KR20170090701A - Manufacturing process of amorphous polyethyleneterephthalate polymer - Google Patents
Manufacturing process of amorphous polyethyleneterephthalate polymer Download PDFInfo
- Publication number
- KR20170090701A KR20170090701A KR1020160011381A KR20160011381A KR20170090701A KR 20170090701 A KR20170090701 A KR 20170090701A KR 1020160011381 A KR1020160011381 A KR 1020160011381A KR 20160011381 A KR20160011381 A KR 20160011381A KR 20170090701 A KR20170090701 A KR 20170090701A
- Authority
- KR
- South Korea
- Prior art keywords
- isosorbide
- polyethylene terephthalate
- polymer
- terephthalate polymer
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/183—Terephthalic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/123—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/137—Acids or hydroxy compounds containing cycloaliphatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/66—Polyesters containing oxygen in the form of ether groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
본 발명은 공중합 폴리에틸렌테레프탈레이트 중합물의 제조방법에 관한 것으로, 더욱 상세하게는 기존 폴리에틸렌테레프탈레이트 결합을 이루는 에틸렌글라이콜(EG, Ethyleneglycol)과 테레프탈산(TPA, Terephthalic acid) 외에 추가로 무수초산(Acetic anhydride)으로 치환된 아이소소바이드(Isosorbide)를 도입하여 투명성이 높으면서 우수한 기계적 물성을 발현하는 아이소소바이드 폴리에틸렌테레프탈레이트 중합물의 제조방법에 관한 것이다.The present invention relates to a process for preparing a copolymerized polyethylene terephthalate polymer, and more particularly, to a process for producing a copolymerized polyethylene terephthalate polymer, which comprises adding ethylene glycol (EG, Ethyleneglycol) and terephthalic acid (TPA, terephthalic acid) isosorbide, which is substituted with an anhydride, is introduced to produce an isosorbide polyethylene terephthalate polymer having high transparency and excellent mechanical properties.
일반적으로, 폴리에스테르 수지, 특히 폴리에틸렌테레프탈레이트 수지는 디카르복실산 또는 이의 에스테르 형성성 유도체 및 디올 또는 이의 에스테르 형성성 유도체로부터 합성되는 선상 고분자로, 가격이 저렴하면서도, 기계적 특성과 화학적 물성이 우수할 뿐만 아니라 가스 차단성 또한 우수하여 각종 용기, 필름, 섬유 등의 제조에 폭 넓게 사용되고 있다. 한편, 폴리에스테르는 축합 중합법으로 제조되는데, 외부 조건에 따른 평형반응으로 고온, 고진공의 조건을 통해 상업적으로 사용 가능한 점도를 얻게 되며, 이때 최종 중합물 내에 일정량의 올리고머가 잔류하게 된다.Generally, polyester resins, especially polyethylene terephthalate resins, are linear polymers synthesized from dicarboxylic acids or ester-forming derivatives thereof and diols or ester-forming derivatives thereof, which are low in cost and excellent in mechanical properties and chemical properties But also has excellent gas barrier properties and is widely used for the production of various containers, films and fibers. On the other hand, the polyester is produced by condensation polymerization method. In the equilibrium reaction according to external conditions, a commercially available viscosity is obtained through high temperature and high vacuum conditions, and a certain amount of oligomer remains in the final polymer.
폴리에스테르 수지의 성형성을 향상시키고 결정성을 제거하기 위해, 둘 이상의 글리콜 또는 디카르복실산 성분으로 공중합된 폴리에스테르 수지가 상업적으로 널리 이용되고 있다. 테레프탈산과 에틸렌글리콜로만 구성된 호모폴리에스테르의 경우, 연신 결정화와 열고정을 통해 물성 및 내열성을 향상시킬 수 있으나, 적용 용도 및 내열성 향상에 한계가 있고, 둘 이상의 글리콜 또는 디카르복실산 성분으로 공중합된 폴리에스테르의 경우에는, 연신이나 결정화 공정에 의해 내열성을 향상시키기 어려운 단점이 있다. 폴리에스테르의 내열성을 향상시키는 다른 방법으로서, 녹말로부터 유도된 친환경 디올(diol) 화합물인 아이소소바이드(isosorbide)를 모노머의 하나로 사용하는 방법이 알려져 있으며, 고내열 소재에 많이 이용되어지고 있으며, 특히 음료 병에 많이 사용되고 있으나, 고내열이 필요한 산업용 섬유에는 아직 사용된 바가 없다.In order to improve the moldability of the polyester resin and to eliminate the crystallinity, polyester resins copolymerized with two or more glycol or dicarboxylic acid components have been widely used commercially. In the case of a homopolyester composed of only terephthalic acid and ethylene glycol, it is possible to improve physical properties and heat resistance through stretching crystallization and heat fixation, but there are limitations in application and improvement in heat resistance, In the case of polyester, there is a drawback that it is difficult to improve the heat resistance by the stretching or crystallization process. As another method for improving the heat resistance of polyester, a method of using isosorbide, which is an environmentally-friendly diol compound derived from starch, as one of monomers is known, and is widely used for high heat resistant materials. It is widely used in beverage bottles, but it has not been used in industrial fibers that require high heat resistance.
본 발명의 목적은 폴리에틸렌테레프탈레이트 중합물의 제조 시 무수초산으로 치환된 아이소소바이드를 추가로 도입하여 투명성이 높으면서 우수한 기계적 물성을 발현하는 아이소소바이드 폴리에틸렌테레프탈레이트 중합물의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing an isosoboid polyethylene terephthalate polymer which is excellent in transparency and exhibits excellent mechanical properties by further introducing an isosorbide substituted with anhydride to acetic acid in the production of a polyethylene terephthalate polymer.
상술한 목적을 달성하기 위한 본 발명의 하나의 양상은, 같은 당량의 아이소소바이드와 무수초산을 반응시켜 아이소소바이드를 아세틸화(Acetylation) 시키는 단계; 상기 아세틸화된 아이소소바이드, 에틸렌글라이콜(EG, Ethyleneglycol) 및 테레프탈산(TPA, Terephthalic acid)을 혼합하여 슬러리(Slurry)를 제조하는 단계; 상기 슬러리의 에스테르화 반응 단계; 및 중축합 반응 단계; 를 포함하는 것을 특징으로 하는 투명성이 높은 아이소소바이드 폴리에틸렌테레프탈레이트 중합물의 제조방법을 제공한다. According to one aspect of the present invention, there is provided a process for preparing a compound of formula (I), comprising the steps of reacting isosorbide and acetic anhydride in the same amount to acetylate isosorbide; Mixing the acetylated isosorbide, ethylene glycol (EG), and terephthalic acid (TPA) to prepare a slurry; An esterification reaction step of the slurry; And a polycondensation reaction step; The present invention also provides a method for producing an isosorbide polyethylene terephthalate polymer having high transparency.
이때, 아이소소바이드와 무수초산의 반응온도는 130 내지 140℃이고, 상기 에스테르화 반응 온도는 250 내지 270℃이고, 중축합 반응온도는 270 내지 280℃ 인 것이 바람직하다. 상기 반응온도 범위를 벗어나면 중합물의 투명성이 저하된다.At this time, the reaction temperature of isosorbide and acetic anhydride is 130 to 140 ° C, the esterification reaction temperature is 250 to 270 ° C, and the polycondensation reaction temperature is 270 to 280 ° C. Outside the reaction temperature range, the transparency of the polymerized product is deteriorated.
이때, 상기 아세틸화된 아이소소바이드는 전체 디올 성분 기준 20 내지 40 mol% 투입되는 것이 바람직하다. 20 mol% 미만이면 투명성이 떨어지고, 40 mol%를 초과하면 기계적 물성이 떨어진다. At this time, the acetylated isosorbide is preferably added in an amount of 20 to 40 mol% based on the total diol component. When the content is less than 20 mol%, the transparency is poor. When the content is more than 40 mol%, mechanical properties are deteriorated.
또한, 폴리에틸렌테레프탈레이트 중합물의 유리전이 온도가 100 내지 120℃ 인 것이 바람직하다.It is also preferred that the polyethylene terephthalate polymer has a glass transition temperature of 100 to 120 ° C.
본 발명의 목적은 폴리에틸렌테레프탈레이트 중합물의 제조 시 무수초산으로 치환된 아이소소바이드를 추가로 도입하여 투명성이 높으면서 우수한 기계적 물성을 발현하는 아이소소바이드 폴리에틸렌테레프탈레이트 중합물을 제조할 수 있다.It is an object of the present invention to provide an isosorbide polyethylene terephthalate polymer which exhibits excellent mechanical properties while exhibiting high transparency by further introducing an isosorbide substituted with anhydride to acetic acid in the production of a polyethylene terephthalate polymer.
본 발명에 따른 아이소소바이드 폴리에틸렌테레프탈레이트 중합물의 제조방법은 같은 당량의 아이소소바이드와 무수초산을 반응시켜 아이소소바이드를 아세틸화(Acetylation) 시키는 단계; 에틸렌글라이콜(EG, Ethyleneglycol), 테레프탈산(TPA, Terephthalic acid) 및 상기 아세틸화된 아이소소바이드를 혼합하여 슬러리(Slurry)를 제조하는 단계; 에스테르화 반응 단계; 및 중축합 반응 단계;를 포함하는 것을 특징으로 한다.The method for producing an isosorbide polyethylene terephthalate polymer according to the present invention comprises the steps of reacting isosorbide and anhydrous acetic acid in the same amount to acetylate isosorbide; Preparing a slurry by mixing ethylene glycol (EG, Ethyleneglycol), terephthalic acid (TPA, Terephthalic acid) and the acetylated isosorbide; An esterification reaction step; And a polycondensation reaction step.
