[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20160073001A - Robot vehicle system to prevent sliping using difference of angular accelation - Google Patents

Robot vehicle system to prevent sliping using difference of angular accelation Download PDF

Info

Publication number
KR20160073001A
KR20160073001A KR1020140181090A KR20140181090A KR20160073001A KR 20160073001 A KR20160073001 A KR 20160073001A KR 1020140181090 A KR1020140181090 A KR 1020140181090A KR 20140181090 A KR20140181090 A KR 20140181090A KR 20160073001 A KR20160073001 A KR 20160073001A
Authority
KR
South Korea
Prior art keywords
angular velocity
value
traction control
control software
software
Prior art date
Application number
KR1020140181090A
Other languages
Korean (ko)
Inventor
신형진
Original Assignee
신형진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신형진 filed Critical 신형진
Priority to KR1020140181090A priority Critical patent/KR20160073001A/en
Publication of KR20160073001A publication Critical patent/KR20160073001A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

The present invention relates to the improvement of driving stability and, more specifically, to a system about a method for recovering the driving stability when a vehicle-type robot slides during a driving. The present invention is composed of the following clauses. A software system includes: traction control software installed in a robot platform and managing the sensing of sliding and a reaction; a sensor unit arranged in traction control software and measuring a current angular speed using an angular sensor; an error detecting unit arranged inside the traction control software and calculating a difference between a desirable angular speed and the current angular speed; and a responding unit arranged inside the traction control software, joined to the error detecting unit, and adjusting a steering angle and deceleration. The expectable effects of the present invention are as follows. The present invention is capable of improving driving stability using the software without changing a hardware structure of the platform, thereby additionally improving the stability by adding an eps, T_cs method to a vehicle which the stability is important.

Description

각속도차를 이용하여 미끄러짐을 방지하는 로봇 시스템{ Robot vehicle system to prevent sliping using difference of angular accelation }TECHNICAL FIELD [0001] The present invention relates to a robot system for preventing slippage by using an angular velocity difference,

본 발명은 주행 안정성 향상에 관한 것으로써, 보다 구체적으로는 차량형 로봇이 주행중 미끄러졌을 때 주행 안정성을 회복하는 방법에 관한 시스템에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to an improvement in running stability, and more particularly, to a system for a method of restoring a running stability when a vehicle-type robot is slid while driving.

기존 차량의 미끄러짐 방지와 관련한 시스템으로는 ABS, ESP 등이 있다. ABS 기술의 경우 미끄러짐 발생시 주기적으로 제동을 함으로써 조항을 용이하게 하는 방식이다. ESP 기술의 경우 미끄러짐 발생시 특정 바퀴를 제동함으로써 차체의 선회력을 더하는 방법이다.Examples of systems for preventing slipping of existing vehicles include ABS and ESP. In the case of ABS technology, it is a method to facilitate the provision by periodically braking when a slip occurs. In the case of ESP technology, it is a method of adding the turning force of the vehicle body by braking a specific wheel when a slip occurs.

하지만, 상기 방법들은 미끄러짐 방지 동작을 위해서는 특정한 물리적 장치들이 필요하다는 단점이 있다.However, these methods have the disadvantage that specific physical devices are required for anti-slip operation.

본 발명은 주행중 미끄러짐이 발생시 이를 해결하기 위한 것이다. 본 발명의 목적은 각가속도 센서를 이용하여 미끄러짐 상태를 인식하고 감속과 조항조절을 통해 미끄러짐 상태를 회복하는데 있다.The present invention is intended to solve such a problem when slippage occurs in a running state. An object of the present invention is to recognize a slipping state by using an angular acceleration sensor and to recover a slipping state through deceleration and clause control.

트랙선 컨트롤 소프트웨어 부에서는 로봇 플랫폼으로부터 시간마다 원하는 조향값과 원하는 속도 값을 획득하고, 하위 구성요소들 간의 데이터 전송을 관리한다.The track line control software section obtains a desired steering value and a desired speed value from the robot platform over time, and manages data transmission between the sub-components.

센서 부에서는 각가속도 센서를 통해 현재 각가속도 값을 획득하여 트랙선 컨트롤 소프트웨어부에 전달한다.The sensor acquires the current angular velocity value through the angular velocity sensor and transmits it to the track line control software unit.

트랙선 컨트롤 소프트웨어 부에서는 센서 부에서 획득한 각가속도 값과 현재 로봇플랫폼이 원하는 각가속도 값을 에러검출 부에 전달하고 에러 검출 부를 실행시킨다.The track line control software unit transmits the angular acceleration value acquired by the sensor unit and the angular velocity value desired by the robot platform to the error detection unit and executes the error detection unit.

에러 검출 부에서는 획득한 현재 각가속도 값과 원하는 각가속도 값을 이용해 두 갑의 차이를 이용하여 각가속도 에러 값을 획득하여 다시 트랙선 컨트롤 소프트웨어 부에 전달한다.The error detection unit acquires the angular acceleration error value using the difference between the two angular velocity values using the acquired current angular velocity value and the desired angular velocity value, and transmits the angular velocity error value to the track line control software unit.

트랙션컨트롤 소프트웨어 부에서는 해당 에러 값을 대응 부에 전달한 후 대응 부를 실행시킨다.The traction control software unit transmits the error value to the counterpart and executes the counterpart.

대응 부에서는 획득한 에러 값을 이용하여 내부의 함수를 이용, 에러 값에 따른 조향과 감속값을 계산하여 다시 트랙션 컨트롤 소프트웨어부에 전달한다.The correspondence unit calculates the steering and deceleration values according to the error value using the internal function using the obtained error value, and transmits the calculated steering and deceleration values to the traction control software unit.

트랙션컨트롤 소프트웨어 부에서는 획득한 조향과 감속 값을 로봇 플랫폼에 전달함으로써 미끄러짐에 대한 대응이 이루어지도록한다.The traction control software unit transmits the acquired steering and deceleration values to the robot platform so that the robot can respond to the slip.

상기 과정은 시간마다 실행되어 실시간으로 주행중 미끄러짐이 발생시 대응이 가능하도록 한다.
The above process is executed every time, so that it is possible to cope with occurrence of slip during running in real time.

본 발명은 플랫폼의 하드웨어 구조를 변경시키지 않고, 소프트웨어를 통하여 안정안정성을 향상시킬 수 있는 방법이므로, 안정성이 중요한 차량에서 기존 eps, Tcs 방법에 추가하여 추가적인 안정성의 향상을 기대할 수 있다.Since the present invention is a method of improving stability stability through software without changing the hardware structure of the platform, additional stability can be expected to be improved in addition to the existing eps and Tcs methods in vehicles where stability is important.

도 1은 트랙션컨트롤 소프트웨어의 동작과정을 나타내는 알고리즘 흐름도이다.
도 2는 에러 검출 부에서 에러 값과 조향값, 감속 값 사이의 관계를 나타내는 그래프이다.
1 is an algorithm flowchart showing an operation process of the traction control software.
2 is a graph showing the relationship between the error value, the steering value, and the deceleration value in the error detecting unit.

해당 소프트웨어를 실험하기 위해 폭 2cm의 라인을 따라가는 라인 트레이서 플랫폼에 해당 소프트웨어 시스템을 구축하였다. 일관된 실험 결과를 얻기 위해 모든 곡선구간에서의 곡률 반경은 25cm로 고정하여 실험 환경을 구성하였다.To test the software, a software system was built on a line tracer platform that follows a 2cm wide line. In order to obtain consistent experimental results, the radius of curvature in all curved sections was fixed at 25cm and the experimental environment was constructed.

해당 실험환경 내에서 실험을 한 결과 주행 곡률반경을 조절하는 제어와 감속하는 제어를 적용한 결과 해당 소프트웨어 시스템을 구축하지 않았을 때에 비해 안정성이 향상된 모습을 보였다.As a result of experiments in the experimental environment, the control and deceleration control for controlling the radius of curvature of the vehicle have been improved and the stability has been improved compared to the case without the corresponding software system.

pa는 현재각속도값이다.
ea는 현재 각속도값과 원하는 각속도값의 차이다.
da는 원하는 각속도값이다.
pa is the current angular velocity value.
ea is the difference between the current angular velocity value and the desired angular velocity value.
da is the desired angular velocity value.

Claims (5)

로봇 플랫폼에 설치되어 미끄러짐 감지와 반응작용을 관리하는 트랙션컨트롤 소프트웨어;
트랙션컨트롤 소프트웨어 내에 배치되고, 각속도 센서를 통해 현재 각속도를 측정하는센서부; 및
트랙션컨트롤 소프트웨어 내에 배치되고, 센서 부와 결합하여 원하는 각속도와 현재 각속도의 차이를 계산해내는 에러 검출부; 및
트랙션컨트롤 소프트웨어 내에 배치되고, 에러 검출 부와 결합하여 에러 값을 이용하여 조향조절과 감속을 조절하는 대응부;
을 포함하는 소프트웨어 시스템.
Traction control software installed on the robot platform to manage slip detection and reaction;
A sensor unit disposed in the traction control software and measuring a current angular velocity through an angular velocity sensor; And
An error detector disposed in the traction control software and coupled to the sensor unit to calculate a difference between a desired angular velocity and a current angular velocity; And
A counterpart disposed in the traction control software and associated with the error detector to adjust steering control and deceleration using the error value;
≪ / RTI >
제1항에 있어서,
상기 구성요소 트랙션컨트롤 소프트웨어는 하위 구성요소 센서 부, 검출부, 대응 부들 사이의 데이터 전송을 관리하고, 로봇 플랫폼에서 요구하는 제어 조향값, 제어 속도 값들을 획득하여 하위 구성요소에 전달, 각 구성요소의 실행과 종료를 관리한다.
The method according to claim 1,
The component traction control software manages data transmission between the sub-component sensor unit, the detection unit, and the corresponding units, acquires the control steering values and control speed values required by the robot platform and transmits them to the sub-components, Manage execution and termination.
제1항에 있어서,
상기 구성요소 센서 부는 각가속도 센서를 통해 현재 로봇 플랫폼의 회전 각속도 값을 획득, 해당 값을 트랙션컨트롤 소프트웨어를 통해 에러 검출부에 전달한다.
The method according to claim 1,
The component sensor unit acquires the rotational angular velocity value of the current robot platform through the angular velocity sensor, and transmits the rotational angular velocity value to the error detection unit through the traction control software.
제1항에 있어서,
상기 구성요소 에러 검출부는 트랙선 컨트롤러 소프트웨어로부터 현재 각속도 값과(pa) 원하는 각속도값(da)을 획득하여, 이를 통해 현재 각속도와 원하는 각속도 값의 차이(ea=pa-da)를 계산하고, ea 값을 트랙선 컨트롤러 소프트웨어를 통해 대응부에 전달한다.
The method according to claim 1,
The component error detector obtains a current angular velocity value pa and a desired angular velocity value da from the track line controller software, calculates a difference (ea = pa-da) between the current angular velocity and a desired angular velocity value, Value to the counterpart via track line controller software.
제1항에 있어서,
상기 구성요소 대응 부는 에러 검출부로부터 계산된 ea 값을 이용하여 ea 값과 다음의 관계식을 이용하여 조절해야할 조향값과 감속값을 계산한다.

The method according to claim 1,
The component correspondence unit calculates a steering value and a deceleration value to be adjusted by using the ea value calculated from the error detecting unit and the following relational expression.

KR1020140181090A 2014-12-16 2014-12-16 Robot vehicle system to prevent sliping using difference of angular accelation KR20160073001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140181090A KR20160073001A (en) 2014-12-16 2014-12-16 Robot vehicle system to prevent sliping using difference of angular accelation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140181090A KR20160073001A (en) 2014-12-16 2014-12-16 Robot vehicle system to prevent sliping using difference of angular accelation

Publications (1)

Publication Number Publication Date
KR20160073001A true KR20160073001A (en) 2016-06-24

Family

ID=56343198

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140181090A KR20160073001A (en) 2014-12-16 2014-12-16 Robot vehicle system to prevent sliping using difference of angular accelation

Country Status (1)

Country Link
KR (1) KR20160073001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830932A (en) * 2020-07-16 2020-10-27 江铃汽车股份有限公司 Control method of sensor software

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830932A (en) * 2020-07-16 2020-10-27 江铃汽车股份有限公司 Control method of sensor software
CN111830932B (en) * 2020-07-16 2023-07-07 江铃汽车股份有限公司 Control method of sensor software

Similar Documents

Publication Publication Date Title
JP6069148B2 (en) Vehicle control device
RU2015131820A (en) STEERING DEVICE
US9409573B2 (en) Vehicle speed determination system, stability control system, and saddled vehicle having the same
CN106004994A (en) Continuous estimation of surface friction coefficient based on eps and vehicle models
MX2019002874A (en) Systems and methods for detecting mobile device movement within a vehicle using accelerometer data.
CN104442450B (en) A kind of method and system of vehicle operating status under judgement traction state
BR112018011613A2 (en) process for adjusting a vehicle's brake pressures and braking system to perform the process
WO2013055850A3 (en) System and method for optimal deceleration of a vehicle using regenerative braking
JP2010012903A5 (en)
JP2016088429A5 (en)
JP2011180085A (en) Apparatus, method and programm for vehicle mass estimation
Zhao et al. Development and verification of the tire/road friction estimation algorithm for antilock braking system
US11970176B2 (en) Abnormality determination device, abnormality determination method, vehicle state estimation device, and non-transitory computer-readable storage medium
NZ618417A (en) Method for preventing locomotive from wheel slip and skid based on controlling rotation speed
US20160163128A1 (en) Vehicle control device
KR20160073001A (en) Robot vehicle system to prevent sliping using difference of angular accelation
KR101213620B1 (en) Electronic stability control apparatus by using wheel lateral acceleration
KR101997432B1 (en) Electronic stability control apparatus for vehicle and control method therfor
US10328914B2 (en) Method for setting a slip threshold and vehicle movement dynamics control device
KR20160062622A (en) Vehicle speed estimation method and system
BR112018007332A2 (en) method for preventing interference between a transmission control unit and an electronic stability program integrated with a traction control system.
KR102029296B1 (en) System and method for detecting rough road using wheel speed sensor of vehicle
Fodor et al. Tire road friction coefficient estimation methods comparison based on different vehicle dynamics models
KR101639815B1 (en) Detecting method of bank-road
CN102822023B (en) For monitored control system and the method for the track of monitoring equipment motor vehicle

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination