[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20170126100A - 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법 및 장치 - Google Patents

짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법 및 장치 Download PDF

Info

Publication number
KR20170126100A
KR20170126100A KR1020170056206A KR20170056206A KR20170126100A KR 20170126100 A KR20170126100 A KR 20170126100A KR 1020170056206 A KR1020170056206 A KR 1020170056206A KR 20170056206 A KR20170056206 A KR 20170056206A KR 20170126100 A KR20170126100 A KR 20170126100A
Authority
KR
South Korea
Prior art keywords
time interval
transmission time
short transmission
uplink data
uplink
Prior art date
Application number
KR1020170056206A
Other languages
English (en)
Other versions
KR102120976B1 (ko
Inventor
김기태
최우진
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to PCT/KR2017/004702 priority Critical patent/WO2017192014A2/ko
Priority to US16/098,812 priority patent/US11431460B2/en
Publication of KR20170126100A publication Critical patent/KR20170126100A/ko
Priority to US16/179,863 priority patent/US11431461B2/en
Application granted granted Critical
Publication of KR102120976B1 publication Critical patent/KR102120976B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 실시예들은 3GPP LTE/LTE-Advanced 시스템에서 short TTI 기반의 프레임 구조에서 상향링크 채널을 전송 및 수신하는 단말과 기지국의 구체적인 동작에 관한 것이다. 본 실시예들에 의하면, 두 개의 개별적인 CS 값을 단말별로 할당하는 방식을 통해 sPUCCH를 구성하여 sPUCCH에 RS를 포함하지 않고 Ack/Nack 메시지를 전송할 수 있도록 하며, sPUSCH와 SRS가 sTTI 내 동일 심볼에서 중첩될 경우 구체적인 동작 방식을 제공함으로써 sTTI 프레임 구조에서 sPUSCH와 SRS의 동시 전송시 단말과 기지국의 구체적인 동작 방식을 제공한다.

Description

짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법 및 장치{METHOD AND APPARATUS FOR TRANSMITTING UPLINK CHANNEL IN A SHORT TTI FRAME STRUCTURE}
본 실시예들은 3GPP LTE/LTE-Advanced 시스템에서 상향링크 채널의 전송 및 수신에 대한 단말 및 기지국의 동작에 관한 것이다.
3GPP LTE/LTE-Advanced 시스템에서 latency reduction을 위한 연구와 논의가 진행되고 있다. Latency reduction의 주요 목적은 TCP throughput을 향상시키기 위해서 보다 짧은 TTI(이하, 'short TTI' 또는 'sTTI'라 함) 운영을 규격화하는 것이다.
이를 위해 RAN2에서는 short TTI에 대한 성능 검증을 수행하고 있으며, 0.5ms와 하나의 OFDM 심볼 사이에서 TTI 길이의 실현 가능성과 성능, 백워드 호환성 유지 등에 대한 논의가 진행 중이다.
이러한 short TTI에 대한 Physical layer에 대한 연구가 진행 중이나, short TTI 기반 PUCCH 설정, sPUSCH와 legacy SRS의 전송 및 수신에 관한 구체적인 절차가 부재되어 있다.
본 실시예들의 목적은, short TTI 기반의 프레임 구조에서 상향링크 제어 채널과 상향링크 데이터 채널의 송수신 방식 및 상향링크 데이터 채널과 사운딩 참조 신호의 동시 전송시 단말과 기지국의 구체적인 동작 방식을 제공하는 데 있다.
일 측면에서, 본 실시예들은, 단말이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법에 있어서, 기지국으로부터 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 수신하는 단계와, 하향링크 데이터에 대한 Ack/Nack을 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 기지국으로 전송하는 단계와, 기지국으로 짧은 전송 시간 간격의 상향링크 데이터 채널을 통해 상향링크 데이터와 사운딩 참조 신호를 전송하는 단계를 포함하고, 하나의 서브프레임에 포함된 짧은 전송 시간 간격의 상향링크 데이터 채널 중 적어도 하나를 통해 상향링크 데이터 및 사운딩 참조 신호 중 적어도 하나를 전송하는 방법을 제공한다.
다른 측면에서, 본 실시예들은, 기지국이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 수신하는 방법에 있어서, 단말로 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 전송하는 단계와, 하향링크 데이터에 대한 Ack/Nack을 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 수신하는 단계와, 단말로부터 짧은 전송 시간 간격의 상향링크 데이터 채널을 통해 상향링크 데이터와 사운딩 참조 신호를 수신하는 단계를 포함하고, 하나의 서브프레임에 포함된 짧은 전송 시간 간격의 상향링크 데이터 채널 중 적어도 하나를 통해 상향링크 데이터 및 사운딩 참조 신호 중 적어도 하나를 수신하는 방법을 제공한다.
다른 측면에서, 본 실시예들은, 단말이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법에 있어서, 기지국으로부터 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 수신하는 단계와, 개별적인 순환 시프트 값을 Ack/Nack에 각각 할당하는 방식으로 Ack/Nack을 포함하는 짧은 전송 시간 간격의 상향링크 제어 채널을 구성하는 단계와, 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 하향링크 데이터에 대한 Ack/Nack을 기지국으로 전송하는 단계를 포함하는 방법을 제공한다.
다른 측면에서, 본 실시예들은, 기지국이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 수신하는 방법에 있어서, 단말로 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 전송하는 단계와, 단말로부터 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 하향링크 데이터에 대한 Ack/Nack을 수신하는 단계를 포함하고, 짧은 전송 시간 간격의 상향링크 제어 채널은 개별적인 순환 시프트 값을 Ack/Nack에 각각 할당하는 방식으로 구성되는 방법을 제공한다.
본 실시예들에 의하면, short TTI 기반의 프레임 구조에서 sPUCCH 설정 및 송수신을 위한 구체적인 방안과 sPUSCH와 SRS 심볼 구간의 중첩 문제를 해결할 수 있는 상향링크 채널 송수신 방식을 제공한다.
도 1은 eNB and UE processing delays and HARQ RTT를 나타낸 도면이다.
도 2는 resource mapping per PRB in one subframe을 나타낸 도면이다.
도 3은 sTTI 기반의 프레임 구조에서 상향링크 채널 전송 방식의 예시를 나타낸 도면이다.
도 4는 sPUSCH와 SRS의 전송 개념도를 나타낸 도면이다.
도 5는 SRS와 legacy PUSCH 할당의 개념도를 나타낸 도면이다.
도 6은 sPUSCH drop을 통한 SRS protection 개념도를 나타낸 도면이다.
도 7은 sTTI bundling 개념도를 나타낸 도면이다.
도 8은 본 실시예들에 따른 기지국의 구성을 나타낸 도면이다.
도 9는 본 실시예들에 따른 사용자 단말의 구성을 나타낸 도면이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 명세서에서 MTC 단말은 low cost(또는 low complexity)를 지원하는 단말 또는 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및/또는 coverage enhancement를 지원하기 위한 특정 카테고리로 정의된 단말을 의미할 수 있다.
다시 말해 본 명세서에서 MTC 단말은 LTE 기반의 MTC 관련 동작을 수행하는 새롭게 정의된 3GPP Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 기존의 LTE coverage 대비 향상된 coverage를 지원하거나, 혹은 저전력 소모를 지원하는 기존의 3GPP Release-12 이하에서 정의된 UE category/type, 혹은 새롭게 정의된 Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다.
본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.
기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), small cell 등 다른 용어로 불릴 수 있다.
즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, small cell 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.
상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii)에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.
따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 송신 포인트, 수신 포인트를 통칭하여 기지국으로 지칭한다.
본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.
무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.
또한, LTE, LTE-advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다.
한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.
본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다.
실시예들이 적용되는 무선통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 송수신 포인트와 단말들을 포함할 수 있다.
다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.
이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다.
이하에서는 PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.
또한 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.
즉, 이하에서 기재하는 물리 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.
또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 PDCCH를 적용할 수 있다.
