[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20160088014A - Method for Preparing Active Arginine Deiminase - Google Patents

Method for Preparing Active Arginine Deiminase Download PDF

Info

Publication number
KR20160088014A
KR20160088014A KR1020150007134A KR20150007134A KR20160088014A KR 20160088014 A KR20160088014 A KR 20160088014A KR 1020150007134 A KR1020150007134 A KR 1020150007134A KR 20150007134 A KR20150007134 A KR 20150007134A KR 20160088014 A KR20160088014 A KR 20160088014A
Authority
KR
South Korea
Prior art keywords
adi
gene
tsf
mdh
protein
Prior art date
Application number
KR1020150007134A
Other languages
Korean (ko)
Inventor
이지원
이종환
이보람
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020150007134A priority Critical patent/KR20160088014A/en
Publication of KR20160088014A publication Critical patent/KR20160088014A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • C12N15/625DNA sequences coding for fusion proteins containing a sequence coding for a signal sequence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/03Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amidines (3.5.3)
    • C12Y305/03006Arginine deiminase (3.5.3.6)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a method for producing an active arginine deiminase (ADI) by using malate dehydrogenase (MDH) or an elongation factor Ts (Tsf) as a fusion partner and, more specifically, to a method for producing an active ADI having improved water-solubility and folding properties by using a gene construct or an expression vector including an MDH or Tsf gene as a fusion partner. A method for producing an ADI by using MDH or Tsf as a fusion partner improves water-solubility and expression of an ADI which is difficult to be expressed, so an original anticancer enzyme effect can be maintained. Accordingly, the method is useful in developing and producing an anticancer treating agent.

Description

활성형 아르기닌 탈이민효소의 제조방법 {Method for Preparing Active Arginine Deiminase}TECHNICAL FIELD The present invention relates to a method for preparing an active arginine deiminase,

본 발명은 Mdh (Malate dehydrogenase) 또는 Tsf (Elongation factor Ts)를 융합파트너로 이용한 활성형 아르기닌 탈이민효소 (ADI: arginine deiminase)의 제조방법에 관한 것으로, 더욱 상세하게는 Mdh 또는 Tsf 유전자를 융합파트너로 포함하는 발현벡터 또는 유전자 구조체(gene construct)를 이용하여 수용성 및 접힘(folding)이 향상된 활성형 아르기닌 탈이민효소 (ADI)의 제조방법에 관한 것이다.
The present invention relates to a method for producing an active arginine deiminase (ADI) using Mdh (malate dehydrogenase) or Tsf (elongation factor Ts) as a fusion partner, and more particularly, (ADI) having enhanced water solubility and folding by using an expression vector or gene construct comprising the same.

생명공학 기술에 의해 생산되는 단백질에는 일반적으로 면역 조절 및 효소 저해제 및 호르몬 같은 의약 및 연구용 단백질과 진단용 단백질이나 반응 첨가 효소와 같은 산업용 단백질로 대별될 수 있으며, 이 두 가지 단백질들을 중심으로 생산 공정 기술 개발 및 산업화가 추진되고 있다.Proteins produced by biotechnology can generally be divided into medicinal and research proteins such as immunomodulatory and enzyme inhibitors and hormones and industrial proteins such as diagnostic proteins and reaction additive enzymes. Development and industrialization.

아르기닌 탈이민효소(ADI; arginine deiminase)는 암세포 대사에 핵심적인 아미노산인 아르기닌(arginine)을 분해하여 시트룰린(citrulline)과 암모니아(ammonia)를 생성시키는 박테리아 효소이다. 아르기닌 탈이민효소는 암 괴사(apoptosis)와 암 신생혈관생성(angiogenesis)저해 그리고 일산화질소 합성 저해를 통한 내독소(endotoxin)의 중성화 작용 등으로 간세포 암종(hepatocellular carcinoma), 흑색종(melanoma), 백혈병(leukemia), 전립선암(prostate cancer)에 항암기능을 하는 것으로 알려져 있다. 기존의 연구결과에 따르면 아르기닌 탈이민효소로 암세포에서 아르기닌(arginine)을 박탈하면 미토콘드리아 기능이상, 활성 산소종, 핵 DNA유출, 염색질 자가소화(autophagy)가 수반되어서 암세포를 사멸시킨다고 알려져 있다 (Chun A. Changou et al., PNAS, 111(39) 14147-14152). 암 증식 억제 및 암 신생혈관생성과 같은 항암작용들로 인하여 아르기닌 탈이민효소는 암을 치료하는데 있어 효과적인 효소로 주목받고 있다. 실제로 현재 미국 샌디에고의 Polaris Pharmaceuticals에서 아르기닌 탈이민효소(arginine deiminase)에 평균 분자량이 20kDa인 폴리에틸렌 글라이콜(polyethylene glycol) 사슬을 부착시켜서 ADI-PEG20 약물을 만들고 이를 통하여 현재 간암(임상 3상), 흑색종(임상 2상), 전립선암, 폐암, 전립선암, 구강암 (이하 임상 1상)과 같은 다양한 암치료를 위한 임상실험에 적용되고 있다. 따라서, 유전정보가 잘 알려져 있으며 다양한 벡터 시스템을 적용할 수 있고, 비교적 값싼 배지에서 빠르게 고농도로 배양할 수 있는 장점을 갖는 대장균과 같은 미생물을 이용하여 아르기닌 탈이민효소(ADI) 등과 같이 의학적, 산업적으로 유용한 재조합 단백질을 생산할 수 있는 시스템의 구축이 필요하다.Arginine deiminase (ADI) is a bacterial enzyme that degrades arginine, a key amino acid in cancer cell metabolism, to produce citrulline and ammonia. Arginine deiminase is an enzyme that inhibits apoptosis, cancer angiogenesis, and neutralization of endotoxin through inhibition of nitric oxide synthesis, resulting in hepatocellular carcinoma, melanoma, leukemia, leukemia, prostate cancer, and the like. According to the results of previous studies, it has been known that when arginine is deprived of cancer cells with arginine deiminase, mitochondrial dysfunction, reactive oxygen species, nuclear DNA leaching and chromophore autophagy are accompanied to kill cancer cells (Chun A Changou et al., PNAS, 111 (39) 14147-14152). Due to the anticancer activities such as cancer growth inhibition and cancer angiogenesis, arginine deiminase is attracting attention as an effective enzyme for the treatment of cancer. Actually, at Polaris Pharmaceuticals in San Diego, USA, ADI-PEG20 drug was made by attaching polyethylene glycol chain having average molecular weight of 20 kDa to arginine deiminase, Has been applied to clinical trials for a variety of cancer treatments such as melanoma (Phase 2), prostate cancer, lung cancer, prostate cancer, and oral cancer (Phase I). Therefore, it is possible to use a microorganism such as Escherichia coli, which has a well-known genetic information, can apply various vector systems, and can rapidly grow at a high concentration in a relatively inexpensive medium, It is necessary to construct a system capable of producing a recombinant protein useful as a recombinant protein.

대장균에서 재조합 단백질을 생산함에 있어, 강력한 유도성(inducible) 프로모터를 갖춘 다양한 발현벡터가 개발되어 외래단백질의 생산에 이용되어 왔다. 그러나 숙주세포로 대장균을 이용하는 경우 제조하고자 하는 단백질이 대장균 내의 단백질 분해효소에 의해 분해되어 수율이 낮아지는 경우가 많으며, 특히 분자량이 10kDa 이하의 작은 크기의 폴리펩타이드의 발현에서 이러한 경향이 심한 것으로 알려져 있다. 뿐만 아니라 일반적으로 대장균은 단백질의 전사(transcription)와 전이(translation)가 거의 동시에 일어나기 때문에 재조합 단백질의 과다 발현시 불용성 응집체(inclusion body)를 형성하는 경우가 많으며, 응집체로 발현된 폴리펩타이드의 경우 접힘(folding) 중간체가 분자 상호간의 다이설파이드 결합(intermolecular disulfide bond) 또는 소수성 상호작용(hydrophobic interaction)에 의해 숙주세포의 다른 단백질 불순물들[샤페론(chaperon), 라이보좀(ribosome), 초기인자 등]과 비선택적으로 결합함으로써 목적 폴리펩타이드의 응집체 내 순도가 떨어지는 단점이 있다. 또한 이렇게 발현된 단백질을 활성형으로 만들기 위해서는 구아니딘-하이드로클로라이드(Guanidine hychloride)나 우레아(urea) 같은 변성체를 사용하여 용해시킨 후 희석하는 재접힘(refolding) 과정을 거쳐야 하는데 이때 단백질이 활성형으로 접히지 않는 등 생산 수율이 감소하는 문제점이 있다 (Marston FA et al., Biochem J 240(1):1-12, 1986).In the production of recombinant proteins in E. coli, various expression vectors with a strong inducible promoter have been developed and used in the production of foreign proteins. However, when Escherichia coli is used as a host cell, the protein to be produced is often degraded by proteolytic enzymes in E. coli, resulting in a low yield. Especially, it is known that this tendency is severe in the expression of small-sized polypeptides having a molecular weight of 10 kDa or less have. In addition, Escherichia coli generally produces insoluble aggregates in the over-expression of recombinant proteins because transcription and translation of the proteins occur at almost the same time. In the case of polypeptides expressed as aggregates, folding intermediates can interact with other protein impurities in the host cell (chaperon, ribosome, initial factor, etc.) by intermolecular disulfide bonds or hydrophobic interactions There is a drawback that the purity in the aggregate of the desired polypeptide is lowered by non-selective binding. In order to make the expressed protein active, it must be refolded by diluting with a modified product such as guanidine hydrochloride (urea) or urea (urea) (Marston FA et al., Biochem J 240 (1): 1-12, 1986).

대장균 내에서 활성형의 재조합 단백질을 고수율로 얻기 위해 대장균의 단백질 발현 속도를 늦추어 목적 단백질의 수용도를 높여주는 저온 발현방법(Hammarstrom et al., Protein Sci. 11:313-321, 2002), mRNA의 친화력을 높힐 수 있는 진보된 형태의 프로모터를 사용하거나 유도(induction) 조건의 최적화하는 방법 (Qing et al., Nat Biotechnol. 22:877-882, 2004) 및 분자 샤페론 또는 단백질 접힘 조절자와 목적 단백질을 동시 발현시키는 방법(de Marco & De Marco, J Biotechnol. 109:45-52, 2004) 등이 시도되고 있지만, 목적 단백질의 아미노 말단에 융합파트너를 융합시켜서 발현시키는 방법이 가장 일반적으로 사용되고 있다. 융합파트너를 융합시켜 발현할 경우 목적 단백질을 수용성으로 유도할 수 있는 장점이 있으며, 또한 엔테로카이네이즈(enterokinase)와 같은 효소를 이용하여 융합파트너를 제거함으로써 아미노 말단의 메티오닌 문제를 해결할 수 있다.(Hammarstrom et al., Protein Sci. 11: 313-321, 2002), which increases the acceptability of the target protein by slowing the protein expression rate of Escherichia coli to obtain an active recombinant protein in E. coli in high yield, (Qing et al., Nat Biotechnol. 22: 877-882, 2004) and molecular chaperones or protein folding modulators and the like, by using an advanced form of promoter capable of enhancing the affinity of the mRNA or by optimizing the induction conditions A method of simultaneously expressing a target protein (de Marco & De Marco, J Biotechnol. 109: 45-52, 2004) has been attempted. However, a method in which a fusion partner is fused to the amino terminus of a target protein and expressed is most commonly used have. When the fusion partner is fused and expressed, the target protein can be induced to be soluble. Further, the methionine problem at the amino terminal can be solved by removing the fusion partner using an enzyme such as enterokinase.

실제로 대장균 내에서 외래단백질의 수용성 높은 발현을 유도하는 여러 융합파트너가 지난 수년 동안 연구되고 보고되어왔다 (Esposito & Chatterjee, Curr Opin Biotechnol. 17:353-358 2006; Kapust & Waugh, Protein Sci. 8:1668-1674, 1999; Sachdev & Chirgwin, Biochem. Biophys. Res. Commun. 244:933-937, 1998). 가장 많이 연구된 대표적인 융합파트너로는 말토오즈 결합 단백질 (Maltose binding protein; MBP), 글루타치온-S-전이효소(Glutathione-S-transferase; GST), 티오레독신 (Thioredoxin; Trx), NusA 등이 있다. 말토오스 결합 단백질의 경우 이량체 형성에 관여하는 부분에 소수성을 띠는 아미노산이 모여 만들어진 넓은 소수성 틈새가 새로 합성되는 단백질의 소수성 부위를 효과적으로 감춰주어 목적단백질이 불용성 응집체가 되는 것을 방지해 주며, 티오레독신은 목적단백질의 다이설파이드 결합을 도와주고, NusA의 경우 대장균에서 과량으로 발현되었을 때 활성형으로 접히는 능력이 매우 뛰어나므로 뒤따라 발현되는 목적단백질의 올바른 접힘을 유도한다고 알려져 있다(Bach H et al., J Mol Biol 312:79-93, 2001; Edward RL et al.,Nat Biotechnol 11:187-193, 1993; Davis GD et al., Biotechnol Bioeng 65:382-388, 1999).In fact, several fusion partners have been studied and reported over the past several years to induce high expression of foreign proteins in E. coli (Esposito & Chatterjee, Curr Opin Biotechnol. 17: 353-358 2006; Kapust & Waugh, Protein Sci. 8: Sachdev & Chirgwin, Biochem. Biophys. Res. Commun. 244: 933-937, 1998). Maltose binding protein (MBP), Glutathione-S-transferase (GST), Thioredoxin (Trx), NusA, and the like are among the most studied fusion partners . In the case of the maltose binding protein, a wide hydrophobic gap formed by the amino acids having hydrophobicity in the portion involved in dimer formation effectively hides the hydrophobic region of the newly synthesized protein and prevents the target protein from becoming an insoluble aggregate. Bacillus is known to help the disulfide bond of the target protein, and NusA is highly active in folding when expressed in E. coli, leading to proper folding of the expressed target protein (Bach H et al. , J Mol Biol 312: 79-93, 2001; Edward RL et al., Nat Biotechnol 11: 187-193, 1993; Davis GD et al., Biotechnol Bioen 65: 382-388, 1999).