이때, 상기 용융중합 단계를 거쳐 제조된 용융 중합물은 고유점도가 0.6 dl/g 내지 0.8dl/g이고, 디에틸렌글리콜 함량이 0.85이하인 것을 특징으로 한다.In this case, the melt polymer produced through the melt polymerization step has an intrinsic viscosity of 0.6 dl / g to 0.8 dl / g and a diethylene glycol content of 0.85 or less.
본 발명에서 사용되는 아이소소바이드는 하기 화학식 1로 표시되는 화합물이다.The isosorbide used in the present invention is a compound represented by the following formula (1).
[화학식 1][Chemical Formula 1]
상기 화학식 1로 표시되는 아이소소바이드는 녹말로부터 유도된 친환경 디올(diol) 화합물이다.The isosorbide represented by the above formula (1) is an environmentally-friendly diol compound derived from starch.
본 발명에서는 상기 아이소소바이드를 하기 화학식 2로 표시되는 무수초산을 이용하여 치환하여 반응성을 증가시켜 디올 성분 중 20 내지 40mol%의 아이소소바이드를 공중합 시킨다.In the present invention, the isosorbide is substituted with acetic anhydride represented by the following formula 2 to increase the reactivity to copolymerize 20 to 40 mol% of isosorbide in the diol component.
[화학식 2](2)
본 발명에 따른 폴리에틸렌테레프탈레이트 중합물은 산 성분(acid component)과 디올 성분(diol component)이 공중합 되어, 산 성분으로부터 유도된 산 부분(acid moiety) 및 디올 성분으로부터 유도된 디올 부분(diol moiety)이 반복되는 구조를 가진다.The polyethylene terephthalate polymer according to the present invention is produced by copolymerizing an acid component and a diol component so that an acid moiety derived from an acid component and a diol moiety derived from a diol component It has a repeating structure.
본 발명에 사용되는 산 성분은 테레프탈산이고, 디올 성분은 무수초산으로 치환된 아이소소바이드 및 에틸렌 글리콜이다.The acid component used in the present invention is terephthalic acid, and the diol component is isosorbide substituted with anhydrous acetic acid and ethylene glycol.
이하에서 본 발명에 따른 고점도 아이소소바이드 폴리에틸렌테레프탈레이트 중합물의 제조 방법의 각 단계에 대하여 구체적으로 설명한다.Hereinafter, each step of the method for producing a high viscosity isosoboid poly (ethylene terephthalate) polymer according to the present invention will be described in detail.
본 발명에 따른 고점도 아이소소바이드 폴리에틸렌테레프탈레이트 중합물의 제조 방법에 있어서, 첫 번째 단계는 같은 당량의 아이소소바이드와 무수초산을 반응시켜 아이소소바이드를 아세틸화(Acetylation) 시키는 단계이다. 먼저, 같은 당량의 아이소소바이드와 무수초산을 넣고 130 내지 140℃에서 3시간 동안 반응시켜 아이소소바이드를 아세틸화 시킨다. 이후, 테레프탈산(TPA), 에틸렌글리콜(EG) 및 상기 아세틸화된 아이소소바이드를 혼합하여 슬러리를 제조한다. 이때 디올 성분인 상기 에틸렌글리콜 및 아세틸화된 아이소소바이드와 산 성분인 테레프탈산의 몰비는 1.1 내지 1.2인 것이 바람직하고, 상기 아세틸화된 아이소소바이드는 전체 디올성분 기준 20 내지 40mol% 인 것이 바람직하다. 본 발명에서는 디올 성분과 산 성분의 몰비를 상기와 같은 범위로 사용함으로써, 제조된 중합물 중에 미반응 테레프탈산이 50 ppm 이하로 존재하도록 할 수 있다. 중합물 중에 미반응 테레프탈산이 50ppm을 초과하면 원사의 제사성이 떨어져, 고강도 원사제조에 어려움이 있다. 또한, 디올 성분 중 아세틸화된 아이소소바이드가 1몰% 증가 시 유리전이 온도가 1℃씩 증가되기 때문에 20몰% 이상 공중합 시 유리전이 온도가 100℃ 가량이 되고, 30 내지 40 mol% 공중합 시 유리전이 온도가 110 내지 120℃ 까지 증가하므로 끓는 물 사용이 필요한 물컵, 젖병, 식료품용기 등의 용도로 적용이 가능하다. 또한, 섬유로 제조할 시 높은 내열성을 가진 타이어코드 등으로 적용이 가능한 효과가 있다.In the process for preparing a high viscosity isosorbide polyethylene terephthalate polymer according to the present invention, the first step is a step of acetylating isosorbide by reacting the same equivalent amount of isosorbide with acetic anhydride. First, the same equivalent amount of isosorbide and anhydrous acetic acid are added and reacted at 130 to 140 ° C for 3 hours to acetylate isosorbide. Thereafter, terephthalic acid (TPA), ethylene glycol (EG) and the acetylated isosorbide are mixed to prepare a slurry. At this time, the molar ratio of the ethylene glycol and the acetylated isosorbide to the diol component terephthalic acid is preferably 1.1 to 1.2, and the acetylated isosorbide is preferably 20 to 40 mol% based on the total diol component . In the present invention, unreacted terephthalic acid can be present in the produced polymer in an amount of 50 ppm or less by using the molar ratio of the diol component and the acid component within the above range. If the amount of unreacted terephthalic acid exceeds 50 ppm in the polymer, the sacrifice of the yarn is deteriorated and it is difficult to manufacture high strength yarn. Further, since the glass transition temperature is increased by 1 占 폚 when the acetylated isosorbide is increased by 1 mole% in the diol component, the glass transition temperature becomes about 100 占 폚 when copolymerized by 20 mole% or more and 30 to 40 mole% The glass transition temperature is increased to 110 to 120 DEG C, so that it can be applied to water cups, bottles, food containers, and the like in which boiling water is required to be used. In addition, it can be applied to a tire cord having high heat resistance when it is made of fibers.