한편, 이하에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC 시그널링을 포함한다.
eNB은 단말들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.
본 발명에서는 3GPP LTE/LTE-Advanced 시스템에서 short TTI 기반 상향링크 채널의 전송 및 수신에 대한 단말 및 기지국의 동작에 대한 구체적인 방안을 제안한다. 특히, sPUCCH의 설정 및 송수신 방식과, sPUSCH와 SRS의 동시 전송 및 수신에 대한 단말 및 기지국의 구체적인 동작을 제안한다.
[Latency reduction in RAN1]
Latency reduction Study Item은 3GPP RAN plenary #69 회의에서 승인되었다. Latency reduction의 주요 목적은 TCP throughput을 향상시키기 위해서 보다 짧은 TTI 운영을 규격화하는 것이다. 이를 위해 RAN2에서는 이미 short TTI에 대한 성능 검증을 수행하였다.
아래와 같은 범위에서 RAN1에 관계된 potential impact들과 study를 수행한다:
o Assess specification impact and study feasibility and performance of TTI lengths between 0.5ms and one OFDM symbol, taking into account impact on reference signals and physical layer control signaling
o backwards compatibility shall be preserved (thus allowing normal operation of pre-Rel 13 UEs on the same carrier);
Latency reduction can be achieved by the following physical layer techniques:
- short TTI
- reduced processing time in implementation
- new frame structure of TDD
3GPP RAN WG1#84회의에서 추가적으로 합의된 사항은 아래와 같다.
Agreements:
- Following design assumptions are considered:
o No shortened TTI spans over subframe boundary
o At least for SIBs and paging, PDCCH and legacy PDSCH are used for scheduling
- The potential specific impacts for the followings are studied
o UE is expected to receive a sPDSCH at least for downlink unicast
● sPDSCH refers PDSCH carrying data in a short TTI
o UE is expected to receive PDSCH for downlink unicast
● FFS whether a UE is expected to receive both sPDSCH and PDSCH for downlink unicast simultaneously
o FFS: The number of supported short TTIs
o If the number of supported short TTIs is more than one,
Agreements:
- Following design assumptions are used for the study
o From eNB perspective, existing non-sTTI and sTTI can be FDMed in the same subframe in the same carrier
● FFS: Other multiplexing method(s) with existing non-sTTI for UE supporting latency reduction features
Agreements:
- In this study, following aspects are assumed in RAN1.
o PSS/SSS, PBCH, PCFICH and PRACH, Random access, SIB and Paging procedures are not modified.
- Following aspects are further studied in the next RAN1 meeting
o Note: But the study is not limited to them.
o Design of sPUSCH DM-RS
● Alt.1: DM-RS symbol shared by multiple short-TTIs within the same subframe
● Alt.2: DM-RS contained in each sPUSCH
o HARQ for sPUSCH
● Whether/how to realize asynchronous and/or synchronous HARQ
o sTTI operation for Pcell and/or SCells by (e)CA in addition to non-(e)CA case
3GPP RAN WG1#84bis회의에서 추가적으로 합의된 사항은 아래와 같다.
Working Assumption:
- 1-OFDM-symbol sTTI length will not be further studied
Agreement:
- sPDCCH (PDCCH for short TTI) needs to be introduced for short TTI.
● Each short TTI on DL may contain sPDCCH decoding candidates
Working Assumption:
- CRS-based sPDCCH is recommended to be supported
● FFS whether CRS-based sPDCCH can be transmitted in the legacy PDCCH region
- DMRS-based sPDCCH is recommended to be supported
- Design of both CRS-based sPDCCH and DMRS-based sPDCCH will be studied further.
Conclusions:
Figure pat00001
A maximum number of BDs will be defined for sPDCCH in USS
- In case 2-level DCI is adopted, any DCI for sTTI scheduling carried on PDCCH may be taken into account in the maximum total number of BDs
Figure pat00002
FFS whether the maximum number is dependent on the sTTI length
Figure pat00003
FFS whether the maximum number of blind decodes for (E)PDCCH is reduced in subframes in which the UE is expected to perform blind decodes for sPDCCH
Figure pat00004
FFS whether a UE may be expected to monitor both EPDCCH and sPDCCH in the same subframe
Figure pat00005
FFS whether the maximum number of BDs on PDCCH is changed from the legacy number
if DCI on PDCCH is for sTTI scheduling
Conclusion for study till RAN1#85:
Figure pat00006
Two-level DCI can be studied for sTTI scheduling, whereby:
- DCI for sTTI scheduling can be divided into two types:
Figure pat00007
"Slow DCI": DCI content which applies to more than 1 sTTI is carried on either legacy PDCCH, or sPDCCH transmitted not more than once per subframe
Figure pat00008
FFS whether "Slow DCI" is UE-specific or common for multiple UEs
Figure pat00009
"Fast DCI": DCI content which applies to a specific sTTI is carried on sPDCCH
Figure pat00010
For a sPDSCH in a given sTTI, the scheduling information is obtained from either:
Figure pat00011
a combination of slow DCI and fast DCI, or
Figure pat00012
fast DCI only, overriding the slow DCI for that sTTI