이러한 융합파트너는 친화 크로마토그래피(affinity chromatography) 방법을 이용하여 융합발현 된 목적단백질을 쉽게 정제할 수 있다는 장점이 있으며, 각기 다른 분자생물학적 특성을 이용하여 목적단백질의 접힘을 돕는다고 알려져 있다. 하지만 이러한 융합파트너들은 목적단백질에 비해 상대적으로 크기가 크기 때문에 융합 부분의 크기에 따라 목적단백질의 수율이 현저히 떨어진다는 단점과 의료목적 또는 산업적으로 유용한 단백질들에 모두 범용적으로 작용하지 않는다는 단점이 있다. 또한, 이합체(dimer)를 형성하여 목적 단백질 또한 이합체(dimer)형태로 생산되는 경우도 있을뿐 아니라, 목적단백질을 수용성으로 발현을 유도하더라도 고유한 기능을 수행하는 활성형으로 발현을 유도하는 데는 실패하는 경우가 많고, 적합한 용도로 이용되기 위하여 융합파트너의 제거 과정이 추가되어야 하는 공정상의 불합리성을 지닌다는 문제점이 있다. 또한, 상업적으로나 의약적으로 매우 중요한 단백질은 분비 단백질(secretory protein) 및 막 단백질(membrane protein)들로서 대장균 내에서 발현 시 불용성 응집체를 만드는 난발현성 단백질(difficult-to-express proteins)이여서 개발이 지연되고 있다. 이를 극복하기 위해서는 다양한 장점을 지니고 있는 대장균 시스템을 활용하여 난발현 단백질의 발현효율을 증대시키기 위한 발현시스템을 개발하여, 이에 관한 원천 기반기술을 확보하는 것이 중요하다. Such a fusion partner has an advantage that it can easily purify a target protein expressed by fusion using an affinity chromatography method, and it is known that it helps folding of a target protein by using different molecular biological characteristics. However, these fusion partners have a disadvantage in that the yield of the target protein is remarkably lowered depending on the size of the fusion region, and the protein is not universally used for medical purposes or industrially useful proteins because it is relatively large in size compared to the target protein . In addition, there are cases in which a target protein is also produced in the form of a dimer by forming a dimer, and it is difficult to induce expression in an active form that performs a unique function even if the target protein is expressed in a water- There is a problem in that there is a process irrationality in which the removal process of the fusion partner must be added in order to be used for a suitable application. In addition, proteins that are commercially or medically very important are secretory proteins and membrane proteins, which are difficult-to-express proteins that produce insoluble aggregates when expressed in E. coli, have. In order to overcome this problem, it is important to develop an expression system for enhancing the expression efficiency of egg-expressing proteins by utilizing an E. coli system having various advantages, and to secure a source-based technology related thereto.

이에, 본 발명자들은 항암 효능이 있는 난발현 박테리아 효소의 활성형 발현 시스템을 구축하고자 예의 노력한 결과, Mdh 또는 Tsf를 융합파트너로 이용하여 아르기닌 탈이민효소 (ADI: arginine deiminase)와 융합 발현시킬 경우, 아르기닌 탈이민효소의 수용성 및 활성형 발현이 현저히 향상되는 것을 확인하고 본 발명을 완성하였다.
Accordingly, the present inventors have made intensive efforts to construct an active-type expression system of egg-expressing bacterial enzyme having anticancer effect. As a result, when Mdh or Tsf is used as a fusion partner to express fusion with arginine deiminase (ADI) The water-soluble and active-type expression of the arginine deiminase was remarkably improved, and the present invention was completed.

본 발명의 목적은 Mdh 또는 Tsf 유전자를 융합파트너로 이용하여 아르기닌 탈이민효소 (ADI; arginine deiminase)의 수용성 및 접힘을 향상시킬 수 있는, 재조합 단백질 생산용 발현벡터 또는 유전자 구조체(gene construct)를 제공하는데 있다.An object of the present invention is to provide an expression vector or gene construct for the production of recombinant proteins capable of improving water solubility and folding of arginine deiminase (ADI) using Mdh or Tsf gene as a fusion partner .

본 발명의 다른 목적은 상기 발현벡터 또는 유전자 구조체(gene construct)가 도입되어 있는 재조합 미생물 및 이를 이용한 재조합 단백질의 제조방법을 제공하는데 있다. It is another object of the present invention to provide a recombinant microorganism into which the above expression vector or gene construct is introduced and a method for producing a recombinant protein using the recombinant microorganism.

본 발명의 또 다른 목적은 상기 방법에 의해 제조된 Mdh 또는 Tsf와 아르기닌 탈이민효소(ADI)가 융합된 재조합 단백질을 제공하는데 있다.
It is still another object of the present invention to provide a recombinant protein in which Mdh or Tsf produced by the above method is fused with arginine deaminase (ADI).

상기 목적을 달성하기 위하여, 본 발명은 ADI 단백질을 코딩하는 유전자와 서열번호 11로 표시되는 Mdh 유전자 또는 서열번호 12로 표시되는 Tsf 유전자가 연결되어 있는 유전자 구조체(gene construct)를 제공한다.In order to achieve the above object, the present invention provides a gene construct in which a gene coding for an ADI protein is linked to a Mdh gene represented by SEQ ID NO: 11 or a Tsf gene represented by SEQ ID NO: 12.

본 발명은 또한, ADI 유전자와 융합파트너로 서열번호 11로 표시되는 Mdh 유전자 또는 서열번호 12로 표시되는 Tsf 유전자를 포함하는 재조합 ADI 생산용 발현벡터를 제공한다.The present invention also provides an expression vector for recombinant ADI production comprising an ADI gene and a Mdh gene represented by SEQ ID NO: 11 as a fusion partner or a Tsf gene represented by SEQ ID NO: 12.

본 발명은 또한, 상기 유전자 구조체(gene construct) 또는 상기 발현벡터가 도입되어 있는 재조합 미생물을 제공한다.The present invention also provides a recombinant microorganism into which said gene construct or said expression vector has been introduced.

본 발명은 또한, 상기 재조합 미생물을 배양하여 재조합 ADI 단백질의 발현을 유도한 다음, 이를 회수하는 단계를 포함하는 재조합 단백질의 제조방법을 제공한다.The present invention also provides a method for producing a recombinant protein, comprising culturing the recombinant microorganism to induce expression of the recombinant ADI protein, and recovering the recombinant ADI protein.

본 발명은 또한, 상기 방법에 의해 제조되고, Mdh 또는 Tsf와 ADI가 융합된 재조합 단백질을 제공한다.
The present invention also provides a recombinant protein produced by the above method, wherein Mdh or Tsf and ADI are fused.

본 발명에 따른 Mdh 또는 Tsf를 융합파트너로 이용한 아르기닌 탈이민효소 (ADI)의 제조방법은 난발현 ADI의 수용성 및 발현율을 향상시켜 본연의 항암 효소 활성을 유지할 수 있어, 이를 이용한 항암 치료제 개발 및 생산에 유용하다.
The method for producing arginine deaminase (ADI) using Mdh or Tsf according to the present invention as a fusion partner can improve the water solubility and expression ratio of egg-expressing ADI, thereby maintaining the original anticancer enzyme activity, .

도 1은 ADI 유전자만을 단독 포함하는 발현벡터(A) 및 융합파트너 (Mdh, Tsf 및 GST) 유전자와 ADI 유전자 사이에 엔테로키나제 인식부위를 코딩하는 폴리뉴클레오티드가 연결된 융합 발현벡터(B)의 도식도이다.
도 2는 ADI 단독발현 및 융합파트너 (Mdh, Tsf 및 GST)와 ADI 융합발현 결과를 SDS-PAGE로 나타낸 것이다.
도 3은 ADI 단독발현 및 융합파트너 (Mdh, Tsf 및 GST)와 ADI 융합발현의 발현 수준 및 수용성 발현량을 비교한 결과이다.
도 4는 융합파트너 (Mdh 및 Tsf)가 제거된 활성형 ADI의 SDS-PAGE 분석 결과이다.
도 5는 융합파트너 (Mdh 및 Tsf)가 제거된 활성형 ADI의 활성도를 나타낸 결과이다.
1 is a schematic diagram of a fusion expression vector (A) containing only an ADI gene and a fusion expression vector (B) in which a polynucleotide encoding an enterokinase recognition site is ligated between a fusion partner (Mdh, Tsf and GST) gene and an ADI gene to be.
Figure 2 shows SDS-PAGE results of ADI-only expression and fusion partners (Mdh, Tsf and GST) and ADI fusion expression.
FIG. 3 shows the results of comparing the expression levels and aqueous expression levels of ADI-only expression and fusion partners (Mdh, Tsf and GST) with ADI fusion expression.
Figure 4 shows the results of SDS-PAGE analysis of active ADI with fusion partners (Mdh and Tsf) removed.
Figure 5 shows the activity of active ADI with fusion partners (Mdh and Tsf) removed.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.

대장균에서 목적 단백질은 불용성 응집체로 발현되는 경우가 많다. 즉, 대장균 발현시스템 내에서는 전사와 전이가 거의 동시에 일어나며, 재조합 단백질의 과다 발현 시, 목적 단백질 또는 대장균 숙주세포 내 다른 단백질들의 접힘(folding) 중간체들 사이의 비특이적인 결합에 의해 인접한 하이드로포빅(hydrophobic) 폴리펩타이드 체인들은 응집체(inclusion body)로 알려진 불용성 응집체를 형성한다고 알려져 있다. 단백질의 접힘을 저해하는 조건에서도 활성이 유지되며 발현량이 우수한 단백질은 단백질의 잘못된 접힘(misfolding)을 극복하기 위한 대장균의 생체 메커니즘에 관여할 수 있고, 단백질 구조가 안정적이며 자체 접힘 능력이 뛰어나므로 융합파트너로서 효과적으로 이용될 수 있다. 대장균 융합발현파트너 중에서 가장 효율성이 높다고 알려진 융합발현파트너는 말토오즈 결합 단백질(Maltose binding protein, 'MBP'; Bedouelle and Duplay, Eur J Biochem, 1998) 이다. 하지만 상당수의 단백질에 대해서 효과적이라고 알려진 MBP도 많은 단백질에 대해서 수용성 발현 개선 효과를 보이지 못하고 있다 (Hammarstrom et al., J Struct Funct Genomics, 2006).In E. coli, the target protein is often expressed as an insoluble aggregate. That is, in the E. coli expression system, transcription and metastasis occur almost simultaneously, and during overexpression of the recombinant protein, the hydrophobic interaction between the target protein or the folding intermediates of other proteins in the E. coli host cell ) Polypeptide chains are known to form insoluble aggregates known as inclusion bodies. The protein retains its activity even under the conditions of inhibiting the folding of the protein, and the protein having the excellent expression amount can participate in the biomechanism of E. coli to overcome the misfolding of the protein, and the protein structure is stable and self-folding ability is excellent. It can be effectively used as a partner. Maltose binding protein (MBP) (Bedouelle and Duplay, Eur J Biochem , 1998) is the most effective fusion partner of Escherichia coli fusion expression partners. However, MBP, which is known to be effective against a large number of proteins, does not exhibit an improved water-soluble expression for many proteins (Hammarstrom et al., J Struct Funct Genomics, 2006).

본 발명에서는 말산탈수소효소 (Mdh; Malate dehydrogenase) 또는 Tsf (Enlongation factor Ts) 유전자를 융합파트너로 이용하여 아르기닌 탈이민효소 (ADI; arginine deiminase)의 활성형을 생산함으로써, 불용성 응집체를 변성제나 활성제를 사용하지 않고 효소 본연의 활성 및 구조를 유지할 수 있는 고부가가치 의료용 단백질 제조방법을 제공하였다.In the present invention, an active type of arginine deiminase (ADI) is produced by using a malate dehydrogenase (Mdh) or an enlongation factor Ts (Tsf) gene as a fusion partner to convert an insoluble aggregate into a denaturant or an activator And can maintain the original activity and structure of the enzyme without using it.

따라서, 본 발명은 일 관점에서, ADI 단백질을 코딩하는 유전자와 서열번호 11로 표시되는 Mdh 유전자 또는 서열번호 12로 표시되는 Tsf 유전자가 연결되어 있는 유전자 구조체(gene construct)에 관한 것이다.Accordingly, in one aspect, the present invention relates to a gene construct in which a gene coding for an ADI protein is linked to a Mdh gene represented by SEQ ID NO: 11 or a Tsf gene represented by SEQ ID NO: 12.

본 발명에 있어서, 상기 ADI 유전자와 상기 Mdh 유전자 또는 상기 Tsf 유전자 사이에 단백질 절단 효소 인식부위를 코딩하는 폴리뉴클레오티드가 연결되어 있는 것을 특징으로 할 수 있다.In the present invention, a polynucleotide coding for a protein cleavage enzyme recognition site may be connected between the ADI gene and the Mdh gene or the Tsf gene.

또한, 상기 ADI 유전자와 상기 Mdh 유전자 또는 Tsf 유전자는 분리정제용 태그를 코딩하는 폴리뉴클레오티드와 작동 가능하도록 연결되어 있는 것을 특징으로 할 수 있다. In addition, the ADI gene and the Mdh gene or the Tsf gene may be operatively linked to a polynucleotide encoding a tag for separation and purification.

본 발명은 다른 관점에서, ADI 유전자와 융합파트너로 서열번호 11로 표시되는 Mdh 유전자 또는 서열번호 12로 표시되는 Tsf 유전자를 포함하는 재조합 ADI 생산용 발현벡터에 관한 것이다.In another aspect, the present invention relates to an expression vector for recombinant ADI production comprising an ADI gene and a Mdh gene represented by SEQ ID NO: 11 as a fusion partner or a Tsf gene represented by SEQ ID NO: 12.

본 발명에 있어서, 상기 ADI 유전자와 융합파트너로 Mdh 유전자 또는 Tsf 유전자 사이에 단백질 절단 효소 인식부위를 코딩하는 폴리뉴클레오티드가 연결되어 있는 것을 특징으로 할 수 있다.In the present invention, a polynucleotide encoding a protein cleavage enzyme recognition site may be connected between the ADI gene and the Mdh gene or Tsf gene as a fusion partner.

또한, 상기 ADI 유전자와 상기 Mdh 유전자 또는 상기 Tsf 유전자는 분리정제용 태그를 코딩하는 폴리뉴클레오티드와 작동 가능하도록 연결되어 있는 것을 특징으로 할 수 있다. In addition, the ADI gene and the Mdh gene or the Tsf gene may be operatively connected to a polynucleotide encoding a tag for separation and purification.

본 발명에 있어서, 상기 ADI 유전자는 서열번호 13으로 표시되는 것을 특징으로 할 수 있다.In the present invention, the ADI gene may be characterized by being represented by SEQ ID NO: 13.

본 발명의 발현벡터는 상기 융합파트너 Mdh 또는 Tsf 유전자와 목적 단백질 ADI 유전자를 일련의 순서로 포함함으로써 상기 융합파트너 Mdh 또는 Tsf와 ADI를 재조합 단백질로 발현할 수 있다. The expression vector of the present invention can express the fusion partner Mdh or Tsf and ADI as a recombinant protein by including the fusion partner Mdh or Tsf gene and the target protein ADI gene in a sequential order.

본원에서, "벡터(vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드(plasmid)" 및 "벡터(vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수 개에서 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단 부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다. 라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 형질전환은 칼슘 클로라이드 방법 또는 전기천공법(electroporation) (Neumann, et al., EMBO J., 1:841, 1982) 등을 사용해서 용이하게 달성될 수 있다.As used herein, "vector" means a DNA construct containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in the appropriate host. The vector may be a plasmid, phage particle or simply a potential genome insert. Once transformed into the appropriate host, the vector may replicate and function independently of the host genome, or, in some cases, integrate into the genome itself. Because the plasmid is the most commonly used form of the current vector, the terms "plasmid" and "vector" are sometimes used interchangeably in the context of the present invention. For the purpose of the present invention, it is preferable to use a plasmid vector. Typical plasmid vectors that can be used for this purpose include (a) a cloning start point that allows replication to be efficiently made to include several to several hundred plasmid vectors per host cell, (b) a host cell transformed with the plasmid vector, (C) a restriction enzyme cleavage site into which a foreign DNA fragment can be inserted. Even if an appropriate restriction enzyme cleavage site is not present, using a synthetic oligonucleotide adapter or a linker according to a conventional method can easily ligate the vector and the foreign DNA. After ligation, the vector should be transformed into the appropriate host cell. Transformation can be readily accomplished using a calcium chloride method or electroporation (Neumann, et al., EMBO J., 1: 841, 1982).

본 발명에 따른 유전자의 과발현을 위하여 사용되는 벡터는 당업계에 공지된 발현벡터가 사용될 수 있다. 본 발명의 방법에서 사용될 수 있는 뼈대 벡터는 특별히 이에 제한되는 것은 아니나, pT7, pET/Rb, pGEX, pET28a, pET-22b(+) 및 pGEX로 이루어진 군으로부터 선택되는 대장균에 형질전환 가능한 다양한 벡터를 사용할 수 있다.As a vector used for overexpression of the gene according to the present invention, an expression vector known in the art can be used. The framework vectors that may be used in the methods of the present invention include, but are not limited to, various vectors capable of transforming into E. coli selected from the group consisting of pT7, pET / Rb, pGEX, pET28a, pET-22b Can be used.

염기서열은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결(operably linked)" 된다. 이것은 적절한 분자(예를 들면, 전사 활성화 단백질)가 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서(enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용한다.A nucleotide sequence is "operably linked" when placed in a functional relationship with another nucleic acid sequence. This may be the gene and regulatory sequence (s) linked in such a way as to enable gene expression when a suitable molecule (e. G., Transcriptional activator protein) is attached to the regulatory sequence (s). For example, DNA for a pre-sequence or secretory leader is operably linked to DNA for a polypeptide when expressed as a whole protein participating in the secretion of the polypeptide, and the promoter or enhancer is a sequence Or the ribosome binding site is operably linked to the coding sequence if it affects the transcription of the sequence, or the ribosome binding site is arranged to facilitate translation, Lt; / RTI > sequence. Generally, "operably linked" means that the linked DNA sequences are in contact and, in the case of a secretory leader, are in contact and present in the reading frame. However, the enhancer need not be in contact. The linkage of these sequences is carried out by ligation (linkage) at convenient restriction sites. If such a site does not exist, a synthetic oligonucleotide adapter or a linker according to a conventional method is used.

당업계에 주지된 바와 같이, 숙주세포에서 형질전환 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 재조합벡터 내에 포함되게 된다. 숙주세포가 진핵세포인 경우에는, 재조합벡터는 진핵 발현 숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.As is well known in the art, in order to increase the expression level of a transgene in a host cell, the gene must be operably linked to a transcriptional and detoxification regulatory sequence that functions in a selected expression host. Preferably the expression control sequence and the gene are contained within a recombinant vector containing a bacterial selection marker and a replication origin. If the host cell is a eukaryotic cell, the recombinant vector should further comprise a useful expression marker in the eukaryotic expression host.

상술한 재조합 벡터에 의해 형질전환된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본원 명세서에 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것을 의미한다.The host cells transformed with the recombinant vectors described above constitute another aspect of the present invention. As used herein, the term "transformation" means introducing DNA into a host and allowing the DNA to replicate as an extrachromosomal factor or by chromosomal integration.

물론 모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담 없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다.Of course, it should be understood that not all vectors function equally well in expressing the DNA sequences of the present invention. Likewise, not all hosts function identically for the same expression system. However, those skilled in the art will be able to make appropriate selections among a variety of vectors, expression control sequences, and hosts without undue experimentation and without departing from the scope of the present invention. For example, in selecting a vector, the host should be considered because the vector must be replicated within it. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, must also be considered.

따라서, 본 발명은 또 다른 관점에서, 상기 ADI 단백질을 코딩하는 유전자와 서열번호 11로 표시되는 Mdh 유전자 또는 서열번호 12로 표시되는 Tsf 유전자가 연결되어 있는 유전자 구조체(gene construct) 또는 상기 ADI 유전자와 융합파트너로 서열번호 11로 표시되는 Mdh 유전자 또는 서열번호 12로 표시되는 Tsf 유전자를 포함하는 재조합 ADI 생산용 발현벡터가 도입되어 있는 재조합 미생물에 관한 것이다. Accordingly, the present invention provides, in a further aspect, a gene construct to which the ADI protein-encoding gene, the Mdh gene represented by SEQ ID NO: 11 or the Tsf gene represented by SEQ ID NO: 12 is linked, The present invention relates to a recombinant microorganism into which an expression vector for recombinant ADI production containing a Mdh gene represented by SEQ ID NO: 11 or a Tsf gene represented by SEQ ID NO: 12 is introduced as a fusion partner.

본 발명에 있어서, 상기 유전자 구조체(gene construct)는 숙주세포의 염색체 내에 삽입되어 있는 것을 특징으로 할 수 있다.In the present invention, the gene construct may be inserted into the chromosome of the host cell.

본 발명이 속하는 기술분야의 당업자에게 있어 상기 유전자를 숙주세포의 게놈 염색체에 삽입하여서도 상기와 같이 재조합 벡터를 숙주세포에 도입한 경우와 동일한 효과를 가질 것은 자명하다 할 것이다.It will be apparent to those skilled in the art that the present invention has the same effect as that of introducing the recombinant vector into the host cell by inserting the gene into the genome of the host cell.

본 발명에서 상기 유전자를 숙주세포의 염색체상에 삽입하는 방법으로는 통상적으로 알려진 유전자조작 방법을 사용할 수 있으며, 일 예로는 레트로바이러스 벡터, 아데노바이러스 벡터, 아데노-연관 바이러스 벡터, 헤르페스 심플렉스 바이러스 벡터, 폭스바이러스 벡터, 렌티바이러스 벡터 또는 비바이러스성 벡터를 이용하는 방법을 들 수 있다.In the present invention, the gene may be inserted into the chromosome of the host cell by a commonly known gene manipulation method. Examples of the method include a retrovirus vector, an adenovirus vector, an adeno-associated virus vector, a herpes simplex virus vector , A poxvirus vector, a lentiviral vector, or a nonviral vector.

본 발명은 또 다른 관점에서, 상기 ADI 단백질을 코딩하는 유전자와 서열번호 11로 표시되는 Mdh 유전자 또는 서열번호 12로 표시되는 Tsf 유전자가 연결되어 있는 유전자 구조체(gene construct) 또는 상기 ADI 유전자와 융합파트너로 서열번호 11로 표시되는 Mdh 유전자 또는 서열번호 12로 표시되는 Tsf 유전자를 포함하는 재조합 ADI 생산용 발현벡터가 도입되어 있는 재조합 미생물을 배양하여 재조합 단백질의 발현을 유도한 다음, 이를 회수하는 단계를 포함하는 재조합 ADI 단백질의 제조방법에 관한 것이다. In another aspect of the present invention, there is provided a gene construct comprising a gene encoding the ADI protein, an Mdh gene represented by SEQ ID NO: 11, or a Tsf gene represented by SEQ ID NO: 12, A recombinant microorganism into which an expression vector for recombinant ADI containing the Mdh gene of SEQ ID NO: 11 or the Tsf gene of SEQ ID NO: 12 is introduced to induce the expression of the recombinant protein, ≪ RTI ID = 0.0 > ADI < / RTI >

본 발명에 있어서, 상기 재조합 단백질로부터 Mdh 또는 Tsf를 제거하는 단계를 추가로 포함하는 것을 특징으로 할 수 있다.In the present invention, it may further comprise the step of removing Mdh or Tsf from the recombinant protein.

융합파트너와 융합할 목적 단백질이 산업용 단백질일 경우, 융합파트너가 목적 단백질의 기능을 저하할 수도 있으며, 의학용 단백질일 경우는 항원항체 반응을 야기할 수 있으므로 융합파트너는 제거되는 것이 바람직하다. 이때, 상기 단백질 절단효소 인식부위는 Xa 인자 인식부위, 엔테로키나제 인식부위, 제네나제(Genenase) I 인식 부위 또는 퓨린(Furin) 인식부위가 단독으로 사용되거나 어느 두 개 이상을 순차적으로 연결하여 사용할 수 있다.When the objective protein to be fused with the fusion partner is an industrial protein, the fusion partner may degrade the function of the target protein, and in the case of a medical protein, the fusion partner is preferably removed since it may cause an antigen-antibody reaction. Herein, the protein cleavage enzyme recognition site may be a Xa factor recognition site, an enterokinase recognition site, a Genenase I recognition site, or a purine recognition site, or two or more of them may be used in sequence have.

또한, 재조합 단백질의 분리 정제가 용이하도록, 본 발명의 벡터의 융합파트너 또는 목적 단백질의 유전자에 분리정제용 태그를 코딩하는 폴리뉴클레오티드를 작동 가능하도록 연결할 수 있다. 이때, 상기 분리정제용 태그는 GST, poly-Arg, FLAG, poly-His 및 c-myc 등이 단독으로 사용되거나 어느 두 개 이상을 순차적으로 연결하여 사용할 수 있다. 발명의 일 실시예에서, 본 발명의 벡터는 pT7 뼈대 벡터에 분리정제용 태그, 상기 융합파트너의 유전자 및 목적 단백질의 유전자를 일련의 순서로 포함함으로써 분리정제용 태그, 상기 융합파트너 및 목적 단백질을 포함하는 재조합 단백질을 발현할 수 있다.In addition, a polynucleotide encoding a tag for separation purification can be operably linked to the fusion partner of the vector of the present invention or the gene of the target protein, so that the recombinant protein can be easily separated and purified. At this time, GST, poly-Arg, FLAG, poly-His and c-myc may be used singly or two or more of them may be sequentially connected. In one embodiment of the present invention, the vector of the present invention comprises a tag for separation and purification, a gene for the fusion partner, and a gene of a desired protein in a sequence in the pT7 skeletal vector, Lt; RTI ID = 0.0 > recombinant < / RTI >

상기 목적 단백질의 유전자는 제한효소 부위를 통해 클로닝 될 수 있고, 단백질 절단효소 인식부위를 코딩하는 폴리뉴클레오티드가 사용된 경우에는 상기 폴리뉴클레오티드와 틀이 맞도록(in frame) 연결되어, 목적 단백질 분비 후 단백질 절단효소로 절단하여, 원래 형태의 목적 단백질을 생산할 수 있도록 할 수 있다.The gene of the target protein can be cloned through a restriction enzyme site, and when a polynucleotide encoding a protein cleavage enzyme recognition site is used, it is linked in frame with the polynucleotide, It can be cleaved with a protein cleaving enzyme to produce the original protein of interest.

본원의 용어, "목적 단백질(target protein)" 또는 "외래 단백질(heterologous protein)"은 업자가 대량으로 생산하고자 하는 단백질로서, 재조합 발현벡터에 상기 단백질을 코딩하는 폴리뉴클레오티드를 삽입하여 형질전환체에서 발현이 가능한 모든 단백질을 의미한다. As used herein, the term "target protein" or "heterologous protein" refers to a protein that a manufacturer intends to produce in large quantities. In the present invention, a polynucleotide encoding the protein is inserted into a recombinant expression vector, Means all proteins capable of expression.

또한, 본 발명에서, "재조합 융합 단백질"이란, 목적단백질 ADI와 Mdh 또는 Tsf가 융합되어 있는 형태의 단백질을 의미한다. In the present invention, the term "recombinant fusion protein" means a protein in which the target protein ADI and Mdh or Tsf are fused.

본 발명은 또 다른 관점에서, 상기 방법으로 제조되고 Mdh 또는 Tsf와 ADI가 융합된 재조합 단백질에 관한 것이다.In another aspect, the present invention relates to a recombinant protein produced by the above method and fused with Mdh or Tsf and ADI.

본 발명의 Mdh 또는 Tsf를 융합파트너로 사용하여 ADI 단백질을 생산하는 방법은 융합 발현된 ADI 고유의 3차 구조 및 본연의 효소 활성을 유지할 수 있으므로, 고부가가치 단백질 의약품 생산에 폭넓게 이용될 수 있는 특징이 있다.
The method of producing ADI protein using Mdh or Tsf of the present invention as a fusion partner can maintain the inherent tertiary structure and inherent enzyme activity of fusion-expressed ADI, and thus can be widely used for the production of high-value-added protein drugs .

[실시예][Example]

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for illustrating the present invention and that the scope of the present invention is not construed as being limited by these embodiments.

실시예 1: 환경 스트레스에 의한 대장균 단백질체 변화 분석Example 1: Analysis of E. coli protein body change by environmental stress

융합파트너가 가져야 할 조건으로는 높은 발현률, 효과적인 3차원 구조형성 등을 들 수 있다. 특히 효과적인 3차원 구조를 형성하기 위해서는 단백질의 구조적 안정성이 전제되어야 한다. 이에, 생산 균주의 발현 환경에 변화를 유도하고 발현량 및 그 기능성이 유지되는 단백질을 분석하였다.
The conditions that fusion partners should have are high expression rates and effective three-dimensional structure formation. Particularly, in order to form an effective three-dimensional structure, the structural stability of the protein must be assumed. Thus, the expression level of the production strain and the protein whose function was maintained were analyzed.

1-1 : 단백질체 분석을 위한 수용성 단백질 준비1-1: Preparation of water-soluble proteins for protein analysis

단백질체 분석을 위해 대장균 BL21(DE3) 균주를 선택하고, 하룻밤 동안 배양된 종균 배양액의 일부를 LB 배지에 접종한 다음 37℃, 130 rpm에서 배양하였다. 배양액의 OD600이 0.5에 도달했을 때, 단백질의 3차원 접힘을 저해하는 물질인 구아니딘 하이드로클로라이드(guanidine hydrochloride, 이하 'GdnHCl') 및 2-hydroxyethyl disulfide (이하 '2HEDS')를 최종 농도 0.1 mM 및 10 mM로 대장균 배양액에 첨가한 뒤 3시간 더 배양하였으며, 비교 대장균은 GdnHCl와 2HEDS의 첨가 없이 동일 시간 동안 배양하였다. 배양된 대장균 BL21(DE3) 배양액을 6000 rpm, 4℃ 에서 원심분리하여 균체 침천물을 회수하여 pH 8.0, 40 mM 트리스 버퍼 (Tris buffer)로 2회 세척하였다. 세척된 대장균 침전물을 500 ㎕의 파쇄 용액 (lysis buffer; 8 M 우레아(urea), 4% (w/v) 챕스(CHAPS), 40 mM 트리스(Tris), 단백질 분해효소 제한 혼합물(protease inhibitor cocktail))에 현탁한 후 초음파 파쇄기를 이용하여 파쇄하였다. 균체 파쇄 후 12,000 rpm, 4℃ 에서 60분간 원심분리 하여 균체 파쇄물을 제거한 뒤 상등액을 분리하였다.
Escherichia coli BL21 (DE3) strain was selected for proteomic analysis, and a portion of the culture medium of the seed culture which was cultured overnight was inoculated into LB medium and cultured at 37 ° C and 130 rpm. When the culture of OD 600 reaches 0.5, the substance of guanidine hydrochloride (guanidine hydrochloride, hereinafter 'GdnHCl') and 2-hydroxyethyl disulfide (hereinafter '2HEDS') for inhibiting the three-dimensional folding of the protein, 0.1 mM final concentration and 10 mM, and cultured for 3 hrs. The E. coli was cultured for the same time without addition of GdnHCl and 2HEDS. The cultured Escherichia coli BL21 (DE3) culture medium was centrifuged at 6000 rpm at 4 ° C, and the cells were recovered and washed twice with a pH 8.0, 40 mM Tris buffer. The washed E. coli precipitate was resuspended in 500 μl of lysis buffer (8 M urea, 4% (w / v) CHAPS, 40 mM Tris, protease inhibitor cocktail, ) And then disrupted using an ultrasonic wave crusher. After disruption of the cells, the cells were centrifuged at 12,000 rpm and 4 ° C for 60 minutes to remove cell lysate, and the supernatant was separated.

1-2 : 단백질체 분석을 위한 2차원 겔 전기영동 (2-dimensional gel electrophoresis)1-2: Two-dimensional gel electrophoresis for proteome analysis

분리된 상등액의 단백질 농도는 바이오-라드 단백질 분석 키트 (Bio-Rad protein assay kit)를 이용하여 측정하였다. 30 mg의 수용성 단백질을 포함하고 있는 상등액을 분획하여 재수화 용액(rehydration solution; 2 M 싸이오우레아(thiourea), 8 M 우레아(urea), 4 % w/v 챕스(CHAPS), 1 % w/v DTT, 1 % w/v 이동성 양성전해질(carrier ampholyte), pH 4.7)에 현탁 하였다. 1차원 등전점 분리과정은 바이오-라드 단백질 IEF cell 전기영동장치 (Bio-Rad Protein IEF cell electrophoresis system)를 이용하였으며, 선형 pH4-7 범위의 IPG(immobilized pH gradient) 겔 스트립(17 cm, ReadyStrip)을 이용하여 재수화 용액에 포함되어 있는 단백질을 하룻밤 동안 재수화 하였다. 500 V에서 2시간, 1000 V에서 30분, 2000 V에서 30분, 4000 V에서 30분, 8000 V에서 70000 VHr 동안 진행하였다. 재수화된 IPG 겔 스트립은 1 % DTT를 포함하고 있는 평형화 용액 (epuilibration solution; 50 mM 트리스(Tris), pH 8.6, 6 M 우레아(urea), 30 % v/v 글리세롤(glycerol), 2 % SDS, 약간의 브로모페놀 블루(bromophenol blue)에서 15분간 반응시킨 뒤 2.5 % 아이오도아세트아마이드(iodoacetamide)가 포함된 평형화 용액에서 15분간 반응시켰다. 평형화된 겔 스트립은 12.5% 폴리아크릴아마이드 겔을 이용하여 2차원 전기영동 한 뒤, 은-염색(silver staining)을 통해서 단백질 스팟을 검출한다. 염색된 겔은 GS-710 밀도계(densitometer)를 이용하여 스캐닝 한 후 PDQuest 소프트웨어 버전 6.1을 이용하여 단백질 스팟을 확인하였다. 단백질 스팟의 부피를 측정하여 비교 대장균에서 분리한 단백질을 기준으로 GdnHCl과 2-HEDS가 첨가된 대장균 단백질의 발현량을 상대적으로 비교 분석한 뒤, 스팟 부피가 증가한 단백질을 동정하였다.
The protein concentration of the separated supernatant was measured using a Bio-Rad protein assay kit. The supernatant containing 30 mg of water soluble protein was fractionated and resuspended in a rehydration solution (2 M thiourea, 8 M urea, 4% w / v CHAPS, 1% w / v DTT, 1% w / v mobility carrier ampholyte, pH 4.7). One-dimensional isoelectric point separation was performed using a Bio-Rad Protein IEF cell electrophoresis system and an IPG (immobilized pH gradient) gel strip (17 cm, ReadyStrip) in a linear pH range of 4-7 The proteins contained in the rehydrated solution were rehydrated overnight. 2 hours at 500 V, 30 minutes at 1000 V, 30 minutes at 2000 V, 30 minutes at 4000 V, and 70000 VHr at 8000 V. The rehydrated IPG gel strips were washed with an epuilibration solution (50 mM Tris, pH 8.6, 6 M urea, 30% v / v glycerol, 2% SDS , Bromophenol blue for 15 minutes, and then reacted for 15 minutes in an equilibration solution containing 2.5% iodoacetamide. The equilibrated gel strips were applied using a 12.5% polyacrylamide gel The stained gel was scanned using a GS-710 densitometer and analyzed using a PDQuest software version 6.1 to determine the protein spot The volume of protein spot was measured and the expression level of GdnHCl and 2-HEDS-added Escherichia coli protein was compared and analyzed based on the protein isolated from the comparative E. coli. It was identified.

실시예 2 : MALDI-TOF-MS 분석 및 단백질 동정Example 2: MALDI-TOF-MS analysis and protein identification

MALDI-TOF-MS 분석을 위해서 실시예 1에서 선정된 비교 대장균의 단백질 보다 증가한 단백질을 은-염색된 겔로부터 추출하였다. 추출 된 단백질 스팟을 25 nM 암모늄 바이카보네이트(ammonium bicarbonate, pH 8.0) 용액에서 트립신(trypsin, 10.15 mg/ml) 분해 과정을 37℃ 에서 하룻밤 동안 진행하였다. 분해된 펩타이드는 5 % v/v TFA, 50 % v/v ACN 용액을 이용하여 추출하였으며, 이 과정을 세 번 반복한 뒤 진공 원심분리기를 이용하여 건조시켰다. 건조된 펩타이드를 50 % ACN / 0.1 % TFA 용액에 용해시킨 뒤 MALDI-TOF-MS 시스템 (MALDI-TOF-MS system (Voyager DE-STR instrument; Biosystems))을 이용하여 분석하였다. 분석된 펩타이드 질량 지문 (peptide mass fingerprints)은 Prospector 웹사이트의 MS-FIT (http://prospector.ucsf.edu/ucsfhtml4.0/msfit.htm)을 이용하여 수행하였으며, 단백질 동정을 위한 MS-FIT 데이터 베이스는 Swiss-Prot을 이용하였다. For MALDI-TOF-MS analysis, proteins increased from the comparable E. coli protein selected in Example 1 were extracted from the silver-stained gel. The extracted protein spot was subjected to trypsin (10.15 mg / ml) digestion process in 25 nM ammonium bicarbonate (pH 8.0) solution overnight at 37 ° C. The digested peptides were extracted with 5% v / v TFA and 50% v / v ACN solution. This procedure was repeated three times and dried using a vacuum centrifuge. The dried peptides were dissolved in 50% ACN / 0.1% TFA solution and analyzed using a MALDI-TOF-MS system (Voyager DE-STR instrument; Biosystems). The analyzed peptide mass fingerprints were performed using the MS-FIT (http://prospector.ucsf.edu/ucsfhtml4.0/msfit.htm) on the Prospector website. MS-FIT The database was Swiss-Prot.

단백질 동정을 수행한 결과, GdnHCl 스트레스 조건에서 발현량이 각각 1.88배 및 3.08배 이상 증가하고 구조적 안정성을 유지하여, 스트레스 내성을 보이는 단백질은 Mdh 및 Tsf로 확인되었다 (표 1).As a result of the protein identification, the expression levels increased by 1.88-fold and 3.08-fold in the GdnHCl stress condition, respectively, and the proteins exhibiting stress tolerance were identified as Mdh and Tsf (Table 1).

Mdh 및 Tsf 단백질 정보Mdh and Tsf protein information
유전자 이름

Gene name
유전자 접근 번호a Gene access number a
단백질 이름

Protein name
등전점(pI)/분자량(kDa)Isoelectric point (pI) / molecular weight (kDa)
서열 유사성(%)

Sequence similarity (%)
이론값b Theoretical value b 실험값c Experimental value c MdhMdh P61889P61889 Malate
dehydrogenase
Malate
dehydrogenase
5.61/32.345.61 / 32.34 5.63/33.125.63 / 33.12 18%18%
TsfTsf P0A6P1P0A6P1 Elongation
factor Ts
Elongation
factor Ts
5.22/30.295.22 / 30.29 5.15/31.625.15 / 31.62 47%47%

a. 유전자 접근 번호 : ExPASy Proteomics Server (http://www.expasy.org/)에서 유전자 정보를 검색하기 위한 식별번호a. Genetic access number: An identification number for retrieving genetic information from the ExPASy Proteomics Server ( http://www.expasy.org/ )

b. 이론값은 Compute pI/Mw tool (http://www.expasy.org/tools/pi_tool.html)을 이용하여 수집하였다.b. Theoretical values were collected using the Compute pI / Mw tool (http://www.expasy.org/tools/pi_tool.html).

c. 실험값은 이차원 전기영동 젤 이미지로부터 산출하였다.
c. Experimental values were calculated from two - dimensional electrophoresis gel images.

실시예 3 : 아미노 말단에 Mdh 또는 Tsf를 융합파트너로 포함하는 발현 벡터의 제조Example 3: Preparation of expression vector containing Mdh or Tsf as a fusion partner at the amino terminus

3-1: Mdh를 융합파트너로 포함하는 발현 벡터3-1: Expression vector containing Mdh as a fusion partner

실시예 1 내지 2의 방법으로 선정된 환경 스트레스 하에 수용성 발현량이 증가한 대장균 단백질 Mdh(Malate dehydrogenase)를 융합파트너로 포함하는 발현 벡터를 제조하였다.An expression vector containing E. coli protein Mdh (Malate dehydrogenase), which has an increased water-soluble expression level under environmental stresses selected by the methods of Examples 1 and 2, as a fusion partner, was prepared.

Mdh 유전자를 암호화하는 뉴클레오티드를 획득하기 위해, Entrez Nucleotide 데이타베이스의 gi:49175990에서 3381352bp 내지 3382290bp의 서열정보(서열번호 11)를 이용하여 정지 코돈을 제외한 Mdh 유전자의 PCR 증폭을 위한 프라이머쌍을 제작하였다. 또한, 상기 프라이머쌍의 센스 프라이머(서열번호 1: cat atg aaa gtc gca gtc ctc ggc)에는 NdeI 제한효소 인식서열을, 안티센스 프라이머(서열번호 2: ctc gag ctt att aac gaa ctc ttg)에는 XhoI 제한효소 인식서열을 포함하도록 제작하였다. PCR은 DNA 중합효소반응용 완충용액(0.25 mM dNTPs; 50 mM KCl; 10 mM (NH4)2SO4; 20 mM Tris-HCl(pH8.8); 2 mM MgSO4; 0.1% Triton X-100)에 대장균으로부터 분리한 염색체를 주형 DNA로 100 ng, 서열번호 1 내지 2로 표시되는 프라이머쌍을 각각 50 pmol을 넣은 다음 Taq DNA 중합효소를 이용하여 수행하였다. 반응 조건은 95℃/30초(변성), 52℃/30초(어닐링), 72℃/60초(신장)로 총 30회 수행하였으며, 그 결과 증폭된 DNA절편의 5' 말단에 NdeI 제한효소 부위와 3' 말단에 XhoI 제한 효소 부위를 포함하는 PCR 산물을 수득하였다. 증폭된 PCR 산물을 제한효소 NdeIXhoI으로 각각 처리하여 pT7-7(Novagen, USA)의 제한효소 NdeIXhoI자리에 삽입하였고 이를 pT7-Mdh라고 명명하였다.
To obtain the nucleotides encoding the Mdh gene, a pair of primers for PCR amplification of the Mdh gene except the stop codon was prepared using the sequence information (SEQ ID NO: 11) of 3381352 to 3382290 bp at gi: 49175990 of the Entrez Nucleotide database . In addition, the sense primer of the primer pair (SEQ ID NO: 1: cat atg aaa gtc gca gtc ctc ggc) has a NdeI restriction enzyme recognition sequence, the antisense primer (SEQ ID NO: 2: ctc gag ctt att aac gaa ctc ttg) is XhoI restriction enzyme Recognition sequence. The PCR was performed using a buffer solution (0.25 mM dNTPs; 50 mM KCl; 10 mM (NH 4 ) 2 SO 4 ; 20 mM Tris-HCl (pH 8.8); 2 mM MgSO 4 ; 0.1% Triton X-100 ), 100 ng of the template DNA and 50 pmol of each of the primer pairs shown in SEQ ID NOS: 1 to 2 were added to the chromosome from Escherichia coli and then Taq DNA polymerase was used. The reaction conditions were 30 times in total at 95 ° C for 30 seconds (denaturation), 52 ° C for 30 seconds (annealing) and 72 ° C for 60 seconds (elongation). As a result, NdeI restriction enzyme And a XhoI restriction enzyme site at the 3 ' end. The amplified PCR products were treated with restriction enzymes NdeI and XhoI , respectively, and inserted into the restriction enzymes NdeI and XhoI of pT7-7 (Novagen, USA) and named pT7-Mdh.