상기 제조된 슬러리에 안티몬 화합물을 안티몬 금속 기준 150 내지 250ppm으로 첨가하여 에스테르화 반응 및 중중합을 반응을 진행한다. 이때, 안티몬 화합물은 중합촉매로서 안티몬 금속 기준으로 150 내지 250ppm, 바람직하게는 150 내지 220ppm을 사용하는 것이 바람직하다. 안티몬 화합물을 안티몬 금속 기준 250ppm을 초과하여 사용하면, 환원 금속안티몬 석출에 의해 방사팩의 필터가 막혀, 팩사용주기가 현저히 짧아지고, 연신성이 저하되어 작업성이 저하된다. 또한 안티몬 화합물을 안티몬 금속 기준 150ppm미만으로 사용하면, 중합 온도와 진공 정도의 조절만으로는 중합속도를 제어할 수 없고 중합속도가 현저히 늦어져 상업적인 생산이 어려워진다.The antimony compound is added to the slurry in an amount of 150 to 250 ppm based on the antimony metal, and the esterification reaction and the condensation reaction are carried out. At this time, the antimony compound is preferably used as a polymerization catalyst in an amount of 150 to 250 ppm, preferably 150 to 220 ppm, based on the antimony metal. When the antimony compound is used in an amount exceeding 250 ppm based on the antimony metal, the filter of the spinning pack is clogged due to the precipitation of the antimony reducted metal, the pack use period is markedly shortened, and the stretchability is lowered and the workability is lowered. Further, when the antimony compound is used at less than 150 ppm based on the antimony metal, the polymerization rate can not be controlled only by the adjustment of the polymerization temperature and the degree of vacuum, and the polymerization rate becomes significantly slower, making commercial production difficult.
상기 중합촉매로는 안티몬 화합물 이외의 다른 촉매를 병용할 수 있으며, 다른 촉매로는 예컨대 Ti계 화합물, Al계 화합물 등이 있다. 다만, 이 경우 첨가되는 총 중합촉매 중 안티몬 화합물이 80 중량% 이상인 것이 효율상 바람직하다. 또한, 방사, 연신 작업성 향상 또는 기타 목적을 위하여 중합 촉매 이외의 이산화티타늄, 실리카 등의 금속화합물을 첨가할 수 있다. 다만, 이경우에도 상기 금속화합물은 본 발명에 따라 제조되는 중합물로 제조되어지는 원사의 내열성과 강력발현에 크게 악영향을 미치지 않는 범위내에서 첨가하는 것이 바람직하며, 예컨대 150ppm 이하로 첨가될 수 있다.As the polymerization catalyst, a catalyst other than the antimony compound may be used in combination. Examples of other catalysts include Ti-based compounds and Al-based compounds. However, in this case, it is efficient for the efficiency of the antimony compound to be 80 wt% or more in the total polymerization catalyst to be added. In addition, metal compounds such as titanium dioxide and silica other than the polymerization catalyst may be added for the purpose of improving spinning, drawing workability, or other purposes. In this case, however, the metal compound is preferably added within a range not adversely affecting the heat resistance and strong development of the yarn made from the polymerized product produced according to the present invention. For example, the metal compound may be added in an amount of 150 ppm or less.
상기 에스테르화 반응 시 반응 온도는 250 내지 270℃가 바람직하며, 반응 시간은 3 내지 4 시간이 바람직하다. 또한, 상기 중중합 반응 시 중합 온도는 270 내지 280℃로 하는 것이 바람직하며, 중합 시간은 3 내지 4시간이 바람직하다. 상기 온도와 시간으로 에스테르화 반응을 진행할 시 에스테르화 반응율은 98%이상 이 된다. 에스테르화 반응율이 98%이상으로 되지 않으면, 미반응 테레프탈산이 다량 존재하게 되어, 본 발명의 제조방법으로 제조된 중합물을 이용하여 원사제조 시 공정성이 현저히 떨어지고, 고강도 원사제조에 불리하게 된다.The reaction temperature in the esterification reaction is preferably 250 to 270 ° C, and the reaction time is preferably 3 to 4 hours. The polymerization temperature in the polymerization reaction is preferably 270 to 280 ° C, and the polymerization time is preferably 3 to 4 hours. When the esterification reaction is carried out at the above temperature and time, the esterification reaction rate becomes 98% or more. If the esterification reaction rate is not 98% or more, unreacted terephthalic acid is present in a large amount, and the polymer produced by the production method of the present invention is used to significantly reduce the fairness in the production of yarn, which is disadvantageous to the production of high strength yarn.
