a joint portion 100 is formed between them.

이하, 본 예의 미니코어(1)의 제조 방법에 대하여 설명한다. 구체적으로는 우선 핀재로서, 알루미늄 합금으로 이루어진 판상의 심재의 양면에, Al-Si 합금으로 이루어진 납재를 클래드한 브레이징 시트를 준비하고, 이어서, 이 브레이징 시트를 코루게이트 형상으로 가공하였다. 이렇게 하여, 납재층(22)이 알루미늄판으로 이루어진 핀재(21)의 양면에 클래드된 핀(2)을 얻었다(도 1 내지 도 3 참조). 이어서, 압출 가공에 의해, 3000계 알루미늄 합금제의 편평 다공관으로 이루어진 튜브(3)를 제작하였다(도 1 및 도 2 참조).Hereinafter, a manufacturing method of the mini-core 1 of the present embodiment will be described. Concretely, a brazing sheet in which a brazing material made of an Al-Si alloy is clad on both surfaces of a plate-like core material made of an aluminum alloy as a fin material is first prepared, and then the brazing sheet is processed into a corrugated shape. Thus, the fin 2 clad on both sides of the fin material 21 made of the aluminum plate was obtained as the brazing filler metal layer 22 (see Figs. 1 to 3). Subsequently, a tube 3 made of a flat multi-hole tube made of a 3000-series aluminum alloy was produced by extrusion processing (see Figs. 1 and 2).

다음에, 2개의 튜브(3) 사이에, 코루게이트 형상의 핀(2)을 끼워서 조립품을 제작하였다(도 1 및 도 2 참조). 이로써, 코루게이트 형상의 핀(2)의 각 정점(20)에서의 납재층(22)과, 튜브(3)의 표면을 접촉시켰다.Next, a pin 2 of a corrugated shape was inserted between the two tubes 3 to manufacture an assembly (see Figs. 1 and 2). As a result, the brazing material layer 22 at each apex 20 of the corrugated fin 2 was brought into contact with the surface of the tube 3.

다음에, 후술하는 표 1에 기재한 조성의 각 플럭스액을 조제하고, 도 4(a)에 도시된 바와 같이, 플럭스액(101)을 각각 핀(2)과 튜브(3)로 이루어진 조립품의 전체에 분무하였다. 그 후, 질소 가스 분위기에서 온도 600℃의 노내(in furnace)에, 조립품을 3분간 유지한 후, 실온(25℃)까지 냉각하였다. 이 노내에서의 가열시에 핀(2)의 납재층(22)이 적어도 부분적으로 용융되고, 냉각시에 용융된 납재층(22)이 경화된다. 이 납재층(22)의 용융과 경화에 의해, 핀(2)과 튜브(3)가 접촉부에서 접합되어 접합부(100)가 형성된다(도 4(b) 참조). 이렇게 하여, 도 1 및 도 2에 도시된 바와 같이 미니코어(1)를 얻었다. 본 예에서는, 표 1에 기재한 바와 같이 조성이 다른 복수의 플럭스액을 각각 사용하여 복수의 미니코어(1)를 제작하였다. 또한, 후술하는 표 1에서 불화물계 플럭스로서 사용한 NOCOLOK는 솔베이(SOLVAY)사 제조의 상품이며, FL7은 모리타가가쿠코교(주) 제조의 상품이다. 콜로이달 실리카로서는, 닛키쇼쿠바이카세이(주) 제조의 비정질 콜로이달 실리카인 Cataloid SI-550을 사용하였다. 플럭스액은 콜로이달 실리카와, 불화물계 플럭스를 표 1에 기재한 배합으로 분산매인 물에 분산시킴으로써 제작하였다. 분산매의 양은 도포에 적합한 점도가 되도록 적절히 조제할 수 있다.Next, each flux liquid having the composition shown in Table 1 described later was prepared, and the flux liquid 101 was applied to the assembly 2 composed of the fins 2 and the tubes 3, as shown in Fig. 4 (a) And sprayed all over. Thereafter, the assembly was held in an in-furnace at a temperature of 600 DEG C in a nitrogen gas atmosphere for 3 minutes and then cooled to room temperature (25 DEG C). At the time of heating in this furnace, the filler metal layer 22 of the fin 2 is at least partially melted and the melted filler metal layer 22 is hardened at the time of cooling. By fusion and curing of the filler layer 22, the fins 2 and the tube 3 are joined at the contact portion to form the joint portion 100 (see Fig. 4 (b)). Thus, mini core 1 was obtained as shown in Figs. 1 and 2. In this example, as shown in Table 1, a plurality of mini-cores 1 were manufactured by using a plurality of fluxes having different compositions. NOCOLOK used as a fluoride-based flux in Table 1 to be described later is a product manufactured by SOLVAY, and FL7 is a product manufactured by Morita Kakuko Kogyo Co., Ltd. As the colloidal silica, Cataloid SI-550 which is amorphous colloidal silica manufactured by Nikkiso Co., Ltd. was used. The flux liquid was prepared by dispersing colloidal silica and a fluoride-based flux in water as a dispersion medium in the blend shown in Table 1. The amount of the dispersion medium may be suitably adjusted so as to be a viscosity suitable for application.

다음에, 상기한 바와 같이 하여 얻어진 각 미니코어에 대하여 납땜성, 초기 친수성, 친수 지속성의 평가를 행하였다. 그 결과를 표 1에 기재하였다.Next, each of the mini-cores obtained as described above was evaluated for solderability, initial hydrophilicity and hydrophilicity sustainability. The results are shown in Table 1.

<납땜성><Solderability>

각 미니코어에서의 납땜 접합부를 커터 나이프로 절단하고, 핀의 접합 길이(L1)를 핀의 산부 길이(L2)의 총 합으로 나누어 100분률로 나타낸 값(L1/L2×100)을 접합율(%)로 하였다. 접합율이 90% 이상인 경우를 「A+」라고 평가하고, 접합율이 70% 이상 또한 90% 미만인 경우를 「A」라고 평가하고, 접합율이 70% 미만인 경우를 「B」라고 평가하였다.(L 1 / L 2 × 100), which is expressed by a percentage of 100, is obtained by cutting the soldered joint portion in each of the minicores by a cutter knife and dividing the joint length (L 1 ) of the pin by the sum of the peak length (L 2 ) (%). &Lt; tb &gt;&lt; TABLE &gt; The case where the bonding ratio was 90% or more was evaluated as "A +", the case where the bonding ratio was 70% or more and less than 90% was evaluated as "A", and the case where the bonding ratio was less than 70% was evaluated as "B".

<초기 친수성><Initial hydrophilicity>

초기 친수성의 평가는 핀과 같은 구성의 평판상의 시험판을 사용하여 실시하였다. 즉, 시험판에 대하여 각 시료의 플럭스액을 분무하고, 납땜을 상정한 가열을 행하였다. 구체적으로는, 플럭스액이 분무된 시험판을 질소 가스 분위기에서 온도 600℃의 노내에서 3분간 가열하였다. 이어서, 각 시험판 위에서의 물방울의 접촉각을 측정함으로써 친수성의 평가를 행하였다. 접촉각의 측정은 교와카이맨가가쿠가부시키가이샤 제품의 FACE 자동 접촉각계 「CA-Z」를 사용하여 실시하였다. 구체적으로는, 실온에서 시험판 위에 물방울을 적하하고, 30초 후의 물방울의 접촉각을 측정하였다. 접촉각이 20°이하인 경우를 「A」라고 평가하고, 20°를 초과하고 30°이하인 경우를 「B」라고 평가하고, 30°를 초과할 경우를 「C」라고 평가하였다.The evaluation of the initial hydrophilicity was carried out using a plate test plate having the same structure as the pin. That is, the flux of each sample was sprayed on the test plate, and heating was performed on the assumption of soldering. Specifically, the test plate on which the flux liquid was sprayed was heated in a furnace at a temperature of 600 占 폚 for 3 minutes in a nitrogen gas atmosphere. Then, the hydrophilicity was evaluated by measuring the contact angle of water droplets on each test plate. The contact angle was measured using a FACE automatic contact angle meter "CA-Z" manufactured by Kyowa Hakko Kakuga Co., Ltd. Specifically, water droplets were dropped onto the test plate at room temperature, and the contact angle of water droplets after 30 seconds was measured. A case where the contact angle is 20 DEG or less is evaluated as &quot; A &quot;, a case where the contact angle is more than 20 DEG and 30 DEG or less is evaluated as &quot; B &

<친수 지속성><Continuity of hydrophilicity>

상술한 시험판을 순수에 2분간 침지한 후, 6분간 바람에 건조하였다. 이 순수로의 침지와 바람에 건조하는 사이클을 300회 반복하여 실시하였다. 그 후, 상술한 친수성의 평가와 같게 하여 물방울과의 접촉각을 측정하였다. 300 사이클 후의 접촉각이 25°이하인 경우를 「A」라고 평가하고, 25°를 초과하고 40°이하인 경우를 「B」라고 평가하고, 40°를 초과할 경우를 「C」라고 평가하였다.The above-mentioned test plate was immersed in pure water for 2 minutes and then air-dried for 6 minutes. This immersion in pure water and the wind drying cycle were repeated 300 times. Thereafter, the contact angle with the water droplet was measured in the same manner as the evaluation of the above-mentioned hydrophilicity. A case where the contact angle after 300 cycles was 25 DEG or less was evaluated as &quot; A &quot;, a case where the contact angle was more than 25 DEG and less than 40 DEG was evaluated as &quot; B &

Figure pct00001
Figure pct00001

표 1에서 알 수 있는 바와 같이, 시료 1 내지 시료 16의 플럭스액을 사용한 경우에는, 납땜성, 초기 친수성, 친수 지속성 모두가 뛰어났다. 이에 대하여 콜로이달 실리카를 함유하고 있지 않은 시료 17 내지 19는 친수 지속성이 떨어졌다. 또한, 불화물계 플럭스량에 대한 콜로이달 실리카량이 적은 시료 20 내지 27은 시료 17 내지 19에 비교하면 친수 지속성이 향상되지만, 지속성이 아직 불충분하였다. 또한, 불화물계 플럭스량에 대한 콜로이달 실리카량이 많은 시료 28 내지 시료 35는 납땜성이 떨어졌다.As can be seen from Table 1, when the flux solutions of Samples 1 to 16 were used, both solderability, initial hydrophilicity and hydrophilicity persistence were excellent. On the other hand, Samples 17 to 19, which did not contain colloidal silica, showed poor hydrophilic persistence. Samples 20 to 27 having a small amount of colloidal silica relative to the amount of fluoride-based flux were improved in hydrophilicity persistence as compared with Samples 17 to 19, but persistence was still insufficient. In addition, the samples 28 to 35, which had a large amount of colloidal silica relative to the fluoride-based flux amount, were poor in solderability.

따라서, 시료 1 내지 시료 16과 같이, 불화물계 플럭스와, 콜로이달 실리카와, 분산매를 함유하고, 불화물계 플럭스에 대한 콜로이달 실리카의 질량비가 1/200 내지 1/15인 플럭스액을 사용하는 것이 바람직한 것을 알 수 있다. 이러한 플럭스액을 사용하여, 알루미늄으로 이루어진 튜브와, 알루미늄으로 이루어진 핀을 납땜 접합함으로써 열교환기를 제조하면, 납땜성, 초기 친수성, 친수 지속성이 뛰어난 열교환기의 제조가 가능해진다. 또한, 본 예에서는 핀(2)이 납재층(22)을 갖고 있고, 핀(2)으로서 클래드 핀이 사용되고 있다. 그러므로, 납재를 별도 공급하지 않고 납땜 접합이 가능하다.Therefore, it is preferable to use a flux solution containing a fluoride-based flux, colloidal silica, and a dispersion medium and having a mass ratio of colloidal silica to fluoride-based flux of 1/200 to 1/15 as in Samples 1 to 16 Which is preferable. When such a flux liquid is used to manufacture a heat exchanger by brazing a tube made of aluminum and a fin made of aluminum, it becomes possible to manufacture a heat exchanger excellent in solderability, initial hydrophilicity and hydrophilicity sustainability. In this example, the pin 2 has the filler layer 22, and the pin 2 is a clad pin. Therefore, it is possible to solder joint without separately supplying a brazing material.

(실시예 2)(Example 2)

다음에, 열교환기의 예에 대하여 설명한다. 도 5에 도시된 바와 같이, 열교환기(4)는 실시예 1에서의 상술한 미니코어와 동일한 구성을 다수 구비한 코어부(10)를 갖는다. 구체적으로는, 코어부(10)는 코루게이트 형상의 핀(2)과, 튜브(3)를 교대로 다수적층하여 이루어지고, 핀(2)과 튜브(3)가 실시예 1의 미니코어 와 마찬가지로 납땜 접합되어 있다.Next, an example of the heat exchanger will be described. As shown in Fig. 5, the heat exchanger 4 has a core portion 10 having many of the same structures as the minicoler described in the first embodiment. Specifically, the core portion 10 is formed by laminating a plurality of corrugated fin 2 and a tube 3 alternately, and the fin 2 and the tube 3 are stacked on the mini core of Example 1 And is also soldered.

튜브(3)의 양단에는 헤더(5)가 조립되어 있고, 코어부(10)의 적층 방향에서의 양단(최외측)에는 사이드 플레이트(6)가 조립되어 있다. 또한, 헤더(5)에는 탱크(7)가 조립되어 있다. 이들 헤더(5), 사이드 플레이트(6) 및 탱크(7)는 상술한 핀(2)과 튜브(3)의 접합과 마찬가지로, 예를 들면 납땜에 의해 접합을 행할 수 있다.A header 5 is assembled at both ends of the tube 3 and a side plate 6 is assembled at both ends (outermost side) in the stacking direction of the core portion 10. [ In addition, a tank 7 is assembled to the header 5. The header 5, the side plate 6 and the tank 7 can be joined by, for example, soldering, in the same manner as the above-described bonding of the fin 2 and the tube 3.

열교환기(4)에서는 실시예 1에서의 시료 1 내지 시료 16과 같은 플럭스액을 사용하여 납땜 접합을 행할 수 있다. 이로써, 납땜 후에 얻어지는 열교환기(4)는 핀(2)과 튜브(3)의 납땜성이 뛰어나고, 초기 친수성 및 친수 지속성도 뛰어나다.In the heat exchanger 4, solder bonding can be performed using the same flux liquid as that of the samples 1 to 16 in the first embodiment. As a result, the heat exchanger (4) obtained after soldering has excellent solderability between the fin (2) and the tube (3), and is excellent in initial hydrophilicity and hydrophilicity sustainability.

(변형예 1)(Modified Example 1)

실시예 1에서는 베어 튜브와 클래드 핀을 접합시킨 미니코어에 대하여 설명했지만, 본 예는 클래드 튜브와 베어 핀을 접합시킨 미니코어에 대하여 설명한다. 도 6 및 도 7에 도시된 바와 같이, 미니코어(1)는 실시예 1과 마찬가지로 핀(2)과 튜브(3)를 갖고, 코루게이트 형상의 핀(2)이 튜브(3)에 끼워져 있다. 도 6 내지 도 8에 도시된 바와 같이, 핀(2)의 표면에는 납재층 등이 형성되어 있지 않고, 핀(2)은 베어 핀이다.In the first embodiment, the mini-core in which the bare tube and the clad pin are joined has been described. In this example, however, the minicore in which the clad tube and the bare pin are joined is described. 6 and 7, the mini-core 1 has a pin 2 and a tube 3 in the same manner as in the first embodiment, and a pin 2 of a corrugated shape is fitted in the tube 3 . As shown in Figs. 6 to 8, a brazing material layer or the like is not formed on the surface of the fin 2, and the fin 2 is a bare pin.

도 6 및 도 7에 도시된 바와 같이, 튜브(3)는 알루미늄 합금제의 편평 다공관으로 이루어진 심재(31)와, 이 심재(31)의 표면에 형성된 납재층(32)을 갖는다. 심재(31)는 냉매를 유통시키기 위한 다수의 냉매 유로(311)를 갖고 있다. 도 9(b)에 도시된 바와 같이, 핀(2)과 튜브(3)는 납땜 접합되어 있고, 양자 사이에는 접합부(100)가 형성되어 있다.As shown in Figs. 6 and 7, the tube 3 has a core 31 made of a flat porous tube made of an aluminum alloy, and a brazing material layer 32 formed on the surface of the core 31. Fig. The core member (31) has a plurality of refrigerant flow paths (311) for circulating the refrigerant. As shown in Fig. 9 (b), the fins 2 and the tube 3 are solder jointed, and a joint portion 100 is formed between them.

이하, 본 예의 미니코어(1)의 제조 방법에 대하여 설명한다. 구체적으로는, 우선, JIS 규격의 A1050 조성의 판상의 알루미늄판을 코루게이트 형상으로 가공하였다. 이렇게 하여, 코루게이트 형상의 핀(2)을 얻었다(도 6 내지 도 8 참조).Hereinafter, a manufacturing method of the mini-core 1 of the present embodiment will be described. Specifically, first, a plate-like aluminum plate of A1050 composition according to JIS standard was processed into a corrugated shape. Thus, a pin 2 having a corrugated shape was obtained (see Figs. 6 to 8).

이어서, 압출 가공에 의해, 3000계 알루미늄 합금제의 편평 다공관으로 이루어진 심재(31)를 제작하였다(도 6 및 도 7 참조). 그리고, 심재(31)의 표면에 Si 분말로 이루어진 납재를 도포함으로써 납재층(32)을 형성하였다. 이렇게 하여, 튜브(3)를 얻었다.Subsequently, a core member 31 made of a flat multi-hole tube made of a 3000-series aluminum alloy was produced by extrusion processing (see Figs. 6 and 7). Then, the brazing material layer 32 was formed by applying a brazing material composed of Si powder to the surface of the core material 31. [ Thus, a tube 3 was obtained.

다음에, 2개의 튜브(3) 사이에, 코루게이트 형상의 핀(2)을 끼워서 조립품을 제작하였다(도 1 및 도 2 참조). 이때, 각 튜브(3)의 납재층(32)을 서로 대향시킨 상태에서 양자 사이에 핀(2)을 끼움으로써, 코루게이트 형상의 핀(2)의 각 정점(20)과 납재층(32)을 접촉시켰다. 이어서, 도 9(a)에 도시된 바와 같이, 플럭스액(101)을 튜브(3)와 핀(2)으로 이루어진 조립품의 전체에 분무하였다. 그 후, 질소 가스 분위기에서 온도 600℃의 노내에, 조립품을 3분간 유지한 후, 실온(25℃)까지 냉각시켰다. 이 노내에서의 가열시에 납재층(32)이 용융되고, 냉각시에 용융된 납재층(32)이 경화된다. 이 납재층(32)의 용융과 경화에 의해, 핀(2)과 튜브(3)가 접합되어 접합부(100)가 형성된다(도 9(b) 참조). 이렇게 하여, 도 6 및 도 7에 도시된 바와 같이 미니코어(1)를 얻었다. 본 예에서도, 실시예 1과 같은 플럭스액을 사용하여 납땜 접합을 행한 바, 실시예 1과 같은 결과를 얻을 수 있었다. 즉, 시료 1 내지 16의 플럭스액을 사용함으로써, 시료 17 내지 35를 사용한 경우에 비해 납땜성, 초기 친수성, 친수 지속성이 향상되어 있었다.Next, a pin 2 of a corrugated shape was inserted between the two tubes 3 to manufacture an assembly (see Figs. 1 and 2). At this time, the pin 2 is sandwiched between the two of the tubes 3 of the tubes 3 so as to face each other, Lt; / RTI &gt; Then, as shown in Fig. 9 (a), the flux liquid 101 was sprayed onto the entire assembly consisting of the tube 3 and the fins 2. Then, Thereafter, the assembly was held in a furnace at a temperature of 600 ° C in a nitrogen gas atmosphere for 3 minutes, and then cooled to room temperature (25 ° C). During the heating in the furnace, the filler layer 32 is melted, and the melted filler layer 32 is cured at the time of cooling. By fusion and curing of the filler layer 32, the fins 2 and the tube 3 are joined together to form the joint portion 100 (see Fig. 9 (b)). In this way, mini core 1 was obtained as shown in Figs. 6 and 7. Fig. Also in this example, the same results as in Example 1 were obtained when the solder joint was performed using the same flux liquid as in Example 1. [ That is, by using the flux solutions of Samples 1 to 16, solderability, initial hydrophilicity, and hydrophilicity persistence were improved as compared with the case of using Samples 17 to 35.

이상과 같이, 본 발명의 실시예 및 변형예에 대하여 상세하게 설명했지만, 본 발명은 이들의 예에 한정되는 것이 아니고, 본 발명의 취지를 손상하지 않는 범위 내에서 다양한 변경이 가능하다.As described above, the embodiments and modifications of the present invention have been described in detail. However, the present invention is not limited to these examples, and various modifications can be made without departing from the spirit of the present invention.

Claims (4)

알루미늄으로 이루어진 튜브와, 알루미늄으로 이루어진 핀을 납땜 접합하여 열교환기를 제조하기 위해 사용되는 플럭스액으로서,
불화물계 플럭스와, 콜로이달 실리카와, 상기 불화물계 플럭스 및 상기 콜로이달 실리카를 분산시키는 분산매를 함유하고,
상기 불화물계 플럭스에 대한 상기 콜로이달 실리카의 질량비가 1/200 내지 1/15인, 플럭스액.
As a flux liquid used for manufacturing a heat exchanger by brazing a tube made of aluminum and a pin made of aluminum,
A fluoride-based flux, a colloidal silica, and a dispersion medium for dispersing the fluoride-based flux and the colloidal silica,
Wherein the mass ratio of the colloidal silica to the fluoride-based flux is 1/200 to 1/15.
제1항에 있어서, 상기 콜로이달 실리카의 1차 입자의 평균 입자 직경이 1 내지 500nm인, 플럭스액.The flux liquid according to claim 1, wherein the primary particles of the colloidal silica have an average particle diameter of 1 to 500 nm. 제1항 또는 제2항에 있어서, 상기 핀은 표면에 납재가 클래드된 클래드 핀인, 플럭스액.The flux liquid according to claim 1 or 2, wherein the fin is a clad pin whose surface is clad on the surface. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 튜브는 표면에 납재가 클래드된 클래드 튜브인, 플럭스액.The flux liquid according to any one of claims 1 to 3, wherein the tube is a clad tube in which a brazing material is clad on the surface.
KR1020187002185A 2015-06-24 2016-06-21 Flux amount KR20180020278A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015127074A JP6460598B2 (en) 2015-06-24 2015-06-24 Flux liquid
JPJP-P-2015-127074 2015-06-24
PCT/JP2016/068397 WO2016208581A1 (en) 2015-06-24 2016-06-21 Flux fluid

Publications (1)

Publication Number Publication Date
KR20180020278A true KR20180020278A (en) 2018-02-27

Family

ID=57585840

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187002185A KR20180020278A (en) 2015-06-24 2016-06-21 Flux amount

Country Status (7)

Country Link
US (1) US20180169801A1 (en)
EP (1) EP3299115A4 (en)
JP (1) JP6460598B2 (en)
KR (1) KR20180020278A (en)
CN (1) CN107614191A (en)
MX (1) MX2017016880A (en)
WO (1) WO2016208581A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017180961A (en) * 2016-03-30 2017-10-05 株式会社Uacj Hydrophilic film, heat exchanger fin using the same and heat exchanger
JP6768834B2 (en) * 2016-12-21 2020-10-14 三菱電機株式会社 Heat exchanger and its manufacturing method and refrigeration cycle equipment
JP7376700B2 (en) * 2020-04-22 2023-11-08 Maアルミニウム株式会社 Hydrophilic paint composition, aluminum parts, aluminum plates, aluminum tubes, and heat exchangers
CN114909715B (en) * 2021-02-08 2024-03-22 广东美的暖通设备有限公司 Heat exchanger, manufacturing method thereof, electric control box and air conditioning system
US20230213289A1 (en) * 2022-01-04 2023-07-06 Carrier Corporation Corrosion resistant microchannel heat exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263805A (en) * 1997-03-21 1998-10-06 Calsonic Corp Method for brazing aluminum material
EP1533070B1 (en) * 2002-06-17 2013-05-01 Sumitomo Light Metal Industries, Ltd. Water-base aluminum-brazing composition and process of brazing
DE102005035704A1 (en) * 2005-07-27 2007-02-01 Behr Gmbh & Co. Kg To be soldered surface
EP1808255A1 (en) * 2006-01-11 2007-07-18 Corus Aluminium Walzprodukte GmbH Method of manufacturing a brazed assembly
US20070187462A1 (en) * 2006-01-11 2007-08-16 Aleris Aluminum Koblenz Gmbh Method of manufacturing a brazed assembly
EP1986812A1 (en) * 2006-01-11 2008-11-05 Akzo Nobel Coatings International B.V. Brazing flux composition comprising a lubricant
JP2009269043A (en) * 2008-05-01 2009-11-19 Mitsubishi Alum Co Ltd Coating material for aluminum alloy brazing, excellent in moisture resistant brazing, and aluminum alloy plate for brazing, aluminum alloy member for automobile heat exchanger using the plate, and automobile heat exchanger
WO2013073947A1 (en) * 2011-11-14 2013-05-23 Norsk Hydro Asa Method for manufacturing tube plate fin heat exchangers

Also Published As

Publication number Publication date
MX2017016880A (en) 2018-07-06
WO2016208581A1 (en) 2016-12-29
EP3299115A4 (en) 2018-12-12
JP6460598B2 (en) 2019-01-30
EP3299115A1 (en) 2018-03-28
JP2017006969A (en) 2017-01-12
CN107614191A (en) 2018-01-19
US20180169801A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
KR20180020278A (en) Flux amount
EP1475598A2 (en) Heat exchange tube
JP2006255755A (en) Aluminum alloy material for brazing and method for brazing aluminum alloy material
US20010054496A1 (en) Heat exchanger having plural tubes connected to header tanks by brazing
JP7030605B2 (en) Aluminum fins for heat exchangers with excellent hydrophilicity, heat exchangers and their manufacturing methods
WO2017170772A1 (en) Hydrophilic coating, heat exchanger fin using same, and heat exchanger
RU2194596C2 (en) Method for making section of heat exchanger with aluminum base tubes
JP2006145060A (en) Aluminum heat exchanger
JP2003094165A (en) Aluminum material for brazing and brazing method using the same
JP7131950B2 (en) Pre-coated fin stock for brazed heat exchangers and heat exchangers
JP6576055B2 (en) Pre-coated fin and heat exchanger using the same
JP4611797B2 (en) Aluminum alloy plate material for radiator tubes with excellent brazeability, and radiator tube and heat exchanger provided with the same
JP6231800B2 (en) Al member for heat exchanger having fine passage and method for manufacturing the same
JP5944626B2 (en) Manufacturing method of heat exchanger
WO2018123984A1 (en) Heat exchanger and manufacturing method therefor
JP6952568B2 (en) Aluminum fins with hot water wash hydrophilic coating film and hot water wash hydrophilic coating film and aluminum fin manufacturing method and heat exchanger
JP7209487B2 (en) ALUMINUM FIN AND HEAT EXCHANGER EXCELLENT IN HYDROPHILIC AFTER BRAZING PROCESS AND METHOD FOR MANUFACTURING THE SAME
JP2006348358A (en) Aluminum-alloy extruded material for heat-exchanger, and flat tube with multi-holes for heat-exchanger and header for heat-exchanger using the same
WO2019102915A1 (en) Aluminum fin having excellent hydrophilicity after brazing, and heat exchanger and method for producing same
JP2003225760A (en) Aluminum heat exchanger manufacturing method
JP4513675B2 (en) Brazing method of aluminum material and flux used therefor
JP7560283B2 (en) Flux paint, coating, aluminum tube for heat exchanger, and heat exchanger assembly
JP7376700B2 (en) Hydrophilic paint composition, aluminum parts, aluminum plates, aluminum tubes, and heat exchangers
JP2000271735A (en) Method for applying flux mixture for blazing for heat exchanger and heat exchanger
JP2019045091A (en) Heat exchanger