3-2: Tsf를 융합파트너로 포함하는 발현 벡터3-2: Expression vector containing Tsf as a fusion partner

실시예 1 내지 2의 방법으로 선정된 환경 스트레스 하에 수용성 발현량이 증가한 대장균 단백질 Tsf(Elongation factor Ts)를 융합파트너로 포함하는 발현 벡터를 제조하였다.Expression vectors containing the Escherichia coli protein Tsf (elongation factor Ts), which has an increased water-soluble expression level under environmental stresses selected by the methods of Examples 1 and 2, as fusion partners were prepared.

Tsf 유전자를 암호화하는 뉴클레오티드를 획득하기 위해, Entrez Nucleotide 데이타베이스의 gi:49175990에서 190857bp 내지 191708bp의 서열정보(서열번호 12)를 이용하여 정지 코돈을 제외한 Tsf 유전자의 PCR 증폭을 위한 프라이머쌍을 제작하였다. 또한, 상기 프라이머쌍의 센스 프라이머(서열번호 3: cat atg gct gaa att acc gca tcc ctg gta aaa)에는 NdeI 제한효소 인식서열을, 안티센스 프라이머(서열번호 4: ctc gag aga ctg ctt gga cat cgc agc aac ttc)에는 XhoI 제한효소 인식서열을 포함하도록 제작하였다. PCR은 DNA 중합효소반응용 완충용액(0.25 mM dNTPs; 50 mM KCl; 10 mM (NH4)2SO4; 20 mM Tris-HCl(pH8.8); 2 mM MgSO4; 0.1% Triton X-100)에 대장균으로부터 분리한 염색체를 주형 DNA로 100 ng, 서열번호 3 내지 4로 표시되는 프라이머쌍을 각각 50 pmol을 넣은 다음 Taq DNA 중합효소를 이용하여 수행하였다. 반응 조건은 95℃/30초(변성), 52℃/30초(어닐링), 72℃/60초(신장)로 총 30회 수행하였으며, 그 결과 증폭된 DNA절편의 5' 말단에 NdeI 제한효소 부위와 3' 말단에 XhoI 제한 효소 부위를 포함하는 PCR 산물을 수득하였다. 증폭된 PCR 산물을 제한효소 NdeIXhoI으로 각각 처리하여 pT7-7(Novagen, USA)의 제한효소 NdeIXhoI자리에 삽입하였고 이를 pT7-Tsf라고 명명하였다.
To obtain the nucleotide encoding the Tsf gene, a pair of primers for PCR amplification of the Tsf gene except the stop codon was constructed using the sequence information (SEQ ID NO: 12) of 190857bp to 191708bp at gi: 49175990 in the Entrez Nucleotide database . The NdeI restriction enzyme recognition sequence was amplified by using an antisense primer (SEQ ID NO: 4: ctc gag aga ctg ctt gga cat cgc agc aac) in the sense primer of the above primer pair (SEQ ID NO: 3: cat atg gct gaa attacca tcc ctg gta aaa) ttc) was constructed to include the XhoI restriction enzyme recognition sequence. The PCR was performed using a buffer solution (0.25 mM dNTPs; 50 mM KCl; 10 mM (NH 4 ) 2 SO 4 ; 20 mM Tris-HCl (pH 8.8); 2 mM MgSO 4 ; 0.1% Triton X-100 ), 100 ng of the template DNA and 50 pmol of each of the primer pairs shown in SEQ ID NOS: 3 to 4 were added to the chromosomes isolated from Escherichia coli and then Taq DNA polymerase was used. The reaction conditions were 30 times in total at 95 ° C for 30 seconds (denaturation), 52 ° C for 30 seconds (annealing) and 72 ° C for 60 seconds (elongation). As a result, NdeI restriction enzyme And a XhoI restriction enzyme site at the 3 ' end. The amplified PCR products were treated with restriction enzymes NdeI and XhoI , respectively, and inserted into the restriction enzymes NdeI and XhoI of pT7-7 (Novagen, USA) and named pT7-Tsf.

실시예 4 : ADI의 단독발현 벡터 및 Mdh 또는 Tsf 융합발현 벡터 제조Example 4: Production of ADI single expression vector and Mdh or Tsf fusion expression vector

Mdh 또는 Tsf를 융합발현파트너로 이용하여 아르기닌 탈이민효소(ADI)의 수용성 발현 유도를 확인하기 위해 ADI의 단독발현 및 단백질 절단효소 인식부위를 포함하는 융합발현 벡터를 제조하였다.
Mdh or Tsf was used as a fusion expression partner to confirm the induction of soluble expression of arginine deaminase (ADI), a fusion expression vector containing the ADI single expression and protein cleavage enzyme recognition site was prepared.

4-1 : ADI의 단독발현 벡터4-1: expression vector of ADI alone

본 발명에 사용된 목적 단백질은 아르기닌 탈이민효소 (arginine deiminase, 이하 ADI; 서열번호 13)이다. 목적 단백질의 주형 DNA는 상기 단백질들을 많이 발현하는 인간 조직으로부터 RNeasy mini kit(QIAGEN, USA)를 이용하여 전체 RNA를 추출한 뒤, 전체 RNA 1㎍과 oligo-d(T) 1㎕ (Invitrogen, USA, 0.5 ㎍/㎕)에 증류수를 50㎕ 까지 채운 후, AccuPower RTpremix(Bioneer, 한국)에 넣어 RT-PCR(reverse transcription polymerasechain reaction) 반응시켰다. 70℃에서 5분, 4℃에서 5분, 42℃에서 60분, 94℃에서 5분, 4℃에서 5분간 반응하여 cDNA를 합성함으로써 수득하였다. The target protein used in the present invention is arginine deiminase (ADI; SEQ ID NO: 13). The template DNA of the target protein was obtained by extracting total RNA from human tissues expressing the above proteins with a RNeasy mini kit (QIAGEN, USA), adding 1 μg of total RNA and 1 μl of oligo-d (T) (Invitrogen, USA, 0.5 μg / μl) was filled up to 50 μl of distilled water, and then subjected to reverse transcription polymerase chain reaction (RT-PCR) in an AccuPower RTpremix (Bioneer, Korea). Followed by 5 minutes at 70 ° C, 5 minutes at 4 ° C, 60 minutes at 42 ° C, 5 minutes at 94 ° C, and 5 minutes at 4 ° C to synthesize cDNA.

상기 ADI의 단독 발현벡터를 제조하기 위해서 ADI의 5'-말단에 NdeI, 3'-말단에 HindIII 제한효소 인지부위를 포함하도록 중합효소연쇄반응(polymerease chain reaction)하였다. 중합효소연쇄반응(polymerease chain reaction)의 조건은, 센스 프라이머(서열번호 5: ctc atg tct gta ttt gac agt), 안티센스 프라이머(서열번호 6: aag ctt cta tca ctt aac atc)를 각각 50 pmol씩 포함한 DNA 중합효소반응용 완충용액(0.25 mM dNTPs; 50 mM KCl; 10 mM (NH4)2SO4; 20 mM Tris-HCl(pH8.8); 2 mM MgSO4; 0.1% Triton X-100)에 주형 DNA 100 ng을 넣은 다음 Taq DNA 중합효소를 이용하여 95℃/30초(변성), 52℃/30초(어닐링), 72℃/60초(신장)로 총 30회 PCR을 수행하였다. 구체적으로, ADI는 시작 코돈을 제외하고 정지 코돈을 포함하는 아미노산 서열을 증폭하였다.In order to prepare a single expression vector of the ADI, a polymerease chain reaction was performed so as to include NdeI at the 5'-end of ADI and a HindIII restriction enzyme recognition site at the 3'-end. The conditions of the polymerease chain reaction were as follows: a sense primer (SEQ ID NO: 5) and an antisense primer (SEQ ID NO: 6: aag cttcta tca ctt aac atc) the DNA polymerase reaction buffer for the solution (0.1% Triton X-100 0.25 mM dNTPs; 50 mM KCl; 10 mM (NH 4) 2 SO 4; 20 mM Tris-HCl (pH8.8);; 2 mM MgSO 4) 100 ng of template DNA was added and PCR was performed 30 times at 95 ° C for 30 seconds (denaturation), 52 ° C for 30 seconds (annealing) and 72 ° C for 60 seconds (elongation) using Taq DNA polymerase. Specifically, ADI amplified the amino acid sequence containing the stop codon except for the start codon.

상기 증폭된 ADI를 코딩하는 NdeI/HindIII 단편을 잘라낸 후 대장균 발현벡터 pT7(Novagen) 벡터의 NdeI/HindIII 자리에 삽입하여 단백질 단독발현 벡터를 제작하였다(도 1A).
The NdeI / HindIII fragment encoding the amplified ADI was cut out and inserted into the NdeI / HindIII site of the E. coli expression vector pT7 (Novagen) vector to prepare a protein-only expression vector (FIG. 1A).

4-2 : ADI의 융합파트너와의 융합발현 벡터4-2: Fusion expression vector of ADI with fusion partner

ADI의 5'-말단에 XhoI 제한효소 인식서열과 3'-말단에 HindIII 제한효소 인식서열을 포함하도록 제작된 센스 프라이머(서열번호 7: ctc gag gat gac gat gac aag tct gta ttt ga), 안티센스 프라이머(서열번호 6: aag ctt cta tca ctt aac atc)를 각각 50 pmol씩 포함한 DNA 중합효소반응용 완충용액(0.25 mM dNTPs; 50 mM KCl; 10 mM (NH4)2SO4; 20 mM Tris-HCl(pH8.8); 2 mM MgSO4; 0.1% Triton X-100)에 주형 DNA 100 ng을 넣은 다음 Taq DNA 중합효소를 이용하여 95℃/30초(변성), 52℃/30초(어닐링), 72℃/60초(신장)로 총 30회 PCR을 수행하였다. 구체적으로, ADI는 시작 코돈을 제외하고 정지 코돈을 포함하는 아미노산 서열을 증폭하였다.A sense primer (SEQ ID NO: 7: ctc gag gat gac gat gac aag tct gta ttt ga) prepared to include a XhoI restriction enzyme recognition sequence at the 5'-end of the ADI and a HindIII restriction enzyme recognition sequence at the 3'-end, (SEQ ID NO: 6: aag ctt cta tca ctt aac atc) a respective buffer for DNA polymerase, including reaction by 50 pmol (0.25 mM dNTPs; 50 mM KCl; 10 mM (NH 4) 2 SO 4; 20 mM Tris-HCl (pH8.8); 2 mM MgSO 4 ; 0.1% Triton X-100) to insert the template DNA 100 ng following Taq 95 ℃ / 30 seconds by using a DNA polymerase (denaturation), 52 ℃ / 30 seconds (annealing) , And 72 ° C / 60 sec (elongation). Specifically, ADI amplified the amino acid sequence containing the stop codon except for the start codon.

상기 PCR 증폭 산물을 XhoI/HindIII 제한 효소로 처리한 후, 실시예 3의 방법으로 제작한 발현벡터 pT7-Mdh 또는 pT7-Tsf의 XhoI/HindIII 자리에 삽입함으로써 외래단백질의 융합파트너와의 융합발현 벡터를 제작하였다. 상기의 방법으로 만들어진 플라스미드를 각각 Mdh::ADI 및 Tsf::ADI 라고 명명하였다.The PCR amplification product was treated with XhoI / HindIII restriction enzyme and inserted into the XhoI / HindIII site of the expression vector pT7-Mdh or pT7-Tsf prepared by the method of Example 3 to obtain a fusion expression vector Respectively. Plasmids prepared by the above method were named Mdh :: ADI and Tsf :: ADI, respectively.

또한, 기존에 효과적인 융합파트너라고 알려져 있는 글루타치온-S-전이효소(Glutathione-S-transferase, 이하 'GST')를 ADI의 아미노 말단에 융합파트너로 삽입한 뒤 GST::ADI를 제조하였다.
In addition, GST :: ADI was prepared by inserting glutathione-S-transferase (GST), which is known as an effective fusion partner, as a fusion partner at the amino terminal of ADI.

4-3 : 6개의 히스티딘 및 단백질 절단효소 부위를 포함하는 정제용 발현 벡터4-3: Expression vector for purification comprising six histidine and protein cleavage enzyme sites

Mdh 또는 Tsf가 융합발현된 ADI를 정제하기 위해서, Mdh 또는 Tsf의 5'-말단에 6개의 히스티딘을 포함하며 Mdh 또는 Tsf 융합파트너와 ADI 사이에 엔테로카이네이즈(enterokinase)에 의해 인지되어 절단될 수 있는 시퀀스를 포함하는, 다음과 같은 정제용 발현벡터를 제작하였다. In order to purify Mdh or Tsf fusion-expressed ADI, it can be cleaved and recognized by enterokinase between Mdh or Tsf fusion partner and ADI, including 6 histidines at the 5'-end of Mdh or Tsf The following expression vector for purification containing the sequence was prepared.

Mdh의 5'-말단에 6개의 히스티딘(histidine, 이하 'His6')과 NdeI, 3'-말단에 XhoI 제한효소 인지부위를 포함하도록, 센스 프라이머(서열번호 8: cat atg cac cat cac cat cac cat aaa gtc gca gtc ctc ggc) 및 안티센스 프라이머(서열번호 2: ctc gag ctt att aac gaa ctc ttg)를 제작하였으며, Tsf의 5'-말단에 6개의 히스티딘(histidine, 이하 'His6')과 NdeI, 3'-말단에 XhoI 제한효소 인지부위를 포함하도록, 센스 프라이머(서열번호 9: cat atg cac cat cac cat cac cat gct gaa att acc gca tcc ctg gta aaa) 및 안티센스 프라이머(서열번호 4: ctc gag aga ctg ctt gga cat cgc agc aac ttc)를 제작하였다. 상기 제작한 프라이머를 50 pmol씩 포함한 DNA 중합효소반응용 완충용액(0.25 mM dNTPs; 50 mM KCl; 10 mM (NH4)2SO4 20 mM Tris-HCl(pH8.8); 2 mM MgSO4 0.1% Triton X-100)에 주형 DNA 100 ng을 넣은 다음 Taq DNA 중합효소를 이용하여 95℃/30초(변성), 52℃/30초(어닐링), 72℃/60초(신장)로 총 30회 중합효소연쇄반응(polymerease chain reaction)을 수행하였다. 증폭된 정제용 His6-Mdh 및 His6-Tsf를 코딩하는 NdeI/XhoI 단편을 잘라낸 후 ADI가 포함되어 있는 발현 벡터의 NdeI/XhoI 자리에 삽입하였고, 이를 H6::Mdh::ADI 및 H6::Tsf::ADI로 명명하였다.(SEQ ID NO: 8) was added to the 5'-end of Mdh to contain a histidine (hereinafter, referred to as His6 ') and NdeI and a XhoI restriction enzyme recognition site at the 3'- (His6) and NdeI, 3 (SEQ ID NO: 2) were prepared at the 5'-end of Tsf , (SEQ ID NO: 9: ctc gag aga ctg (SEQ ID NO: 9)) and an antisense primer (SEQ ID NO: 9) so as to include a XhoI restriction enzyme recognition site ctt gga cat cgc agc aac ttc). 10 mM (NH 4 ) 2 SO 4, 20 mM Tris-HCl (pH 8.8), 2 mM MgSO 4 0.1 mM, and the like were added to the DNA polymerase reaction buffer 100 ng of template DNA was added to the resulting solution at 95 ° C for 30 seconds (denaturation), 52 ° C for 30 seconds (annealing) and 72 ° C for 60 seconds (elongation) using Taq DNA polymerase Polymerease chain reaction was performed. The NdeI / XhoI fragments encoding amplified His6-Mdh and His6-Tsf were cut out and inserted into the NdeI / XhoI sites of the expression vector containing ADI, which was ligated to H6 :: Mdh :: ADI and H6 :: Tsf :: ADI.

또한, 융합단백질로부터 ADI를 분리해 내기 위하여 ADI의 5'-말단에 엔테로카이네이즈(enterokinase)에 의해 인지되어 절단될 수 있는 시퀀스(DDDDK, 이하 D4K)와 XhoI 제한효소 인지부위, 3'-말단에 HindIII 제한효소 인지부위를 포함하도록, ADI 융합 폴리펩티드를 코딩하는 폴리뉴클레오티드 단편의 센스 프라이머(서열번호 10: ctc gag gat gac gat gac aag tct gta ttt gac agt), 안티센스 프라이머(서열번호 6: aag ctt cta tca ctt aac atc)를 50 pmol씩 포함한 DNA 중합효소반응용 완충용액(0.25 mM dNTPs; 50 mM KCl; 10 mM (NH4)2SO4 20 mM Tris-HCl(pH8.8); 2 mM MgSO4 0.1% Triton X-100)에 주형 DNA 100 ng을 넣은 다음 Taq DNA 중합효소를 이용하여 95℃/30초(변성), 52℃/30초(어닐링), 72℃/60초(신장)로 총 30회 중합효소연쇄반응(polymerease chain reaction)을 수행하였다. 증폭된 엔테로카이네이즈(enterokinase) 인지 씨퀀스-목적단백질을 코딩하는 XhoI/HindIII 단편을 잘라낸 후 H6::Mdh 및 H6::Tsf가 포함되어 있는 발현 벡터의 XhoI/HindIII 자리에 삽입하였고, 이를 H6::Mdh::EK::ADI 및 H6::Tsf::EK::ADI로 명명하였다(도 1B).
In addition, the 5'-end of ADI in order to separate the ADI from the fusion protein is recognized by enterokinase kinase (enterokinase) sequences that can be cut (DDDDK, less than D 4 K) and the XhoI restriction enzyme recognition site, 3 ' to include a portion that the HindIII restriction enzyme at the terminal, the sense primer of polynucleotide fragments encoding the ADI fusion polypeptide (SEQ ID NO: 10: ctc gag gat gac gat gac aag tct gta ttt gac agt), antisense primer (SEQ ID NO: 6: aag 10 mM (NH 4 ) 2 SO 4 20 mM Tris-HCl (pH 8.8); 2 mM (pH 7.8)) containing 50 pmol of a DNA polymerase reaction buffer (0.25 mM dNTPs; MgSO 4 0.1% Triton X-100 ) into the template DNA 100 ng next 95 ℃ / 30 seconds, using a Taq DNA polymerase (denaturation), 52 ℃ / 30 seconds (annealing), 72 ℃ / 60 seconds (elongation) And a total of 30 polymerease chain reactions were performed. The XhoI / HindIII fragment encoding the amplified enterokinase sequence-target protein was cut out and inserted into the XhoI / HindIII site of the expression vector containing H6 :: Mdh and H6 :: Tsf, Mdh :: EK :: ADI and H6 :: Tsf :: EK :: ADI (Fig. 1B).

실시예 5 : ADI 재조합 단백질의 수용성 발현Example 5: Aqueous expression of ADI recombinant protein

실시예 4의 방법으로 제조한 ADI의 단독발현 벡터 및 융합파트너와의 융합발현 벡터를 대장균에 형질전환하여 배양한 뒤, IPTG로 재조합 ADI의 발현을 유도함으로써 Mdh 또는 Tsf 융합파트너에 의한 수용성 발현의 효과를 확인하였다.Expression of fusion protein with ADI single expression vector and fusion partner prepared by the method of Example 4 was transformed into Escherichia coli and the recombinant ADI expression was induced by IPTG to obtain a soluble expression by Mdh or Tsf fusion partner The effect was confirmed.

하나한(Hanahan)이 기술한 방법(Hanahan D, DNA Cloning vol.1 109-135, IRS press, 1985)에 의해 실시예 4의 벡터들을 대장균에 형질전환 하였다. 구체적으로 CaCl2로 처리한 대장균 BL21(DE3)에 실시예 4의 벡터들을 열충격 방법으로 형질전환시킨 후, 앰피실린(ampicillin)이 포함된 배지에서 배양하여 상기 발현벡터가 형질전환되어 앰피실린 저항성을 나타내는 콜로니를 선별하였다. 융합파트너와의 융합발현 벡터 pT7-Mdh 및 pT7-Tsf로 형질전환된 대장균을 BL21(DE3):pT7-Mdh 및 BL21(DE3):pT7-Tsf로 명명하였다. 상기 콜로니를 하룻밤 동안 LB 배지에서 배양한 종균 배양액의 일부를 100 mg/ml 앰피실린을 포함하는 LB 배지에 접종한 다음 37℃에서 130 rpm으로 배양하였다. 배양액의 OD600이 0.5에 이르렀을 때 IPTG를 첨가(1 mM)하여 재조합 유전자의 발현을 유도하였다. IPTG 첨가 후 동일한 조건(37℃)으로 4시간 더 배양하거나, 20℃에서 130rpm으로 12시간 동안 배양하였다.The vectors of Example 4 were transformed into E. coli by the method described by Hanahan (Hanahan D, DNA Cloning vol. 109-135, IRS press, 1985). Specifically, the vectors of Example 4 were transformed into Escherichia coli BL21 (DE3) treated with CaCl 2 by a thermal shock method and then cultured in a medium containing ampicillin to transform the expression vector into ampicillin resistance Were selected. Fusion with fusion partners BLT (DE3): pT7-Mdh and BL21 (DE3): pT7-Tsf were named Escherichia coli transformed with vectors pT7-Mdh and pT7-Tsf. A portion of the culture medium in which the colonies were cultured in LB medium overnight was inoculated into LB medium containing 100 mg / ml ampicillin and cultured at 37 ° C at 130 rpm. When the OD 600 of the culture reached 0.5, IPTG was added (1 mM) to induce the expression of the recombinant gene. After addition of IPTG, the cells were further cultured under the same conditions (37 ° C) for 4 hours or cultured at 20 ° C and 130 rpm for 12 hours.

상기 방법으로 배양한 대장균을 13,000 rpm으로 5분간 원심분리하여 균체 침전물을 회수한 후 5 ml의 파쇄 용액(10 mM Tris-HCl 완충액, pH 7.5, 10 mM EDTA)에 현탁하여 초음파 파쇄기(Branson sonifier, Branson Ultrasonics Corporation, USA)를 이용하여 파쇄하였다. 파쇄한 후 13,000 rpm으로 10분간 원심분리한 뒤 상등액과 균체 파쇄물을 분리하였다. 균체 파쇄물은 1% 트리톤 엑스 100 (Triton X-100)을 이용하여 2회 세척하였다. 분리된 상등액의 단백질 농도는 바이오-라드 단백질 분석 키트(Bio-Rad protein assay kit, USA)를 이용하여 측정하였다. 상등액과 균체 파쇄물을 각각 5 X SDS(0.156 M Tris-HCl, pH 6.8, 2.5% SDS, 37.5% 글리세롤, 37.5 mM DTT)과 1:4로 섞어 10% SDS-PAGE 겔의 웰에 로딩하고 125 V에서 2시간 동안 시료를 전개한 다음 겔을 쿠마시 염색 방법으로 염색한 후 탈색하여 각각의 재조합 단백질의 발현량을 밀도계(Densitometer, Duoscan T1200, Bio-Rad, USA)로 확인하고, 수학식 1에 따라 용해도(%)를 계산하였다.Escherichia coli cultured by the above method was centrifuged at 13,000 rpm for 5 minutes to collect the cell pellet, suspended in 5 ml of a disruption solution (10 mM Tris-HCl buffer, pH 7.5, 10 mM EDTA) and sonicated using a Branson sonifier Branson Ultrasonics Corporation, USA). After crushing, the supernatant was separated from the cell lysate by centrifugation at 13,000 rpm for 10 minutes. The cell lysate was washed twice with 1% Triton X-100. The protein concentration of the separated supernatant was measured using a Bio-Rad protein assay kit (USA). The supernatant and cell lysate were loaded into wells of 10% SDS-PAGE gel mixed with 1: 4 with 5 x SDS (0.156 M Tris-HCl, pH 6.8, 2.5% SDS, 37.5% glycerol, 37.5 mM DTT) , The gel was stained with Coomassie staining method and decolorized. The expression amounts of the respective recombinant proteins were confirmed with a density meter (Densitometer, Duox T1200, Bio-Rad, USA) The solubility (%) was calculated according to the following formula.

Figure pat00001
Figure pat00001

그 결과, Mdh 또는 Tsf와 융합한 ADI의 발현이 대부분 불용성 응집체보다 수용성 발현에서 더 많은 것을 확인하였으며, 또한 단독 발현한 ADI의 수용성 발현량보다 Mdh 또는 Tsf와 융합한 외ADI에서 용해도가 매우 증가하는 것을 확인하였다(도 2). 단독발현 ADI와 Mdh 또는 Tsf를 융합발현 한 ADI의 수용성 발현 수준은 도 3에서 확인할 수 있듯이 ADI의 수용성 발현량이 증가하였다. 이러한 결과는 융합파트너로서 Mdh 또는 Tsf가 의료 기능성 효소인 ADI의 활성 발현 및 생산효율 증대에 효과가 크다는 것을 의미한다.As a result, the expression of ADI fused with Mdh or Tsf was found to be higher in water-soluble expression than that of insoluble aggregate, and the solubility was significantly increased in the other ADIs fused with Mdh or Tsf than the soluble expression amount of ADI alone (Fig. 2). As shown in FIG. 3, the water-soluble expression level of ADI that fused single-expressed ADI with Mdh or Tsf was increased. These results indicate that Mdh or Tsf as a fusion partner is effective for increasing the expression and activity of ADI, a medical functional enzyme.

또한, 기존에 효과적인 융합파트너라고 알려져 있는 글루타치온-S-전이효소(Glutathione-S-transferase, 이하 'GST')을 ADI의 아미노 말단에 융합파트너로 삽입한 뒤 (GST::ADI), 대장균 BL21(DE3) 균주에 형질전환하여 동일한 방법으로 발현 양상을 확인한 결과, Mdh 또는 Tsf를 아미노 말단에 융합파트너로 사용한 것이 GST를 융합파트너로 사용한 것 보다 수용성 발현량의 증가 정도가 훨씬 더 뛰어남을 확인할 수 있었다 (도 3).
In addition, glutathione-S-transferase (GST), which is known to be an effective fusion partner, was inserted into the amino terminus of ADI as a fusion partner (GST :: ADI) and E. coli BL21 DE3) and confirmed the expression pattern by the same method. As a result, it was confirmed that the use of Mdh or Tsf as a fusion partner at the amino terminus was much better than that of using GST as a fusion partner (Fig. 3).

실시예 6 : ADI 재조합 단백질의 활성도 Example 6: Activity of ADI recombinant protein

6-1 : Mdh 또는 Tsf 융합발현을 통해 생산된 ADI의 정제 및 분석6-1: Purification and analysis of ADI produced through Mdh or Tsf fusion expression

상기 실시예 4를 통하여 구축한 발현 벡터 Mdh::ADI와 Tsf::ADI로 형질전환 된 대장균 BL21(DE3)를 이용하여 상기 실시예 5의 초음파 파쇄 단계까지 동일하게 시행하였다. 융합파트너(Mdh, Tsf) N-말단 쪽에는 6개의 histidine이 위치하게 되고 histidin과 Ni+2 금속의 친화력을 이용한 크로마토그래피를 통해 정제가 가능하게 하였다. Ni-NTA Agarose bead(QIAGEN)를 사용하여 Ni+2 금속 친화 크로마토그래피를 수행하였으며, 이를 통해, Mdh::ADI와 Tsf::ADI 만을 각각 성공적으로 정제할 수 있다.The same procedure was repeated up to the ultrasonic disruption step of Example 5 using the expression vector Mdh :: ADI constructed through Example 4 and Escherichia coli BL21 (DE3) transformed with Tsf :: ADI. Six histidine residues were located at the N - terminus of the fusion partner (Mdh, Tsf), and purification was possible by chromatography using affinity of histidine and Ni + 2 metal. Ni + 2 metal affinity chromatography was performed using Ni-NTA Agarose bead (QIAGEN), whereby only Mdh :: ADI and Tsf :: ADI can be successfully purified, respectively.

정제과정은 세포를 파쇄한 후 13,000rpm에서 10분간 원심분리한 다음 분리된 상등액을 금속친화를 이용한 정제를 위해서 Ni-NTA Agarose bead (QIAGEN) 500mL과 결합시켰다. Ni-NTA Agarose bead와 반응시키기 전에 결합 완충액 [binding buffer, pH 8.0, 50 mM 소듐 포스페이트(sodium phosphate), 300 mM 염화 나트륩 (NaCl), 10 mM 이미다졸(imidazole)]을 사용하여 세척하였다. His6-Mdh-D4K-ADI 또는 His6-Tsf-D4K-ADI가 포함되어 있는 상등액과 Ni-NTA Agarose bead의 결합은 4℃에서 진행하고 2시간 이상 충분히 결합시킨 후 8 mL의 세척 완충액 [washing buffer, pH 8.0, 50 mM 소듐 포스페이트(sodium phosphate), 300 mM 염화 나트륨 (NaCl), 50 mM 이미다졸(imidazole)]을 이용하여 두 번 세척하였다. 다음 단계로 PBS 완충용액 [PBS buffer, 137 mM 염화 나트륩(NaCl), 2.7 mM 염화 칼륨(KCl), 10 mM 제1인산나트륨(Na2HPO4), 2 mM 제1인산칼륨(KH2PO4), pH 7.4]을 이용하여 한번 더 추가 세척하였다. Agarose bead에 붙어 있는 His6-Mdh-D4K-ADI 또는 His6-Tsf-D4K-ADI에 테로카이네이즈 용액[enterokinase 5㎕, 10 X enterokinase buffer 50㎕, PBS 445㎕ (Invitrogen)] 500㎕을 첨가하여 22℃에서 12시간 반응시키고 elution fraction을 받아 13,000rpm에서 15분 동안 원심분리하여 수용성과 불용성 용액을 분리하였다. 분리한 샘플은 SDS-PAGE 분석을 통해 융합파트너 Mdh 또는 Tsf가 제거된 후에도 아르기닌 탈이민효소가 여전히 수용성 상태로 남아 있음을 확인하였다 (도 4).
After the cells were disrupted, the cells were centrifuged at 13,000 rpm for 10 minutes, and the separated supernatant was combined with 500 mL of Ni-NTA agarose bead (QIAGEN) for purification using metal affinity. Prior to reaction with Ni-NTA agarose beads, they were washed with binding buffer (pH 8.0, 50 mM sodium phosphate, 300 mM NaCl, 10 mM imidazole). The binding of the supernatant containing His6-Mdh-D4K-ADI or His6-Tsf-D4K-ADI to the Ni-NTA Agarose bead proceeded at 4 ° C and allowed to bind for more than 2 hours, then washed with 8 mL of washing buffer pH 8.0, 50 mM sodium phosphate, 300 mM sodium chloride (NaCl), 50 mM imidazole]. In the next step, PBS buffer, 137 mM NaCl, 2.7 mM KCl, 10 mM Na 2 HPO 4 , 2 mM potassium phosphate KH 2 PO 4 ), pH 7.4]. 500 μl of enterokinase solution (50 μl of enterokinase, 10 μl enterokinase buffer, 445 μl of PBS (Invitrogen)] was added to His6-Mdh-D4K-ADI or His6-Tsf-D4K-ADI attached to agarose bead at 22 ° C For 12 hours. The elution fraction was taken and centrifuged at 13,000 rpm for 15 minutes to separate the water-soluble and insoluble solution. SDS-PAGE analysis of the separated samples confirmed that the arginine deiminase still remained in a water-soluble state after the fusion partner Mdh or Tsf was removed (FIG. 4).

6-2 : Mdh 또는 Tsf가 제거된 ADI의 활성도 측정6-2: Measurement of activity of ADI with Mdh or Tsf removed

융합발현파트너는 목적 단백질을 수용성의 형태로 발현시키는 것도 중요하지만 고유의 3차 구조를 갖도록 유도하여 기능성을 갖춘 활성형 형태로 발현시키는 것이 무엇보다 중요하다. 이를 확인하기 위해 융합파트너 Mdh 또는 Tsf와 목적단백질 ADI를 융합발현한 다음 융합파트너 Mdh 또는 Tsf를 제거하고 활성도를 측정하였다.It is important that the fusion expression partner is expressed in a water-soluble form, but it is important to induce the fusion protein to have an inherent tertiary structure and to express it in an active form having a functional property. To confirm this, the fusion partner Mdh or Tsf and the target protein ADI were fused and expressed, and then the fusion partner Mdh or Tsf was removed and the activity was measured.

미생물 유래의 아르기닌 탈이민효소는 L-아르기닌을 L-시트룰린으로 전환시킨다. 이러한 특성을 이용하여 실시예 6-1을 통해서 확보한 융합파트너 Mdh 또는 Tsf가 제거된 활성형의 ADI의 활성도를 확인하기 위해서 다음과 같은 분석을 수행하였다. The microorganism-derived arginine deiminase enzyme converts L-arginine to L-citrulline. Using these characteristics, the following assay was performed to confirm the activity of the active ADI with the fusion partner Mdh or Tsf removed through Example 6-1.

100ml의 포스페이트 버퍼 (phosphate buffer, 0.1 M, pH 6.5.0)와 0.1742g L-아르기닌(L-arginine)을 혼합하여 10mM L-아르기닌 혼합액 만든 후, 혼합액 270㎕에 30㎕ Mdh::ADI 또는 Tsf::ADI 상등액과 비교 실험으로 PBS 버퍼를 각각 첨가하였다. 반응은 첨가한 후 바로 시작되며, 반응이 시작되고 3분 간격으로 12분까지 530nm 파장에서 흡광도의 변화를 측정하였다 (Duoscan T1200, Bio-Rad, Hercules, CA) (도 5).Arginine was mixed with 100 ml of phosphate buffer (0.1 M, pH 6.5.0) and 0.1742 g of L-arginine, and 30 μl of Mdh :: ADI or Tsf :: PBS buffer was added as a comparative experiment with the ADI supernatant. The reaction was started immediately after addition and the change in absorbance at 530 nm wavelength was measured (Duoscan T1200, Bio-Rad, Hercules, Calif.) (Figure 5).

그 결과, Mdh 또는 Tsf가 제거된 활성형의 ADI는 L-아르기닌을 L-시트룰린으로 전환시키는 활성도에 변화가 없는 것을 확인하였다.
As a result, it was confirmed that the active ADI in which Mdh or Tsf was removed had no change in the activity of converting L-arginine into L-citrulline.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereto will be. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> Korea University Research and Business Foundation <120> Method for Preparing Active Arginine Deiminase <130> P15-B011 <160> 13 <170> KopatentIn 2.0 <210> 1 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Mdh-S <400> 1 catatgaaag tcgcagtcct cggc 24 <210> 2 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Mdh-AS <400> 2 ctcgagctta ttaacgaact cttg 24 <210> 3 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Tsf-S <400> 3 catatggctg aaattaccgc atccctggta aaa 33 <210> 4 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Tsf-AS <400> 4 ctcgagagac tgcttggaca tcgcagcaac ttc 33 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ADI-S <400> 5 ctcatgtctg tatttgacag t 21 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ADI-AS <400> 6 aagcttctat cacttaacat c 21 <210> 7 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> ADI-S-XhoI <400> 7 ctcgaggatg acgatgacaa gtctgtattt ga 32 <210> 8 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Mdh-S-H6 <400> 8 catatgcacc atcaccatca ccataaagtc gcagtcctcg gc 42 <210> 9 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Tsf-S-H6 <400> 9 catatgcacc atcaccatca ccatgctgaa attaccgcat ccctggtaaa a 51 <210> 10 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> ADI-S-D4K <400> 10 ctcgaggatg acgatgacaa gtctgtattt gacagt 36 <210> 11 <211> 939 <212> DNA <213> Escherichia coli Mdh <400> 11 ttacttatta acgaactctt cgcccagggc gatatctttc ttcagcgtat ccagcatacc 60 ttccagcgcg ttctgttcaa atgcgctcag ggtaccgata gatttacgct cttccacgcc 120 gtttttaccc agcagcagcg gttgagagaa gaaacgggcg tactgaccgt cgccttcaac 180 gtaggcacat tcgacaacgc cttgttcgcc ctgcagtgca cgaaccagag acagaccaaa 240 acgtgcagct gcctggccca tagacagggt tgcagacccg ccaccggcct tcgcttcaac 300 cacttcagta cccgcgttct ggatgcgttt ggtcagatca gccacttcct gctcggtaaa 360 actaacgcca ggaacctgtg acagcagcgg cagaatggta acaccagagt gaccgccaat 420 aaccggcact tcaacttcgc ctggctgttt gcctttcagt tccgcaacaa aggtgttgga 480 acgaatgata tccagcgtgg taacgccgaa cagtttgttt ttgtcataaa caccggcttt 540 tttcagcact tcagcagcaa ttgcaactgt ggtgttaacc gggttagtga taataccaat 600 gcacgctttc gggcaggttt tcgcaacttg ctgtaccagg tttttcacga tgccggcgtt 660 aacgttaaac aggtcggaac gatccatacc cggtttacgc gctacgcctg cagagataag 720 aacgacatct gcgccttcca gcgccggagt cgcatcttca ccagaaaaac ctttgatttt 780 cacagcagta gggatatggc tcagatcgac agccacaccg ggagtcactg gagcgatatc 840 atacagagag agttctgaac ctgaaggcag ttgggttttt aacagtagtg caagcgcctg 900 gccaataccg ccagcagcgc cgaggactgc gactttcat 939 <210> 12 <211> 852 <212> DNA <213> Escherichia coli Tsf <400> 12 atggctgaaa ttaccgcatc cctggtaaaa gagctgcgtg agcgtactgg cgcaggcatg 60 atggattgca aaaaagcact gactgaagct aacggcgaca tcgagctggc aatcgaaaac 120 atgcgtaagt ccggtgctat taaagcagcg aaaaaagcag gcaacgttgc tgctgacggc 180 gtgatcaaaa ccaaaatcga cggcaactac ggcatcattc tggaagttaa ctgccagact 240 gacttcgttg caaaagacgc tggtttccag gcgttcgcag acaaagttct ggacgcagct 300 gttgctggca aaatcactga cgttgaagtt ctgaaagcac agttcgaaga agaacgtgtt 360 gcgctggtag cgaaaattgg tgaaaacatc aacattcgcc gcgttgctgc gctggaaggc 420 gacgttctgg gttcttatca gcacggtgcg cgtatcggcg ttctggttgc tgctaaaggc 480 gctgacgaag agctggttaa acacatcgct atgcacgttg ctgcaagcaa gccagaattc 540 atcaaaccgg aagacgtatc cgctgaagtg gtagaaaaag aataccaggt acagctggat 600 atcgcgatgc agtctggtaa gccgaaagaa atcgcagaga aaatggttga aggccgcatg 660 aagaaattca ccggcgaagt ttctctgacc ggtcagccgt tcgttatgga accaagcaaa 720 actgttggtc agctgctgaa agagcataac gctgaagtga ctggcttcat ccgcttcgaa 780 gtgggtgaag gcatcgagaa agttgagact gactttgcag cagaagttgc tgcgatgtcc 840 aagcagtctt aa 852 <210> 13 <211> 1230 <212> DNA <213> Arginine deiminase (ADI) <400> 13 atgtctgtgt ttgatagcaa atttaaagga attcacgttt attcagaaat tggtgaatta 60 gaatcagttc tagttcacga accaggacgc gaaattgact atattacacc agctagacta 120 gatgaattat tattctcagc tatcttagaa agccatgatg ctagaaaaga acacaaacaa 180 ttcgtagcag aattaaaagc aaacgacatc aatgttgttg aattaattga tttagttgct 240 gaaacatacg atttagcatc acaagaagct aaagataaat taatcgaaga atttttagaa 300 gactcagaac cagttctatc agaagaacac aaagtagttg taaggaactt cttaaaagct 360 aaaaaaacat caagagaatt agtagaaatc atgatggcag ggatcacaaa atacgattta 420 ggtatcgaag cagatcacga attaatcgtt gacccaatgc caaacctata cttcacacgt 480 gacccatttg catcagtagg taatggtgta acaatccact acatgcgtta caaagttaga 540 caacgtgaaa cattattctc aagatttgta ttctcaaatc accctaaact aattaacacc 600 ccgtggtact acgacccttc actaaaatta tcaatcgaag gtggagacgt atttatctac 660 aacaatgaca cattagtagt tggtgtttct gaaagaactg acttacaaac agttacttta 720 ttagctaaaa gcattgttgc taataaagaa tgtgaattca aacgtattgt tgcaattaac 780 gttccgaaat ggaccaactt aatgcactta gacacctggc tgaccatgtt agacaaggac 840 aaattcctat actcaccaat cgctaacgat gtatttaaat tctgggatta tgacttagta 900 aacggtggag cagaaccaca accagttgaa aacggattac ctctagaagg attattacaa 960 tcaatcatta acaaaaaacc agttctaatt cctatcgcag gtgaaggtgc ttcacaaatg 1020 gaaatcgaaa gagaaacaca cttcgatggt acaaactact tagcaattag accaggtgtt 1080 gtaattggtt actcacgtaa cgaaaaaaca aacgctgctc tagaagctgc aggcattaaa 1140 gttcttccat tccacggtaa ccaattatca ttaggtatgg gtaacgctcg ttgtatgtca 1200 atgcctttat cacgtaaaga tgttaagtgg 1230 <110> Korea University Research and Business Foundation <120> Method for Preparing Active Arginine Deiminase <130> P15-B011 <160> 13 <170> Kopatentin 2.0 <210> 1 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Mdh-S <400> 1 catatgaaag tcgcagtcct cggc 24 <210> 2 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Mdh-AS <400> 2 ctcgagctta ttaacgaact cttg 24 <210> 3 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Tsf-S <400> 3 catatggctg aaattaccgc atccctggta aaa 33 <210> 4 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Tsf-AS <400> 4 ctcgagagac tgcttggaca tcgcagcaac ttc 33 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ADI-S <400> 5 ctcatgtctg tatttgacag t 21 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ADI-AS <400> 6 aagcttctat cacttaacat c 21 <210> 7 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> ADI-S-XhoI <400> 7 ctcgaggatg acgatgacaa gtctgtattt ga 32 <210> 8 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Mdh-S-H6 <400> 8 catatgcacc atcaccatca ccataaagtc gcagtcctcg gc 42 <210> 9 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Tsf-S-H6 <400> 9 catatgcacc atcaccatca ccatgctgaa attaccgcat ccctggtaaa a 51 <210> 10 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> ADI-S-D4K <400> 10 ctcgaggatg acgatgacaa gtctgtattt gacagt 36 <210> 11 <211> 939 <212> DNA <213> Escherichia coli Mdh <400> 11 ttacttatta acgaactctt cgcccagggc gatatctttc ttcagcgtat ccagcatacc 60 ttccagcgcg ttctgttcaa atgcgctcag ggtaccgata gatttacgct cttccacgcc 120 gtttttaccc agcagcagcg gttgagagaa gaaacgggcg tactgaccgt cgccttcaac 180 gtaggcacat tcgacaacgc cttgttcgcc ctgcagtgca cgaaccagag acagaccaaa 240 acgtgcagct gcctggccca tagacagggt tgcagacccg ccaccggcct tcgcttcaac 300 cacttcagta cccgcgttct ggatgcgttt ggtcagatca gccacttcct gctcggtaaa 360 actaacgcca ggaacctgtg acagcagcgg cagaatggta acaccagagt gaccgccaat 420 aaccggcact tcaacttcgc ctggctgttt gcctttcagt tccgcaacaa aggtgttgga 480 acgaatgata tccagcgtgg taacgccgaa cagtttgttt ttgtcataaa caccggcttt 540 tttcagcact tcagcagcaa ttgcaactgt ggtgttaacc gggttagtga taataccaat 600 gcacgctttc gggcaggttt tcgcaacttg ctgtaccagg tttttcacga tgccggcgtt 660 aacgttaaac aggtcggaac gatccatacc cggtttacgc gctacgcctg cagagataag 720 aacgacatct gcgccttcca gcgccggagt cgcatcttca ccagaaaaac ctttgatttt 780 cacagcagta gggatatggc tcagatcgac agccacaccg ggagtcactg gagcgatatc 840 atacagagag agttctgaac ctgaaggcag ttgggttttt aacagtagtg caagcgcctg 900 gccaataccg ccagcagcgc cgaggactgc gactttcat 939 <210> 12 <211> 852 <212> DNA <213> Escherichia coli Tsf <400> 12 atggctgaaa ttaccgcatc cctggtaaaa gagctgcgtg agcgtactgg cgcaggcatg 60 atggattgca aaaaagcact gactgaagct aacggcgaca tcgagctggc aatcgaaaac 120 atgcgtaagt ccggtgctat taaagcagcg aaaaaagcag gcaacgttgc tgctgacggc 180 gtgatcaaaa ccaaaatcga cggcaactac ggcatcattc tggaagttaa ctgccagact 240 gacttcgttg caaaagacgc tggtttccag gcgttcgcag acaaagttct ggacgcagct 300 gttgctggca aaatcactga cgttgaagtt ctgaaagcac agttcgaaga agaacgtgtt 360 gcgctggtag cgaaaattgg tgaaaacatc aacattcgcc gcgttgctgc gctggaaggc 420 gacgttctgg gttcttatca gcacggtgcg cgtatcggcg ttctggttgc tgctaaaggc 480 gctgacgaag agctggttaa acacatcgct atgcacgttg ctgcaagcaa gccagaattc 540 atcaaaccgg aagacgtatc cgctgaagtg gtagaaaaag aataccaggt acagctggat 600 atcgcgatgc agtctggtaa gccgaaagaa atcgcagaga aaatggttga aggccgcatg 660 aagaaattca ccggcgaagt ttctctgacc ggtcagccgt tcgttatgga accaagcaaa 720 actgttggtc agctgctgaa agagcataac gctgaagtga ctggcttcat ccgcttcgaa 780 gtgggtgaag gcatcgagaa agttgagact gactttgcag cagaagttgc tgcgatgtcc 840 aagcagtctt aa 852 <210> 13 <211> 1230 <212> DNA <213> Arginine deiminase (ADI) <400> 13 atgtctgtgt ttgatagcaa atttaaagga attcacgttt attcagaaat tggtgaatta 60 gaatcagttc tagttcacga accaggacgc gaaattgact atattacacc agctagacta 120 gatgaattat tattctcagc tatcttagaa agccatgatg ctagaaaaga acacaaacaa 180 ttcgtagcag aattaaaagc aaacgacatc aatgttgttg aattaattga tttagttgct 240 gaaacatacg atttagcatc acaagaagct aaagataaat taatcgaaga atttttagaa 300 gactcagaac cagttctatc agaagaacac aaagtagttg taaggaactt cttaaaagct 360 aaaaaaacat caagagaatt agtagaaatc atgatggcag ggatcacaaa atacgattta 420 ggtatcgaag cagatcacga attaatcgtt gacccaatgc caaacctata cttcacacgt 480 gacccatttg catcagtagg taatggtgta acaatccact acatgcgtta caaagttaga 540 caacgtgaaa cattattctc aagatttgta ttctcaaatc accctaaact aattaacacc 600 ccgtggtact acgacccttc actaaaatta tcaatcgaag gtggagacgt atttatctac 660 aacaatgaca cattagtagt tggtgtttct gaaagaactg acttacaaac agttacttta 720 ttagctaaaa gcattgttgc taataaagaa tgtgaattca aacgtattgt tgcaattaac 780 gttccgaaat ggaccaactt aatgcactta gacacctggc tgaccatgtt agacaaggac 840 aaattcctat actcaccaat cgctaacgat gtatttaaat tctgggatta tgacttagta 900 aacggtggag cagaaccaca accagttgaa aacggattac ctctagaagg attattacaa 960 tcaatcatta acaaaaaacc agttctaatt cctatcgcag gtgaaggtgc ttcacaaatg 1020 gaaatcgaaa gagaaacaca cttcgatggt acaaactact tagcaattag accaggtgtt 1080 gtaattggtt actcacgtaa cgaaaaaaca aacgctgctc tagaagctgc aggcattaaa 1140 gttcttccat tccacggtaa ccaattatca ttaggtatgg gtaacgctcg ttgtatgtca 1200 atgcctttat cacgtaaaga tgttaagtgg 1230