- Compare with single-level DCI carried on one sPDCCH or one legacy PDCCH.
- It is not precluded to consider schemes in which the slow DCI also includes some resource allocation information for the sPDCCH.
Figure pat00013
Methods for reducing the overhead of single-level DCI can also be studied
- Single-level DCI multi-sTTI scheduling for a variable number of sTTIs may be included
Aim to reduce the number of schemes under consideration at RAN1#85.
Agreements:
Figure pat00014
Both CRS based TMs and DMRS based TMs are recommended to be supported for DL sTTI transmission
- No change for CRS definition
Figure pat00015
FFS: Supporting more than 2 layers for sPDSCHs
- Further study is needed about DMRS design(s) for sPDSCH demodulation
Figure pat00016
For a certain TTI length, increased PRB bundling sizes may be necessary to achieve sufficient channel estimation accuracy.
Figure pat00017
FFS: the number of DMRS antenna ports that can be supported for a given short-TTI length.
Figure pat00018
For a certain TTI length, new DMRS design(s) may be needed
Agreements:
Figure pat00019
A UE is expected to handle the following cases in the same carrier in a subframe
- Receiving legacy TTI non-unicast PDSCH (except FFS for SC-PTM) and short TTI unicast PDSCH
- Receiving legacy TTI non-unicast PDSCH (except FFS for SC-PTM) and legacy TTI unicast PDSCH(s)
Figure pat00020
FFS between:
- Alt 1: A UE is not expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier
- Alt 2: If the UE is scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier, then it may skip the decoding of one of them (FFS rules for determining which one)
- Alt 3: A UE is expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier
Figure pat00021
FFS UE behaviour in case of being scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously with legacy TTI non-unicast PDSCH (except FFS for SC-PTM) on the same carrier
Figure pat00022
A UE can be dynamically (with a subframe to subframe granularity) scheduled with legacy TTI unicast PDSCH and/or (depends on outcome of FFS above) short TTI PDSCH unicast
Agreements:
Figure pat00023
A UE can be dynamically (with a subframe to subframe granularity) scheduled with PUSCH and/or sPUSCH
- A UE is not expected to transmit PUSCH and short TTI sPUSCH simultaneously on the same REs, i.e. by superposition
- FFS whether a UE may transmit PUSCH and short TTI sPUSCH in the same subframe on one carrier by puncturing PUSCH
- FFS whether a UE may transmit PUSCH and short TTI sPUSCH in different PRBs on the same symbol(s)
- Dropping/prioritization rules (if any) are FFS
Agreements:
Figure pat00024
It is recommended to support PHICH-less asynchronous UL HARQ for PUSCH scheduled in a short TTI (i.e. for sPUSCH)
Figure pat00025
If DL data transmission is scheduled in a short TTI, the processing time for preparing the HARQ feedback by UE and the processing time for preparing a potential retransmission by eNB are assumed to be reduced
- FFS: the extent of processing time reduction
Figure pat00026
If UL data transmission is scheduled in a short TTI, the processing time for preparing UL data transmission upon UL grant reception at UE and the processing time for scheduling a potential retransmission by eNB are assumed to be reduced
- FFS: the extent of processing time reduction
Figure pat00027
Study whether it is beneficial to limit the maximum TA value supported in conjunction with latency reduction
- Note that this would restrict the deployment scenarios for latency reduction.
Figure pat00028
FFS whether processing time reductions can also be applied to legacy TTI transmissions for UEs that support short TTI
기본적으로 Average down-link latency calculation에서는 아래의 절차를 따라 latency를 계산하게 된다.
Following the same approach as in section B.2.1 in 3GPP TR 36.912, the LTE U-plane one-way latency for a scheduled UE consists of the fixed node processing delays and 1 TTI duration for transmission, as shown in Figure 1 below. Assuming the processing times can be scaled by the same factor of TTI reduction keeping the same number of HARQ processes, the one way latency can be calculated as
D = 1.5 TTI (eNB processing and scheduling) + 1 TTI (transmission) + 1.5 TTI (UE processing) + n*8 TTI (HARQ retransmissions)
= (4 + n*8) TTI.
Considering a typical case where there would be 0 or 1 retransmission, and assuming error probability of the first transmission to be p, the delay is given by
D = (4 + p*8) TTI.
So, for 0% BLER, D = 4 * TTI,
And for 10% BLER, D = 4.8 * TTI.
Average UE initiated UL transmission latency calculation
도 1은 eNB and UE processing delays and HARQ RTT를 설명하기 위한 도면이다.
Assume UE is in connected/synchronized mode and wants to do UL transmission, e.g., to send TCP ACK. Following table shows the steps and their corresponding contribution to the UL transmission latency. To be consistent in comparison of DL and UL, we add the eNB processing delay in the UL after the UL data is received by the eNB (step 7).
UL transmission latency calculation
Step Description Delay
1. Average delay to next SR opportunity SR periodicity/2
2. UE sends SR 1 TTI
3. eNB decodes SR and generates scheduling grant 3 TTI
4. Transmission of scheduling grant (assumed always error free) 1 TTI
5. UE processing delay (decoding Scheduling grant + L1 encoding of data) 3 TTI
6. UE sends UL transmission (1 + p*8) TTI where p is initial BLER.
7. eNB receives and decodes the UL data 1.5 TTI
In the table 1 above, steps 1-4 and half delay of step 5 is assumed to be due to SR, and rest is assumed for UL data transmission in values shown in Table 4
Resource mapping of short TTI
도 2는 resource mapping per PRB in one subframe을 도시한 도면이다.
In Figure 2 the resource map above is the legacy resource mapping per PRB in one subframe, considering 2 Antenna ports and 2 OFDM symbols control field. In Figure 2 the resource map below is the short TTI resource mapping, considering 2 OFDM symbols used for the control field in order to ensure the backward compatibility. The loss rates (Llegacy, e.g. 5% - 50%) of the PHY layer in short TTI duration are assumed.
TBS Calculation of short TTI
According to the resource mapping and the TBS calculation formula given above, the loss rate of PHY layer for legacy PDSCH is calculated as follows:
Figure pat00029
For different short TTI duration, The TBS of short TTI PDSCH is calculated as the following table:
TBS calculation for different TTI duration
TTI Duration TBS of short TTI PDSCH (TBSshort)
7 OFDM symbol First time slot:
Figure pat00030
Second time slot:
Figure pat00031
2 OFDM symbol
Figure pat00032
1 OFDM symbol
Figure pat00033
상기와 같이 short TTI에 대한 Physical layer에 대한 연구가 진행 중이며, sPUCCH의 설정, sPUSCH와 legacy SRS 전송 및 수신에 대한 구체적인 절차가 부재되어 있다.
본 발명에서는 short TTI 기반의 프레임 구조에서 sPUCCH, sPUSCH(short TTI based PUSCH)와 SRS 전송을 위한 단말 동작 및 기지국 동작 방법을 제시한다.
도 3은 short TTI 기반의 프레임 구조에서 단말과 기지국 간의 신호 송수신 방식을 나타낸 것이다.
Short TTI 기반의 프레임 구조에서 sTTI는 2개 또는 3개의 심볼로 구성된다. 단말은 기지국으로부터 하향링크 데이터 채널을 통해 sTTI 기반의 sPDSCH를 수신한다.
단말은 sPDSCH를 수신하면 수신한 sPDSCH에 대한 Ack/Nack을 sTTI 기반의 sPUCCH를 통해 전송하고, sPUDSH를 통해 상향링크 데이터와 사운딩 참조 신호를 전송한다.
여기서, 단말은 2개 또는 3개의 심볼로 구성된 sTTI를 통해 Ack/Nack을 전송하기 위한 sPUCCH를 설정한다.
기존의 PUCCH에서 Ack/Nack을 전송하기 위해서는 format 1a, 1b를 기준으로 OCC(spreading) + CS(cyclic shift)로 자원 할당을 적용한다. 그러나, sPUCCH는 심볼의 수가 적어지므로 기존의 OCC를 제외한 Zadoff-Chu(ZC) 시퀀스의 CS 기반 Ack/Nack multiplexing 자원 할당 방식을 제안한다. 즉, 기존 구조와 달리 OCC spreading을 사용하지 않고 Ack/Nack 전송을 위한 sPUCCH를 설정한다.
일 예로, 기존의 PUCCH의 Ack/Nack 방식과는 다르게 sPUCCH 구조에 RS를 포함하지 않고, sPUCCH 내 모든 심볼이 Ack/Nack 메시지를 포함하는 데이터 심볼이 되도록 sPUCCH를 구성할 수 있다.
따라서, eNB에서 sPUCCH를 검출하기 위해서는 RS를 통한 채널 추정 후 Ack/Nack 메시지를 복호하는 기존 방식과 달리, On/off 시그널링만 검출하면 된다.
이때, On/off 시그널링은 채널 추정의 과정이 없는만큼 한 심볼에서 Ack/Nack을 동시에 표현할 수 없으므로, 단말이 두 개 이상의 멀티 CS 자원을 사용하여 Ack/Nack 메시지를 표현하도록 한다. 다시 말해, 단말이 Ack 또는 Nack을 표현하기 위해 2개의 개별적인 CS 값이 필요하게 되며, 단말별로 2개의 CS 값을 할당하여 Ack/Nack 메시지를 구성한다.
sPUCCH에서는 기본적으로 기존의 PUCCH보다 적은 단말이 존재할 것이라는 가정이 가능하며, 모든 단말이 latency reduction 기반 서비스를 요구하는 것은 아니므로, 한 단말에 2개의 개별적인 CS 값을 할당하여 sPUCCH를 구성할 수 있다.
한편, Short TTI 기반의 sPUSCH 전송시 단말은 해당 SRS(Sounding Reference Signal)와 동시 전송 구간이 발생할 수 있다. 이때 기존의 현재 Low-latency 관련 동작에서 하향링크에서 아래와 같은 동작을 alternative로 고려하고 있다.
- Alt 1: A UE is not expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier
- Alt 2: If the UE is scheduled with legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier, then it may skip the decoding of one of them (FFS rules for determining which one)
- Alt 3: A UE is expected to receive legacy TTI unicast PDSCH and short TTI unicast PDSCH simultaneously on one carrier
여기에서 현재 다루어지지 않는 사항인 SRS와 sPUSCH의 동시 전송에 대한 단말의 동작 및 기지국의 스케줄링 방법에 대해서 기술한다.
도 4는 sPUSCH와 SRS의 전송 개념도를 나타낸 것이고, 도 5는 SRS와 legacy PUSCH 할당의 개념도를 나타낸 것이다.
앞서 언급한 sPUSCH와 SRS 전송을 다루는 전송 개념도는 도 4와 같다.
즉, 기존의 SRS는 상향 서브프레임 가장 마지막 심볼에 할당될 수 있다. 기존의 PUSCH와 SRS는 이러한 문제를 해결하기 위해서 아래와 같은 방법을 적용하였다.
기본적으로 도 5와 같이 SRS가 전송이 configuration 되어있는 서브프레임에서는 legacy PUSCH 할당 시 SRS가 겹치는 영역에 할당되는 PUSCH는 SRS와 overlapping을 고려해야 한다. 일반적으로 SRS가 더 보호해야 할 신호이기 때문에 전송의 우선권을 갖게 되기 때문에, PUSCH가 multiplexing을 통해서 information 크기를 adjusting하게 된다. 즉, SRS와 심볼이 겹치는 PUSCH는 해당 심볼 구간의 자원을 제외한 영역에만 데이터 전송이 이루어지게 된다.
그러나 sPUSCH에서는 이러한 legacy PUSCH와 SRS overlapping 해결책을 그대로 적용하기 어렵다.
예를 들어 2개의 심볼 구간으로 sTTI가 정의되어 있다면, SRS와 overlapping이 되는 1개 심볼 구간을 제외하면 DMRS 전송 심볼 구간만 남아 해당 sTTI에서는 sPUSCH를 통한 데이터 전송이 불가능하게 된다.
또 다른 예로 3개의 OFDM 심볼 구간으로 sTTI를 정의할 경우, DMRS 1 심볼을 제외한 2개 심볼만이 sPUSCH를 전송할 수 있는데, 이때 SRS 심볼 구간이 1 심볼 구간을 제외하면 결과적으로 1개의 심볼 구간에 sPUSCH를 전송할 수 있다.
따라서 경우에 따라서는 이용할 수 있는 data RE의 수가 모자라서 데이터 전송이 불가능하거나, 극단적으로 너무 작은 크기의 정보 비트만이 전송하게 되어 latency reduction을 통한 이득을 취함에 있어 그 범위가 한정적이게 된다. 따라서 본 발명에서는 이러한 sPUSCH와 SRS의 overlapping 구간에 발생할 수 있는 문제를 해결하기 위해서 아래와 같은 방법을 제안한다.
방안 1. 서브프레임 내 마지막 sTTI에 정의된 sPUSCH가 SRS 자원과 중첩될 경우 무조건 sPUSCH 전송을 drop한다. 또는 sPUSCH 전송을 skip한다.
도 6은 sPUSCH drop을 통한 SRS protection 개념도를 나타낸 것이다.
SRS 전송 구간과 sPUSCH의 자원이 중첩될 경우, 해당 sTTI에서 sPUSCH는 전송을 생략한다. 해당 경우에는 SRS 전송에 대한 configuration이 RRC와 SIB2를 통해서 미리 정의되고, semi-static한 방법으로 sTTI가 configuration 된다고 가정한다. 이때 단말은 해당 sTTI를 통한 sPUSCH전송을 할당 받았더라도 해당 데이터 전송을 수행하지 않는다. 이때 sTTI에서 sPUSCH 전송은 아래와 같은 방법을 통해 단말의 동작을 정의할 수 있다.
① SRS 전송이 이루어지지 않는 다음 서브프레임의 동일 sTTI에서 다시 전송을 수행한다.
■ 예: 마지막 sTTI#N에서 다시 전송 (subframe#0에서 SRS 전송 가정)
Subframe#0(sTTI#0, sTTI#1, ..., sTTI#N) → subframe#1(sTTI#0, sTTI#1,..., sTTI#N)
② SRS 전송이 이루어지지 않는 다음 서브프레임의 첫번째 sTTI에서 다시 전송을 수행한다.
■ 예: 마지막 sTTI#N에서 다시 전송 (subframe#0에서 SRS 전송 가정)
Subframe#0(sTTI#0, sTTI#1, ..., sTTI#N) → subframe#1(sTTI#0, sTTI#1,..., sTTI#N)
③ 해당 sPUSCH 데이터는 buffer에서 삭제하고 sPUSCH 재할당을 기다린다.
방안 2. 서브프레임 내 마지막 sTTI에 정의된 sPUSCH가 SRS 자원과 중첩될 경우 shortened data 기반의 sPUSCH 전송을 수행한다.
SRS 전송 구간과 sPUSCH의 자원이 중첩될 경우, 해당 sTTI에서 기존과 동일한 shortened sPUSCH는 전송을 수행한다. 해당 방법은 기존의 SRS와 legacy PUSCH 가 중첩될 때 사용하는 방법과 동일하게 적용한다. 또한 단말 역시 available RE 수를 산정할 경우 SRS 중첩 영역을 제외한다. 그러나, sTTI 영역에서 SRS 심볼 구간을 제외하고 남는 available RE가 너무 적어서 사용이 불가능할 경우 해당 sTTI를 통한 sPUSCH 전송은 생략된다. 따라서 아래 criterion을 고려하여 sPUSCH 전송을 결정한다.
① No. of available REs > Nthreshold
■ SRS 심볼 구간을 제외한 sPUSCH 전송을 수행한다.
■ 이때 information size는 available RE들을 고려해서 재계산한다.
② No. of available REs ≤≤ Nthreshold
■ sPUSCH 전송을 수행하지 않는다.
방안 3. 서브프레임 내 마지막 sTTI에 정의된 sPUSCH가 SRS 자원과 중첩되더라도 sPUSCH 전송을 수행한다.
SRS 전송 구간과 sPUSCH의 자원이 중첩될 경우, 해당 sTTI에서 SRS configuration에 관계 없이sPUSCH는 전송을 수행한다. 이때에 SRS 심볼 영역에 간섭을 유발할 수 있기 때문에 아래와 같은 가이드에 따라 sPUSCH 전송을 수행한다.
① 동일한 UE의 sPUSCH와 SRS 구간이 중첩될 경우
■ 단말은 자신의 SRS 전송을 생략하고 모든 sTTI에 심볼 구간에 sPUSCH를 mapping하여 전송한다.
■ 이때 기지국은 SRS 구간이 설정된 심볼 구간이더라도, 주파수 영역의 SRS 자원과 sPUSCH 구간이 중첩되는 것을 미리 알 수 있기 때문에 해당 영역의 SRS 검출은 수행하지 않고, sPUSCH 검출을 수행한다.
② 서로 다른 UE의 sPUSCH와 SRS 구간이 중첩될 경우
■ SRS configuration 영역에 타 단말이 SRS 전송을 수행할 수 있기 때문에 sPUSCH 전송을 수행하지 않는다.
■ 만일 해당 sPUSCH를 통한 정보의 중요성으로 인해 반드시 전송을 해야한다면, SRS 구간에 간섭을 최소화하기 위해서 낮은 전력으로 전송을 수행한다.
방안 4. 서브프레임 내 마지막 sTTI에 정의된 sPUSCH가 SRS 자원과 중첩될 경우 앞서 인접한 sTTI를 번들링하여 데이터 전송을 수행한다.
도 7은 sTTI bundling 개념도를 나타낸 것이다.
본 제안에서는 sTTI가 SRS 심볼 구간과 중첩되어 해당 sTTI의 available RE 수가 일정 수 이하일 경우, 데이터 전송으로 사용하지 못할 수 있다. 따라서 이러한 경우에는 기본적으로 인접 sTTI와 bundling을 수행하여 sPUSCH 전송을 수행한다.
이때 SRS 심볼과 중첩 여부는 기지국이 미리 알고 있기 때문에 단말은 해당 sTTI 전송을 수행함에 있어 미리 정해진 패턴에 따라 sTTI bundling을 수행하고, available RE를 다시 산정하여 데이터 전송을 수행한다.
예를 들어 도 7은 sTTI#3, #4를 번들링하여 sPUSCH#3을 전송하는 예를 나타내고 있다. 이때 동일 단말이 연속적인 sTTI 할당을 받았고, sTTI 각각에 DMRS가 포함되어 있다면 아래의 동작을 추가로 정의할 수 있다.
① 단말은 번들링 대상의 앞선 sTTI에서만 DMRS를 전송하고 SRS 전송 심볼을 제외한 나머지 모든 심볼에 sPUSCH를 통한 데이터 전송을 수행한다.
■ 이때 기지국은 단말의 sTTI 번들링 기반 전송을 미리 알고 있어 앞선 sTTI의 DMRS만 이용하여 sPUSCH 검출을 수행한다.
② 단말은 번들링 대상의 모든 sTTI에서 DMRS를 전송하고 SRS 전송 심볼을 제외한 나머지 모든 심볼에 sPUSCH를 통한 데이터 전송을 수행한다.
■ 이때 기지국은 단말의 번들링된 sTTI 번들링 기반 전송을 미리 알고 있어 sTTI 각각에 위치하고 있는 DMRS를 모두 이용하여 sPUSCH 검출을 수행한다.
방안 5. sTTI configuration 시 SRS 전송이 일어나는 subframe의 마지막 심볼을 제외한 sTTI들을 정의한다.
본 제안에서는 semi-static한 방법으로 sTTI를 정의할 경우, 해당 서브프레임에 SRS configuration이 되어 있으면, 해당 서브프레임에서는 SRS 심볼 구간을 무조건 제외하고, sTTI를 정의한다. 이러한 경우에는 sTTI configuration시에 SRS 중첩 이슈를 제거하기 때문에 이러한 SRS 중첩 문제를 해결할 수 있다.
본 발명에서는 sTTI 기반 sPUSCH 와 SRS 심볼 구간의 중첩 문제를 해결하기 위한 구체적인 방법에 대해 기술하였으며, 해당 방법은 유사 시그널 및 채널에 그 원리가 그대로 적용할 수 있다.
도 8은 본 실시예들에 따른 기지국(800)의 구성을 나타낸 것이다.
도 8을 참조하면, 본 실시예들에 따른 기지국(800)은 제어부(810)과 송신부(820), 수신부(830)를 포함한다.
제어부(810)는, 전술한 본 발명에 따라 sPUCCH 설정 및 전송, sPUSCH와 SRS 전송을 수행함에 따른 전반적인 기지국(800)의 동작을 제어한다.
송신부(820)와 수신부(830)는, 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다.
도 9는 본 실시예들에 따른 사용자 단말(900)의 구성을 나타낸 것이다.
도 9를 참조하면, 본 실시예들에 따른 사용자 단말(900)은, 수신부(910) 및 제어부(920), 송신부(930)를 포함한다.
수신부(910)는, 기지국으로부터 하향링크 제어 정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.
또한, 제어부(920)는, 전술한 본 발명에 따라 sPUSCH 설정 및 전송, sPUSCH와 SRS 전송을 수행함에 따른 전반적인 사용자 단말(900)의 동작을 제어한다.
송신부(930)는, 기지국에 상향링크 제어 정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.
전술한 실시예에서 언급한 표준내용 또는 표준문서들은 명세서의 설명을 간략하게 하기 위해 생략한 것으로 본 명세서의 일부를 구성한다. 따라서, 위 표준내용 및 표준문서들의 일부의 내용을 본 명세서에 추가하거나 청구범위에 기재하는 것은 본 발명의 범위에 해당하는 것으로 해석되어야 한다.
Appendix
[1] Ericsson, Huawei, "New SI proposal Study on Latency reduction techniques for LTE", RP-150465, Shanghai, China, March 9-12, 2015.
[2] R2-155008, "TR 36.881 v0.4.0 on Study on Latency reduction techniques for LTE", Ericsson (Rapporteur)
[3] R1-160927, "TR 36.881-v0.5.0 on Study on Latency reduction techniques for LTE", Ericsson (Rapporteur)
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. 단말이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법에 있어서,
    기지국으로부터 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 수신하는 단계;
    상기 하향링크 데이터에 대한 Ack/Nack을 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 상기 기지국으로 전송하는 단계; 및
    상기 기지국으로 짧은 전송 시간 간격의 상향링크 데이터 채널을 통해 상향링크 데이터와 사운딩 참조 신호를 전송하는 단계를 포함하고,
    하나의 서브프레임에 포함된 상기 짧은 전송 시간 간격의 상향링크 데이터 채널 중 적어도 하나를 통해 상기 상향링크 데이터 및 상기 사운딩 참조 신호 중 적어도 하나를 전송하는 방법.
  2. 제1항에 있어서,
    상기 상향링크 데이터와 상기 사운딩 참조 신호가 상기 짧은 전송 시간 간격의 상향링크 데이터 채널의 동일한 심볼에 중첩되면 상기 상향링크 데이터와 상기 사운딩 참조 신호 중 어느 하나를 드롭(drop)하는 방법.
  3. 제1항에 있어서,
    상기 상향링크 데이터와 상기 사운딩 참조 신호가 상기 짧은 전송 시간 간격의 상향링크 데이터 채널의 동일한 심볼에 중첩되면 상기 동일한 심볼에서 상기 사운딩 참조 신호가 전송되지 않는 자원 요소를 통해 상기 상향링크 데이터를 전송하는 방법.
  4. 제1항에 있어서,
    상기 상향링크 데이터와 상기 사운딩 참조 신호가 상기 짧은 전송 시간 간격의 상향링크 데이터 채널의 동일한 심볼에 중첩되면 인접한 상기 짧은 전송 시간 간격의 상향링크 데이터 채널과 번들링하여 상기 상향링크 데이터를 전송하는 방법.
  5. 제1항에 있어서,
    하나의 서브프레임에서 상기 사운딩 참조 신호가 전송되는 심볼을 제외한 심볼들을 이용하여 상기 짧은 전송 시간 간격의 상향링크 데이터 채널을 구성하는 방법.
  6. 제1항에 있어서,
    상기 Ack/Nack에 서로 상이한 순환 시프트 값을 할당하고 상기 순환 시프트 값을 기반으로 상기 Ack/Nack을 포함하는 상기 짧은 전송 시간 간격의 상향링크 제어 채널을 구성하는 방법.
  7. 제6항에 있어서,
    상기 짧은 전송 시간 간격의 상향링크 제어 채널에 포함된 모든 심볼이 상기 Ack/Nack을 위해 할당되는 방법.
  8. 기지국이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 수신하는 방법에 있어서,
    단말로 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 전송하는 단계;
    상기 하향링크 데이터에 대한 Ack/Nack을 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 수신하는 단계; 및
    상기 단말로부터 짧은 전송 시간 간격의 상향링크 데이터 채널을 통해 상향링크 데이터와 사운딩 참조 신호를 수신하는 단계를 포함하고,
    하나의 서브프레임에 포함된 상기 짧은 전송 시간 간격의 상향링크 데이터 채널 중 적어도 하나를 통해 상기 상향링크 데이터 및 상기 사운딩 참조 신호 중 적어도 하나를 수신하는 방법.
  9. 제8항에 있어서,
    상기 상향링크 데이터와 상기 사운딩 참조 신호가 상기 짧은 전송 시간 간격의 상향링크 데이터 채널의 동일한 심볼에 중첩되면 상기 동일한 심볼을 통해 상기 상향링크 데이터와 상기 사운딩 참조 신호 중 어느 하나만 수신하는 방법.
  10. 제8항에 있어서,
    상기 상향링크 데이터와 상기 사운딩 참조 신호가 상기 짧은 전송 시간 간격의 상향링크 데이터 채널의 동일한 심볼에 중첩되면 상기 동일한 심볼에서 상기 사운딩 참조 신호가 전송되지 않는 자원 요소를 통해 상기 상향링크 데이터를 수신하는 방법.
  11. 제8항에 있어서,
    상기 상향링크 데이터와 상기 사운딩 참조 신호가 상기 짧은 전송 시간 간격의 상향링크 데이터 채널의 동일한 심볼에 중첩되면 인접한 상기 짧은 전송 시간 간격의 상향링크 데이터 채널과 번들링되어 전송되는 상기 상향링크 데이터를 수신하는 방법.
  12. 제8항에 있어서,
    하나의 서브프레임에서 상기 사운딩 참조 신호가 전송되는 심볼을 제외한 심볼들을 이용하여 상기 짧은 전송 시간 간격의 상향링크 데이터 채널을 구성하는 방법.
  13. 제8항에 있어서,
    상기 Ack/Nack에 서로 상이한 순환 시프트 값을 할당하고 상기 순환 시프트 값을 기반으로 구성된 상기 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 상기 Ack/Nack을 수신하는 방법.
  14. 제13항에 있어서,
    상기 짧은 전송 시간 간격의 상향링크 제어 채널에 포함된 모든 심볼이 상기 Ack/Nack을 위해 할당되는 방법.
  15. 단말이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법에 있어서,
    기지국으로부터 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 수신하는 단계;
    개별적인 순환 시프트 값을 Ack/Nack에 각각 할당하는 방식으로 Ack/Nack을 포함하는 짧은 전송 시간 간격의 상향링크 제어 채널을 구성하는 단계; 및
    상기 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 상기 하향링크 데이터에 대한 상기 Ack/Nack을 상기 기지국으로 전송하는 단계를 포함하는 방법.
  16. 제15항에 있어서,
    상기 Ack/Nack에 각각 할당되는 상기 순환 시프트 값은 서로 상이한 값을 갖는 방법.
  17. 제15항에 있어서,
    상기 짧은 전송 시간 간격의 상향링크 제어 채널에 포함된 모든 심볼을 통해 상기 Ack/Nack을 전송하는 방법.
  18. 기지국이 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 수신하는 방법에 있어서,
    단말로 짧은 전송 시간 간격의 하향링크 데이터 채널을 통해 하향링크 데이터를 전송하는 단계; 및
    상기 단말로부터 짧은 전송 시간 간격의 상향링크 제어 채널을 통해 상기 하향링크 데이터에 대한 Ack/Nack을 수신하는 단계를 포함하고,
    상기 짧은 전송 시간 간격의 상향링크 제어 채널은 개별적인 순환 시프트 값을 상기 Ack/Nack에 각각 할당하는 방식으로 구성되는 방법.
  19. 제18항에 있어서,
    상기 Ack/Nack에 각각 할당되는 상기 순환 시프트 값은 서로 상이한 값을 갖는 방법.
  20. 제18항에 있어서,
    상기 짧은 전송 시간 간격의 상향링크 제어 채널에 포함된 모든 심볼을 통해 상기 Ack/Nack을 수신하는 방법.
KR1020170056206A 2016-05-04 2017-05-02 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법 및 장치 KR102120976B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/KR2017/004702 WO2017192014A2 (ko) 2016-05-04 2017-05-02 짧은 전송 시간 간격의 프레임 구조에서 제어 정보 및 데이터를 송수신하는 방법 및 장치
US16/098,812 US11431460B2 (en) 2016-05-04 2017-05-02 Method and apparatus for transmitting and receiving control information and data in frame structure of short transmission time interval
US16/179,863 US11431461B2 (en) 2016-05-04 2018-11-02 Method and apparatus for transmitting and receiving control information and data in frame structure of short transmission time interval

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160055676 2016-05-04
KR20160055676 2016-05-04

Publications (2)

Publication Number Publication Date
KR20170126100A true KR20170126100A (ko) 2017-11-16
KR102120976B1 KR102120976B1 (ko) 2020-06-11

Family

ID=60806755

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170056206A KR102120976B1 (ko) 2016-05-04 2017-05-02 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법 및 장치

Country Status (1)

Country Link
KR (1) KR102120976B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066366A1 (ko) 2017-09-28 2019-04-04 주식회사 엘지화학 티타니아-탄소나노튜브-황(TiO2-X-CNT-S) 복합체 및 그의 제조방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP R1-156461* *
3GPP R1-163320 *
3GPP TS 36.211 V10.0.0* *
3GPP TS 36.213 V10.0.0* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066366A1 (ko) 2017-09-28 2019-04-04 주식회사 엘지화학 티타니아-탄소나노튜브-황(TiO2-X-CNT-S) 복합체 및 그의 제조방법

Also Published As

Publication number Publication date
KR102120976B1 (ko) 2020-06-11

Similar Documents

Publication Publication Date Title
US12101189B2 (en) Method and device for scheduling uplink control channel in next generation wireless network
US11431461B2 (en) Method and apparatus for transmitting and receiving control information and data in frame structure of short transmission time interval
US10616916B2 (en) Methods for multiplexing scheduling request information and HARQ ACK/NACK information while transmitting and receiving PUCCH and apparatuses thereof
KR102161473B1 (ko) LTE에서 데이터 채널을 송수신하기 위한 다중 sTTI 기반 스케줄링 방법 및 그 장치
US11115976B2 (en) Method for transmitting/receiving uplink control channel in frame structure of short transmission time interval and device therefor
KR102237525B1 (ko) Short TTI를 위한 프레임 구조 설정 및 정보 전송 방법 및 그 장치
KR20170114243A (ko) 공유 복조 기준 신호 기반 상향링크 데이터 채널 설정 방법 및 그 장치
KR102156670B1 (ko) 상향링크 제어 채널 송수신 시 스케줄링 요청 및 harq ack/nack 정보를 다중화하는 방법 및 그 장치
KR102120976B1 (ko) 짧은 전송 시간 간격의 프레임 구조에서 상향링크 채널을 전송하는 방법 및 장치
US20180270797A1 (en) Method of transmitting and receiving downlink channel in short tti frame structure and apparatus thereof
KR102121009B1 (ko) 짧은 전송 시간 간격의 프레임 구조에서 하향링크 제어 정보를 검출하는 방법 및 장치
KR20190086310A (ko) LTE URLLC에서 legacy 데이터 채널 다중화 방법 및 장치
KR20180088568A (ko) Short TTI 프레임 구조에서 PUSCH 처리 시간을 고려한 스케줄링 방법
KR20190086314A (ko) LTE URLLC에서 multi-level CSI 보고 방법 및 장치
KR20170131807A (ko) Short TTI 프레임 구조에서 PUSCH와 short PUSCH 스케줄링 방법 및 그 장치
KR20180016688A (ko) Short TTI 프레임에서 부분 중첩 참조 신호 기반 short PUCCH 설계 방법 및 그 장치
KR20170114071A (ko) Short TTI 프레임 구조에서 sPUSCH 관련 Ack/Nack 연결 설정 방법 및 그 장치
KR20180112214A (ko) sTTI를 위한 하향 데이터 채널 Ack/Nack 충돌 방지 방법 및 그 장치
KR20170108202A (ko) Short TTI 프레임 구조 기반 자원 할당 방법 및 그 장치
KR20180029180A (ko) Short TTI 프레임 구조에서 sPDSCH 처리 시간을 고려한 Ack/Nack 연결 설정 방법 및 그 장치
CN108781154B (zh) 用于短tti的帧结构配置和信息发送的方法和装置
KR20180046445A (ko) Short TTI 프레임 구조에서 legacy PDCCH를 고려한 DCI 검출 방법 및 그 장치
KR20180105053A (ko) 짧은 전송 시간 간격의 프레임 구조에서 하향 링크 채널을 송수신하는 방법 및 그 장치
KR20180004392A (ko) 짧은 전송 시간 간격 프레임 구조에서 상향링크 제어 채널을 설정하는 방법 및 그 장치
KR20180046444A (ko) Short TTI 프레임 구조에서 slow DCI 설정 방법 및 그 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant