[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20180004343A - Dc nr rrc 처리 방법 및 장치 - Google Patents

Dc nr rrc 처리 방법 및 장치 Download PDF

Info

Publication number
KR20180004343A
KR20180004343A KR1020160083274A KR20160083274A KR20180004343A KR 20180004343 A KR20180004343 A KR 20180004343A KR 1020160083274 A KR1020160083274 A KR 1020160083274A KR 20160083274 A KR20160083274 A KR 20160083274A KR 20180004343 A KR20180004343 A KR 20180004343A
Authority
KR
South Korea
Prior art keywords
base station
rrc
lte
configuration
terminal
Prior art date
Application number
KR1020160083274A
Other languages
English (en)
Inventor
홍성표
최우진
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to KR1020160083274A priority Critical patent/KR20180004343A/ko
Publication of KR20180004343A publication Critical patent/KR20180004343A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 듀얼/멀티 커넥티비티 기반의 NR RRC 시그널링 처리 방법 및 장치에 관한 것이다. 특히, 본 발명은 NR RRC 메시지를 처리하는 방법에 있어서, LTE-NR 듀얼커넥티비 동작을 구성하는 단계; 및 LTE 기지국과 NR 기지국에서 생성된 RRC 메시지를 효과적으로 처리하는 단계를 포함하는 방법 및 장치를 제공한다.

Description

DC NR RRC 처리 방법 및 장치{Methods and apparatus for NR RRC processing in DC}
본 발명은 듀얼/멀티 커넥티비티 기반의 NR RRC 시그널링 처리 방법 및 장치에 관한 것이다.
본 발명은 NR RRC 메시지를 처리하는 방법에 있어서, LTE-NR 듀얼커넥티비 동작을 구성하는 단계; 및 LTE 기지국과 NR 기지국에서 생성된 RRC 메시지를 효과적으로 처리하는 단계를 포함하는 방법 및 장치를 제공한다.
도 1은 SeNB addition procedure를 설명하기 위한 도면이다.
도 2는 본 발명에 따른 NR SRB 구성의 일 예를 도시한 도면이다.
도 3은 본 발명에 따른 NR splitSRB 구성의 일 예를 도시한 도면이다.
도 4는 본 발명에 따른 LTE splitSRB 구성의 일 예를 도시한 도면이다.
도 5는 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다.
도 6은 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 명세서에서 MTC 단말은 low cost(또는 low complexity)를 지원하는 단말 또는 coverage enhancement를 지원하는 단말 등을 의미할 수 있다.   본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및/또는 coverage enhancement를 지원하기 위한 특정 카테고리로 정의된 단말을 의미할 수 있다.
다시 말해 본 명세서에서 MTC 단말은 LTE 기반의 MTC 관련 동작을 수행하는 새롭게 정의된 3GPP Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 기존의 LTE coverage 대비 향상된 coverage를 지원하거나, 혹은 저전력 소모를 지원하는 기존의 3GPP Release-12 이하에서 정의된 UE category/type, 혹은 새롭게 정의된 Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다.
본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.
기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), small cell 등 다른 용어로 불릴 수 있다.
즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, small cell 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.
상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii)에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.
따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 송신 포인트, 수신 포인트를 통칭하여 기지국으로 지칭한다.
본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.
무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.
또한, LTE, LTE-advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다.
한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.
본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다.
실시예들이 적용되는 무선통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 송수신 포인트와 단말들을 포함할 수 있다.
다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.
이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다.
이하에서는 PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 ‘PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다’는 형태로 표기하기도 한다.
또한 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.
즉, 이하에서 기재하는 물리 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.
또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 EPDCCH를 적용할 수 있다.
한편, 이하에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC시그널링을 포함한다.
eNB은 단말들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.
LTE Dual Connectivity operation
종래 LTE 기술은 단말이 두 개의 기지국 무선자원을 동시에 이용하기 위한 듀얼 커넥티비티 기술을 지원한다. RRC Connected 상태에 있는 multiple RX/TX 단말에 대해 듀얼 커넥티비티 오퍼레이션은 non-ideal 백홀을 통해 연결된 두 개의 기지국에 연결되어 위치한 두 개의 다른 스케줄러에 의해 제공되는 무선 자원을 이용하도록 구성된다.
단말에 SeNB로부터 무선 자원을 제공하기 위하여 SeNB에 단말 컨택스트를 설정하기 위한 SeNB addition(추가) 프로시져가 사용된다. 도 1은 SeNB 추가 프로시져를 나타낸다.
1. The MeNB decides to request the SeNB to allocate radio resources for a specific E-RAB, indicating E-RAB characteristics (E-RAB parameters, TNL address information corresponding to the UP option). In addition, MeNB indicates within SCG - ConfigInfo the MCG configuration (including security algorithm for SCG bearer) and the entire UE capabilities for UE capability coordination to be used as basis for the reconfiguration by the SeNB, but does not include SCG configuration. The MeNB can provide the latest measurement results for the SCG cell(s) requested to be added. The SeNB may reject the request.
2. If the RRM entity in the SeNB is able to admit the resource request, it allocates respective radio resources and, dependent on the bearer option, respective transport network resources. The SeNB triggers Random Access so that synchronisation of the SeNB radio resource configuration can be performed. The SeNB provides the new radio resource of SCG in SCG - Config to the MeNB. For SCG bearers, together with S1 DL TNL address information for the respective E-RAB and security algorithm, for split bearers X2 DL TNL address information.
3. If the MeNB endorses the new configuration, the MeNB sends the RRCConnectionReconfiguration message to the UE including the new radio resource configuration of SCG according to the SCG-Config.
4. The UE applies the new configuration and replies with RRCConnectionReconfigurationComplete message. In case the UE is unable to comply with (part of) the configuration included in the RRCConnectionReconfiguration message, it performs the reconfiguration failure procedure.
5. The MeNB informs the SeNB that the UE has completed the reconfiguration procedure successfully.
6. The UE performs synchronisation towards the PSCell of the SeNB. The order the UE sends the RRCConnectionReconfigurationComplete message and performs the Random Access procedure towards the SCG is not defined. The successful RA procedure towards the SCG is not required for a successful completion of the RRC Connection Reconfiguration procedure.7./8. In case SCG bearers, and dependent on the bearer characteristics of the respective E-RAB, the MeNB may take actions to minimise service interruption due to activation of dual connectivity (Data forwarding, SN Status Transfer).
9.-12. For SCG bearers, the update of the UP path towards the EPC is performed.
두 개의 LTE 기지국 간에 조정(coordination)을 기반으로 제공되는 종래 LTE의 듀얼 커넥티비티 기술에서는 MeNB가 SeNB의 무선자원제어(RRC) 메시지를 이해할 수 있었다. 그리고 단말 캐퍼빌리티(UE capabilities)와 SeNB와의 조정을 고려하여 MeNB가 최종적인RRC 메시지를 생성하여 단말에 지시함으로써 두 개의 기지국에 의한 무선자원을 효율적으로 이용할 수 있었다. RRC 메시지는 단말과 MeNB와의 무선 인터페이스를 통해서만 제공될 수 있었다.
NR (New Radio)
3GPP에서는 최근 차세대/5G 무선 액세스 기술(설명의 편의를 위해, 이하에서 NR으로 표기)에 대한 스타디를 승인했다. 차세대 무선 액세스 기술을 위한 아키텍쳐와 마이그레이션을 위한 요구사항으로 RAN 아키텍쳐는 NR과 LTE 간에 타이트한 인터워킹을 지원할 필요가 있다. NR과 LTE 간의 타이트한 인터워킹을 위해, LTE 듀얼 커넥티비티 기술을 재활용할 수 있을 것으로 예상된다. 하지만 새로운 무선 엑세스로써, NR은 물리계층, 레이어2 프로토콜과 프로시져 상에서 수많은 진화적인 features들을 도입할 것이다. 따라서 LTE와 NR 간의 타이트한 인터워킹을 지원할 때 앞으로 진화될 NR의 모든 feature를 LTE 기지국이 지원하도록 하는 것은 현실적으로 매우 어렵다. 왜냐하면 NR 기지국이 진화할 때마다, LTE 기지국에서도 함께 이를 업데이트하는 것은 현재 구축된 LTE 기지국에 과도한 부담을 주기 때문이다. 따라서 LTE 기지국과 NR 기지국을 통해 구성되는 듀얼 커넥티비티에서는 LTE 기지국이 NR 기지국이 생성한 RRC 메시지를 이해하지 못하는 경우에도 동작할 수 있어야 한다. 이 경우 LTE 기지국은 NR 기지국이 NR 기지국의 무선자원 구성 변경에 대해 확인할 수 없어 단말 캐퍼빌리티를 넘지 않는 단말 구성을 할 수 없는 문제가 발생할 수 있다. 또한 종래 듀얼 커넥티비티 기술에서는 MeNB를 통해서만 RRC 메시지를 전송할 수 있다. 예를 들어 MeNB의 요청에 의해서 SeNB의 무선자원을 변경하는 경우 SeNB의 무선자원 구성정보를 MeNB를 통해 단말에 구성할 수 있었다. 따라서 NR 기지국의 무선자원 변경을 위해 항상 기지국간 전송지연이 추가될 수 있었다. 만약 NR 기지국이 직접 RRC 메시지를 단말로 전송하도록 하는 경우 LTE기지국과 NR 기지국에서 서로 다른 RRC 메시지를 생성하는 경우에 대해 처리방법이 요구될 수 있다. 하지만 이에 대해 처리할 수 있는 방법이 없다.
종래의 LTE 기반의 듀얼 커넥티비티 기술은 두 개의 LTE 기지국 간에 coordination을 기반으로 단말에 구성되어 LTE와 NR 간의 듀얼커넥티비티 기술에 이를 바로 적용할 수 없다. 예를 들어 NR 기지국이 직접 RRC 메시지를 생성하여 단말로 전달할 수 없었다. 만약 두 개의 기지국이 독립적으로 RRC 메시지를 생성한다면 두 개의 기지국이 서로 다른 RRC 메시지를 생성하는 경우 충돌 문제가 발생할 수 있다.
상기한 문제점을 해결하기 위해 안출된 본 발명은 LTE와 NR 간의 타이트한 인터워킹을 지원하는 LTE-NR 듀얼커넥티비 동작을 위해 LTE 기지국과 NR 기지국의 무선자원제어 시그널링을 효과적으로 처리하기 위한 방법 및 장치를 제공하는 것을 목적으로 한다. 또한 LTE 기지국과 NR 기지국에서 생성된 RRC 메시지를 효과적으로 처리할 수 있는 방법을 제공하는 것을 목적으로 한다.
본 발명은 LTE 이동통신 단말뿐만 아니라 차세대 이동통신(5G 이동통신/NR) 단말에도 적용될 수 있다.
설명의 편의를 위해 이하에서 기지국은 LTE/E-UTRAN의 eNodeB, LTE 기지국을 나타낼 수도 있고, CU(Central Unit)과 DU(Distribute unit)이 분리된 5G 무선망에서 NR Node/NR 기지국(CU, DU, 또는 CU와 DU가 하나의 논리적인 개체로 구현된 개체, 이하에서 설명의 편의를 위해 NR 기지국으로 표기하나 전술한 모든 개체가 본 발명의 범주에 포함될 수 있다.)를 나타낼 수 있다.
NR을 위한 듀얼 커넥티비티에서 코어망 연결은 다음과 같은 시나리오가 고려될 수 있다.
-NR이 LTE에 통합되어(integrated), EPC를 통해 연결되는 경우(제어플레인은 LTE기지국과 EPC 개체(MME)간에 연결되며, 사용자플레인은 코어망 또는 무선망에서 분리될 수 있다.)
-LTE가 NR에 통합되어(integrated), NG-Core(5G 코어망)을 통해 연결되는 경우(제어플레인은 NR 기지국과 NG-Core 제어플레인 개체간에 연결되며, 사용자플레인은 코어망 또는 무선망에서 분리될 수 있다.)
-NR이 LTE에 통합되어(integrated), NG-Core(5G 코어망)을 통해 연결되는 경우(제어플레인은 LTE기지국과 NG-Core 제어플레인 개체간에 연결되며, 사용자플레인은 코어망 또는 무선망에서 분리될 수 있다.)
NR을 위한 듀얼/멀티 커넥티비티(이하에서 설명의 편의를 위해 듀얼 커넥티비티로 표기하나 두 개 이상의 커넥티비티를 제공하는 것도 본 발명의 범주에 포함된다.)로 다음과 같은 세 가지 경우가 고려될 수 있다.
- LTE(Master Node) - NR(Secondary Node)
- NR(Master Node) - NR(Secondary Node)
- NR(Master Node) - LTE(Secondary Node)
설명의 편의를 위해 본 발명에서는 잘 구축된 LTE 커버리지를 활용할 수 있는 LTE(Master Node) - NR(Secondary Node) 경우를 예를 들어 설명한다. 하지만, NR(Master Node) - NR(Secondary Node), NR(Master Node) - LTE(Secondary Node)의 경우도 본 발명의 범주에 포함된다.
NR 기지국은 단말의 NR 무선자원을 제어 할 수 있다. LTE 기지국은 단말의 NR 무선자원을 제어 할 수 있다.
NR 기지국은 NR 셀/셀그룹/전송점/전송점그룹/송수신점/송수신점그룹/TRP/안테나/안테나그룹/빔 추가/수정/해제/관리, NR 측정, NR 측정 리포팅, NR 자원할당, NR 무선베어러 추가/수정/해제, NR 무선자원 구성, NR 이동성 제어 중 하나 이상의 제어 기능을 수행할 수 있다. NR기지국은 RRC (재)구성 메시지를 통해 단말에 대해 전술한 하나 이상의 제어 기능을 단말에 지시할 수 있다.
일 예로 LTE 기지국의 LTE RRC 개체와 NR 기지국의 NR RRC 개체는 각각 독립적으로 해당하는 기지국 무선자원 제어 구성을 지시할 수 있다.
다른 예로 LTE 기지국의 LTE RRC 개체는 LTE와 단말 간 인터페이스를 통해, NR 기지국의 NR RRC 개체는 NR과 단말 간 인터페이스를 통해 각각 독립적으로 해당하는 기지국 무선자원 제어 구성을 지시할 수 있다.
다른 예로, LTE 기지국의 LTE RRC 개체와 NR 기지국의 NR RRC 개체는 단말 캐퍼빌리티를 넘지 않는 범위에서 각각 독립적으로 해당하는 기지국 무선자원 제어 구성을 지시할 수 있다.
다른 예로, LTE 기지국의 LTE RRC 개체와 NR 기지국의 NR RRC 개체는 조정을 통해 해당하는 기지국 무선자원 제어 구성을 지시할 수 있다.
다른 예로 LTE 기지국의 LTE RRC 개체는 LTE 무선링크와 NR 무선링크를 통해 LTE 기지국 무선자원 제어 구성을 지시할 수 있다.
다른 예로, NR 기지국의 NR RRC 개체는 NR 무선링크와 LTE 무선링크를 통해 LTE 기지국 무선자원 제어 구성을 지시할 수 있다.
전술한 무선자원 제어 시그널링 전송에 대한 구체적인 방법들에 대해서는 별도로 후술 한다.
LTE 기지국은 NR 기지국 무선자원 구성을 지시하는 (NR 기지국 무선자원 구성에 관계된/ NR 기지국 무선자원 구성에 영향을 주는) RRC 메시지를 단말로 지시할 수 있다. 예를 들어 LTE 기지국은 NR 기지국 무선자원(NR-configuration) 해제(release)를 지시하는 정보를 포함하는 RRC 메시지를 단말로 전송할 수 있다.
일 예로 만약 단말이 LTE기지국으로부터 수신한 RRC 메시지에 NR 기지국 무선자원 해제로 세팅되어 있다면, 단말은 DRB구성을 제외한 전체(entire) NR 기지국 무선자원을 해제한다
만약 현재 단말 구성이 하나 또는 그 이상의 split 또는 SCG DRBs를 포함한다면 그리고 수신된 RRC 재구성 메시지가 추가수정할 DRB정보(drb-ToAddModList)를 포함하는 무선자원구성전용정보를 포함했다면, 추가수정할 DRB정보에 따라 split 또는 SCG DRB를 재구성한다.
다른 예로 만약 단말이 LTE기지국으로부터 수신한 RRC 메시지에 NR 기지국 무선자원 해제로 세팅되어 있다면, 단말은 전체(entire) NR 기지국 무선자원을 해제한다.
LTE 기지국이 NR 기지국 무선자원 구성을 지시하는(NR 기지국 무선자원 구성에 관계된/ NR 기지국 무선자원 구성에 영향을 주는) RRC 메시지를 단말로 지시할 때, NR 기지국이 NR 기지국 무선자원 구성을 지시하는 RRC 메시지를 단말로 지시할 수 있다.
예를 들어 NR 기지국은 NR 셀/셀그룹/전송점/전송점그룹/송수신점/송수신점그룹/TRP/안테나/안테나그룹/빔 추가/수정/해제/관리, NR 측정, NR 측정 리포팅, NR 자원할당, NR 무선베어러 추가/수정/해제, NR 무선자원 구성, NR 이동성 제어 중 하나 이상의 NR 무선자원 구성을 지시하는 RRC 메시지를 단말로 지시할 수 있다.
예를 들어 단말이 하나의RRC 메시지를 수신하여 이의 적용을 완료하기 전에 또 다른 RRC 메시지를 수신할 수 있다.
이하에서는 단말이 서로 다른 RRC 메시지를 수신했을 때 처리 방법에 대해 상세히 설명한다.
1. LTE 기지국으로부터 NR 무선자원 해제를 수신하는 경우
만약 단말이 NR기지국으로부터 수신한 RRC 메시지에 따라 단말이 NR 기지국 무선자원을 구성할 때, 단말이 LTE기지국으로부터 NR 기지국 무선자원(NR-configuration) 해제(release)를 지시하는 정보를 포함하는 RRC 메시지를 수신한다면, 단말은 다음과 같은 동작 중 하나 이상의 동작을 수행할 수 있다.
일 예로 단말은 NR 기지국 무선자원 해제를 수행할 수 있다.
다른 예로 단말은 LTE기지국으로부터 NR 기지국 무선자원 해제가 수신되면 수행중인 RRC 메시지의 동작을 중단/정지/취소/보류/드랍/일시정지/기각(override)/수행중인 RRC 메시지를 수신하기 전에 사용하는 구성으로 되돌림 하고, NR 기지국 무선자원 해제를 수행할 수 있다.
다른 예로 단말은 LTE 기지국으로부터 NR 기지국 무선자원 해제가 수신되어 수행중인 RRC 메시지의 동작을 중단/정지/취소/보류/드랍/일시정지/기각(override)/수행중인 RRC 메시지를 수신하기 전에 사용하는 구성으로 되돌림이 발생했음을 지시하는 정보를 포함하는 RRC 메시지를 NR 기지국으로 전송할 수 있다.
다른 예로 단말에 수신된 RRC 메시지에 순서에 따라 순차적으로 NR 기지국 무선자원을 구성할 수 있다. 이에 따라 단말은 먼저 수신한 RRC 메시지를 수신하여 이를 구성하기 위한 동작을 완료하고 NR 기지국 무선자원 해제를 수행할 수 있다.
다른 예로 만약 단말이 LTE기지국으로부터 수신한 RRC 메시지에 NR 기지국 무선자원이 해제로 세팅되어 있다면, 단말은 DRB구성을 제외한 전체(entire) NR 기지국 무선자원을 해제한다.
다른 예로 만약 현재 단말 구성이 하나 또는 그 이상의 split 또는 SCG DRBs를 포함한다면 그리고 수신된 RRC 재구성 메시지가 추가수정할 DRB정보(drb-ToAddModList)를 포함하는 무선자원구성전용정보를 포함했다면, 추가수정할 DRB정보에 따라 split 또는 SCG DRB를 재구성한다.
기지국(LTE 기지국 또는 NR 기지국)은 전술한 동작을 지시하기 위한 정보를 단말에 지시하여 구성할 수 있다.
2. NR 기지국으로부터 NR 무선자원 해제를 수신하는 경우
만약 단말이 LTE기지국으로부터 수신한 RRC 메시지에 따라 단말이 NR 기지국 무선자원을 구성할 때, 단말이 NR기지국으로부터 NR 기지국 무선자원(NR-configuration) 해제(release)를 지시하는 정보를 포함하는 RRC 메시지를 수신한다면, 단말은 다음과 같은 동작 중 하나 이상의 동작을 수행할 수 있다.
일 예로 단말은 NR 기지국 무선자원 해제를 수행할 수 있다.
다른 예로 단말은 NR기지국으로부터 NR 기지국 무선자원 해제가 수신되면 수행중인 RRC 메시지의 동작을 중단/정지/취소/보류/드랍/일시정지/기각(override)/수행중인 RRC 메시지를 수신하기 전에 사용하는 구성으로 되돌림 하고, NR 기지국 무선자원 해제를 수행할 수 있다.
다른 예로 단말은 NR 기지국으로부터 NR 기지국 무선자원 해제가 수신되어 수행중인 RRC 메시지의 동작을 중단/정지/취소/보류/드랍/일시정지/기각(override)/수행중인 RRC 메시지를 수신하기 전에 사용하는 구성으로 되돌림이 발생했음을 지시하는 정보를 포함하는 RRC 메시지를 LTE 기지국으로 전송할 수 있다.
다른 예로 단말에 수신된 RRC 메시지에 순서에 따라 순차적으로 NR 기지국 무선자원을 구성할 수 있다. 이에 따라 단말은 먼저 수신한 RRC 메시지를 수신하여 이를 구성하기 위한 동작을 완료하고 NR 기지국 무선자원 해제를 수행할 수 있다.
다른 예로 만약 단말이 NR기지국으로부터 수신한 RRC 메시지에 NR 기지국 무선자원이 해제로 세팅되어 있다면, 단말은 DRB구성을 제외한 전체(entire) NR 기지국 무선자원을 해제한다.
다른 예로 만약 현재 단말 구성이 하나 또는 그 이상의 split 또는 SCG DRBs를 포함한다면 그리고 수신된 RRC 재구성 메시지가 추가수정할 DRB정보(drb-ToAddModList)를 포함하는 무선자원구성전용정보를 포함했다면, 추가수정할 DRB정보에 따라 split 또는 SCG DRB를 재구성한다.
기지국(LTE 기지국 또는 NR 기지국)은 전술한 동작을 지시하기 위한 정보를 단말에 지시하여 구성할 수 있다.
3. NR 무선자원 해제를 제외하고, 서로 다른 RRC 메시지를 수신하는 경우
만약 단말이 LTE기지국으로부터 수신한 RRC 메시지에 따라 단말이 NR 기지국 무선자원을 구성할 때, 단말이 NR기지국으로부터 NR 기지국 무선자원(NR-configuration) 추가/수정/구성을 지시하는 정보를 포함하는 RRC 메시지를 수신한다면, 단말은 다음과 같은 동작 중 하나 이상의 동작을 수행할 수 있다. (또는 만약 단말이 NR기지국으로부터 수신한 RRC 메시지에 따라 단말이 NR 기지국 무선자원을 구성할 때, 단말이 LTE 기지국으로부터 NR 기지국 무선자원(NR-configuration) 추가/수정/구성을 지시하는 정보를 포함하는 RRC 메시지를 수신한다면, 단말은 다음과 같은 동작 중 하나 이상의 동작을 수행할 수 있다.)
일 예로 단말에 수신된 RRC 메시지에 순서에 따라 순차적으로 NR 기지국 무선자원을 구성할 수 있다. 이에 따라 단말은 먼저 수신한 RRC 메시지를 수신하여 이를 구성하기 위한 동작을 완료하고 다음에 수신한 RRC 메시지에 따라 NR 기지국 무선자원 구성을 수행할 수 있다.
다른 예로 마스터 기지국(예를 들어 LTE 기지국)으로부터 수신된 RRC 메시지를 우선 처리하도록 할 수 있다. 단말은 세컨더리 기지국(예를 들어 NR 기지국)에 RRC 구성 지시가 중단/정지/취소/보류/드랍/기각(override)/수행중인 RRC 메시지를 수신하기 전에 사용하는 구성으로 되돌림이 발생했음을 지시하는 정보를 포함하는 RRC 메시지를 세컨더리 기지국(예를 들어 NR 기지국)으로 전송할 수 있다.
다른 예로 NR 기지국으로부터 수신된 RRC 메시지를 우선 처리하도록 할 수 있다. 단말은 LTE 기지국에 의한 RRC 구성 지시가 중단/정지/취소/보류/드랍/기각(override)/수행중인 RRC 메시지를 수신하기 전에 사용하는 구성으로 되돌림이 발생했음을 지시하는 정보를 포함하는 RRC 메시지를 NR 기지국으로 전송할 수 있다.
기지국(LTE 기지국 또는 NR 기지국)은 전술한 동작을 지시하기 위한 정보를 단말에 지시하여 구성할 수 있다.
이하에서는 단말에 전술한 무선자원 제어 시그널링 전송에 대한 구체적인 방법들에 대해서는 설명한다. RRC 시그널링 전송을 위해 다음과 같은 방법을 독립적으로 또는 결합하여 사용할 수 있다.
- LTE기지국 SRB(시그널링무선베어러)를 이용
일 예로 NR기지국은 LTE 기지국을 통해 NR RRC 메시지(NR기지국이 생성한 RRC 메시지)를 단말로 전달할 수 있다. 이를 위해 다운링크 RRC 메시지에 대해 NR기지국(또는 NR 기지국의 RRC 엔티티)은 NR RRC 컨테이너/NR RRC IEs/NR RRC IEs를 포함한 NR RRC메시지를 LTE 기지국으로 전달한다. LTE 기지국(또는 LTE기지국의 RRC 엔티티)는 LTE SRB를 통해 NR RRC 컨테이너/NR RRC IEs/NR RRC IEs를 포함한 RRC메시지를 단말(또는 단말의 RRC 엔티티)로 전달할 수 있다. LTE RRC는 NR RRC 컨테이너/NR RRC IEs/NR RRC IEs를 포함한 RRC메시지를 투명한 컨테이너로 RRC 재구성 메시지에 포함하여 단말로 전달할 수 있다.
이 방법은 LTE 기지국의 변경을 적게 하면서, NR 기지국의 RRC 구성정보를 단말로 전달할 수 있는 장점이 있다. 하지만, 이 방법은 LTE기지국과 NR 기지국간의 데이터 전송에 따른 지연이 증가한다. 또한 NR기지국이 LTE 기지국으로부터 단말의 NR RRC 구성에 대한 확인 메시지를 수신해야 한다. 이 또한 지연을 유발하는 요인이다.
이를 개선하기 위한 일 예로, LTE 기지국은 단말이 NR RRC 컨테이너/NR RRC IEs/NR RRC IEs를 포함한 RRC메시지를 단말(또는 단말의 RRC 엔티티)로 전달하면, 단말의 RRC 엔티티가 NR 기지국으로 직접 RRC 재구성 확인 메시지를 전송하도록 지시할 수 있다.
일 예를 들어 LTE SRB를 통해 NR RRC 컨테이너/NR RRC IEs/NR RRC IEs를 포함한 RRC메시지를 수신한 단말의 LTE RRC 개체는 이를 NR RRC 개체로 전달/제출한다. NR RRC 개체는 새로운 구성을 적용한다. NR RRC 개체는 단말과 NR 기지국 간의 인터페이스를 통해 RRC 재구성확인 메시지를 응답한다.
다른 예를 들어 LTE SRB를 통해 NR RRC 컨테이너/NR RRC IEs/NR RRC IEs를 포함한 RRC메시지를 수신한 단말의 RRC 개체는 새로운 구성을 적용한다. 단말의 RRC 개체는 단말과 NR 기지국 간의 인터페이스를 통해 RRC 재구성확인 메시지를 응답한다.
RRC 재구성 메시지(또는 NR RRC 컨테이너/NR RRC IEs/NR RRC IEs를 포함한 RRC메시지)는 NR 기지국(또는 LTE 기지국)에 의해 단말의 이러한 동작을 지시하기 위한 정보를 포함할 수 있다.
일 예를 들어 RRC 재구성 메시지(또는 NR RRC 컨테이너/NR RRC IEs/NR RRC IEs를 포함한 RRC메시지)는 단말이 NR RRC 엔티티를 생성/enable/activate 하도록 지시하기 위한 정보를 포함할 수 있다.
다른 예를 들어 만약 단말이 NR RRC 컨테이너/NR RRC IEs/NR RRC IEs를 포함한 RRC메시지(또는 최초 NR 추가 구성(NR configuration setup)을 지시하는 정보를 포함한 RRC 메시지)를 수신하면, 단말은 NR RRC 엔티티가 NR 추가 구성을 enable/activate하도록 할 수 있다(또는 단말이 NR RRC 엔티티를 설정/생성할 수 있다).
다른 예를 들어 만약 단말이 NR 무선자원 해제를 지시하는 정보를 포함한 RRC 메시지를 수신하면, 단말은 NR RRC 엔티티가 disable/deactivate/해제하도록 할 수 있다.
다른 예를 들어 RRC 재구성 메시지(또는 NR RRC 컨테이너/NR RRC IEs/NR RRC IEs를 포함한 RRC메시지)는 단말이 NR RRC 엔티티에서 단말과 NR기지국간 인터페이스를 통해 RRC 확인 메시지를 전송하도록 지시하기 위한 정보를 포함할 수 있다.
다른 예를 들어 RRC 재구성 메시지(또는 NR RRC 컨테이너/NR RRC IEs/NR RRC IEs를 포함한 RRC메시지)는 단말이 NR RRC 엔티티에서 단말과 NR기지국간 인터페이스를 통해 RRC 확인 메시지를 전송하기 위한 NR 기지국 SRB 구성정보를 포함할 수 있다.
- NR기지국을 통한 SRB 구성
일 예로 NR기지국은 NR기지국과 단말 간 인터페이스를 통해 NR RRC 메시지를 단말로 전달할 수 있다. 이를 위해 단말에 LTE-NR 듀얼커넥티비티를 구성할 때(NR 추가 무선자원을 구성할 때), NR 기지국은 단말과 NR 기지국 간에 SRB(예를 들어SRB1)를 구성할 수 있다. 참고로 종래 LTE에서 SRB1은 RRC 연결 설정에서 수행되었으나, NR 기지국과 단말 간의 SRB1(설명의 편의를 위해 이하에서 NR기지국과 단말 간의 인터페이스를 통해 데이터를 전송하도록 구성된 시그널링 무선베어러를 NR-SRB1로 표기한다.) 설정은 LTE-NR 듀얼커넥티비티를 구성하는(NR 추가 무선자원을 구성하는) RRC 재구성 메시지를 통해 구성하도록 할 수 있다.
시큐리티가 액티베이트되면, NR-SRB1(또는 SRB1/SRB2) 상의 모든 RRC 메시지는 PDCP(또는 NR 상의 L2 엔티티)에 의해 integrity protection과 사이퍼링이 수행되어야 한다. LTE-NR 듀얼커넥티비티는 RRC Connected 단말에 대해 적용되는 것으로 고려될 수 있다. 따라서 NR-SRB1 상의 모든 RRC 메시지는 PDCP(또는 NR 상의 (상위) L2 엔티티)에 의해 integrity protection과 사이퍼링이 수행되어야 한다.
이를 위해 NR-SRB1에 대해, 시큐리티는 시작부터 항상 액티베이트되어야 한다. LTE 기지국은 이 베어러를 시큐리티를 액티베이트하기 전에는 설정하지 말아야 한다. LTE 기지국은 시큐리티를 액티베이트하기 전에는 NR 기지국 추가를 요청하지 말아야 한다. NR 기지국은 LTE 기지국의 NR 기지국 추가 요청에 따라 NR-SRB1를 설정할 수 있다.
일 예를 들어, NR 기지국 추가를 요청할 때, LTE 기지국은 NR기지국으로 NR기지국키(예를들어 NR-KeNB)을 전달(또는 계산하여 전달)한다. NR 기지국은 integrity protection 알고리즘 그리고 사이퍼링 알고리즘을 선택한다. 그리고, LTE 기지국을 통해 단말로 단말에 대해 NR-SRB1를 서비스할 선택된 integrity protection 알고리즘 그리고 사이퍼링 알고리즘(또는 integrity protection 알고리즘 그리고 사이퍼링 알고리즘에 대한 식별정보)를 전달한다. LTE 기지국(또는 NR기지국)은 단말이 NR-SRB1에 연계된 키값을 계산하기 위한 카운터(SCG Counter 또는 NR Counter)를 지시한다. 단말은 NR기지국키를 계산하다. 단말은 NR-SRB1에 연계된 키값을 (NR-KRRCint , NR-KRRCenc)계산한다. 단말은 하위 계층(PDCP 또는 NR 상의 L2 엔티티)가 integrity protection 알고리즘, 사이퍼링 알고리즘, NR-KRRCint , NR-KRRCenc를 적용하도록 구성한다.
도2는 본 발명에 따른 NR SRB 구성의 일 예를 나타낸다. 예를 들어 도2의 NR의 L2엔티티는 LTE의 RLC 엔티티, LTE MAC엔티티 기능을 재분배한 하나 또는 두 개의 엔티티로 구성될 수 있다. 도2에서는 단말 내에 LTE-RRC개체와 NR-RRC개체가 각각 구성된 예를 나타내지만, 단말 내에서 RRC 개체/계층이 하나로 구성된 것도 본 발명의 범주에 포함된다.
만약 단말 내에서 RRC 개체/계층이 하나로 구성된 경우 NR 기지국으로부터 수신된 RRC 메시지에 대해 그리고 이에 상응하는 응답 RRC 메시지에 대해서는 NR-SRB1을 통해 데이터를 전송하도록 할 수 있다. 만약 단말 내에서 RRC 개체가 두 개로 구성된 경우, NR 기지국으로부터 수신된 RRC 메시지에 대해 그리고 이에 상응하는 응답 RRC 메시지에 대해서는 NR-SRB1을 통해 데이터를 전송하도록 할 수 있다. NR 기지국은 NR-SRB1에 대해 DRB에 비해 우선해서 처리하도록 할 수 있다. 일 예를 들어 NR-SRB1에 대해 특정한 논리채널식별정보(logicalchannelIdentity)값을 지정할 수 있다. 다른 예를 들어 NR-splitSRB1에 대해 SRB1과 같은 논리채널식별정보(logicalchannelIdentity)값(예를 들어 1)을 지정할 수 있다. 다른 예를 들어 NR-SRB1에 대해 SRB1과 같은 SRB식별정보(SRB-identity)값(예를 들어 1)을 지정할 수 있다. 다른 예를 들어 NR-SRB1에 대해 SRB1과 같은/유사한 논리채널구성 값(예를 들어 priority(1 또는 2), prioritisedBitRate(infinite))을 지정할 수 있다.
NR 기지국이 NR 셀/셀그룹/전송점/전송점그룹/송수신점/송수신점그룹/TRP/안테나/안테나그룹/빔 추가/수정/해제/관리, NR 측정, NR 측정 리포팅, NR 자원할당, NR 무선베어러 추가/수정/해제, NR 무선자원 구성, NR 이동성 제어 중 하나 이상의 제어 정보를 포함한 NR RRC 메시지를 단말로 보낼 수 있다. 다운링크 RRC 메시지에 대해 NR기지국(또는 NR 기지국의 RRC 엔티티)은 NR RRC 컨테이너/NR RRC IEs/NR RRC IEs를 포함한 NR RRC메시지를 NR-SRB1을 통해 단말로 전달할 수 있다.
단말이 NR-SRB1을 통해 NR RRC 메시지(예를 들어 RRC Connection Reconfiguration 메시지)를 수신하면, 단말은 다음과 같은 방법을 개별적으로 또는 조합하여 사용함으로써 새로운 구성을 적용할 수 있다.
1) 단말 내 하나의 RRC (개체)를 통해 새로운 구성을 적용하는 방법
단말은 RRC를 통해 NR 무선자원을 구성할 수 있다.
종래 LTE 듀얼커넥티비티에서 MeNB가 SCG의 새로운 무선 자원 구성을 포함하는 RRC 메시지를 단말로 보낼 때, 단말이 RRC 연결 재구성 메시지 내에 포함된 (일부) 구성에 따를 수 없는 경우에는 단말은 재구성 실패 프로시져를 수행한다. LTE에서 재구성 실패 프로시져는 다음과 같이 수행된다.
만약 단말이 RRC 연결 재구성 메시지 내에 포함된 (일부) 구성에 따를 수 없다면,
단말은 RRC 연결 재구성 메시지 수신 전에 사용하는 구성을 사용하는 것을 계속한다.
만약 시큐리티가 액티베이트되어 있지 않다면, 해제 원인을 other로 하여 RRC_CONNECTED를 떠나는 동작을 수행한다. 그렇지 않다면 연결 재설정(connection re-establishment) 프로시져를 개시한다.
이와 같이 종래 LTE에서 재구성 실패는 단말을 아이들 모드로 전환하거나 RRC 연결 재설정 프로시져를 수행해야 함으로써 서비스 중단을 야기했다.
한편 NR은 특성상 NR 무선자원 구성 과정에서 다양한 원인으로 실패할 수 있는 여지가 있다. 따라서 임의의 이유로 NR 무선자원 구성과정에서 실패가 발생했을 때 단말을 아이들(IDLE) 모드로 전환하거나 RRC 연결 재설정 프로시져를 수행하는 것은 비효율적일 수 있다.
이를 개선하기 위한 일 예로 단말은 NR RRC 메시지내에 포함된 NR 구성에 실패하는 경우(또는 임의의 이유로 NR RRC 메시지 내에 포함된 NR 구성에 따를 수 없는 경우), 재구성 실패 프로시져를 트리거하지 않도록 할 수 있다. 즉 NR RRC 구성 실패가 LTE RRC 구성 실패를 트리거하지 않도록 할 수 있다. 일 예를 들어 NR RRC 구성에 실패하면 단말은 NR RRC 구성실패 원인을 포함하는 RRC 메시지(예를 들어 SCG failure information 메시지, UE assistance message, 새롭게 정의될 NR failure information/NR status 메시지)를 NR기지국으로 전송할 수 있다. 다른 예를 들어 NR RRC 구성에 실패하면 단말은 NR RRC 구성실패 원인을 포함하는 RRC 메시지(예를 들어 SCG failure information 메시지, UE assistance message, 새롭게 정의될 NR failure information/NR status 메시지)를 LTE기지국으로 전송할 수 있다.
이하에서는 이에 대해 좀 더 상세히 기술한다.
만약 수신된 RRCConnectionReconfiguration 메시지가 NR무선자원을 구성하기 위한 구성정보를 포함한다면,
일 예로 단말(RRC)은 NR 구성을 수행한다.
다른 예로 단말(RRC)이 NR 구성을 따를 수 없다면, 단말은 RRC 연결 재구성 메시지 수신 전(NR 구성정보를 수신 전에)에 사용하는 (NR) 구성을 사용하는 것을 계속한다.
다른 예로 단말(RRC)이 NR 구성을 따를 수 없다면, NR 무선자원 사용을 서스펜드/중단/정지/해제한다.
다른 예로 단말(RRC)이 NR 구성을 따를 수 없다면, RRC는 NR RRC 구성실패 원인을 포함하는 RRC 메시지를 LTE 기지국으로 전송한다. LTE 기지국은 이를 NR 기지국으로 전달한다.
다른 예로 단말(RRC)가 NR 구성을 따를 수 없다면, RRC는 NR RRC 구성실패 원인을 포함하는 RRC 메시지를 단말과 NR 기지국간의 인터페이스를 통해 NR 기지국으로 직접 전송한다.
2) 단말 내 두 개의 RRC (개체)를 통해 새로운 구성을 적용하는 방법
전술한 바와 같이 NR은 LTE와 다른 진화적인 feature들을 독립적으로 포함할 수 있다. 단말에서 이를 효과적으로 implement하기 위해 LTE RRC와 NR RRC를 구성할 수 있다.
종래 LTE 듀얼커넥티비티에서 MeNB가 SCG의 새로운 무선 자원 구성을 포함하는 RRC 메시지를 단말로 보낼 때, 단말이 RRC 연결 재구성 메시지 내에 포함된 (일부) 구성에 따를 수 없는 경우에는 단말은 재구성 실패 프로시져를 수행한다. LTE에서 재구성 실패 프로시져는 다음과 같이 수행된다.
만약 단말이 RRC 연결 재구성 메시지 내에 포함된 (일부) 구성에 따를 수 없다면,
단말은 RRC 연결 재구성 메시지 수신 전에 사용하는 구성을 사용하는 것을 계속한다.
만약 시큐리티가 액티베이트되어 있지 않다면, 해제 원인을 other로 하여 RRC_CONNECTED를 떠나는 동작을 수행한다. 그렇지 않다면 연결 재설정(connection re-establishment) 프로시져를 개시한다.
이와 같이 종래 LTE에서 재구성 실패는 단말을 아이들 모드로 전환하거나 RRC 연결 재설정 프로시져를 수행해야 함으로써 서비스 중단을 야기했다.
한편 NR은 특성상 NR 추가 과정에서 다양한 원인으로 실패할 수 있는 여지가 있다. 따라서 임의의 이유로 NR 추가 과정에서 실패가 발생했을 때 단말을 아이들 모드로 전환하거나 RRC 연결 재설정 프로시져를 수행하는 것은 비효율적일 수 있다.
이를 개선하기 위한 일 예로 단말은 NR RRC 메시지내에 포함된 NR 구성에 실패하는 경우(또는 임의의 이유로 NR RRC 메시지 내에 포함된 NR 구성에 따를 수 없는 경우), 재구성 실패 프로시져를 트리거하지 않도록 할 수 있다. NR RRC 구성 실패가 LTE RRC 구성 실패를 트리거하지 않도록 할 수 있다. NR RRC 구성에 실패하면 단말은 NR RRC 구성실패 원인을 포함하는 RRC 메시지(예를 들어 SCG failure information 메시지, UE assistance message, 새롭게 정의될 NR failure information/NR status 메시지)를 NR 기지국(또는 LTE 기지국)으로 전송할 수 있다. (또는 단말(RRC)이 NR 구성을 따를 수 없다면, RRC는 NR RRC 구성실패 원인을 포함하는 RRC 메시지를 LTE 기지국으로 전송한다. LTE 기지국은 이를 NR 기지국으로 전달한다.)
이하에서는 이에 대해 좀 더 상세히 기술한다.
만약 수신된 RRCConnectionReconfiguration 메시지가 NR무선자원을 구성하기 위한 구성정보를 포함한다면,
일 예로 단말(NR RRC)은 NR 구성을 수행한다.
다른 예로 단말(NR RRC)가 NR 구성을 따를 수 없다면, 단말은 RRC 연결 재구성 메시지 수신 전(NR RRC가 NR 구성정보를 수신전에)에 사용하는 (NR) 구성을 사용하는 것을 계속한다.
다른 예로 단말(NR RRC)가 NR 구성을 따를 수 없다면, NR 무선자원 사용을 서스펜드/중단/정지/해제한다.
다른 예로 단말(NR RRC)가 NR 구성을 따를 수 없다면, NR 무선자원을 해제한다
다른 예로 단말(NR RRC)가 NR 구성을 따를 수 없다면, NR RRC는 NR 재구성 실패를 LTE RRC로 지시한다. LTE RRC는 NR RRC 구성실패 원인을 포함하는 RRC 메시지를 LTE 기지국으로 전송한다. LTE 기지국은 이를 NR 기지국으로 전달한다.
다른 예로 단말(NR RRC)가 NR 구성을 따를 수 없다면, NR RRC는 NR RRC 구성실패 원인을 포함하는 RRC 메시지를 단말과 NR 기지국간의 인터페이스를 통해 NR 기지국으로 직접 전송한다.
이하에서는 NR 무선링크 실패에 관한 다른 예에 대해 설명한다.
NR 물리계층 상에 무선링크 문제(실패)를 검출한 경우, 단말은 NR 물리계층 실패를 RRC개체로 지시할 수 있다. RRC개체는 NR 물리계층 실패에 대해 실패원인을 포함하는 RRC 메시지를 LTE SRB를 통해 LTE기지국으로 이를 지시할 수 있다.
- NR기지국과 LTE기지국을 통한 SRB 구성
NR은 LTE와 다른 무선통신 feature를 포함할 수 있으며, LTE 기지국은 NR 기지국이 생성한 RRC 메시지를 이해하지 못할 수 있다.
NR 기지국은 NR 셀/셀그룹/전송점/전송점그룹/송수신점/송수신점그룹/TRP/안테나/안테나그룹/빔 추가/수정/해제/관리, NR 측정, NR 측정 리포팅, NR 자원할당, NR 무선베어러 추가/수정/해제, NR 무선자원 구성, NR 이동성 제어 중 하나 이상의 제어 정보를 포함한 NR RRC 메시지를 직접 단말로 보내도록 할 수 있다.
하지만 NR은 고주파수(예를 들어 6GHz 이상의 high frequency) 대역에서도 구축될 수 있다. 이 경우 고주파수 대역의 링크 블락키지와 높은 투과 손실에 따라 빠른 SINR drops이 발생할 수 있다 그리고 NR RRC를 보낼 때 문제를 야기할 수 있다. 이러한 문제를 보완하기 위해, NR RRC 메시지를 NR기지국과 단말간 인터페이스 그리고 LTE기지국과 단말간 인터페이스를 모두 이용하여 보내도록 할 수 있다.
예를 들어 단말에 LTE-NR 듀얼커넥티비티를 구성할 때(NR 추가 무선자원을 구성할 때), NR 기지국은 단말이 LTE기지국과 NR 기지국을 모두 이용할 수 있는 SRB(예를 들어SRB1 유형으로)를 구성할 수 있다. LTE기지국과 NR 기지국을 모두 이용할 수 있는 SRB (설명의 편의를 위해 이하에서 NR기지국이 LTE기지국과 NR 기지국을 모두 이용할 수 있도록 구성하는 시그널링 무선베어러를 NR-splitSRB1로 표기한다.) 설정은 LTE-NR 듀얼커넥티비티를 (재)구성하는(NR 추가 무선자원을 구성하는) RRC 재구성 메시지를 통해 구성하도록 할 수 있다.
시큐리티가 액티베이트되면, NR-splitSRB1상의 모든 RRC 메시지는 PDCP(또는 NR 상의 L2 엔티티)에 의해 integrity protection과 사이퍼링이 수행되어야 한다. LTE-NR 듀얼커넥티비티는 RRC Connected 단말에 대해 적용되는 것으로 고려될 수 있다. 따라서 NR-splitSRB1 상의 모든 RRC 메시지는 PDCP(또는 NR 상의 (상위) L2 엔티티)에 의해 integrity protection과 사이퍼링이 수행되어야 한다.
이를 위해 NR-splitSRB1에 대해, 시큐리티는 시작부터 항상 액티베이트되어야 한다. NR 기지국은 이 베어러를 시큐리티를 액티베이트하기 전에는 설정하지 말아야 한다. LTE 기지국은 시큐리티를 액티베이트하기 전에는 NR 기지국 추가를 요청하지 말아야 한다. (또는 NR 기지국은 시큐리티를 액티베이트하기 전에는 LTE기지국에 NR-splitSRB1 추가를 요청하지 말아야 한다.) NR 기지국은 LTE 기지국의 NR 기지국 추가 요청에 따라 NR-splitSRB1를 설정할 수 있다.(또는 NR기지국은 필요에 따라 NR-splitSRB1을 설정할 수 있다.)
일 예를 들어, NR 기지국 추가를 요청할 때, LTE 기지국은 NR기지국으로 NR기지국키(예를들어 NR-KeNB)을 전달(또는 계산하여 전달)한다. NR 기지국은 integrity protection 알고리즘 그리고 사이퍼링 알고리즘을 선택한다. 그리고, LTE 기지국을 통해 단말로 단말에 대해 NR-splitSRB1를 서비스할 선택된 integrity protection 알고리즘 그리고 사이퍼링 알고리즘(또는 integrity protection 알고리즘 그리고 사이퍼링 알고리즘에 대한 식별정보)를 전달한다. LTE 기지국(또는 NR기지국)은 단말이 NR-splitSRB1에 연계된 키값을 계산하기 위한 카운터(SCG Counter 또는 NR Counter)를 지시한다. 단말은 NR기지국키를 계산하다. 단말은 NR-SRB1에 연계된 키값을 (NR-KRRCint , NR-KRRCenc)계산한다. 단말은 하위 계층(PDCP 또는 NR 상의 L2 엔티티)가 integrity protection 알고리즘, 사이퍼링 알고리즘, NR-KRRCint , NR-KRRCenc를 적용하도록 구성한다.
다른 예를 들어, NR 기지국은 LTE 기지국에 NR-splitSRB1를 구성하기 위한 정보를 지시할 수 있다. 전술한 바와 같이 LTE 기지국은 NR기지국의 NR RRC 컨테이너/NR RRC IEs를 이해하지 못할 수 있다. 따라서 NR 기지국은 LTE 기지국이 NR-splitSRB1을 구성하도록 지시하기 위한 정보를 NR기지국과 LTE기지국 간 인터페이스 상의 시그널링 메시지에 포함할 수 있다. LTE 기지국이 NR-splitSRB1을 구성하도록 지시하기 위한 정보를 수신하면, LTE 기지국은 단말에 NR-splitSRB1을 구성하기 위한 정보를 지시할 수 있다. LTE 기지국은 NR-splitSRB1에 대해 DRB에 비해 우선해서 처리하도록 단말에 (지시) 할 수 있다. 일 예를 들어 NR-splitSRB1에 대해 특정한 논리채널식별정보(logicalchannelIdentity)값을 지정할 수 있다. 단말은 NR-splitSRB1으로 지정된 논리채널에 대해, DRB에 비해 우선하여 처리하도록 할 수 있다. 다른 예를 들어 NR-splitSRB1에 대해 SRB1과 같은 논리채널식별정보(logicalchannelIdentity)값(1)을 지정할 수 있다. 다른 예를 들어 NR-splitSRB1에 대해 SRB1과 같은 우선순위로 처리하도록 하기 위한 정보를 지시할 수 있다. 다른 예를 들어 NR-splitSRB1에 대해 시그널링 베어러임을 지시하기 위한 정보를 지시할 수 있다. 다른 예를 들어 NR-splitSRB1에 대해 SRB1과 다른 논리채널식별정보(logicalchannelIdentity)값을 지정하지만, SRB1과 같은 우선순위로 처리하도록 하기 위한 정보를 지시할 수 있다. 다른 예를 들어 NR-splitSRB1에 대해 SRB1과 같은 SRB식별정보(SRB-identity)값(예를 들어 1)을 지정할 수 있다. 다른 예를 들어 NR-splitSRB1에 대해 SRB1과 같은/유사한 논리채널구성 값(예를 들어 priority(1 또는 2), prioritisedBitRate(infinite))을 지정할 수 있다.
- LTE기지국과 NR기지국을 통한 SRB 구성
NR은 LTE와 다른 무선통신 feature를 포함할 수 있으며, LTE 기지국은 NR 기지국이 생성한 RRC 메시지를 이해하지 못할 수 있다.
NR 기지국은 NR 셀/셀그룹/전송점/전송점그룹/송수신점/송수신점그룹/TRP/안테나/안테나그룹/빔 추가/수정/해제/관리, NR 측정, NR 측정 리포팅, NR 자원할당, NR 무선베어러 추가/수정/해제, NR 무선자원 구성, NR 이동성 제어 중 하나 이상의 제어 정보를 포함한 NR RRC 메시지를 직접 단말로 보내도록 할 수 있다.
하지만 NR은 고주파수(예를 들어 6GHz 이상의 high frequency) 대역에서도 구축될 수 있다. 이 경우 고주파수 대역의 링크 블락키지와 높은 투과 손실에 따라 빠른 SINR drops이 발생할 수 있다 그리고 NR RRC를 보낼 때 문제를 야기할 수 있다. 이러한 문제를 보완하기 위해, NR RRC 메시지를 NR기지국과 단말간 인터페이스 그리고 LTE기지국과 단말간 인터페이스를 모두 이용하여 보내도록 할 수 있다.
반면 일부 (상향 또는 하향) RRC 메시지는 신뢰성을 위해 LTE 기지국을 통해 우선 전달하는 것이 바람직할 수 있다.
예를 들어 단말에 LTE-NR 듀얼커넥티비티를 구성할 때(NR 추가 무선자원을 구성할 때), LTE 기지국은 단말이 LTE기지국과 NR 기지국을 모두 이용할 수 있는 SRB(예를 들어SRB1 유형으로)를 구성할 수 있다. LTE기지국과 NR 기지국을 모두 이용할 수 있는 SRB (설명의 편의를 위해 이하에서 LTE 기지국이 LTE기지국과 NR 기지국을 모두 이용할 수 있도록 구성하는 시그널링 무선베어러를 LTE-splitSRB1로 표기한다.) 설정은 LTE-NR 듀얼커넥티비티를 (재)구성하는(NR 추가 무선자원을 구성하는) RRC 재구성 메시지를 통해 구성하도록 할 수 있다.
LTE-splitSRB1 상의 모든 RRC 메시지는 PDCP에 의해 integrity protection과 사이퍼링이 수행되어야 한다.
이를 위해 LTE-splitSRB1에 대해, 시큐리티는 시작부터 항상 액티베이트되어야 한다. LTE 기지국은 이 베어러를 시큐리티를 액티베이트하기 전에는 설정하지 말아야 한다. LTE 기지국은 시큐리티를 액티베이트하기 전에는 NR 기지국 추가를 요청하지 말아야 한다. NR 기지국은 LTE 기지국의 NR 기지국 추가 요청에 포함된 지시정보에 따라 LTE-splitSRB1을 위한 NR구성을 설정할 수 있다.
일 예를 들어, NR 기지국 추가를 요청할 때, LTE 기지국은 NR기지국으로 LTE-splitSRB1을 구성을 지시하기 위한 정보를 전달한다. NR 기지국은 LTE-splitSRB1의 NR part를 구성하기 위한 정보(예를 들어 logaicalchannelconfig, logicalchannelIdentity, rlcconfig 중 하나 이상의 정보)를 LTE 기지국을 통해 단말로 전달한다. 다른 예를 들어, NR 기지국은 LTE 기지국에 LTE-splitSRB1를 구성을 확인하기 위한 정보를 지시할 수 있다. 전술한 바와 같이 LTE 기지국은 NR기지국의 NR RRC 컨테이너/NR RRC IEs를 이해하지 못할 수 있다. 따라서 NR 기지국은 LTE 기지국에 LTE-splitSRB1 구성을 확인하기 위한 지시 정보를 NR기지국과 LTE기지국 간 인터페이스 상의 시그널링 메시지에 포함할 수 있다. LTE 기지국이 LTE-splitSRB1을 구성하도록 지시하기 위한 정보를 수신하면, LTE 기지국은 단말에 LTE-splitSRB1의 LTE part를 구성하기 위한 정보를 지시할 수 있다. LTE 기지국은 LTE-splitSRB1에 대해 DRB에 비해 우선해서 처리하도록 할 수 있다. 일 예를 들어 LTE-splitSRB1에 대해 특정한 논리채널식별정보(logicalchannelIdentity)값을 지정할 수 있다. 단말은 LTE-splitSRB1으로 지정된 논리채널에 대해, DRB에 비해 우선하여 처리하도록 할 수 있다. 다른 예를 들어 NR-splitSRB1에 대해 SRB1과 같은 논리채널식별정보(logicalchannelIdentity)값(1)을 지정할 수 있다(또는 SRB1 또는 SRB2로 구성할 수 있다.)
NR 기지국은 LTE-splitSRB1에 대해 DRB에 비해 우선해서 처리하도록 할 수 있다. 일 예를 들어 LTE-splitSRB1에 대해 특정한 논리채널식별정보(logicalchannelIdentity)값을 지정할 수 있다. 단말은 LTE-splitSRB1으로 지정된 논리채널에 대해, DRB에 비해 우선하여 처리하도록 할 수 있다. 다른 예를 들어 LTE-splitSRB1에 대해 SRB1과 같은 논리채널식별정보(logicalchannelIdentity)값(1)을 지정할 수 있다(또는 SRB1 또는 SRB2로 구성할 수 있다.) 다른 예를 들어 LTE-splitSRB1에 대해 SRB1과 같은 우선순위로 처리하도록 하기 위한 정보를 지시할 수 있다. 다른 예를 들어 LTE-splitSRB1에 대해 시그널링 베어러임을 지시하기 위한 정보를 지시할 수 있다. 다른 예를 들어 LTE-splitSRB1에 대해 SRB1과 같은 SRB식별정보(SRB-identity)값(예를 들어 1)을 지정할 수 있다. 다른 예를 들어 LTE-splitSRB1에 대해 SRB1과 같은/유사한 논리채널구성 값(예를 들어 priority(1 또는 2), prioritisedBitRate(infinite))을 지정할 수 있다. 다른 예를 들어 LTE-splitSRB1은 SRB1과 같이 처리될 수 있으므로 별도의 구성을 하지 않을 수 있다. 다만 LTE 기지국은 PDCP 개체에서 RRC 시그널링 메시지의 경로를 LTE 기지국과 NR 기지국(또는 LTE 기지국과 NR 기지국과 두 개의 기지국)으로 지정하기 위한 정보를 단말에 지시할 수 있다.
상기한 바와 같이 본 발명은 LTE와 NR 간의 타이트한 인터워킹을 지원하는 LTE-NR 듀얼커넥티비 동작을 위해 LTE 기지국과 NR 기지국의 무선자원제어 시그널링을 효과적으로 처리할 수 있다. 또한 LTE 기지국과 NR 기지국에서 생성된 RRC 메시지를 효과적으로 처리할 수 있는 방법을 제공할 수 있다.
도 5는 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다.
도 5를 참조하면, 또 다른 실시예에 의한 기지국(1000)은 제어부(1010)과 송신부(1020), 수신부(1030)을 포함한다.
제어부(1010)는 전술한 본 발명을 수행하기에 필요한 LTE 기지국과 NR 기지국의 무선자원제어 시그널링을 효과적으로 처리하기 위한 방법 및 장치를 제공하는데에 따른 전반적인 기지국의 동작을 제어한다.
송신부(1020)와 수신부(1030)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다.
도 6은 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.
도 6을 참조하면, 또 다른 실시예에 의한 사용자 단말(1100)은 수신부(1110) 및 제어부(1120), 송신부(1130)을 포함한다.
수신부(1110)는 기지국으로부터 하향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.
또한 제어부(1120)는 전술한 본 발명을 수행하기에 필요한 LTE 기지국과 NR 기지국의 무선자원제어 시그널링을 효과적으로 처리하기 위한 방법 및 장치를 제공하는 데에 따른 전반적인 단말의 동작을 제어한다.
송신부(1130)는 기지국에 상향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.
전술한 실시예에서 언급한 표준내용 또는 표준문서들은 명세서의 설명을 간략하게 하기 위해 생략한 것으로 본 명세서의 일부를 구성한다. 따라서, 위 표준내용 및 표준문서들의 일부의 내용을 본 명세서에 추가하거나 청구범위에 기재하는 것은 본 발명의 범위에 해당하는 것으로 해석되어야 한다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (1)

  1. NR RRC 메시지를 처리하는 방법에 있어서,
    LTE-NR 듀얼커넥티비 동작을 구성하는 단계; 및
    LTE 기지국과 NR 기지국에서 생성된 RRC 메시지를 효과적으로 처리하는 단계를 포함하는 방법.
KR1020160083274A 2016-07-01 2016-07-01 Dc nr rrc 처리 방법 및 장치 KR20180004343A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160083274A KR20180004343A (ko) 2016-07-01 2016-07-01 Dc nr rrc 처리 방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160083274A KR20180004343A (ko) 2016-07-01 2016-07-01 Dc nr rrc 처리 방법 및 장치

Publications (1)

Publication Number Publication Date
KR20180004343A true KR20180004343A (ko) 2018-01-11

Family

ID=61004250

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160083274A KR20180004343A (ko) 2016-07-01 2016-07-01 Dc nr rrc 처리 방법 및 장치

Country Status (1)

Country Link
KR (1) KR20180004343A (ko)

Similar Documents

Publication Publication Date Title
KR102174932B1 (ko) 이중 연결 상태에서 데이터를 송수신하는 방법 및 그 장치
KR102183826B1 (ko) 단말의 듀얼 커넥티비티 구성 방법 및 그 장치
CN108282823B (zh) 用于控制冗余数据发送的方法和设备
US9497666B2 (en) Method for handover in environment connected to multiple base stations and apparatus therefor
EP3178287B1 (en) Method for deactivating scells during scg change procedure and a device therefor
KR102026952B1 (ko) 무선 통신 시스템에서 장치-대-장치 통신을 수행하는 방법 및 장치
KR101640681B1 (ko) 듀얼 커넥티비티에서 기지국 변경 방법 및 그 장치
KR102038500B1 (ko) 업링크 데이터 처리 방법 및 그 장치
KR101602999B1 (ko) 이동통신망에서 이중 연결을 구성하기 위한 방법 및 그 장치
KR102016728B1 (ko) 데이터 중복 전송을 제어하는 방법 및 그 장치
KR102170530B1 (ko) 제어 메시지 중복수신 방법 및 장치
KR102065137B1 (ko) 버퍼 상태 리포트 전송 방법 및 그 장치
US20170311362A1 (en) Method for processing data using wlan carrier and apparatus therefor
JP2017505017A (ja) 複数のキャリアを有する端末がttiバンドリングを設定する方法及びその装置
KR102077780B1 (ko) 무선 링크 실패를 처리하는 방법 및 그 장치
KR20140137277A (ko) 무선자원 재설정/재구성 방법 및 그 장치
KR20180004343A (ko) Dc nr rrc 처리 방법 및 장치
KR20180081649A (ko) 멀티 커넥티비티 기반의 이동성 제어 방법 및 장치
KR20180011400A (ko) Dual connectivity 환경에서 NR 기지국 변경 방법 및 장치
KR20170113767A (ko) Lwa 환경에서 pdcp 동작 방법 및 장치
KR20170113768A (ko) Lwa 환경에서 베어러 구성 방법 및 장치
KR101985991B1 (ko) 데이터 송수신 방법 및 그 장치
KR20170109129A (ko) 고속 wlan을 지원하는 lwa 구성 방법 및 장치
KR20180137070A (ko) Nr-lte 연동을 위한 통합 스플릿 베어러 구성 방법 및 장치
KR20170109121A (ko) Wlan 종단 변경 방법 및 장치