Claims (12)

ADI 단백질을 코딩하는 유전자와 서열번호 11로 표시되는 Mdh 유전자 또는 서열번호 12로 표시되는 Tsf 유전자가 연결되어 있는 유전자 구조체(gene construct).
A gene construct to which an ADI protein-encoding gene, an Mdh gene represented by SEQ ID NO: 11, or a Tsf gene represented by SEQ ID NO: 12 is linked.
제1항에 있어서, 상기 ADI 유전자와 상기 Mdh 유전자 또는 상기 Tsf 유전자 사이에 단백질 절단 효소 인식부위를 코딩하는 폴리뉴클레오티드가 연결되어 있는 것을 특징으로 하는 유전자 구조체(gene construct).
The gene construct according to claim 1, wherein a polynucleotide encoding a protein cleavage enzyme recognition site is linked between the ADI gene and the Mdh gene or the Tsf gene.
제1항에 있어서, 상기 ADI 유전자와 상기 Mdh 유전자 또는 Tsf 유전자는 분리정제용 태그를 코딩하는 폴리뉴클레오티드와 작동 가능하도록 연결되어 있는 것을 특징으로 하는 유전자 구조체(gene construct).
The gene construct according to claim 1, wherein the ADI gene and the Mdh gene or the Tsf gene are operably linked to a polynucleotide encoding a tag for separation and purification.
ADI 유전자와 융합파트너로 서열번호 11로 표시되는 Mdh 유전자 또는 서열번호 12로 표시되는 Tsf 유전자를 포함하는 재조합 ADI 생산용 발현벡터.
An expression vector for producing recombinant ADI comprising the Mdh gene represented by SEQ ID NO: 11 as the fusion partner with the ADI gene or the Tsf gene represented by SEQ ID NO: 12.
제4항에 있어서, 상기 ADI 유전자와 융합파트너로 Mdh 유전자 또는 Tsf 유전자 사이에 단백질 절단 효소 인식부위를 코딩하는 폴리뉴클레오티드가 연결되어 있는 것을 특징으로 하는 재조합 ADI 생산용 발현벡터.
The recombinant ADI-producing expression vector according to claim 4, wherein a polynucleotide encoding a protein cleavage enzyme recognition site is linked between the ADI gene and a Mdh gene or a Tsf gene as a fusion partner.
제4항에 있어서, 상기 ADI 유전자와 융합파트너로 Mdh 유전자 또는 Tsf 유전자는 분리정제용 태그를 코딩하는 폴리뉴클레오티드와 작동 가능하도록 연결되어 있는 것을 특징으로 하는 재조합 ADI 생산용 발현벡터.
5. The expression vector for recombinant ADI production according to claim 4, wherein the Mdh gene or the Tsf gene as a fusion partner with the ADI gene is operably linked to a polynucleotide encoding a tag for separation and purification.
제4항에 있어서, 상기 ADI 유전자는 서열번호 13으로 표시되는 것을 특징으로 하는 재조합 ADI 생산용 발현벡터.
5. The recombinant ADI-producing expression vector according to claim 4, wherein the ADI gene is represented by SEQ ID NO: 13.
제1항의 유전자 구조체(gene construct) 또는 제4항의 발현벡터가 도입되어 있는 재조합 미생물.
A recombinant microorganism into which the gene construct of claim 1 or the expression vector of claim 4 has been introduced.
제8항에 있어서, 상기 유전자 구조체(gene construct)는 숙주세포의 염색체 내에 삽입되어 있는 것을 특징으로 하는 재조합 미생물.
9. The recombinant microorganism according to claim 8, wherein the gene construct is inserted into the chromosome of the host cell.
제8항의 재조합 미생물을 배양하여 재조합 단백질의 발현을 유도한 다음, 이를 회수하는 단계를 포함하는 재조합 ADI 단백질의 제조방법.
Culturing the recombinant microorganism of claim 8 to induce expression of the recombinant protein, and recovering the recombinant protein.
제10항에 있어서, 상기 재조합 단백질로부터 Mdh 또는 Tsf를 제거하는 단계를 추가로 포함하는 것을 특징으로 하는 재조합 ADI 단백질의 제조방법.
11. The method according to claim 10, further comprising the step of removing Mdh or Tsf from the recombinant protein.
제10항의 방법에 의해 제조되고, Mdh 또는 Tsf와 ADI가 융합된 재조합 단백질.



10. A recombinant protein produced by the method of claim 10, wherein Mdh or Tsf and ADI are fused.



KR1020150007134A 2015-01-15 2015-01-15 Method for Preparing Active Arginine Deiminase KR20160088014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150007134A KR20160088014A (en) 2015-01-15 2015-01-15 Method for Preparing Active Arginine Deiminase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150007134A KR20160088014A (en) 2015-01-15 2015-01-15 Method for Preparing Active Arginine Deiminase

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020160054010A Division KR20160088259A (en) 2016-05-02 2016-05-02 Method for Preparing Active Arginine Deiminase

Publications (1)

Publication Number Publication Date
KR20160088014A true KR20160088014A (en) 2016-07-25

Family

ID=56616592

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150007134A KR20160088014A (en) 2015-01-15 2015-01-15 Method for Preparing Active Arginine Deiminase

Country Status (1)

Country Link
KR (1) KR20160088014A (en)

Similar Documents

Publication Publication Date Title
Baker et al. Using deubiquitylating enzymes as research tools
CN116622795B (en) Preparation method of L-amino acid ligase and application of L-amino acid ligase in dipeptide synthesis
KR101373297B1 (en) Expression Vector Comprising Gene coding for E. coli Phosphoglycerate kinase As a Novel Fusion Partner
Chen et al. Cloning, sequencing and expression of a cDNA encoding bovine pancreatic deoxyribonuclease I in Escherichia coli: purification and characterization of the recombinant enzyme
JP4088584B2 (en) A method for separating a target protein from a fusion protein.
KR20060131445A (en) Vector system for expressing soluble protein with high efficiency
CN109136209B (en) Enterokinase light chain mutant and application thereof
TWI283246B (en) Removal of N-terminal methionine from proteins by engineered methionine aminopeptidase
ES2337684T3 (en) RECOMBINANT CARBOXIPEPTIDASE B AND ITS PURIFICATION.
KR101658081B1 (en) Method for Preparing Recombinant Protein Using CysQ as a Fusion Expression Partner
KR20160088014A (en) Method for Preparing Active Arginine Deiminase
KR100890184B1 (en) PREPARATION METHOD OF RECOMBINANT PROTEIN BY USE OF SlyD AS A FUSION EXPRESSION PARTNER
KR20160088259A (en) Method for Preparing Active Arginine Deiminase
US20090239262A1 (en) Affinity Polypeptide for Purification of Recombinant Proteins
KR100890183B1 (en) Preparation method of recombinant protein by use of malate dehydrogenase as a fusion expression partner
EP3904520A1 (en) Gene expression cassette for expressing n-terminal methionine-truncated protein of interest and method for producing n-terminal methionine-truncated protein of interest by using same
KR101658082B1 (en) Method for Preparing Recombinant Protein Using EDA as a Fusion Expression Partner
KR100890187B1 (en) PREPARATION METHOD OF RECOMBINANT PROTEIN BY USE OF Tsf AS A FUSION EXPRESSION PARTNER
Ballantine et al. The hydroxymethyldihydropterin pyrophosphokinase domain of the multifunctional folic acid synthesis Fas protein of Pneumocystis carinii expressed as an independent enzyme in Escherichia coli: refolding and characterization of the recombinant enzyme
US20110281300A1 (en) Preparation method of recombinant protein by use of a fusion expression partner
US20160009779A1 (en) Novel fusion tags and expression vector system for the expression of human parathyroid hormone (rhpth)
KR100890186B1 (en) PREPARATION METHOD OF RECOMBINANT PROTEIN BY USE OF RpoS AS A FUSION EXPRESSION PARTNER
KR100890189B1 (en) Preparation method of recombinant protein by use of rna polymerase ?subunit as a fusion expression partner
KR100890188B1 (en) PREPARATION METHOD OF RECOMBINANT PROTEIN BY USE OF PotD AS A FUSION EXPRESSION PARTNER
JP2845558B2 (en) DNA sequence of methionine aminopeptidase

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E902 Notification of reason for refusal
E601 Decision to refuse application