또한, 상기 중합 후반기에는 중합물을 최종중합반응기에서 2.5torr이하의 고진공하에 1.5시간 이상, 바람직하게는 2시간 이상 체류하게 함으로써 비교적 소량의 중합촉매로도 효율적으로 중합을 수행할 수 있다. 최종중합반응기에서, 진공이 2.5torr보다 강하게 걸리게 되거나, 체류시간을 1.5시간 미만으로 하게 되면, 환원 금속안티몬, 미반응 테레프탈산을 충분히 제거시키지 못하여, 금속안티몬 잔존량이 5ppm을 초과하고, 미반응 테레프탈산이 50ppm을 초과하는 결과를 가져 중합물을 이용한 원사 제조시 고강도원사 제조와 강도 발현 및 내열성에서 불리하다.In the latter half of the polymerization, polymerization can be efficiently carried out with a relatively small amount of a polymerization catalyst by keeping the polymerizate in a final polymerization reactor under a high vacuum of 2.5 torr or less for 1.5 hours or more, preferably 2 hours or more. In the final polymerization reactor, if the vacuum is taken to be stronger than 2.5 torr or if the residence time is less than 1.5 hours, the reduced metal antimony and unreacted terephthalic acid can not be sufficiently removed and the remaining amount of metal antimony exceeds 5 ppm, unreacted terephthalic acid Resulting in an excess of 50 ppm, which is disadvantageous in the production of high strength yarn, strength development and heat resistance in the production of yarn using polymer.
이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않으며, 본 발명의 실시예 및 비교예에서 제조된 중합물의 물성 평가는 다음과 같은 방법으로 실시하였다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are for illustrative purposes only and are not intended to limit the scope of the present invention. The properties of the polymers prepared in the examples and comparative examples of the present invention were evaluated in the following manner.
(1) 점도(1) Viscosity
ASTM D 4603에 따라서 페놀과 1,1,2,2-테트라클로로에탈을 6:4의 무게비로 혼합한 시약(90℃)에 폴리에틸렌테레프탈레이트 중합체 0.1g을 농도가 0.4g/100ml 되도록 90분간 용해시킨 후 우베로데(Ubbelohde) 점도계에 옮겨담아 30℃ 항온조에서 10분간 유지시키고, 점도계와 흡인장치(aspirator)를 이용하여 용액의 낙하 초수를 구했다.0.1 g of a polyethylene terephthalate polymer was added to a reagent (90 DEG C) mixed with phenol and 1,1,2,2-tetrachloroetal in a weight ratio of 6: 4 according to ASTM D 4603 for 90 minutes so as to have a concentration of 0.4 g / The solution was transferred to a Ubbelohde viscometer and maintained in a 30 ° C thermostat for 10 minutes. The drop number of the solution was obtained using a viscometer and an aspirator.
용매의 낙하 초수도 동일한 방법으로 구한 다음, 수학식 1 및 2에 의해 R.V.(상대 점도)값 및 I.V.(고유 점도) 값을 계산하였다.The values of RV (relative viscosity) and I.V. (intrinsic viscosity) were calculated by equations (1) and (2).
<수학식 1>&Quot; (1) "
R.V. = 시료의 낙하 초수/용매의 낙하 초수R.V. = Samples falling in water / solvent drops in seconds
<수학식 2>&Quot; (2) "
I.V. = 1/4×[(R.V.-1)/ C]+3/4×(lnR.V./C)I.V. = 1/4 x [(R.V.-1) / C] + 3/4 (lnR.V./C)
(상기 식에서, C는 용액 중의 시료의 농도(g/100ml)를 나타낸다.)(Where C represents the concentration (g / 100 ml) of the sample in the solution).
(2)디에틸렌글리콜(DEG) 수준 분석(2) Analysis of diethylene glycol (DEG) level
모노에탄올 아민을 이용하여 가아민 분해(aminolysis)시킨 후 GC로 분석하였다. 구체적으로, 폴리에틸렌테레프탈레이트 중합체 1g을 취하고, 여기에 모노에탄올 아민 3ml를 가하고, 냉각기를 장착한 후 핫 플레이트에서 완전히 가열 분해시켰다. 냉각 후 내부표준(1,6-헥산디올)을 함유하는 MeOH 20ml, 테레프탈산(TPA) 10g을 가한 후, GC를 이용하여 분석하였다. DEG 표준 정량곡선은 동일한 내부표준을 함유하고 DEG 함량이 각각 0, 0.05, 0.1, 0.15%인 MeOH 용액을 이용하여 작성하였다.Aminolysis was performed using monoethanolamine and analyzed by GC. Specifically, 1 g of a polyethylene terephthalate polymer was taken, 3 ml of monoethanolamine was added thereto, and a cooler was attached, followed by completely decomposing by heating on a hot plate. After cooling, 20 ml of MeOH containing internal standard (1,6-hexanediol) and 10 g of terephthalic acid (TPA) were added and analyzed using GC. DEG standard curve was prepared using a MeOH solution containing the same internal standards and having DEG contents of 0, 0.05, 0.1 and 0.15%, respectively.
실시예Example 1 One
같은 당량의 아이소소바이드와 무수초산을 넣고 130℃에서 3시간 동안 반응시켜 아이소소바이드를 아세틸화 시켰다. 이후, 아세틸화된 아이소소바이드 및 에틸렌글리콜/테레프탈산을 1.15:1의 몰비로 하여 혼합하여 슬러리를 제조하였다. 이때 상기 아세틸화된 아이소소바이드는 아세틸화된 아이소소바이드 및 에틸렌글리콜로 이루어진 전체 디올성분 기준 20mol% 함유되었다. Equal amounts of isosorbide and anhydrous acetic acid were added and reacted at 130 ° C for 3 hours to acetylate isosorbide. Thereafter, acetylated isosorbide and ethylene glycol / terephthalic acid were mixed at a molar ratio of 1.15: 1 to prepare a slurry. Wherein the acetylated isosorbide contained 20 mol% based on the total diol component of the acetylated isosorbide and ethylene glycol.
상기 슬러리에 삼산화안티몬을 안티몬 금속 기준 190ppm(에틸렌글리콜과 테레프탈산 투입량 무게 대비)을 첨가하고 중합온도 250℃의 온도로 3시간동안 에스테르 반응을 진행하였다. 이때, 물과 함께 초산이 유출되게 된다. 마지막으로 270℃에서 3시간 동안 중축합 반응을 진행하여 아이소소바이드 폴리에틸렌테레프탈레이트 중합물을 제조하였다.Antimony trioxide was added to the slurry in an amount of 190 ppm based on the antimony metal (based on the weight of ethylene glycol and terephthalic acid) and the esterification reaction was carried out at a polymerization temperature of 250 캜 for 3 hours. At this time, acetic acid flows out together with water. Finally, a polycondensation reaction was carried out at 270 DEG C for 3 hours to prepare an isosorbide polyethylene terephthalate polymer.
실시예Example 2 2
아이소소바이드를 전체 디올성분 기준 40 mol% 추가한 것을 제외하고는 실시예 1과 동일한 방법으로 아이소소바이드 폴리에틸렌테레프탈레이트 중합물을 제조하였다.The isosorbide polyethylene terephthalate polymer was prepared in the same manner as in Example 1 except that isosorbide was added in an amount of 40 mol% based on the total diol component.
비교예Comparative Example 1 One
아세틸화를 하지 않은 아이소소바이드를 전체 디올성분 기준 20 mol% 추가한 것을 제외하고는 실시예 1과 동일한 방법으로 아이소소바이드 폴리에틸렌테레프탈레이트 중합물을 제조하였다.The isosorbide polyethylene terephthalate polymer was prepared in the same manner as in Example 1, except that 20 mol% of the non-acetylated isosorbide was added based on the total diol component.
비교예Comparative Example 2 2
아세틸화를 하지 않은 아이소소바이드를 전체 디올성분 기준 40 mol% 추가한 것을 제외하고는 실시예 1과 동일한 방법으로 아이소소바이드 폴리에틸렌테레프탈레이트 중합물을 제조하였다.The isosorbide polyethylene terephthalate polymer was prepared in the same manner as in Example 1, except that the non-acetylated isosorbide was added in an amount of 40 mol% based on the total diol component.
실험예Experimental Example 1 One
상기 실시예 1, 2 및 비교예 1, 2에서 제조된 폴리에틸렌테레프탈레이트 중합물의 유리전이 온도와 제조된 폴리에틸렌테레프탈레이트 중합물을 프리폼의 입구부를 먼저 성형하고, 프리폼의 몸체 및 바닥부위를 성형한 다음, 프리폼의 입구부를 Side사제 SRF-10/10 블로우 머신에 부착되어 있는 크리스탈라이저에서 결정화시켜 내열병을 성형한 후 일본 Toyo Seiki사제 헤이즈미터(No.206)를 사용하여 병의 투명도를 측정하여 표-1에 나타내었다.The glass transition temperature of the polyethylene terephthalate polymer prepared in Examples 1 and 2 and Comparative Examples 1 and 2 and the polyethylene terephthalate polymer prepared were first molded into an inlet of the preform and molded into a body and a bottom of the preform, The opening of the preform was crystallized in a crystalizer attached to a SRF-10/10 blow machine manufactured by Side Inc. to form a heat-resistant bottle, and the transparency of the bottle was measured using a haze meter (No. 206) manufactured by Toyo Seiki, Respectively.
[측정방법: DSC]Glass transition temperature (Tg, ° C)
[Measuring method: DSC]
상기 표 1에서 나타난 바와 같이 무수초산으로 치환된 아이소소바이드를 사용한 실시예 1, 2가 일반 아이소소바이드를 사용한 비교예 1, 2 대비 중합물에 참여하는 아이소소바이드의 반응율이 높아 유리전이온도 상승도 높고 투명성이 우수한 것을 확인할 수 있었다. 특히, 실시예 2와 비교예 2를 비교 시 무수초산으로 치환된 아이소소바이드의 경우 투입분 대비 반응율이 거의 100%에 달하기 때문에 유리전이 온도도 약 40℃ 상승하였고 투명도도 높아진 반면 치환되지 않은 아이소소바이드의 경우 반응율이 50%미만으로 떨어져 유리전이온도 상승폭도 적고 투명도 개선도 미흡한 것을 확인할 수 있었다. 이는 아이소소바이드가 에틸렌글리콜 대비 분자량이 크기 때문에 테레프탈산과 반응에 참여하기 어려운 것으로 생각된다.As shown in Table 1, in Examples 1 and 2 using isosorbide substituted with anhydrous acetic acid, the reaction rate of isosbide involved in the polymerizate was higher than that of Comparative Examples 1 and 2 using general isosobide, And the transparency was excellent. Particularly, in comparison with Example 2 and Comparative Example 2, the isosorbide substituted with anhydrous acetic acid had a glass transition temperature of about 40 ° C and increased transparency because the reaction rate of the isosorbide was almost 100% In the case of isosobide, the reaction rate was less than 50%, and the increase of the glass transition temperature was small and the improvement of transparency was insufficient. It is believed that isosorbide is difficult to participate in reaction with terephthalic acid because of its high molecular weight compared to ethylene glycol.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였으나, 본 발명은 상술한 실시예에 국한되는 것은 아니고, 본 발명의 취지 또는 범위를 벗어나지 않고 본 발명을 다양하게 변경하고 변형할 수 있다는 사실은 당업자에게 자명할 것이다. 따라서, 본 발명의 보호범위는 첨부한 특허청구범위 및 그와 균등한 범위로 정해져야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, Will be apparent to those skilled in the art. Accordingly, the scope of protection of the present invention should be defined in the appended claims and their equivalents.
Claims (4)
상기 아세틸화된 아이소소바이드, 에틸렌글라이콜(EG, Ethyleneglycol) 및 테레프탈산(TPA, Terephthalic acid)을 혼합하여 슬러리(Slurry)를 제조하는 단계;
상기 슬러리의 에스테르화 반응 단계; 및
중축합 반응 단계; 를 포함하는 것을 특징으로 하는 투명성이 높은 아이소소바이드 폴리에틸렌테레프탈레이트 중합물의 제조방법.
Reacting the same equivalent of isosorbide with acetic anhydride to acetylate isosorbide;
Mixing the acetylated isosorbide, ethylene glycol (EG), and terephthalic acid (TPA) to prepare a slurry;
An esterification reaction step of the slurry; And
A polycondensation reaction step; Wherein the isosorbide poly (ethylene terephthalate) polymer has a high transparency.
상기 아세틸화된 아이소소바이드는 전체 디올 성분 기준 20 내지 40 mol% 투입되는 것을 특징으로 하는 투명성이 높은 아이소소바이드 폴리에틸렌테레프탈레이트 중합물의 제조방법.
The method according to claim 1,
Wherein the acetylated isosorbide is added in an amount of 20 to 40 mol% based on the total diol component.
폴리에틸렌테레프탈레이트 중합물의 유리전이 온도가 100 내지 120℃ 인 것을 특징으로 하는 투명성이 높은 아이소소바이드 폴리에틸렌테레프탈레이트 중합물의 제조방법.
The method according to claim 1,
Wherein the polyethylene terephthalate polymer has a glass transition temperature of 100 to 120 ° C.
아이소소바이드와 무수초산의 반응온도는 130 내지 140℃이고,
상기 에스테르화 반응 온도는 250 내지 270℃이고,
중축합 반응온도는 270 내지 280℃ 인 것을 특징으로 하는 투명성이 높은 아이소소바이드 폴리에틸렌테레프탈레이트 중합물의 제조방법. The method according to claim 1,
The reaction temperature of the isosorbide and the acetic anhydride is 130 to 140 캜,
The esterification reaction temperature is 250 to 270 캜,
Wherein the polycondensation reaction is carried out at a temperature of 270 to 280 占 폚.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160011381A KR102302973B1 (en) | 2016-01-29 | 2016-01-29 | Manufacturing process of amorphous polyethyleneterephthalate polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160011381A KR102302973B1 (en) | 2016-01-29 | 2016-01-29 | Manufacturing process of amorphous polyethyleneterephthalate polymer |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170090701A true KR20170090701A (en) | 2017-08-08 |
KR102302973B1 KR102302973B1 (en) | 2021-09-16 |
Family
ID=59652900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160011381A Expired - Fee Related KR102302973B1 (en) | 2016-01-29 | 2016-01-29 | Manufacturing process of amorphous polyethyleneterephthalate polymer |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102302973B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112341611A (en) * | 2020-11-20 | 2021-02-09 | 吉林大学 | A kind of degradable modified polyester with high heat resistance and good mechanical properties and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010034804A (en) * | 1998-04-23 | 2001-04-25 | 메리 이. 보울러 | Optical Articles comprising Isosorbide Polyesters and Method for making Same |
KR20050012278A (en) * | 2002-06-14 | 2005-01-31 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Process for making poly(ethylene-co-isosorbide) terephthalate polymer |
KR20100079775A (en) * | 2008-12-31 | 2010-07-08 | 에스케이케미칼주식회사 | Method for preparing polyester resin copolymerized with isosorbide |
US20110028696A1 (en) | 2005-02-18 | 2011-02-03 | Medarex, Inc. | Monoclonal antibodies against prostate specific membrane antigen (psma) lacking in fucosyl residues |
KR101058974B1 (en) | 2002-11-13 | 2011-08-23 | 이스트만 케미칼 컴파니 | Method for producing polyester containing isosorbide |
-
2016
- 2016-01-29 KR KR1020160011381A patent/KR102302973B1/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010034804A (en) * | 1998-04-23 | 2001-04-25 | 메리 이. 보울러 | Optical Articles comprising Isosorbide Polyesters and Method for making Same |
KR20050012278A (en) * | 2002-06-14 | 2005-01-31 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Process for making poly(ethylene-co-isosorbide) terephthalate polymer |
KR101058974B1 (en) | 2002-11-13 | 2011-08-23 | 이스트만 케미칼 컴파니 | Method for producing polyester containing isosorbide |
US20110028696A1 (en) | 2005-02-18 | 2011-02-03 | Medarex, Inc. | Monoclonal antibodies against prostate specific membrane antigen (psma) lacking in fucosyl residues |
KR20100079775A (en) * | 2008-12-31 | 2010-07-08 | 에스케이케미칼주식회사 | Method for preparing polyester resin copolymerized with isosorbide |
Non-Patent Citations (1)
Title |
---|
Macromolecules, 2013, 46, 18, 7219-7231* * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112341611A (en) * | 2020-11-20 | 2021-02-09 | 吉林大学 | A kind of degradable modified polyester with high heat resistance and good mechanical properties and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR102302973B1 (en) | 2021-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9676903B2 (en) | Polyester resin and method for preparing the same | |
KR101796764B1 (en) | Copolymerized polyester resin composition and preparing method thereof | |
KR20140135752A (en) | Clear semi-crystalline articles with improved heat resistance | |
CN111511798B (en) | Polyester resin and preparation method of polyester resin | |
KR20170037588A (en) | Polyester resin copolymerized with isosorbide and 1,4- cyclohexane dimethanol and preparing method thereof | |
TW201731908A (en) | Polyester resin, preparation method thereof and resin article formed therefrom | |
WO2013176467A1 (en) | Method for preparing polyester resin | |
JP7369178B2 (en) | Polyester resin and its manufacturing method | |
KR102302973B1 (en) | Manufacturing process of amorphous polyethyleneterephthalate polymer | |
JP2024038206A (en) | Polyester resin and method for producing polyester resin | |
JP7204687B2 (en) | Method for preparing poly(trimethylene furancarboxylate) using zinc catalyst | |
KR20160146076A (en) | Isosorbide and neophentyl glycol copolymerized polyester resin and method of preparation thereof | |
KR20230028875A (en) | Polyester copolymer and molded article comprising the same | |
KR101868990B1 (en) | Copolymerized polyester resin and preparation method thereof | |
JP2010150488A (en) | Ethylene terephthalate based polyester resin for molding heat-resistant container and preform consisting of the resin | |
KR20170090707A (en) | Manufacturing process of high viscosity isosorbide polyethyleneterephthalate polymer | |
KR101586457B1 (en) | Method for preparing polyester resin | |
JP7295636B2 (en) | Polyester resin composition and method for producing the same | |
KR101687395B1 (en) | Novel polyester resin and method for preparation of the same | |
KR100507446B1 (en) | Employee Copolymer Polyester Resin and Molded Product Using the Same | |
KR20250065313A (en) | Polyester with improved transparency and thermal properties and manufacturing method the same | |
KR20160146080A (en) | Isosorbide and neophentyl glycol copolymerized polyester resin and method of preparation thereof | |
WO2019177297A1 (en) | Polyester resin and preparation method therefor | |
JP5228476B2 (en) | Production method of polyester resin | |
CN116836373A (en) | Polyester and molded products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20160129 |
|
PG1501 | Laying open of application | ||
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20181006 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20200320 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20160129 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20210223 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20210907 |
|
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20210910 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20210913 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20250621 |