[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20150121789A - Recombinant microorganism having enhanced butanediol producing ability and method for producing butanediol using the same - Google Patents

Recombinant microorganism having enhanced butanediol producing ability and method for producing butanediol using the same Download PDF

Info

Publication number
KR20150121789A
KR20150121789A KR1020140047683A KR20140047683A KR20150121789A KR 20150121789 A KR20150121789 A KR 20150121789A KR 1020140047683 A KR1020140047683 A KR 1020140047683A KR 20140047683 A KR20140047683 A KR 20140047683A KR 20150121789 A KR20150121789 A KR 20150121789A
Authority
KR
South Korea
Prior art keywords
butanediol
pathway
acetolactate
converting
recombinant microorganism
Prior art date
Application number
KR1020140047683A
Other languages
Korean (ko)
Other versions
KR102109763B1 (en
Inventor
박종명
라트나싱
송효학
양택호
Original Assignee
지에스칼텍스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스칼텍스 주식회사 filed Critical 지에스칼텍스 주식회사
Priority to KR1020140047683A priority Critical patent/KR102109763B1/en
Priority to PCT/KR2015/003991 priority patent/WO2015163682A1/en
Priority to CN201580033647.7A priority patent/CN107075462A/en
Publication of KR20150121789A publication Critical patent/KR20150121789A/en
Application granted granted Critical
Publication of KR102109763B1 publication Critical patent/KR102109763B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/22Klebsiella
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to recombinant microorganisms for producing 2,3-butanediol, wherein a pathway for converting pyruvate into alpha-acetolactate, a pathway for converting the alpha-acetolactate into acetoin or a pathway for converting the acetoin into 2,3-butanediol are promoted.

Description

2,3―부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3―부탄디올의 생산 방법{RECOMBINANT MICROORGANISM HAVING ENHANCED BUTANEDIOL PRODUCING ABILITY AND METHOD FOR PRODUCING BUTANEDIOL USING THE SAME}TECHNICAL FIELD The present invention relates to a recombinant microorganism having enhanced 2,3-butanediol production ability and a method for producing 2,3-butanediol using the recombinant microorganism. [0002]

본 발명은 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법에 대한 것이다.The present invention relates to a recombinant microorganism having enhanced 2,3-butanediol production ability and a method for producing 2,3-butanediol using the recombinant microorganism.

네 개의 탄소와 두 개의 하이드록시기(-OH)를 가지는 알코올의 하나(CH3CHOHCHOHCH3)인 2,3-부탄디올은 합성고무 제조 공정의 원료물질인 1,3-부타디엔(1,3-Butadiene)과 연료 첨가제 및 용매로 사용되는 메틸에틸케톤(Methyl ethyl ketone, MEK)으로 화학적 촉매 전환이 가능하다 (Ji et al., Biotechnol. Adv., 29: 351, 2011). 또한, 2,3-부탄디올은 가솔린(Gasoline)과 혼합하여 octane booster로 적용할 수 있어 산업적으로 매우 중요한 중간체이다(Celinska et al., Biotechnol. Adv., 27: 715, 2009).
2,3-butanediol, which is one of the alcohols having four carbon atoms and two hydroxyl groups (-OH) (CH3CHOHCHOHCH3), can be produced by reacting 1,3-butadiene and 1,3- (Mie et al., Biotechnol. Adv., 29: 351, 2011), which can be chemically catalyzed by using methyl ethyl ketone (MEK) as an additive and solvent. In addition, 2,3-butanediol is an industrially important intermediate because it can be mixed with gasoline as an octane booster (Celinska et al., Biotechnol. Adv., 27: 715, 2009).

2,3-부탄디올은 화학적 합성 공정과 미생물 발효 공정을 통하여 생산할 수 있다. 하지만 상기 공정을 통한 2,3-부탄디올 생산 가격이 매우 높기 때문에 상업적 규모로의 2,3-부탄디올 생산은 이루어지지 않고 있다. 한편, 최근 미생물 발효 공정을 통한 2,3-부탄디올 생산 기술의 비약적인 발전과 함께, 화석원료 물질의 급격한 가격 상승과 국제적인 환경오염에 대한 규제가 강화됨에 따라 미생물 발효를 통한 바이오 기반 2,3-부탄디올 생산에 대한 관심과 연구 개발의 중요성이 증대되고 있다.
2,3-butanediol can be produced through a chemical synthesis process and a microbial fermentation process. However, since 2,3-butanediol production cost is very high, 2,3-butanediol production on a commercial scale has not been achieved. In recent years, along with the rapid development of 2,3-butanediol production technology through the microbial fermentation process, the rapid increase of the price of raw materials of fossil materials and the regulation of international environmental pollution have been strengthened, Interest in production and the importance of research and development are increasing.

바이오 기반 2,3-부탄디올 생산 방법은 2,3-부탄디올 생산능을 보유한 미생물의 발효를 통하여, 재생 가능한 바이오 원료물질(Biomass)을 2,3-부탄디올로 전환하는 것이다. 2,3-부탄디올은 클렙시엘라 (Klebsiella), 엔테로벡터(Enterobacter), 바실러스(Bacillus). 세라티아(Serratia) 종(Species) 등 다양한 종류의 미생물에 의하여 생산된다(Maddox IS, Biotechnol., 6: 269, 1996). 특히, 클렙시엘라 뉴모니에(K. pneumoniae), 클렙시엘라 옥시토카(K. oxytoca), 페니바실러스 폴리믹사(Paenibacillus polymyxa)가 상대적으로 많은 양의 2,3-부탄디올을 생산하며, 특히 클렙시엘라 뉴모니에와 클렙시엘라 옥시토카는 배양이 용이하고 생장 속도가 빠르며, 목질계 유래의 5탄당을 포함하는 다양한 종류의 바이오 원료물질로부터 2,3-부탄디올 생산할 수 있다는 장점이 있다 (Ji et al., Biotechnol. Adv., 29: 351, 2011; Chandel et al., Sustainable Biotechnol., 63, 2010; Jansen et al., Biotechnol. Bioeng., 26: 362, 1984; Jansen et al., Adv. Biochem. Eng., 27: 85, 1983).
The method of producing bio-based 2,3-butanediol is to convert a renewable biomass material into 2,3-butanediol through fermentation of a microorganism having 2,3-butanediol producing ability. 2,3-butanediol is Klebsiella, Enterobacter, Bacillus. Serratia species (Species) (Maddox IS, Biotechnol., 6: 269, 1996). Particularly, K. pneumoniae, K. oxytoca and Paenibacillus polymyxa produce a relatively large amount of 2,3-butanediol, and particularly Kleb CIELA NUMONIERE and KLEPSYELLA OXITOKA have the advantage of being able to produce 2,3-butanediol from various kinds of bio-raw materials including 5-carbon sugars derived from wood-based materials, which are easy to cultivate and have a high growth rate (Ji Jansen et al., Adv., 29: 351, 2011; Chandel et al., Sustainable Biotechnol., 63, 2010; Jansen et al., Biotechnol. Bioeng., 26: Biochem. Eng., 27: 85, 1983).

미생물 발효 공정을 통한 바이오 기반 2,3-부탄디올 생산 연구는 발효 공정 최적화(온도, pH, 용존산소 등)와 미생물 개발 (미생물 발굴, 생리학적 특성 파악, 돌연변이, 유전자 조작 등) 분야로 나누어서 진행되고 있다. 발효 공정 최적화 측면에 있어서는 2,3-부탄디올을 효율적으로 생산할 수 있는 온도, pH, 용존산소 농도 등 다양한 조건들이 규명되었다(Ji et al., Bioresour. Technol., 100: 3410, 2009; Nakashimada et al., J. Biosci. Bioeng., 90: 661, 2000; Nakashimada et al., Biotechnol. Lett., 20: 1133, 1998). 그러나 상기 조건에서의 미생물 발효 공정을 통한 2,3-부탄디올 생산은 여전히 생산성(Productivity) 및 수율(Yield)이 낮아 상업 공정에 직접 적용하기 어려운 문제가 있다. 또한 발효 과정에서 2,3-부탄디올과 함께 젖산을 포함하는 유기산들(Organic acids)과 에탄올을 포함하는 알코올들(Alcohols)등 다양한 부산물들(By-products)이 생성되는 단점이 있다. 부산물 생성은 바이오 원료물질에 대한 2,3-부탄디올의 수율을 낮출 뿐 아니라 배양액으로부터 2,3-부탄디올 회수 과정에서 막대한 분리 및 정제 비용을 요구한다.
Studies on the production of bio-based 2,3-butanediol by microbial fermentation process are divided into optimization of fermentation process (temperature, pH, dissolved oxygen, etc.) and microbial development (microbial discovery, physiological characterization, mutation, genetic engineering etc.) have. In terms of optimization of the fermentation process, various conditions such as temperature, pH, and dissolved oxygen concentration capable of efficiently producing 2,3-butanediol have been identified (Ji et al., Bioresource Technol., 100: 3410, 2009; Nakashimada et al , J. Biosci. Bioeng., 90: 661, 2000; Nakashimada et al., Biotechnol. Lett., 20: 1133, 1998). However, the production of 2,3-butanediol through the microbial fermentation process under the above conditions still has a problem in that it is difficult to apply directly to a commercial process due to low productivity and yield. In addition, in the fermentation process, various by-products such as organic acids including lactic acid and alcohols including ethanol are formed together with 2,3-butanediol. The production of by-products not only lowers the yield of 2,3-butanediol for the bio-raw material but also requires a great deal of separation and purification cost in the 2,3-butanediol recovery process from the culture broth.

그러므로 2,3-부탄디올 생산에 관련된 미생물 개발 연구는 주로 부산물을 감소시키는 방향으로 진행되어 왔다. 대표적으로 Ji 등은 야생형 클렙시엘라 옥시토카 균주에 물리/화학적 돌연변이 방법의 일종인 UV를 노출시켜 부산물인 유기산들의 생성을 일부 억제시키는 것에 성공하였다(Ji et al., Biotechnol. Lett., 30: 731, 2008). 그 외, 이온 주사(Ion beam) 방식을 클렙시엘라 뉴모니에 균주에 적용하여 바이오매스의 소모 속도를 증가시킴으로써 2,3-부탄디올 생산을 향상시키는 시도도 있다(Ma et al., Appl. Microbiol. Biotechnol., 82: 49, 2009). 그러나 상기의 개발된 균주들은 2,3-부탄디올 생산성, 최종농도(Concentration) 및 수율 측면에서 상업 공정에 직접 적용하기에 여전히 부족한 문제가 있다.
Therefore, the development of microorganisms related to the production of 2,3-butanediol has mainly proceeded to reduce by-products. Typically, Ji et al. Have succeeded in partially inhibiting the production of by-products of organic acids by exposing UV, a kind of physical / chemical mutagenesis method, to the wild-type Klebsiella oxytoca strain (Ji et al., Biotechnol. Lett., 30: 731, 2008). In addition, there have also been attempts to improve 2,3-butanediol production by applying an ion beam method to a strain of Klebsiella nymonii to increase the consumption rate of biomass (Ma et al., Appl. Microbiol Biotechnol., 82: 49, 2009). However, the above-described strains still have a problem of being directly applied to commercial processes in terms of 2,3-butanediol productivity, final concentration (concentration) and yield.

이에 본 발명자들은 2,3-부탄디올의 생산성, 농도 및 수율이 높은 재조합 미생물을 연구하던 중 특정 유전자들을 도입시킨 재조합 미생물이 2,3-부탄디올의 선택도 및 생산성이 높은 것을 발견하고 본 발명을 완성하였다.
Therefore, the inventors of the present invention found that when recombinant microorganisms having high productivity, concentration and yield of 2,3-butanediol were studied, the recombinant microorganism into which specific genes were introduced had high selectivity and productivity of 2,3-butanediol and completed the present invention Respectively.

본 발명의 목적은 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법을 제공하는 것이다.An object of the present invention is to provide a recombinant microorganism having enhanced 2,3-butanediol production ability and a method for producing 2,3-butanediol using the recombinant microorganism.

상기 목적을 달성하기 위하여 본 발명은,According to an aspect of the present invention,

2,3-부탄디올 생산 미생물에 있어서,In the 2,3-butanediol producing microorganism,

피루베이트를 알파-아세토락테이트로 전환하는 경로, 알파-아세토락테이트를 아세토인으로 전환하는 경로 또는 아세토인을 2,3-부탄디올로 전환하는 경로가 촉진된,A pathway for converting pyruvate to alpha-acetolactate, a pathway for converting alpha-acetolactate to acetone, or a pathway for converting acetone to 2,3-butanediol,

2,3-부탄디올 생산용 재조합 미생물을 제공한다.
A recombinant microorganism for producing 2,3-butanediol is provided.

또한 본 발명은,Further, according to the present invention,

본 발명의 재조합 미생물을 접종하는 단계;및Inoculating the recombinant microorganism of the present invention; and

상기 재조합 미생물을 배양하는 단계를 포함하는 2,3-부탄디올의 생산 방법을 제공한다.
And culturing the recombinant microorganism. The present invention also provides a method for producing 2,3-butanediol.

본 발명의 재조합 미생물은 2,3-부탄디올의 생산성이 높다.
The recombinant microorganism of the present invention has high productivity of 2,3-butanediol.

도 1은 2,3-부탄디올 생성 균주에서 2,3-부탄디올의 생합성 경로를 나타낸다.
도 2는 pGSC-budA 플라스미드를 나타낸다.
도 3은 pGSC-budAB 플라스미드를 나타낸다.
도 4는 pGSC-budABC 플라스미드를 나타낸다.
도 5는 비교예 1의 야생형 클렙시엘라 옥시토카 균주(K. oxytoca wild type)의 발효 결과이다.
도 6은 비교예 2의 재조합 클렙시엘라 옥시토카 균주(K. oxytoca △ldhA △pflB)의 발효 결과이다.
도 7은 실시예 1의 재조합 클렙시엘라 옥시토카 균주(K. oxytoca wild type + pGSC-budRABC)의 발효 결과이다.
도 8은 실시예 2의 재조합 클렙시엘라 옥시토카 균주 K. oxytoca △ldhA △pflB + pGSC-budRA)의 발효 결과이다.
도 9는 실시예 3의 재조합 클렙시엘라 옥시토카 균주(K. oxytoca △ldhA △pflB + pGSC-budRAB)의 발효 결과이다.
도 10은 실시예 4의 재조합 클렙시엘라 옥시토카 균주(K. oxytoca △ldhA △pflB + pGSC-budRABC)의 발효 결과이다.
Figure 1 shows the biosynthetic pathway of 2,3-butanediol in the 2,3-butanediol producing strain.
Figure 2 shows the pGSC-budA plasmid.
Figure 3 shows the pGSC-budAB plasmid.
Figure 4 shows the pGSC-budABC plasmid.
Fig. 5 shows the fermentation results of the wild-type K. oxytoca wild type strain of Comparative Example 1. Fig.
6 is a result of fermentation of the recombinant Klebsiella oxytoca strain (K. oxytoca? LdhA? PflB) of Comparative Example 2. Fig.
7 is a result of fermentation of the recombinant Klebsiella oxytoca strain (K. oxytoca wild type + pGSC-budRABC) of Example 1. Fig.
8 is a result of fermentation of the recombinant Klebsiella oxytoca strain K. oxytoca [Delta] ldhA [Delta] pflB + pGSC-budRA of Example 2].
Fig. 9 shows the results of fermentation of the recombinant Klebsiella oxytoca strain (K. oxytoca [Delta] dhA [Delta] pflB + pGSC-budRAB)
10 is a result of fermentation of the recombinant Klebsiella oxytoca strain of Example 4 (K. oxytocaΔldhAΔpflB + pGSC-budRABC).

본 발명은, According to the present invention,

2,3-부탄디올 생산 미생물에 있어서,In the 2,3-butanediol producing microorganism,

피루베이트를 알파-아세토락테이트로 전환하는 경로, 알파-아세토락테이트를 아세토인으로 전환하는 경로 또는 아세토인을 2,3-부탄디올로 전환하는 경로가 촉진된,A pathway for converting pyruvate to alpha-acetolactate, a pathway for converting alpha-acetolactate to acetone, or a pathway for converting acetone to 2,3-butanediol,

2,3-부탄디올 생산용 재조합 미생물에 대한 것이다.
The present invention relates to a recombinant microorganism for producing 2,3-butanediol.

또한 본 발명은,Further, according to the present invention,

본 발명의 재조합 미생물을 접종하는 단계;및Inoculating the recombinant microorganism of the present invention; and

상기 재조합 미생물을 배양하는 단계를 포함하는 2,3-부탄디올의 생산 방법에 대한 것이다.
And culturing the recombinant microorganism. The present invention also provides a method for producing 2,3-butanediol.

이하, 본 발명을 자세히 설명한다.
Hereinafter, the present invention will be described in detail.

2,3-2,3- 부탄디올Butanediol 생성능이Productive 증가된Increased 재조합 미생물 Recombinant microorganism

본 발명의 재조합 미생물은The recombinant microorganism of the present invention

2,3-부탄디올 생산 미생물에 있어서,In the 2,3-butanediol producing microorganism,

피루베이트를 알파-아세토락테이트로 전환하는 경로, 알파-아세토락테이트를 아세토인으로 전환하는 경로 또는 아세토인을 2,3-부탄디올로 전환하는 경로가 촉진된,A pathway for converting pyruvate to alpha-acetolactate, a pathway for converting alpha-acetolactate to acetone, or a pathway for converting acetone to 2,3-butanediol,

2,3-부탄디올 생산용 재조합 미생물이다.
Is a recombinant microorganism for producing 2,3-butanediol.

또한 본 발명의 재조합 미생물은,In addition, the recombinant microorganism of the present invention,

2,3-부탄디올 생산 미생물에 있어서, 아세토락테이트 신타제, 아세토락테이트 디카복실레이즈 및 아세토인 리덕타제로부터 구성된 군으로부터 선택된 하나 이상의 효소의 활성이 증가된 재조합 미생물이다.
The 2,3-butanediol producing microorganism is a recombinant microorganism having increased activity of at least one enzyme selected from the group consisting of acetolactate synthase, acetolactate dicarboxylase and acetyl reductase.

또한 본 발명의 재조합 미생물은,In addition, the recombinant microorganism of the present invention,

2,3-부탄디올 생산 미생물에 있어서, 아세토락테이트 신타제, 아세토락테이트 디카복실레이즈 및 아세토인 리덕타제로부터 구성된 군으로부터 선택된 둘 이상의 효소의 활성이 증가된 재조합 미생물이다.
In the 2,3-butanediol producing microorganism, it is a recombinant microorganism having increased activity of two or more enzymes selected from the group consisting of acetolactate synthase, acetolactate dicarboxylase and acetyl reductase.

또한 본 발명의 재조합 미생물은,In addition, the recombinant microorganism of the present invention,

2,3-부탄디올 생산 미생물에 있어서, 아세토락테이트 신타제, 아세토락테이트 디카복실레이즈 및 아세토인 리덕타제의 활성이 증가된 재조합 미생물이다.
In the 2,3-butanediol producing microorganism, the activity of acetolactate synthase, acetolactate dicarboxylase, and acetyl reductase is increased.

또한, 본 발명의 재조합 미생물은In addition, the recombinant microorganism of the present invention

2,3-부탄디올 생산 미생물에 있어서,In the 2,3-butanediol producing microorganism,

피루베이트를 아세틸 코에이로 전환하는 경로, 피루베이트를 포름산으로 전환하는 경로 또는 피루베이트를 락테이트로 전환하는 경로가 억제되고,The pathway for converting pyruvate to acetyl koide, the pathway for converting pyruvate to formic acid, or the pathway for converting pyruvate to lactate is inhibited,

피루베이트를 알파-아세토락테이트로 전환하는 경로, 알파-아세토락테이트를 아세토인으로 전환하는 경로 또는 아세토인을 2,3-부탄디올로 전환하는 경로가 촉진된,A pathway for converting pyruvate to alpha-acetolactate, a pathway for converting alpha-acetolactate to acetone, or a pathway for converting acetone to 2,3-butanediol,

2,3-부탄디올 생산용 재조합 미생물일 수 있다.
May be a recombinant microorganism for producing 2,3-butanediol.

이 경우 본 발명의 재조합 미생물은 2,3-부탄디올 생산 미생물에 있어서, In this case, the recombinant microorganism of the present invention is a 2,3-butanediol producing microorganism,

피루베이트를 아세틸 코에이로 전환하는 경로, 피루베이트를 포름산으로 전환하는 경로 및 피루베이트를 락테이트로 전환하는 경로가 억제되고, The pathway for converting pyruvate to acetylcohexyl, the pathway for converting pyruvate to formic acid, and the pathway for converting pyruvate to lactate are inhibited,

피루베이트를 알파-아세토락테이트로 전환하는 경로가 촉진된 것일 수 있다
The pathway for converting pyruvate to alpha-acetolactate may be promoted

또한, 이 경우 본 발명의 재조합 미생물은 2,3-부탄디올 생산 미생물에 있어서, In this case, the recombinant microorganism of the present invention is a microorganism producing 2,3-butanediol,

피루베이트를 아세틸 코에이로 전환하는 경로, 피루베이트를 포름산으로 전환하는 경로 및 피루베이트를 락테이트로 전환하는 경로가 억제되고, The pathway for converting pyruvate to acetylcohexyl, the pathway for converting pyruvate to formic acid, and the pathway for converting pyruvate to lactate are inhibited,

피루베이트를 알파-아세토락테이트로 전환하는 경로 및 알파-아세토락테이트를 아세토인으로 전환하는 경로가 촉진된 것일 수 있다
The pathway for converting pyruvate to alpha-acetolactate and the pathway for converting alpha-acetolactate to acetone may be facilitated

또한, 이 경우 본 발명의 재조합 미생물은 2,3-부탄디올 생산 미생물에 있어서, In this case, the recombinant microorganism of the present invention is a microorganism producing 2,3-butanediol,

피루베이트를 아세틸 코에이로 전환하는 경로, 피루베이트를 포름산으로 전환하는 경로 및 피루베이트를 락테이트로 전환하는 경로가 억제되고, The pathway for converting pyruvate to acetylcohexyl, the pathway for converting pyruvate to formic acid, and the pathway for converting pyruvate to lactate are inhibited,

피루베이트를 알파-아세토락테이트로 전환하는 경로, 알파-아세토락테이트를 아세토인으로 전환하는 경로 및 아세토인을 2,3-부탄디올로 전환하는 경로가 촉진된 것일 수 있다
The pathway for converting pyruvate to alpha-acetolactate, the pathway for converting alpha-acetolactate to acetone, and the pathway for converting acetone to 2,3-butanediol may be facilitated

또한 본 발명의 재조합 미생물은 2,3-부탄디올 생산 미생물에 있어서, 피루베이트-포르메이트 리아제 및 락테이트 디하이드로게나제의 활성이 억제되고, 아세토락테이트 신타제의 활성이 증가된 재조합 미생물일 수 있다
In addition, the recombinant microorganism of the present invention is a recombinant microorganism that inhibits the activity of pyruvate-formate lyase and lactate dehydrogenase in the 2,3-butanediol producing microorganism and increases the activity of acetolactate synthase have

또한 본 발명의 재조합 미생물은 2,3-부탄디올 생산 미생물에 있어서, 피루베이트-포르메이트 리아제 및 락테이트 디하이드로게나제의 활성이 억제되고, 아세토락테이트 신타제 및 아세토락테이트 디카복실레이즈의 활성이 증가된 재조합 미생물일 수 있다
In addition, the recombinant microorganism of the present invention is characterized in that the activity of pyruvate-formate lyase and lactate dehydrogenase is inhibited in the 2,3-butanediol producing microorganism, and the activity of acetolactate synthase and acetolactate decarboxylase May be an increased recombinant microorganism

또한 본 발명의 재조합 미생물은 2,3-부탄디올 생산 미생물에 있어서, 피루베이트-포르메이트 리아제 및 락테이트 디하이드로게나제의 활성이 억제되고, 아세토락테이트 신타제, 아세토락테이트 디카복실레이즈 및 아세토인 리덕타제의 활성이 증가된 재조합 미생물일 수 있다
In addition, the recombinant microorganism of the present invention is characterized in that the activity of pyruvate-formate lyase and lactate dehydrogenase is inhibited in the 2,3-butanediol producing microorganism, and the activity of acetolactate synthase, acetolactate decarboxylase, Lt; RTI ID = 0.0 > reductase < / RTI > activity may be an increased recombinant microorganism

또한 본 발명의 재조합 미생물은 2,3-부탄디올의 선택도, 수율, 농도 및 생산성이 높다. 또한 본 발명의 재조합 미생물은 상기 재조합으로 인하여 야생형 미생물보다 포름산, 락테이트 등과 같은 부산물의 생성능이 억제된 것일 수 있다.
Also, the recombinant microorganism of the present invention has high selectivity, yield, concentration and productivity of 2,3-butanediol. In addition, the recombinant microorganism of the present invention may be such that the production ability of by-products such as formic acid, lactate, etc. is suppressed more than that of the wild-type microorganism due to the recombination.

아세틸 Acetyl 코에이Koei 생합성 경로 Biosynthetic pathway

본 발명의 재조합 미생물은 아세틸 코에이 및 락테이트 생합성 경로를 갖는 2,3-부탄디올 생산 미생물을 이용하여 제조한 재조합 미생물일 수 있다. 본 발명의 아세틸 코에이(Acetyl-CoA) 생합성 경로는 미생물 내 특정 대사산물로부터 아세틸 코에이가 합성되는 경로를 의미한다. 본 발명의 아세틸 코에이 생합성 경로는 피루베이트(pyruvate)로부터 아세틸 코에이가 합성되는 경로 등이 될 수 있다.
The recombinant microorganism of the present invention may be a recombinant microorganism produced using a 2,3-butanediol producing microorganism having acetyl-CoA and lactate biosynthesis pathway. The acetyl-CoA biosynthetic pathway of the present invention refers to the pathway through which acetylcoe is synthesized from a specific metabolite in a microorganism. The acetyl-CoA biosynthesis pathway of the present invention may be a pathway in which acetyl CoA is synthesized from pyruvate.

락테이트Lactate 생합성 경로 Biosynthetic pathway

본 발명의 재조합 미생물은 아세틸 코에이 및 락테이트 생합성 경로를 갖는 2,3-부탄디올 생산 미생물을 이용하여 제조한 재조합 미생물일 수 있다. 본 발명의 락테이트(lactate) 생합성 경로는 미생물 내 특정 대사산물로부터 락테이트가 합성되는 경로를 의미한다. 본 발명의 락테이트 생합성 경로는 피루베이트(pyruvate)로부터 락테이트가 합성되는 경로 등이 될 수 있다.
The recombinant microorganism of the present invention may be a recombinant microorganism produced using a 2,3-butanediol producing microorganism having acetyl-CoA and lactate biosynthesis pathway. The lactate biosynthetic pathway of the present invention refers to the route through which lactate is synthesized from a particular metabolite in a microorganism. The lactate biosynthesis pathway of the present invention may be a pathway in which lactate is synthesized from pyruvate.

2,3 2,3 부탄디올Butanediol 생산 미생물 Production microorganism

본 발명의 재조합 미생물은 2,3 부탄디올 생산 미생물을 유전적으로 재조합하여 제조한 재조합 미생물이다. 상기 2, 3 부탄디올 생산 미생물은 예컨대, 클렙시엘라(Klebsiella) 속, 바실러스(Bacillus) 속, 세라티아(Serratia) 속 또는 엔테로벡터 (Enterobacter) 속의 미생물일 수 있으며, 바람직하게는 클렙시엘라 옥시토카(K. oxytoca), 클렙시엘라 뉴모니아(K. pneumoniae) 등이며, 가장 바람직하게는 클렙시엘라 옥시토카(K. oxytoca)이다. 클렙시엘라 옥시토카를 이용하여 본 발명의 재조합 미생물을 제조하는 것이 클렙시엘라 뉴모니아를 이용하는 것보다 2,3 부탄디올의 산업적 규모의 생산에 유리하다.
The recombinant microorganism of the present invention is a recombinant microorganism produced by genetically recombining 2,3-butanediol producing microorganisms. The 2,3-butanediol producing microorganism may be, for example, a microorganism belonging to the genus of Klebsiella, Bacillus, Serratia or Enterobacter, preferably Klebsiella oxytoca K. oxytoca, K. pneumoniae, and the like, and most preferably K. oxytoca. Preparation of the recombinant microorganism of the present invention using Klebsiella oxytoca is advantageous for the industrial scale production of 2,3 butanediol rather than using Klebsiella pneumoniae.

피루베이트를Pyruvate 아세틸  Acetyl 코에이로Koeiro 전환하는 경로의 억제 Suppression of switching paths

피루베이트-포르메이트 리아제(pyruvate-formate lyase)는 피루베이트의 아세틸 코에이로의 전환을 조절한다. 상기 피루베이트-포르메이트 리아제를 억제함으로써 피루베이트를 아세틸 코에이로 전환하는 경로가 억제될 수 있다. 상기 피루베이트-포르메이트 리아제의 억제는 피루베이트-포르메이트 리아제의 발현 억제, 피루베이트-포르메이트 리아제의 효소 활성 억제 등에 의하여 이루어질 수 있다. 예컨대, 피루베이트-포르메이트 리아제를 코드하는 유전자인 pflB를 결실시키거나 상기 유전자에 돌연변이(일부 염기를 변이, 치환 또는 삭제하거나 일부 염기를 도입하여 정상적인 유전자의 발현을 억제시키는 등의 돌연변이)를 일으키거나, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등, 당업자는 적절한 방법을 선택하여 피루베이트-포르메이트 리아제를 억제할 수 있다.
Pyruvate-formate lyase regulates the conversion of pyruvate to acetylcopherol. By inhibiting the pyruvate-formate lyase, the pathway for converting pyruvate to acetyl koide can be inhibited. Inhibition of the pyruvate-formate lyase may be accomplished by inhibiting the expression of pyruvate-formate lyase, inhibiting the enzyme activity of pyruvate-formate lyase, and the like. For example, it is possible to delete pflB, which is a gene encoding pyruvate-formate lyase, or to mutate (mutation such as mutation, substitution, deletion, deletion of some bases or introduction of some bases to suppress expression of normal gene) Or regulating gene expression in transcription or translation processes, the skilled artisan can select the appropriate method to inhibit pyruvate-formate lyase.

피루베이트를Pyruvate 포름산으로 전환하는 경로의 억제 Inhibition of pathway to formic acid

피루베이트-포르메이트 리아제(pyruvate-formate lyase)는 피루베이트의 포름산으로의 전환을 조절한다. 상기 피루베이트-포르메이트 리아제를 억제함으로써 피루베이트를 포름산으로 전환하는 경로가 억제될 수 있다. 상기 피루베이트-포르메이트 리아제의 억제는 피루베이트-포르메이트 리아제의 발현 억제, 피루베이트-포르메이트 리아제의 효소 활성 억제 등에 의하여 이루어질 수 있다. 예컨대, 피루베이트-포르메이트 리아제를 코드하는 유전자인 pflB를 결실시키거나 상기 유전자에 돌연변이(일부 염기를 변이, 치환 또는 삭제하거나 일부 염기를 도입하여 정상적인 유전자의 발현을 억제시키는 등의 돌연변이)를 일으키거나, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등, 당업자는 적절한 방법을 선택하여 피루베이트-포르메이트 리아제를 억제할 수 있다.
Pyruvate-formate lyase regulates the conversion of pyruvate to formic acid. By inhibiting the pyruvate-formate lyase, the pathway for converting pyruvate to formic acid can be inhibited. Inhibition of the pyruvate-formate lyase may be accomplished by inhibiting the expression of pyruvate-formate lyase, inhibiting the enzyme activity of pyruvate-formate lyase, and the like. For example, it is possible to delete pflB, which is a gene encoding pyruvate-formate lyase, or to mutate (mutation such as mutation, substitution, deletion, deletion of some bases or introduction of some bases to suppress expression of normal gene) Or regulating gene expression in transcription or translation processes, the skilled artisan can select the appropriate method to inhibit pyruvate-formate lyase.

피루베이트를Pyruvate 락테이트로With lactate 전환하는 경로의 억제 Suppression of switching paths

락테이트 디하이드로게나제(lactate dehydrogenase)는 피루베이트의 락테이트로의 전환을 조절한다. 상기 락테이트 디하이드로게나제를 억제함으로써 피루베이트를 락테이트로 전환하는 경로가 억제될 수 있다. 상기 락테이트 디하이드로게나제의 억제는 락테이트 디하이드로게나제의 발현 억제, 락테이트 디하이드로게나제의 효소 활성 억제 등에 의하여 이루어질 수 있다. 예컨대, 락테이트 디하이드로게나제를 코드하는 유전자인 ldhA를 결실시키거나 상기 유전자에 돌연변이(일부 염기를 변이, 치환 또는 삭제하거나 일부 염기를 도입하여 정상적인 유전자의 발현을 억제시키는 등의 돌연변이)를 일으키거나, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등, 당업자는 적절한 방법을 선택하여 락테이트 디하이드로게나제를 억제할 수 있다.
Lactate dehydrogenase regulates the conversion of pyruvate to lactate. By inhibiting the lactate dehydrogenase, the pathway for converting pyruvate to lactate can be inhibited. The inhibition of the lactate dehydrogenase can be achieved by inhibiting the expression of lactate dehydrogenase, inhibiting the enzyme activity of lactate dehydrogenase, and the like. For example, ldhA, which is a gene encoding lactate dehydrogenase, is deleted or a mutation (mutation such as mutation, substitution, deletion, deletion of some bases, introduction of some bases to suppress the expression of normal gene) Or by controlling the gene expression in transcription or translation processes, the skilled artisan can select an appropriate method to inhibit lactate dehydrogenase.

피루베이트를Pyruvate 알파- Alpha- 아세토락테이트로Acetolactate 전환하는 경로의 촉진 Facilitating the transition path

아세토락테이트 신타제(acetolactate synthase)는 피루베이트의 알파-아세토락테이트로의 전환을 조절하여, 알파-아세토락테이트의 생성에 관여한다. 상기 아세토락테이트 신타제의 활성을 증가시킴으로써 피루베이트를 알파-아세토락테이트로 전환하는 경로를 촉진시킬 수 있다. 상기 아세토락테이트 신타제의 활성 증가는 아세토락테이트 신타제의 유전자의 증폭 발현, 아세토락테이트 신타제의 효소 활성 증가 등에 의하여 이루어질 수 있다. 예컨대, 아세토락테이트 신타제를 코드하는 유전자인 budB를 미생물에 도입시키거나 상기 유전자에 돌연변이(일부 염기를 변이, 치환 또는 삭제하거나 일부 염기를 도입하여 유전자의 발현을 증폭시키는 등의 돌연변이)를 일으키거나, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등, 당업자는 적절한 방법을 선택하여 아세토락테이트 신타제의 활성을 증가시킬 수 있다.
Acetolactate synthase regulates the conversion of pyruvate to alpha-acetolactate, which is involved in the production of alpha-acetolactate. By increasing the activity of the acetolactate synthase, the pathway to convert pyruvate to alpha-acetolactate can be promoted. The increase in the activity of the acetolactate synthase can be achieved by amplification and expression of a gene of acetolactate synthase, an increase in enzyme activity of acetolactate synthase, and the like. For example, it is possible to introduce budB, which is a gene encoding acetolactate synthase, into a microorganism or cause mutation (mutation such as amplification of gene expression by mutating, substituting or deleting some bases or introducing some bases) Or controlling the gene expression in the transcription or translation process, the skilled artisan can select the appropriate method to increase the activity of the acetolactate synthase.

알파-Alpha- 아세토락테이트를Acetolactate 아세토인으로With acetone 전환하는 경로의 촉진 Facilitating the transition path

아세토락테이트 디카복실실레이즈(acetolactate decarboxylase)는 알파-아세토락테이트의 아세토인으로의 전환을 조절하여, 아세토인 생성에 관여한다. 상기 아세토락테이트 디카복실실레이즈의 활성을 증가시킴으로써 알파-아세토락테이트을 아세토인으로 전환하는 경로를 촉진시킬 수 있다. 상기 아세토락테이트 디카복실실레이즈의 활성 증가는 아세토락테이트 디카복실실레이즈의 유전자의 증폭 발현, 아세토락테이트 디카복실실레이즈의 효소 활성 증가 등에 의하여 이루어질 수 있다. 예컨대, 아세토락테이트 디카복실실레이즈를 코드하는 유전자인 budA를 미생물에 도입시키거나 상기 유전자에 돌연변이(일부 염기를 변이, 치환 또는 삭제하거나 일부 염기를 도입하여 유전자의 발현을 증폭시키는 등의 돌연변이)를 일으키거나, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등, 당업자는 적절한 방법을 선택하여 아세토락테이트 디카복실실레이즈의 활성을 증가시킬 수 있다.
Acetolactate decarboxylase regulates the conversion of alpha-acetolactate to acetone and is involved in the production of acetone. By increasing the activity of the acetolactate dicarboxylic silage, the pathway for converting alpha-acetolactate to acetone can be promoted. The increase in the activity of the acetolactate dicarboxylic silage can be achieved by amplifying and expressing the gene of acetolactate dicarboxylic silage and increasing the enzyme activity of the acetolactate dicarboxylic silage. For example, it is possible to introduce budA, which is a gene encoding acetolactate dicarboxylic silage, into a microorganism, or to mutate (mutation such as amplification of gene expression by introducing some bases, mutation, substitution or deletion of some bases, , Or by controlling the gene expression in the transcription or translation process, the skilled artisan can select an appropriate method to increase the activity of the acetolactate dicarboxylic silage.

아세토인을Acetone 2,3- 2,3- 부탄디올로With butanediol 전환하는 경로의 촉진 Facilitating the transition path

아세토인 리덕타제(acetoin reductase)는 아세토인의 2,3-부탄디올로의 전환을 조절하여, 2,3-부탄디올의 생성에 관여한다. 상기 아세토인 리덕타제의 활성을 증가시킴으로써 아세토인 리덕타제를 2,3-부탄디올로 전환하는 경로를 촉진시킬 수 있다. 상기 아세토인 리덕타제의 활성 증가는 아세토인 리덕타제의 유전자의 증폭 발현, 아세토인 리덕타제의 효소 활성 증가 등에 의하여 이루어질 수 있다. 예컨대, 아세토인 리덕타제를 코드하는 유전자인 budC를 미생물에 도입시키거나 상기 유전자에 돌연변이(일부 염기를 변이, 치환 또는 삭제하거나 일부 염기를 도입하여 유전자의 발현을 증폭시키는 등의 돌연변이)를 일으키거나, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등, 당업자는 적절한 방법을 선택하여 아세토인 리덕타제의 활성을 증가시킬 수 있다.
Acetoin reductase modulates the conversion of acetone to 2,3-butanediol and is involved in the production of 2,3-butanediol. By increasing the activity of the acetyl reductase, the pathway for converting the acetyl reductase to 2,3-butanediol can be promoted. The increase in the activity of the acetyl reductase can be achieved by amplification and expression of the gene of the acetyl reductase and an increase in the enzyme activity of the acetyl reductase. For example, budC, which is a gene encoding acetyl reductase, is introduced into a microorganism, or a mutation (mutation such as amplification of gene expression by introducing some bases, mutation, substitution or deletion of some bases, , The transcription process or the regulation of gene expression in the translation process, the skilled artisan can select an appropriate method to increase the activity of the acetylin reductase.

2,3-2,3- 부탄디올의Butanediol 생산 방법 Production method

본 발명의 2,3-부탄디올의 생산 방법은 본 발명의 재조합 미생물을 배양하는 단계;및 상기 배양액으로부터 2,3-부탄디올을 회수하는 단계를 포함한다.
The method for producing 2,3-butanediol of the present invention comprises culturing the recombinant microorganism of the present invention and recovering 2,3-butanediol from the culture.

배양culture

본 발명의 재조합 미생물의 배양은 호기 조건에서 수행되며, 바람직하게는 미세호기적 조건(microaerobic condition)에서 수행된다. 예컨대, 상기 배양은 배양 시 산소, 즉 공기를 공급하면서 수행되며, 구체적인 예로서, 이는 교반을 통하여 이루어질 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 재조합 미생물은 복합 배지에서 배양될 수 있으며, 복합 배지의 종류는 특별히 제한되지 않고 당업자는 일반적으로 시판, 사용되는 복합 배지를 적절히 선택하여 사용할 수 있다는 것은 자명하다.
The culture of the recombinant microorganism of the present invention is carried out under aerobic conditions, preferably under microaerobic conditions. For example, the culture is carried out while supplying oxygen, i.e., air, during the culture, and as a specific example, it may be performed through stirring, but is not limited thereto. The recombinant microorganism of the present invention can be cultured in a complex culture medium. The type of the complex culture medium is not particularly limited, and a person skilled in the art will generally be able to appropriately select and use commercially available complex culture media.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described in detail below. It should be understood, however, that the invention is not limited to the disclosed embodiments, but is capable of many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, To fully disclose the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims.

<재료 및 방법>&Lt; Materials and methods >

야생형 균주인 클렙시엘라 옥시토카 KCTC 12132BP를 준비하여 이를 비교예 1의 균주로 사용하였다. 또한 이를 이용하여 하기 <1-1> 내지 <1-3>에서 재조합 미생물을 제조하였다.
The wild-type strain Klebsiella oxytoca KCTC 12132BP was prepared and used as a strain of Comparative Example 1. The recombinant microorganisms were prepared in the following <1-1> to <1-3>.

-2,3-부탄디올 농도(g/L): 단위 부피당 생산되는 2,3-부탄디올의 양-2,3-butanediol concentration (g / L): Amount of 2,3-butanediol produced per unit volume

-2,3-부탄디올 수율(g/g): 2,3-부탄디올 생산량(g)/탄소원(g) × 100-2,3-butanediol yield (g / g): 2,3-butanediol yield (g) / carbon source (g) × 100

-2,3-부탄디올 생산성(g/L/h): 단위 시간, 단위 부피당 생산되는 2,3-부탄디올의 양
-2,3-butanediol Productivity (g / L / h): Amount of 2,3-butanediol produced per unit time, unit volume

<1-1> ldhA 및 pflB가 결실된 재조합 K. 옥시토카의 제조&Lt; 1-1 > Preparation of recombinant K. oxytocin in which ldhA and pflB were deleted

표적 유전자의 상동 부위를 포함하는 DNA 단편 제작Production of DNA fragment containing homologous region of target gene

클렙시엘라 옥시토카의 표적 유전자를 불활성화 시키기 위하여 박테리아의 재조합 기작을 이용하였고, 제거하고자 하는 유전자의 상동 부위 (homologous region)를 PCR로 증폭하였다. 그 후 상동 부위를 포함하는 해당 DNA 단편을 박테리아에 전달한 후, DNA 단편에 있는 유전자의 상동 부위와 클렙시엘라 옥시토카의 염색체에 있는 유전자 사이에 재조합 효소 (recombinase)에 의한 재조합 기작으로 표적 유전자를 제거하게 된다.In order to inactivate the target gene of Klebsiella oxytoca, a recombinant mechanism of bacteria was used and the homologous region of the gene to be removed was amplified by PCR. After transferring the corresponding DNA fragment containing the homologous portion to the bacteria, a recombination mechanism between the homologous region of the gene in the DNA fragment and the gene in the chromosome of Klebsiella oxytoca recombine to produce the target gene .

먼저, 클렙시엘라 옥시토카의 락테이트 디하이드로게나제 클로닝하기 위해 표적 유전자인 ldhA(서열번호 1)의 상동 부위 1(서열번호 2)을 서열번호 3 및 4의 프라이머를 이용하여 PCR로 증폭하였다. 또한 상동 부위 2(서열번호 5)를 서열번호 6 및 7의 프라이머를 이용하여 PCR로 증폭하였다. 그 후, 상동 부위 1과 2를 동시에 주형으로 하여 PCR로 증폭하여 상동 부위 1과 2이 포함된 DNA 단편(서열번호 8)을 완성하였다. First, the homologous part 1 (SEQ ID NO: 2) of the target gene ldhA (SEQ ID NO: 1) was amplified by PCR using the primers of SEQ ID NOS: 3 and 4 to clone the lactate dehydrogenase of Klebsiella oxytoca . Homologous site 2 (SEQ ID NO: 5) was also amplified by PCR using primers of SEQ ID NOS: 6 and 7. Thereafter, the homologous sites 1 and 2 were used as a template and amplified by PCR to complete a DNA fragment (SEQ ID NO: 8) containing homologous sites 1 and 2.

한편, 클렙시엘라 옥시토카의 피루베이트 포르메이트 리아제의 상동 부위를 클로닝하기 위하여 표적 유전자인 pflB(서열번호 9)의 상동 부위 1(서열번호 10)을 서열번호 11 및 12의 프라이머를 이용하여 PCR로 증폭하였다. 또한, 상동 부위 2(서열번호 13)를 서열번호 14 및 15의 프라이머를 이용하여 PCR로 증폭하였다. 그 후, 상동 부위 1과 2를 동시에 주형으로 하여 PCR로 증폭하여 상동 부위 1과 2가 DNA 단편(서열번호 16)을 완성하였다(표 1). 표적 유전자의 재조합 확률을 높이기 위하여 상기 완성된 DNA 단편은 항생제 내성 유전자 등을 포함할 수 있고, 염색체 내에 재조합된 항생제 내성 유전자를 제거하기 위해서 레반수크라제 효소를 코딩하는 sacB 유전자를 포함할 수 있다.
On the other hand, in order to clone the homology region of the pyruvate formate lyase of Klebsiella oxytoca, the homology region 1 (SEQ ID NO: 10) of the target gene pflB (SEQ ID NO: 9) was amplified by PCR using the primers of SEQ ID NOS: 11 and 12 . Homologous site 2 (SEQ ID NO: 13) was amplified by PCR using the primers of SEQ ID NOS: 14 and 15. Thereafter, homologous sites 1 and 2 were amplified by PCR using the template as a template to complete homologous sites 1 and 2 (SEQ ID NO: 16) (Table 1). In order to increase the recombination probability of the target gene, the completed DNA fragment may include an antibiotic resistance gene and the like, and may contain a sacB gene encoding Levansucracase enzyme to remove the antibiotic resistance gene recombined in the chromosome .

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

Figure pat00004

Figure pat00004

ldhAldhA  And pflBpflB 가 결실된 재조합 K. Recombinant K. &lt; / RTI &gt; 옥시토카의Oxytocin 제조 Produce

상기 제작된 DNA 단편들을 전기 천공법 (electroporation, 25 uF, 200 Ω, 18 kV/cm)을 이용하여 클렙시엘라 옥시토카 KCTC 12132BP에 전달하였으며, 미생물의 재조합 기작을 이용하여 표적 유전자를 제거할 수 있었다.The prepared DNA fragments were transferred to Klebsiella oxytoca KCTC 12132BP using electroporation (25 uF, 200 OMEGA, 18 kV / cm) and the target gene was removed using the recombinant mechanism of the microorganism there was.

클렙시엘라 옥시토카 야생형에 ldhA 유전자의 상동 부위를 포함하는 DNA 단편을 전달하여 ldhA 유전자를 제거한 재조합 클렙시엘라 옥시토카를 제조하였다. 그리고, 클렙시엘라 옥시토카 야생형에서 ldhA 유전자를 제거한 후, pflB 유전자의 상동 부위를 포함하는 DNA 단편을 전달하여 ldhA 유전자에 추가로 pflB 유전자가 제거된 클렙시엘라 옥시토카를 제조하였다.  A recombinant Klebsiella oxytoca was prepared by transferring a DNA fragment containing the homologous region of the ldhA gene to the wild-type Klebsiella k. After removal of the ldhA gene from the wild-type Klebsiella oxytoca, a DNA fragment containing the homologous region of the pflB gene was transferred to prepare a Klebsiella oxytoca in which the pflB gene was removed in addition to the ldhA gene.

이렇게 제조된 ldhA 및 pflB가 결실된 K. 옥시토카 KCTC 12132BP 재조합 미생물(이하, “비교예 2”, “K. oxytoca △ldhA △pflB”라 함)를 이용하여 하기 재조합 공정 및 발효 실험들을 수행하였다.
The following recombinant process and fermentation experiments were carried out using the K. oxytoca KCTC 12132BP recombinant microorganism (hereinafter referred to as &quot; K. oxytoca DELTA ldhA DELTA pflB &quot;) in which ldhA and pflB thus prepared were deleted .

<1-2> pGSC-budA 플라스미드, pGSC-budAB 플라스미드 및 pGSC-budABC 플라스미드의 제조
<1-2> Preparation of pGSC-budA plasmid, pGSC-budAB plasmid and pGSC-budABC plasmid

클렙시엘라 옥시토카 유래의 아세토락테이트 디카복실실레이즈 효소 (budA)와 아세토락테이트 신타제 효소 (budB)와 아세토인 리덕타제 효소 (budC)를 코딩하는 유전자의 발현 증폭에 사용할 재조합 플라스미드를 제조하였다.A recombinant plasmid to be used for the expression amplification of a gene encoding acetolactate dicarboxylase (budA), acetolactate synthase enzyme (budB) and acetylin reductase enzyme (budC) derived from Klebsiella oxytocin was prepared Respectively.

클렙시엘라 옥시토카의 표적 유전자 발현을 증폭시키는 재조합 벡터를 만들기 위해서 제한 효소 자리, 다중 클로닝 자리 (Multiple cloning site), 클로람페니콜 내성 유전자를 포함하는 pBBR1MCS (Kovach et al., Biotechniques, 800-802, 1994) 플라스미드에 증폭하고자 하는 유전자를 클로닝하여야 한다. 해당 플라스미드를 박테리아에 클로닝한 후, 세포 내에서 플라스미드의 복제 기작으로 유전자 발현을 증폭하게 된다.
In order to construct a recombinant vector that amplifies the target gene expression of Klebsiella lucidum, pBBR1MCS (Kovach et al., Biotechniques, 800-802, 1994) containing a restriction enzyme site, multiple cloning site and a chloramphenicol resistance gene ) The gene to be amplified should be cloned into the plasmid. After cloning the plasmid into the bacteria, the gene expression is amplified by the replication mechanism of the plasmid in the cell.

클렙시엘라 옥시토카의 아세토락테이트 디카복실실레이즈 효소를 코딩하는 유전자 (budA, 서열번호 17)와 아세토락테이트 신타제 효소를 코딩하는 유전자 (budB, 서열번호 18)와 아세토인 리덕타제 효소를 코딩하는 유전자 (budC, 서열번호 19)를 클로닝하기 위하여 표적 유전자를 PCR로 증폭하였다 (표 2). 이 때, regulator 유전자인 budR도 각각 함께 도입하였다(서열번호 20). 증폭 시에는 플라스미드의 다중 클로닝 자리에 존재하는 제한 효소 자리 (XbaI, ApaI 등)를 포함하고 있는 프라이머를 사용하여 증폭하였다. 각각의 유전자를 포함하고 있는 DNA 단편과 플라스미드를 다중 클로닝 자리에 있는 제한 효소 로 동일하게 처리한 후, T4 DNA ligase로 상기 두 단편을 접합하여 pGSC-budA와 pGSC-budAB와 pGSC-budABC 플라스미드를 완성하였다 (도 2 내지 4).
(BudA, SEQ ID NO: 17) encoding the acetolactate dicarboxylase enzyme of Klebsiella oxytoca and the gene (budB, SEQ ID NO: 18) encoding the acetolactate synthase enzyme and the acetyl reductase enzyme The target gene was amplified by PCR to clone the coding gene (budC, SEQ ID NO: 19) (Table 2). At this time, the regulator gene budR was also introduced (SEQ ID NO: 20). For amplification, primers containing restriction sites (XbaI, ApaI, etc.) in the multiple cloning site of the plasmid were amplified. The DNA fragment containing each gene and the plasmid were treated in the same manner as the restriction enzyme in the multiple cloning site, and the two fragments were ligated with T4 DNA ligase to complete pGSC-budA, pGSC-budAB and pGSC-budABC plasmids (Figs. 2 to 4).

Figure pat00005
Figure pat00005

Figure pat00006

Figure pat00006

<1-3> 아세토락테이트 디카복실실레이즈, 아세토락테이트 신타제, 및 아세토인 리덕타제를 코딩하는 유전자의 발현 증폭
&Lt; 1-3 > Expression of a gene encoding acetolactate dicarboxylase, acetolactate synthase, and acetyl reductase

클렙시엘라 옥시토카 유래의 아세토락테이트 디카복실실레이즈 효소 (budA), 아세토락테이트 신타제 효소 (budB) 및 아세토인 리덕타제 효소 (budC)를 코딩하는 유전자의 발현을 증폭하였다.
Expression of a gene encoding acetolactate dicarboxylase (budA), acetolactate synthase enzyme (budB) and acetylin reductase enzyme (budC) derived from chlorhexilaoxitocarn was amplified.

상기 <1-2>에서 제조한 pGSC-budA 플라스미드, pGSC-budAB 플라스미드 및 pGSC-budABC 플라스미드를 전기 천공법 (electroporation, 25 uF, 200 Ω, 18 kV/cm)을 이용하여 비교예 1 및 비교예 2의 재조합 클렙시엘라 옥시토카에 클로닝하였다. 구체적으로는 야생형 클렙시엘라 옥시토카 KCTC 12132BP (비교예 1)에 pGSC-budABC 플라스미드를 클로닝하여, 상기 유전자들의 발현이 증폭된 재조합 클렙시엘라 옥시토카를 완성하였다(이하, 실시예 1, “K. oxytoca wild type + pGSC-budABC”이라 함). 또한 ldhA와 pflB를 동시에 제거한 재조합 미생물인 비교예 2의 클렙시엘라 옥시토카에 pGSC-budA 플라스미드, pGSC-budAB 플라스미드 및 pGSC-budABC 플라스미드를 각각 클로닝하여, 상기 유전자들의 발현이 각각 증폭된 재조합 클렙시엘라 옥시토카를 완성하였다(실시예 2 내지 4). 이 때, regulator 유전자인 budR도 각각 함께 도입하였다. 전기 천공법 다음에 상기 재조합 클렙시엘라 옥시토카들을 30℃에서 1시간 동안 배양하여 안정화시킨 후, 클로람페니콜이 들어있는 LB 복합 고체 배지에 37℃에 각각 스프레딩 (spreading)하여 배양하였다. 그 후, 클로람페니콜이 들어 있는 고체 배지에서 자란 콜로니 (Colony)들을 골라냈다. 그리고 골라낸 콜로니에 들어있는 플라스미드를 분리 (Miniprep)하여 전기 영동을 통해 유전자의 클로닝 여부를 확인하였다. 그 결과, 하기의 재조합 미생물들이 제조되었다(표 3).
The pGSC-budA plasmid, the pGSC-budAB plasmid and the pGSC-budABC plasmid prepared in <1-2> were subjected to electrophoresis (25 uF, 200 Ω, 18 kV / cm) 2 &lt; / RTI &gt; recombinant Klebsiella lysozyme. More specifically, the pGSC-budABC plasmid was cloned into wild-type Klebsiella koktaoka KCTC 12132BP (Comparative Example 1) to complete the recombinant Klebsiella oxytoca amplified expression of the genes (hereinafter referred to as "K oxytoca wild type + pGSC-budABC &quot;). The pGSC-budA plasmid, the pGSC-budAB plasmid and the pGSC-budABC plasmid were cloned into the recombinant microorganism of Comparative Example 2, which had both ldhA and pflB removed simultaneously, and the recombinant complementase Ellaoxytocar was completed (Examples 2 to 4). At this time, the regulator gene budR was also introduced. After the electroporation, the recombinant Klebsiella oxytocars were incubated at 30 DEG C for 1 hour and stabilized. The cells were then spread in an LB complex solid medium containing chloramphenicol at 37 DEG C, respectively. After that, colonies grown in a solid medium containing chloramphenicol were picked out. The plasmids contained in the selected colonies were minipreped to confirm the cloning of the genes by electrophoresis. As a result, the following recombinant microorganisms were prepared (Table 3).

Figure pat00007
Figure pat00007

<실험예 1> 야생형 미생물 및 ldhA 및 pflB이 결실된 재조합 미생물의 2,3-부탄디올 생산능<Experimental Example 1> 2,3-butanediol production ability of wild-type microorganism and recombinant microorganism in which ldhA and pflB were deleted

비교예 1의 야생형 클렙시엘라 및 ldhA와 pflB가 동시에 제거된 비교예 2의 재조합 클렙시엘라 균주를 이용하여, 2,3-부탄디올의 생산 발효능을 평가하였다.
The production and efficacy of 2,3-butanediol was evaluated using the recombinant Klebsiella strain of Comparative Example 2 in which wild-type Klebsiella of Comparative Example 1 and ldhA and pflB were simultaneously removed.

비교예 1의 야생형 클렙시엘라 옥시토카와 ldhA와 pflB가 동시에 제거된 비교예 2의 재조합 클렙시엘라 옥시토카에 대해 발효를 수행하였다. 상기 미생물들의 배양은 하기와 같이 수행하였다. Fermentation was performed on the recombinant Klebsiella oxytocar of Comparative Example 1 and the recombinant Klebsiella oxytocar of Comparative Example 2 in which ldhA and pflB were simultaneously removed. The cultivation of the microorganisms was carried out as follows.

먼저, 상기 미생물들을 9 g/L 포도당 (50mM, glucose)을 포함한 250 ml의 복합배지에 접종하여 37℃에서 16 시간 동안 배양한 후, 이 배양액을 3 L 복합배지에 접종하여 수행하였으며, 발효 조건은 미세호기조건 (micro-aerobic condition; 호기 속도 1 vvm, 교반 속도 150 rpm), 90 g/L 초기 포도당 농도, pH 6.5, 배양 온도 37℃로 하였다. 배지 내에는 25 mg/L의 클로람페니콜을 첨가하였다. 발효 중 pH의 조정을 위하여 5N NaOH를 사용하였다. 상기 야생형 및 재조합 클레비시엘라에 대해 발효 중 샘플을 채취하였으며, 채취된 시료의 OD600 (optical density)를 측정하여 생장 속도를 측정하였고, 채취된 시료는 13,000 rpm에서 10 분 동안 원심분리한 후, 상층액의 대사산물 및 2,3-부탄디올 농도를 액체크로마토그래피(HPLC)로 분석하였다First, the microorganisms were inoculated into 250 ml of a complex medium containing 9 g / L glucose (50 mM glucose), cultured at 37 ° C for 16 hours, and the culture was inoculated into a 3 L complex medium. Was set at a micro-aerobic condition (aerobic rate 1 vvm, stirring speed 150 rpm), 90 g / L initial glucose concentration, pH 6.5, and incubation temperature 37 ° C. In the medium, 25 mg / L of chloramphenicol was added. 5N NaOH was used to adjust pH during fermentation. Samples were collected during fermentation against the wild type and recombinant Clevisiella, and the growth rate was measured by measuring the OD600 (optical density) of the collected samples. The collected samples were centrifuged at 13,000 rpm for 10 minutes, The metabolite of the liquid and the concentration of 2,3-butanediol were analyzed by liquid chromatography (HPLC)

그 결과, 클렙시엘라 옥시토카에 젖산 탈수소화 효소 (ldhA)와 피루브산-포름산 분해 효소 (pflB)가 제거된 경우, 2,3-부탄디올 생산량은 39.49 g/L이었고, 2,3-부탄디올 생산 수율 (2,3-부탄디올 g/ 포도당 g)은 0.45였다. 상기 비교예 2의 재조합 미생물의 생산성 (g/L/h)는 0.58이었다. 비교예 1의 야생형 균주와 비교하였을 때, 비교예 2의 재조합 미생물은 젖산, 포름산, 에탄올 생산이 현저히 감소하면서 2,3-부탄디올의 생산능이 좋아지면서 2,3-부탄디올 생산 농도, 생산 수율, 생산성, 선택도가 모두 개선되었다(표 4)(도 5 및 도 6).
As a result, when lactic acid dehydrogenase (ldhA) and pyruvic acid-formate lyase (pflB) were removed from Klebsiella oxytocar, 2,3-butanediol production was 39.49 g / L, 2,3- (2,3-butanediol g / glucose g) was 0.45. The productivity (g / L / h) of the recombinant microorganism of Comparative Example 2 was 0.58. Compared with the wild-type strain of Comparative Example 1, the recombinant microorganism of Comparative Example 2 showed a remarkable decrease in the production of lactic acid, formic acid, and ethanol, and the productivity of 2,3-butanediol was improved and 2,3-butanediol production concentration, production yield, , And the selectivity was improved (Table 4) (Figs. 5 and 6).

Figure pat00008
Figure pat00008

<실험예 2> budA, budAB, budABC 유전자가 선택적으로 증폭 발현된 재조합 미생물의 2,3-부탄디올 생산능<Experimental Example 2> 2,3-butanediol production ability of recombinant microorganisms selectively amplified and expressed by budA, budAB and budABC genes

상기 <1-3>에서 제조한 실시예 1 내지 4의 재조합 클렙시엘라 옥시토카에 대하여 발효를 수행하였다.
The recombinant Klebsiella oxytoca of Examples 1 to 4 prepared in the above <1-3> was fermented.

구체적인 발효 과정은 하기와 같다. 실험 대상인 재조합 미생물들을 9 g/L 포도당 (50mM, glucose)을 포함한 250 ml의 복합배지에 접종하여 37℃에서 16 시간 동안 배양한 후, 이 배양액을 3 L 복합배지에 접종하여 수행하였으며, 발효 조건은 미세호기조건 (micro-aerobic condition; 호기 속도 1 vvm, 교반 속도 150 rpm), 90 g/L 초기 포도당 농도, pH 6.5, 배양 온도 37℃로 하였다. 배지 내에는 25 mg/L의 클로람페니콜을 첨가하였다. 발효 중 pH의 조정을 위하여 5N NaOH를 사용하였다. 상기 재조합 미생물들에 대해 발효 중 샘플을 채취하였으며, 채취된 시료의 OD600 (optical density)를 측정하여 생장 속도를 측정하였고, 채취된 시료는 13,000 rpm에서 10 분 동안 원심분리한 후, 상층액의 대사산물 및 2,3-부탄디올 농도를 액체크로마토그래피(HPLC)로 분석하였다
The specific fermentation process is as follows. The recombinant microorganisms to be tested were inoculated into 250 ml of complex medium containing 9 g / L glucose (50 mM, glucose) and cultured at 37 ° C for 16 hours. The culture was inoculated in a 3 L complex medium, Was set at a micro-aerobic condition (aerobic rate 1 vvm, stirring speed 150 rpm), 90 g / L initial glucose concentration, pH 6.5, and incubation temperature 37 ° C. In the medium, 25 mg / L of chloramphenicol was added. 5N NaOH was used to adjust pH during fermentation. The samples were collected during the fermentation of the recombinant microorganisms. The OD600 (optical density) of the collected samples was measured to determine the growth rate. The collected samples were centrifuged at 13,000 rpm for 10 minutes, The product and 2,3-butanediol concentrations were analyzed by liquid chromatography (HPLC)

그 결과, 야생형에 budABC를 증폭 발현하였을 경우 (실시예 1), 비교예 1(야생형)에 비하여 2,3-부탄디올의 수율, 농도가 증가한 것을 알 수 있었다. 하지만, 여전히 젖산 (lactate) 등 부산물의 생산량이 2,3-부탄디올에 비해 많다는 것을 알 수 있었다.As a result, it was found that when the budABC was amplified and expressed in the wild type (Example 1), the yield and concentration of 2,3-butanediol were increased as compared with Comparative Example 1 (wild type). However, it was found that the yield of by-products such as lactate was still higher than that of 2,3-butanediol.

한편, 유전자 pflB 및 ldhA을 제거하지 않은 실시예1을 유전자 pflB 및 ldhA을 제거한 실시예4와 대비하여 볼 때 실시예4가 실시예1 대비 젖산 등의 부산물 저감 효과가 뛰어나고, 2,3-부탄디올의 수율 및 농도, 생산성이 보다 우수함을 확인할 수 있었다(표4, 도 7 및 도 10 참조)On the other hand, Example 1, in which genes pflB and ldhA were not removed, was superior to Example 4 in which genes pflB and ldhA were removed, and Example 4 was excellent in the effect of reducing byproducts such as lactic acid and the like, The yield and the concentration of the polymer were better than those of the polymer (see Table 4, Fig. 7 and Fig. 10)

또한, 실시예 2의 재조합 미생물은 비교예 2의 재조합 미생물(K. oxytoca △ldhA △pflB)에 비하여 2,3-부탄디올의 수율 및 생산성이 유의하게 증가한 것을 알 수 있었다. 또한 실시예 2 및 실시예 3의 재조합 미생물들을 서로 비교하여 보면, budA뿐만 아니라 budB를 증폭하였을 때에도 2,3-부탄디올의 생산 성능이 개선되는 것을 확인할 수 있었다. 아울러, 실시예 3 및 실시예 4의 재조합 미생물들을 비교하여 보면, budC를 증폭하였을 때에도 2,3-부탄디올의 생산 성능이 개선되는 것을 확인할 수 있었다. 결과적으로는 budABC를 모두 증폭 발현한 실시예 4의 재조합 미생물이 비교예 2의 재조합 미생물과 비교하였을 때 2,3-부탄디올 생산 성능이 가장 개선되었음을 알 수 있었다.
In addition, the recombinant microorganism of Example 2 showed a significant increase in the yield and productivity of 2,3-butanediol as compared with the recombinant microorganism of Comparative Example 2 (K. oxytoca? LdhA? PflB). Also, comparing the recombinant microorganisms of Example 2 and Example 3, it was confirmed that the production performance of 2,3-butanediol was improved even when budA as well as budB were amplified. In addition, comparing the recombinant microorganisms of Example 3 and Example 4, it was confirmed that the production performance of 2,3-butanediol was improved even when budC was amplified. As a result, it was found that 2,3-butanediol production performance was most improved when the recombinant microorganism of Example 4, which amplified all of budABC, was compared with the recombinant microorganism of Comparative Example 2.

그러므로 2,3-부탄디올 생산에 있어서는 부산물 저감을 위한 유전자 pflB 및 ldhA의 제거뿐만 아니라, 클렙시엘라의 아세토락테이트 디카복실실레이즈를 코드하는 유전자, 아세토락테이트 신타제를 코드하는 유전자, 아세토인 리덕타제를 코드하는 유전자의 발현을 증폭하는 것이 매우 중요하다는 것을 확인할 수 있었다(표 5, 도 7 내지 도 10, 도 7: 실시예 1, 도 8: 실시예 2, 도 9: 실시예 3, 도 10: 실시예 4).
Therefore, in the production of 2,3-butanediol, not only the removal of the genes pflB and ldhA for the by-product reduction but also the removal of the genes encoding acetolactate dicarboxylic acidase of Klebsiella, the gene encoding acetolactate synthase, It was confirmed that it is very important to amplify the expression of the gene encoding the reductase gene (Table 5, FIGS. 7 to 10, and 7: Example 1, FIG. 8: Example 2, 10: Example 4).

Figure pat00009
Figure pat00009

<110> gs caltex <120> RECOMBINANT MICROORGANISM HAVING ENHANCED BUTANEDIOL PRODUCING ABILITY AND METHOD FOR PRODUCING BUTANEDIOL USING THE SAME <130> GSP130003 <160> 20 <170> KopatentIn 2.0 <210> 1 <211> 990 <212> DNA <213> Klebsiella oxytoca <400> 1 atgaaaatcg ctgtgtatag tacaaaacag tacgacaaga agtatctgca gcatgttaat 60 gatgcatatg gctttgaact ggagtttttt gacttcctgc taaccgaaaa aaccgccaaa 120 accgccaacg gctgtgaagc ggtgtgtatc ttcgtaaacg atgacggtag ccgcccggta 180 cttgaagaac tgaaagccca cggcgtgcag tacatcgcgc tgcgctgcgc ggggttcaac 240 aacgttgacc tcgatgccgc caaagagctg ggcctgcggg tggtgcgcgt cccggcctac 300 tcgccggaag cggtcgctga gcacgcgatc ggcatgatga tgtcgctgaa ccgccgcatt 360 caccgtgcct atcagcgcac ccgcgacgcg aacttctctc tggaagggct gaccggtttc 420 accatgcacg gtaaaaccgc cggcgttatt ggcaccggta aaatcggcgt cgccgcgctg 480 cgcattctta aaggcttcgg tatgcgtctg ctggcgtttg atccctaccc aagcgccgcc 540 gcgctggata tgggcgtgga gtatgtcgat cttgaaaccc tgtaccggga gtccgatgtt 600 atctcactgc actgcccact gaccgatgaa aactaccatt tgctgaacca tgccgcgttc 660 gatcgcatga aagacggggt gatgatcatc aacaccagcc gcggcgcgct catcgattcg 720 caggcagcga tcgacgccct gaagcatcag aaaattggcg cgctggggat ggacgtgtat 780 gagaacgaac gcgatctgtt ctttgaagat aagtctaatg acgtgattca ggatgatgtg 840 ttccgccgtc tctccgcctg ccataacgtc ctgtttaccg gtcaccaggc gtttctgacc 900 gcggaagcgt tgatcagcat ttcgcaaacc accctcgaca acctgcgtca agtggatgca 960 ggcgaaacct gtcctaacgc actggtctga 990 <210> 2 <211> 595 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 2 atgacgttcg ctaaatcctg cgccgtcatc tcgctgctga tcccgggcac ctccgggcta 60 ctgctgttcg gcaccctggc atcggccagc ccgggacatt tcctgttaat gtggatgagc 120 gccagcctcg gcgctatcgg cggattctgg ctctcgtggc tgacgggcta ccgctaccgg 180 taccatctgc atcgtatccg ctggcttaat gccgaacgcc tcgctcgcgg ccagttgttc 240 ctgcgccgcc acggcgcgtg ggcagtcttt tttagccgct ttctctctcc gcttcgcgcc 300 accgtgccgc tggtaaccgg cgccagcggc acctctctct ggcagtttca gctcgccaac 360 gtcagctccg ggctgctctg gccgctgatc ctgctggcgc caggcgcgtt aagcctcagc 420 ttttgatgaa aggtattgtc ttttaaagag atttcttaac accgcgatat gctctagaat 480 tattactata acctgctgat taaactagtt tttaacattt gtaagattat tttaattatg 540 ctaccgtgac ggtattatca ctggagaaaa gtcttttttc cttgcccttt tgtgc 595 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 3 cacggatcca tgacgttcgc taaatcctgc 30 <210> 4 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 4 gcacaaaagg gcaaggaaaa aagacttttc tccagtgata 40 <210> 5 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 5 tatcactgga gaaaagtctt ttttccttgc ccttttgtgc tcccccttcg cggggggcac 60 attcagataa tccccacaga aattgcctgc gataaagtta caatcccttc atttattaat 120 acgataaata tttatggaga ttaaatgaac aagtatgctg cgctgctggc ggtgggaatg 180 ttgctatcgg gctgcgttta taacagcaag gtgtcgacca gagcggaaca gcttcagcac 240 caccgttttg tgctgaccag cgttaacggg cagccgctga atgccgcgga taagccgcag 300 gagctgagct tcggcgaaaa gatgcccatt acgggcaaga tgtctgtttc aggtaatatg 360 tgcaaccgct tcagcggcac gggcaaagtc tctgacggcg agctgaaggt tgaagagctg 420 gcaatgaccc gcatgctctg cacggactcg cagcttaacg ccctggacgc cacgctgagc 480 aaaatgctgc gcgaaggcgc gcaggtcgac ctgacggaaa cgcagctaac gctggcgacc 540 gccgaccaga cgctggtgta taagctcgcc gacctgatga attaataatt a 591 <210> 6 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 6 tatcactgga gaaaagtctt ttttccttgc ccttttgtgc 40 <210> 7 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 7 cctgcggccg ctaattatta attcatcagg tc 32 <210> 8 <211> 1146 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 8 atgacgttcg ctaaatcctg cgccgtcatc tcgctgctga tcccgggcac ctccgggcta 60 ctgctgttcg gcaccctggc atcggccagc ccgggacatt tcctgttaat gtggatgagc 120 gccagcctcg gcgctatcgg cggattctgg ctctcgtggc tgacgggcta ccgctaccgg 180 taccatctgc atcgtatccg ctggcttaat gccgaacgcc tcgctcgcgg ccagttgttc 240 ctgcgccgcc acggcgcgtg ggcagtcttt tttagccgct ttctctctcc gcttcgcgcc 300 accgtgccgc tggtaaccgg cgccagcggc acctctctct ggcagtttca gctcgccaac 360 gtcagctccg ggctgctctg gccgctgatc ctgctggcgc caggcgcgtt aagcctcagc 420 ttttgatgaa aggtattgtc ttttaaagag atttcttaac accgcgatat gctctagaat 480 tattactata acctgctgat taaactagtt tttaacattt gtaagattat tttaattatg 540 ctaccgtgac ggtattatca ctggagaaaa gtcttttttc cttgcccttt tgtgctcccc 600 cttcgcgggg ggcacattca gataatcccc acagaaattg cctgcgataa agttacaatc 660 ccttcattta ttaatacgat aaatatttat ggagattaaa tgaacaagta tgctgcgctg 720 ctggcggtgg gaatgttgct atcgggctgc gtttataaca gcaaggtgtc gaccagagcg 780 gaacagcttc agcaccaccg ttttgtgctg accagcgtta acgggcagcc gctgaatgcc 840 gcggataagc cgcaggagct gagcttcggc gaaaagatgc ccattacggg caagatgtct 900 gtttcaggta atatgtgcaa ccgcttcagc ggcacgggca aagtctctga cggcgagctg 960 aaggttgaag agctggcaat gacccgcatg ctctgcacgg actcgcagct taacgccctg 1020 gacgccacgc tgagcaaaat gctgcgcgaa ggcgcgcagg tcgacctgac ggaaacgcag 1080 ctaacgctgg cgaccgccga ccagacgctg gtgtataagc tcgccgacct gatgaattaa 1140 taatta 1146 <210> 9 <211> 2283 <212> DNA <213> Klebsiella oxytoca <400> 9 atgtccgagc ttaatgaaaa gttagccaca gcctgggaag gttttgcgaa aggtgactgg 60 cagaacgaag tcaacgtccg cgacttcatc cagaaaaact ataccccgta cgaaggtgac 120 gagtccttcc tggctggcgc aactgacgcg accaccaagc tgtgggacac cgtaatggaa 180 ggcgttaaac aggaaaaccg cactcacgcg cctgttgatt ttgatacttc ccttgcatcc 240 accatcactt ctcatgacgc tggctacatc gagaaaggtc tcgagaaaat cgttggtctg 300 cagactgaag ctccgctgaa acgcgcgatt atcccgttcg gcggcatcaa aatggtcgaa 360 ggttcctgca aagcgtacga tcgcgagctg gacccgatgc tgaagaaaat cttcactgaa 420 taccgtaaaa ctcacaacca gggcgtgttt gacgtttaca ccaaagacat cctgaactgc 480 cgtaaatctg gtgttctgac cggtctgccg gatgcctatg gccgtggtcg tatcatcggt 540 gactaccgtc gcgttgcgct gtacggtatc gacttcctga tgaaagacaa atacgctcag 600 ttcgtttctc tgcaagagaa actggaaaac ggcgaagatc tggaagcaac catccgtctg 660 cgcgaagaaa tctctgaaca gcaccgcgcg ctgggtcaga tcaaagaaat ggcggctaaa 720 tatggctgcg atatctctgg tcctgctacc accgctcagg aagctatcca gtggacctac 780 ttcggttacc tggctgccgt aaaatctcag aacggcgcgg caatgtcctt cggtcgtacc 840 tccagcttcc tggacatctt catcgaacgt gacctgaaag ccggtaaaat caccgagcaa 900 gacgcacagg aaatgattga ccacctggtc atgaaactgc gtatggttcg tttcctgcgt 960 acccctgaat atgatgaact gttctctggc gacccgatct gggcaacaga atctatcggc 1020 ggtatgggcg ttgacggccg tactctggtc accaaaaaca gcttccgttt cctgaacacc 1080 ctgtacacca tggggccgtc tccggagccg aacatcacca ttctgtggtc tgaaaaactg 1140 ccgctgagct tcaaaaaata cgccgcgaaa gtgtccatcg atacctcttc tctgcagtac 1200 gagaacgatg acctgatgcg tcctgacttc aacaacgatg actacgctat cgcttgctgc 1260 gtaagcccga tggttgttgg taagcaaatg cagttcttcg gcgcgcgtgc taacctggcg 1320 aaaaccatgc tgtacgcaat caacggcggc gttgatgaaa aactgaaaat gcaggttggt 1380 cctaaatctg aaccgatcaa aggcgacgtt ctgaacttcg acgaagtgat ggaccgcatg 1440 gatcacttca tggactggct ggctaaacag tacgtcactg cgctgaacat catccactac 1500 atgcacgaca agtacagcta cgaagcttcc ctgatggcgc tgcacgaccg tgatgttatc 1560 cgcaccatgg catgtggtat cgcaggtctt tccgttgcgg ctgactccct gtctgcaatc 1620 aaatatgcga aagttaaacc gattcgtgac gaaaacggtc tggctgtcga cttcgaaatc 1680 gaaggcgaat acccgcagtt tggtaacaac gactctcgcg tcgatgatat ggccgttgac 1740 ctggttgaac gtttcatgaa gaaaattcag aaactgcaca cctaccgcaa cgctatcccg 1800 actcagtccg ttctgaccat cacctctaac gttgtgtatg gtaagaaaac cggcaacacc 1860 cctgacggtc gtcgcgctgg cgctccgttc ggaccaggtg ctaacccgat gcacggccgt 1920 gaccagaaag gcgctgttgc ctctctgacc tccgttgcaa aactgccgtt tgcttacgcg 1980 aaagatggta tttcttacac cttctctatc gtgccgaacg cgctgggtaa agacgacgaa 2040 gttcgtaaaa ctaacctcgc cggcctgatg gatggttact tccaccacga agcgtccatc 2100 gaaggcggtc agcatctgaa cgtcaacgtt atgaaccgcg aaatgctgct cgacgcgatg 2160 gaaaacccgg aaaaatatcc gcagctgacc atccgcgtat ccggctacgc agtacgtttt 2220 aactccctga ctaaagaaca gcagcaggac gttattactc gtaccttcac tcagaccatg 2280 taa 2283 <210> 10 <211> 635 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 10 gggtcaactg gcgaaaaact ggctcaacgt ctatgttggt aacctgattg gttgcttact 60 gtttgtattg ctgatgtggc tttcaggcga atatatgact gccaacggtc aatggggact 120 taacgttctg caaaccgccg accacaaaat gcaccatact tttgttgaag ccgtgtgcct 180 gggtatcctg gcaaacctga tggtctgcct tgcggtatgg atgagttact ccggccgtag 240 cctgatggat aaagccatga ttatggtttt accggtggca atgtttgttg ccagcgggtt 300 tgagcacagt atcgcgaaca tgtttatgat cccgctgggt atcgttatcc gcgactttgc 360 aagcccggaa ttctggaccg cagttggttc aactccggaa agtttctctc acctgaccgt 420 catgaacttc atcactgata acctgattcc ggtaactatc gggaacatca tcggcggtgg 480 tctgctggtt gggttgacat actgggtcat ttacctgcgt ggcgacgacc atcactaagg 540 gttgtttcag gcagtaaata aaaaatccac ttaagaaggt aggtgttaca tgtccgagct 600 taatgaaaag ttacagcagc aggacgttat tactc 635 <210> 11 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 11 atcggatccg ggtcaactgg cgaaaaactg gctcaacgt 39 <210> 12 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 12 gagtaataac gtcctgctgc tgtaactttt cattaagctc ggacat 46 <210> 13 <211> 669 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 13 atgtccgagc ttaatgaaaa gttacagcag caggacgtta ttactcgtac cttcactcag 60 accatgtaat ggtattgact gaaatcgtac agtaaaaagc gtacaataaa ggctccacgc 120 aagtggggcc tttttagcaa tatcatcctg ccccagtctc ttttgtctgc tgtctatact 180 ttatggataa cagccaaaac agactcgaca tagcctttga gctgtgcatc tacataggcc 240 ccggatgggc caaattcgga gatatcaccg caatgtcaac aattggtcgc attcactcct 300 ttgaatcctg tggcaccgtc gatggcccgg ggattcgctt tatcaccttc ttccagggct 360 gcctgatgcg ctgcctctat tgccacaacc gcgatacctg ggatacccac ggcggcaaag 420 agattaccgt tgaagagctg atgaaagagg tggtgaccta tcgccacttt atgaacgctt 480 ccggcggcgg cgtgacggca tccggcggcg aggctatcct gcaggccgaa tttgttcgcg 540 actggttccg cgcctgtaag aaagaaggta ttcatacctg tctcgatacc aacggctttg 600 tgcgccgcta cgatccggtt attgatgaac tgctggaggt caccgacctg gtgatgctcg 660 atctcaagc 669 <210> 14 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 14 atgtccgagc ttaatgaaaa gttacagcag caggacgtta ttactc 46 <210> 15 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 15 actgcggccg cgcttgagat cgagcatcac caggtcggtg a 41 <210> 16 <211> 1258 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 16 gggtcaactg gcgaaaaact ggctcaacgt ctatgttggt aacctgattg gttgcttact 60 gtttgtattg ctgatgtggc tttcaggcga atatatgact gccaacggtc aatggggact 120 taacgttctg caaaccgccg accacaaaat gcaccatact tttgttgaag ccgtgtgcct 180 gggtatcctg gcaaacctga tggtctgcct tgcggtatgg atgagttact ccggccgtag 240 cctgatggat aaagccatga ttatggtttt accggtggca atgtttgttg ccagcgggtt 300 tgagcacagt atcgcgaaca tgtttatgat cccgctgggt atcgttatcc gcgactttgc 360 aagcccggaa ttctggaccg cagttggttc aactccggaa agtttctctc acctgaccgt 420 catgaacttc atcactgata acctgattcc ggtaactatc gggaacatca tcggcggtgg 480 tctgctggtt gggttgacat actgggtcat ttacctgcgt ggcgacgacc atcactaagg 540 gttgtttcag gcagtaaata aaaaatccac ttaagaaggt aggtgttaca tgtccgagct 600 taatgaaaag ttacagcagc aggacgttat tactcgtacc ttcactcaga ccatgtaatg 660 gtattgactg aaatcgtaca gtaaaaagcg tacaataaag gctccacgca agtggggcct 720 ttttagcaat atcatcctgc cccagtctct tttgtctgct gtctatactt tatggataac 780 agccaaaaca gactcgacat agcctttgag ctgtgcatct acataggccc cggatgggcc 840 aaattcggag atatcaccgc aatgtcaaca attggtcgca ttcactcctt tgaatcctgt 900 ggcaccgtcg atggcccggg gattcgcttt atcaccttct tccagggctg cctgatgcgc 960 tgcctctatt gccacaaccg cgatacctgg gatacccacg gcggcaaaga gattaccgtt 1020 gaagagctga tgaaagaggt ggtgacctat cgccacttta tgaacgcttc cggcggcggc 1080 gtgacggcat ccggcggcga ggctatcctg caggccgaat ttgttcgcga ctggttccgc 1140 gcctgtaaga aagaaggtat tcatacctgt ctcgatacca acggctttgt gcgccgctac 1200 gatccggtta ttgatgaact gctggaggtc accgacctgg tgatgctcga tctcaagc 1258 <210> 17 <211> 780 <212> DNA <213> Klebsiella oxytoca <400> 17 atgaaccatt ctgctgaatg ctcttgtgaa gagagcctgt gtgaaactct acgaggattt 60 tccgcgcaac atcccgatag cgtcatctac cagacctctc tgatgagcgc gctgttaagc 120 ggcgtttatg aaggtaatac gaccatcgcc gatttgctca cccacggcga tttcggcctc 180 gggaccttta atgaactgga cggcgagctg atcgcgttta gcagcgaagt ttaccagctg 240 cgcgccgacg gcagcgcccg caaagcccgt atggaacagc gtacgccgtt cgcggtgatg 300 acctggtttc agccgcagta tcgcaaaacg ttcgataaac cggtcagccg tgaacaactg 360 cacgacatca tcgaccagca aattccgtcg gacaatctgt tctgcgccct gcgtattaac 420 ggccattttc gccacgccca tacccgcacg gtaccgcgcc agacgccgcc ataccgggcg 480 atgaccgacg tactcgacga ccagccggtt tttcgcttca accagcgcga gggtgtcctg 540 gttgggttca gaacgccgca gcatatgcag ggcattaacg tggccggcta ccatgaacac 600 ttcatcaccg atgaccgcca gggcggcggc catctgctcg attatcagct cgaccacggc 660 gttctgacct ttggcgagat ccacaaattg atgattgacc ttcctgccga tagcgccttc 720 ctgcaggcgg atctgcatcc agacaatctt gatgccgcca ttcgctcagt cgaaaactaa 780 780 <210> 18 <211> 1680 <212> DNA <213> Klebsiella oxytoca <400> 18 gtggataatc aacatcaacc gcgccagtgg gcgcacggcg ccgacctcat cgtcagccag 60 cttgaggccc agggggtacg ccaggtgttc ggcattccgg gggccaaaat cgataaagtc 120 ttcgattcgc tgctcgactc ctccattcgc attatcccgg tgcgccacga agccaacgcc 180 gcctttatgg ccgccgcggt tggccgcatc accggcaaag cgggcgtcgc gctggtcacg 240 tccggaccgg gctgctctaa cctgattacc gggatggcaa cggccaatag cgaaggcgac 300 ccggtggtgg cgctgggcgg cgcggtaaaa cgcgccgaca aggccaaaca ggtgcaccag 360 agtatggata cggtgacgat gtttagcccg gtgaccaaat actcggtgga agtcaccgcg 420 ccggaagcgc tggcggaagt tgtctccaac gcgtttcgtg cagccgagca gggacgcccc 480 ggcagcgcct tcgtcagcct gccgcaggac gtggtcgacg ggccggtcca cgccagggtt 540 ctgcccgccg gcgatgcgcc gcagaccggc gcggcgccgg acgacgccat tgcgcgagtc 600 gcgaagatga ttgccggcgc gaaaaatccg atatttctgc tcggcctgat ggccagccag 660 acggaaaaca gcgcggcgct gcgcgaattg ctgaaaaaaa gtcatatccc ggtgaccagc 720 acctatcagg ccgccggcgc agtcaatcag gatcacttta cccgcttcgc cggacgggtt 780 ggtctgttca acaaccaggc aggggatcga ctcctgcatc tcgccgacct ggtcatctgc 840 atcggctata gtccggtgga gtacgagccg gccatgtgga ataacggtaa cgccacgctg 900 gtacatatcg acgtgctgcc cgcttacgaa gagcgtaatt ataccccgga cgtcgagctg 960 gtcggcaata tcgccgccac cctgaacaaa ctgtctcaac gcatcgacca ccagctggtg 1020 ctctcgccgc aggccgccga gatccttgtc gaccgccagc atcagcggga gctcctcgac 1080 cgccgcggtg cgcacctgaa ccagttcgcg cttcatccgc tgcgcatcgt tcgcgccatg 1140 caggacatcg tcaatagcga tgtcaccctg accgtcgata tggggagctt tcatatctgg 1200 atcgcccgct atctctacag ctttcgcgcc cgtcaggtca tgatttccaa cggtcaacag 1260 accatgggcg tggcgctgcc gtgggcgatt ggcgcctggc tggtcaatcc gcagcgcaaa 1320 gtggtttccg tttccggcga cggcggtttc ctgcagtcca gcatggagct ggagaccgct 1380 gtacggctga aagcgaacgt cctgcatatc atctgggtcg ataacggcta caacatggtg 1440 gcgattcagg aggagaaaaa ataccagcgg ctctccggcg ttgagttcgg cccggtggat 1500 tttaaagtct acgccgaagc cttcggcgcc aaagggtttg cggtagagag cgccgaagcc 1560 cttgagccga cgctgcgggc ggcgatggac gtcgacggcc ccgccgtcgt agccatcccc 1620 gtggattacc gcgataaccc gctgctgatg ggccagctcc atctcagtca actactttga 1680 1680 <210> 19 <211> 771 <212> DNA <213> Klebsiella oxytoca <400> 19 atgaaaaaag tcgcactcgt caccggcgcg ggccagggta tcggtaaagc tatcgccctt 60 cgtctggtga aagatggttt tgccgtggct atcgccgatt ataacgacgc caccgcgcag 120 gcggtcgctg atgaaattaa ccgcagcggc ggccgggcgc tagcggtgaa ggtggatgtg 180 tctcaacgcg atcaggtttt tgccgccgtc gaacaggcgc gcaagggtct cggcggtttt 240 gacgtgatcg tcaacaacgc cggggttgcg ccctccacac caatcgaaga gattcgcgag 300 gaggtgatcg ataaagtcta caatatcaac gttaaaggcg ttatctgggg catccaggcc 360 gcggtagagg cgtttaaaaa agagggccac ggcggcaaaa ttatcaacgc ctgctcccag 420 gcgggccatg taggtaaccc ggagctggcg gtctatagct ccagtaaatt tgccgtgcgc 480 ggcctgacgc aaaccgccgc ccgcgatctg gcgcatctgg ggattaccgt aaacggctac 540 tgcccgggga tcgtcaaaac cccaatgtgg gcggaaattg accgccaggt ttccgaagcg 600 gcgggtaaac cgctgggcta cggaacccag gagttcgcca aacgcattac ccttgggcgg 660 ctatccgagc cggaagacgt cgcagcctgc gtctcttatc tcgccggtcc ggactccaat 720 tatatgaccg gccaatcgct gctgatcgat ggcggcatgg tatttaacta a 771 <210> 20 <211> 873 <212> DNA <213> Klebsiella oxytoca <400> 20 atggaacttc gttatctgcg ctacttcgtc gccgtcgccg aggcgcggca cttcactaaa 60 gcggcaaaag aacttggtat ctcccagcca ccgctaagtc agcaaattca acggcttgaa 120 agagaaattg gcacaccgct tttccgccga ttaacgcggg gcgtcgagct gacggaagcg 180 ggggagtcgt tttatgagga tgcttgccag attctggcgt taagcgacgc ggcgctggaa 240 aaaaccaagg gaattgcccg cgggctgaac ggtcggctct cgctgggcat taccagctct 300 gatgcttttc atccgcaaat ctttagcctg ttacagcagt ttcagcagag ttatccgggg 360 gtgacgttgc atcaggtcga aggcaatatg gcgacgctga tgggggcgct tggcgaagcg 420 gagctggata ttgcttttgt acgcctgccc tgcgagagca gtaaagcgtt caatctgcgg 480 attatcgatc aagaaccgat ggtgattgcc ctggcgcgtt cgcacccgct atcgtcccac 540 cgcgagctga cgctggagca actgacggac gtggcgccga ttcttttccc gcgtgaagtg 600 gcccctggcc tgtatgagct ggtgttcaac agctatctgc gcgccggtgt tgacgtgcag 660 cgagcctatc agtcatcgca aatatcatcg tcgctcagca tggtggaggc tggcttcggc 720 tttgcgctgg tgccgcagtc gatgacctgc atcacgctcc ccaacgtgag ctatcacccg 780 ctgatgggta caccgctgaa aaccgatatc gctatcgcct ggcggcgcta cgagcgctcg 840 cgcacggtga agcgttttct ggccatgttt taa 873 <110> gs caltex <120> RECOMBINANT MICROORGANISM HAVING ENHANCED BUTANEDIOL PRODUCING          ABILITY AND METHOD FOR PRODUCING BUTANEDIOL USING THE SAME <130> GSP130003 <160> 20 <170> Kopatentin 2.0 <210> 1 <211> 990 <212> DNA <213> Klebsiella oxytoca <400> 1 atgaaaatcg ctgtgtatag tacaaaacag tacgacaaga agtatctgca gcatgttaat 60 gatgcatatg gctttgaact ggagtttttt gacttcctgc taaccgaaaa aaccgccaaa 120 accgccaacg gctgtgaagc ggtgtgtatc ttcgtaaacg atgacggtag ccgcccggta 180 cttgaagaac tgaaagccca cggcgtgcag tacatcgcgc tgcgctgcgc ggggttcaac 240 aacgttgacc tcgatgccgc caaagagctg ggcctgcggg tggtgcgcgt cccggcctac 300 tcgccggaag cggtcgctga gcacgcgatc ggcatgatga tgtcgctgaa ccgccgcatt 360 caccgtgcct atcagcgcac ccgcgacgcg aacttctctc tggaagggct gaccggtttc 420 accatgcacg gtaaaaccgc cggcgttatt ggcaccggta aaatcggcgt cgccgcgctg 480 cgcattctta aaggcttcgg tatgcgtctg ctggcgtttg atccctaccc aagcgccgcc 540 gcgctggata tgggcgtgga gtatgtcgat cttgaaaccc tgtaccggga gtccgatgtt 600 atctcactgc actgcccact gaccgatgaa aactaccatt tgctgaacca tgccgcgttc 660 gatcgcatga aagacggggt gatgatcatc aacaccagcc gcggcgcgct catcgattcg 720 caggcagcga tcgacgccct gaagcatcag aaaattggcg cgctggggat ggacgtgtat 780 gagaacgaac gcgatctgtt ctttgaagat aagtctaatg acgtgattca ggatgatgtg 840 ttccgccgtc tctccgcctg ccataacgtc ctgtttaccg gtcaccaggc gtttctgacc 900 gcggaagcgt tgatcagcat ttcgcaaacc accctcgaca acctgcgtca agtggatgca 960 ggcgaaacct gtcctaacgc actggtctga 990 <210> 2 <211> 595 <212> DNA <213> Artificial Sequence <220> Artificial sequence <400> 2 atgacgttcg ctaaatcctg cgccgtcatc tcgctgctga tcccgggcac ctccgggcta 60 ctgctgttcg gcaccctggc atcggccagc ccgggacatt tcctgttaat gtggatgagc 120 gccagcctcg gcgctatcgg cggattctgg ctctcgtggc tgacgggcta ccgctaccgg 180 taccatctgc atcgtatccg ctggcttaat gccgaacgcc tcgctcgcgg ccagttgttc 240 ctgcgccgcc acggcgcgtg ggcagtcttt tttagccgct ttctctctcc gcttcgcgcc 300 accgtgccgc tggtaaccgg cgccagcggc acctctctct ggcagtttca gctcgccaac 360 gtcagctccg ggctgctctg gccgctgatc ctgctggcgc caggcgcgtt aagcctcagc 420 ttttgatgaa aggtattgtc ttttaaagag atttcttaac accgcgatat gctctagaat 480 tattactata acctgctgat taaactagtt tttaacattt gtaagattat tttaattatg 540 ctaccgtgac ggtattatca ctggagaaaa gtcttttttc cttgcccttt tgtgc 595 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> Artificial sequence <400> 3 cacggatcca tgacgttcgc taaatcctgc 30 <210> 4 <211> 40 <212> DNA <213> Artificial Sequence <220> Artificial sequence <400> 4 gcacaaaagg gcaaggaaaa aagacttttc tccagtgata 40 <210> 5 <211> 591 <212> DNA <213> Artificial Sequence <220> Artificial sequence <400> 5 tatcactgga gaaaagtctt ttttccttgc ccttttgtgc tcccccttcg cggggggcac 60 attcagataa tccccacaga aattgcctgc gataaagtta caatcccttc atttattaat 120 acgataaata tttatggaga ttaaatgaac aagtatgctg cgctgctggc ggtgggaatg 180 ttgctatcgg gctgcgttta taacagcaag gtgtcgacca gagcggaaca gcttcagcac 240 caccgttttg tgctgaccag cgttaacggg cagccgctga atgccgcgga taagccgcag 300 gagctgagct tcggcgaaaa gatgcccatt acgggcaaga tgtctgtttc aggtaatatg 360 tgcaaccgct tcagcggcac gggcaaagtc tctgacggcg agctgaaggt tgaagagctg 420 gcaatgaccc gcatgctctg cacggactcg cagcttaacg ccctggacgc cacgctgagc 480 aaaatgctgc gcgaaggcgc gcaggtcgac ctgacggaaa cgcagctaac gctggcgacc 540 gccgaccaga cgctggtgta taagctcgcc gacctgatga attaataatt a 591 <210> 6 <211> 40 <212> DNA <213> Artificial Sequence <220> Artificial sequence <400> 6 tatcactgga gaaaagtctt ttttccttgc ccttttgtgc 40 <210> 7 <211> 32 <212> DNA <213> Artificial Sequence <220> Artificial sequence <400> 7 cctgcggccg ctaattatta attcatcagg tc 32 <210> 8 <211> 1146 <212> DNA <213> Artificial Sequence <220> Artificial sequence <400> 8 atgacgttcg ctaaatcctg cgccgtcatc tcgctgctga tcccgggcac ctccgggcta 60 ctgctgttcg gcaccctggc atcggccagc ccgggacatt tcctgttaat gtggatgagc 120 gccagcctcg gcgctatcgg cggattctgg ctctcgtggc tgacgggcta ccgctaccgg 180 taccatctgc atcgtatccg ctggcttaat gccgaacgcc tcgctcgcgg ccagttgttc 240 ctgcgccgcc acggcgcgtg ggcagtcttt tttagccgct ttctctctcc gcttcgcgcc 300 accgtgccgc tggtaaccgg cgccagcggc acctctctct ggcagtttca gctcgccaac 360 gtcagctccg ggctgctctg gccgctgatc ctgctggcgc caggcgcgtt aagcctcagc 420 ttttgatgaa aggtattgtc ttttaaagag atttcttaac accgcgatat gctctagaat 480 tattactata acctgctgat taaactagtt tttaacattt gtaagattat tttaattatg 540 ctaccgtgac ggtattatca ctggagaaaa gtcttttttc cttgcccttt tgtgctcccc 600 cttcgcgggg ggcacattca gataatcccc acagaaattg cctgcgataa agttacaatc 660 ccttcattta ttaatacgat aaatatttat ggagattaaa tgaacaagta tgctgcgctg 720 ctggcggtgg gaatgttgct atcgggctgc gtttataaca gcaaggtgtc gaccagagcg 780 gaacagcttc agcaccaccg ttttgtgctg accagcgtta acgggcagcc gctgaatgcc 840 gcggataagc cgcaggagct gagcttcggc gaaaagatgc ccattacggg caagatgtct 900 gtttcaggta atatgtgcaa ccgcttcagc ggcacgggca aagtctctga cggcgagctg 960 aaggttgaag agctggcaat gacccgcatg ctctgcacgg actcgcagct taacgccctg 1020 gacgccacgc tgagcaaaat gctgcgcgaa ggcgcgcagg tcgacctgac ggaaacgcag 1080 ctaacgctgg cgaccgccga ccagacgctg gtgtataagc tcgccgacct gatgaattaa 1140 taatta 1146 <210> 9 <211> 2283 <212> DNA <213> Klebsiella oxytoca <400> 9 atgtccgagc ttaatgaaaa gttagccaca gcctgggaag gttttgcgaa aggtgactgg 60 cagaacgaag tcaacgtccg cgacttcatc cagaaaaact ataccccgta cgaaggtgac 120 gagtccttcc tggctggcgc aactgacgcg accaccaagc tgtgggacac cgtaatggaa 180 ggcgttaaac aggaaaaccg cactcacgcg cctgttgatt ttgatacttc ccttgcatcc 240 accatcactt ctcatgacgc tggctacatc gagaaaggtc tcgagaaaat cgttggtctg 300 cagactgaag ctccgctgaa acgcgcgatt atcccgttcg gcggcatcaa aatggtcgaa 360 ggttcctgca aagcgtacga tcgcgagctg gacccgatgc tgaagaaaat cttcactgaa 420 taccgtaaaa ctcacaacca gggcgtgttt gacgtttaca ccaaagacat cctgaactgc 480 cgtaaatctg gtgttctgac cggtctgccg gatgcctatg gccgtggtcg tatcatcggt 540 gactaccgtc gcgttgcgct gtacggtatc gacttcctga tgaaagacaa atacgctcag 600 ttcgtttctc tgcaagagaa actggaaaac ggcgaagatc tggaagcaac catccgtctg 660 cgcgaagaaa tctctgaaca gcaccgcgcg ctgggtcaga tcaaagaaat ggcggctaaa 720 tatggctgcg atatctctgg tcctgctacc accgctcagg aagctatcca gtggacctac 780 ttcggttacc tggctgccgt aaaatctcag aacggcgcgg caatgtcctt cggtcgtacc 840 tccagcttcc tggacatctt catcgaacgt gacctgaaag ccggtaaaat caccgagcaa 900 gacgcacagg aaatgattga ccacctggtc atgaaactgc gtatggttcg tttcctgcgt 960 acccctgaat atgatgaact gttctctggc gacccgatct gggcaacaga atctatcggc 1020 ggtatgggcg ttgacggccg tactctggtc accaaaaaca gcttccgttt cctgaacacc 1080 ctgtacacca tggggccgtc tccggagccg aacatcacca ttctgtggtc tgaaaaactg 1140 ccgctgagct tcaaaaaata cgccgcgaaa gtgtccatcg atacctcttc tctgcagtac 1200 gagaacgatg acctgatgcg tcctgacttc aacaacgatg actacgctat cgcttgctgc 1260 gtaagcccga tggttgttgg taagcaaatg cagttcttcg gcgcgcgtgc taacctggcg 1320 aaaaccatgc tgtacgcaat caacggcggc gttgatgaaa aactgaaaat gcaggttggt 1380 cctaaatctg aaccgatcaa aggcgacgtt ctgaacttcg acgaagtgat ggaccgcatg 1440 gatcacttca tggactggct ggctaaacag tacgtcactg cgctgaacat catccactac 1500 atgcacgaca agtacagcta cgaagcttcc ctgatggcgc tgcacgaccg tgatgttatc 1560 cgcaccatgg catgtggtat cgcaggtctt tccgttgcgg ctgactccct gtctgcaatc 1620 aaatatgcga aagttaaacc gattcgtgac gaaaacggtc tggctgtcga cttcgaaatc 1680 gaaggcgaat acccgcagtt tggtaacaac gactctcgcg tcgatgatat ggccgttgac 1740 ctggttgaac gtttcatgaa gaaaattcag aaactgcaca cctaccgcaa cgctatcccg 1800 actcagtccg ttctgaccat cacctctaac gttgtgtatg gtaagaaaac cggcaacacc 1860 cctgacggtc gtcgcgctgg cgctccgttc ggaccaggtg ctaacccgat gcacggccgt 1920 gaccagaaag gcgctgttgc ctctctgacc tccgttgcaa aactgccgtt tgcttacgcg 1980 aaagatggta tttcttacac cttctctatc gtgccgaacg cgctgggtaa agacgacgaa 2040 gttcgtaaaa ctaacctcgc cggcctgatg gatggttact tccaccacga agcgtccatc 2100 gaaggcggtc agcatctgaa cgtcaacgtt atgaaccgcg aaatgctgct cgacgcgatg 2160 gaaaacccgg aaaaatatcc gcagctgacc atccgcgtat ccggctacgc agtacgtttt 2220 aactccctga ctaaagaaca gcagcaggac gttattactc gtaccttcac tcagaccatg 2280 taa 2283 <210> 10 <211> 635 <212> DNA <213> Artificial Sequence <220> Artificial sequence <400> 10 gggtcaactg gcgaaaaact ggctcaacgt ctatgttggt aacctgattg gttgcttact 60 gtttgtattg ctgatgtggc tttcaggcga atatatgact gccaacggtc aatggggact 120 taacgttctg caaaccgccg accacaaaat gcaccatact tttgttgaag ccgtgtgcct 180 gggtatcctg gcaaacctga tggtctgcct tgcggtatgg atgagttact ccggccgtag 240 cctgatggat aaagccatga ttatggtttt accggtggca atgtttgttg ccagcgggtt 300 tgagcacagt atcgcgaaca tgtttatgat cccgctgggt atcgttatcc gcgactttgc 360 aagcccggaa ttctggaccg cagttggttc aactccggaa agtttctctc acctgaccgt 420 catgaacttc atcactgata acctgattcc ggtaactatc gggaacatca tcggcggtgg 480 tctgctggtt gggttgacat actgggtcat ttacctgcgt ggcgacgacc atcactaagg 540 gttgtttcag gcagtaaata aaaaatccac ttaagaaggt aggtgttaca tgtccgagct 600 taatgaaaag ttacagcagc aggacgttat tactc 635 <210> 11 <211> 39 <212> DNA <213> Artificial Sequence <220> Artificial sequence <400> 11 atcggatccg ggtcaactgg cgaaaaactg gctcaacgt 39 <210> 12 <211> 46 <212> DNA <213> Artificial Sequence <220> Artificial sequence <400> 12 ggtaataac gtcctgctgc tgtaactttt cattaagctc ggacat 46 <210> 13 <211> 669 <212> DNA <213> Artificial Sequence <220> Artificial sequence <400> 13 atgtccgagc ttaatgaaaa gttacagcag caggacgtta ttactcgtac cttcactcag 60 accatgtaat ggtattgact gaaatcgtac agtaaaaagc gtacaataaa ggctccacgc 120 aagtggggcc tttttagcaa tatcatcctg ccccagtctc ttttgtctgc tgtctatact 180 ttatggataa cagccaaaac agactcgaca tagcctttga gctgtgcatc tacataggcc 240 ccggatgggc caaattcgga gatatcaccg caatgtcaac aattggtcgc attcactcct 300 ttgaatcctg tggcaccgtc gatggcccgg ggattcgctt tatcaccttc ttccagggct 360 gcctgatgcg ctgcctctat tgccacaacc gcgatacctg ggatacccac ggcggcaaag 420 agattaccgt tgaagagctg atgaaagagg tggtgaccta tcgccacttt atgaacgctt 480 ccggcggcgg cgtgacggca tccggcggcg aggctatcct gcaggccgaa tttgttcgcg 540 actggttccg cgcctgtaag aaagaaggta ttcatacctg tctcgatacc aacggctttg 600 tgcgccgcta cgatccggtt attgatgaac tgctggaggt caccgacctg gtgatgctcg 660 atctcaagc 669 <210> 14 <211> 46 <212> DNA <213> Artificial Sequence <220> Artificial sequence <400> 14 atgtccgagc ttaatgaaaa gttacagcag caggacgtta ttactc 46 <210> 15 <211> 41 <212> DNA <213> Artificial Sequence <220> Artificial sequence <400> 15 actgcggccg cgcttgagat cgagcatcac caggtcggtg a 41 <210> 16 <211> 1258 <212> DNA <213> Artificial Sequence <220> Artificial sequence <400> 16 gggtcaactg gcgaaaaact ggctcaacgt ctatgttggt aacctgattg gttgcttact 60 gtttgtattg ctgatgtggc tttcaggcga atatatgact gccaacggtc aatggggact 120 taacgttctg caaaccgccg accacaaaat gcaccatact tttgttgaag ccgtgtgcct 180 gggtatcctg gcaaacctga tggtctgcct tgcggtatgg atgagttact ccggccgtag 240 cctgatggat aaagccatga ttatggtttt accggtggca atgtttgttg ccagcgggtt 300 tgagcacagt atcgcgaaca tgtttatgat cccgctgggt atcgttatcc gcgactttgc 360 aagcccggaa ttctggaccg cagttggttc aactccggaa agtttctctc acctgaccgt 420 catgaacttc atcactgata acctgattcc ggtaactatc gggaacatca tcggcggtgg 480 tctgctggtt gggttgacat actgggtcat ttacctgcgt ggcgacgacc atcactaagg 540 gttgtttcag gcagtaaata aaaaatccac ttaagaaggt aggtgttaca tgtccgagct 600 taatgaaaag ttacagcagc aggacgttat tactcgtacc ttcactcaga ccatgtaatg 660 gtattgactg aaatcgtaca gtaaaaagcg tacaataaag gctccacgca agtggggcct 720 ttttagcaat atcatcctgc cccagtctct tttgtctgct gtctatactt tatggataac 780 agccaaaaca gactcgacat agcctttgag ctgtgcatct acataggccc cggatgggcc 840 aaattcggag atatcaccgc aatgtcaaca attggtcgca ttcactcctt tgaatcctgt 900 ggcaccgtcg atggcccggg gattcgcttt atcaccttct tccagggctg cctgatgcgc 960 tgcctctatt gccacaaccg cgatacctgg gatacccacg gcggcaaaga gattaccgtt 1020 gaagagctga tgaaagaggt ggtgacctat cgccacttta tgaacgcttc cggcggcggc 1080 gtgacggcat ccggcggcga ggctatcctg caggccgaat ttgttcgcga ctggttccgc 1140 gcctgtaaga aagaaggtat tcatacctgt ctcgatacca acggctttgt gcgccgctac 1200 gatccggtta ttgatgaact gctggaggtc accgacctgg tgatgctcga tctcaagc 1258 <210> 17 <211> 780 <212> DNA <213> Klebsiella oxytoca <400> 17 atgaaccatt ctgctgaatg ctcttgtgaa gagagcctgt gtgaaactct acgaggattt 60 tccgcgcaac atcccgatag cgtcatctac cagacctctc tgatgagcgc gctgttaagc 120 ggcgtttatg aaggtaatac gaccatcgcc gatttgctca cccacggcga tttcggcctc 180 gggaccttta atgaactgga cggcgagctg atcgcgttta gcagcgaagt ttaccagctg 240 cgcgccgacg gcagcgcccg caaagcccgt atggaacagc gtacgccgtt cgcggtgatg 300 acctggtttc agccgcagta tcgcaaaacg ttcgataaac cggtcagccg tgaacaactg 360 cacgacatca tcgaccagca aattccgtcg gacaatctgt tctgcgccct gcgtattaac 420 ggccattttc gccacgccca tacccgcacg gtaccgcgcc agacgccgcc ataccgggcg 480 atgaccgacg tactcgacga ccagccggtt tttcgcttca accagcgcga gggtgtcctg 540 gttgggttca gaacgccgca gcatatgcag ggcattaacg tggccggcta ccatgaacac 600 ttcatcaccg atgaccgcca gggcggcggc catctgctcg attatcagct cgaccacggc 660 gttctgacct ttggcgagat ccacaaattg atgattgacc ttcctgccga tagcgccttc 720 ctgcaggcgg atctgcatcc agacaatctt gatgccgcca ttcgctcagt cgaaaactaa 780                                                                          780 <210> 18 <211> 1680 <212> DNA <213> Klebsiella oxytoca <400> 18 gtggataatc aacatcaacc gcgccagtgg gcgcacggcg ccgacctcat cgtcagccag 60 cttgaggccc agggggtacg ccaggtgttc ggcattccgg gggccaaaat cgataaagtc 120 ttcgattcgc tgctcgactc ctccattcgc attatcccgg tgcgccacga agccaacgcc 180 gcctttatgg ccgccgcggt tggccgcatc accggcaaag cgggcgtcgc gctggtcacg 240 tccggaccgg gctgctctaa cctgattacc gggatggcaa cggccaatag cgaaggcgac 300 ccggtggtgg cgctgggcgg cgcggtaaaa cgcgccgaca aggccaaaca ggtgcaccag 360 agtatggata cggtgacgat gtttagcccg gtgaccaaat actcggtgga agtcaccgcg 420 ccggaagcgc tggcggaagt tgtctccaac gcgtttcgtg cagccgagca gggacgcccc 480 ggcagcgcct tcgtcagcct gccgcaggac gtggtcgacg ggccggtcca cgccagggtt 540 ctgcccgccg gcgatgcgcc gcagaccggc gcggcgccgg acgacgccat tgcgcgagtc 600 gcgaagatga ttgccggcgc gaaaaatccg atatttctgc tcggcctgat ggccagccag 660 acggaaaaca gcgcggcgct gcgcgaattg ctgaaaaaaa gtcatatccc ggtgaccagc 720 acctatcagg ccgccggcgc agtcaatcag gatcacttta cccgcttcgc cggacgggtt 780 ggtctgttca acaaccaggc aggggatcga ctcctgcatc tcgccgacct ggtcatctgc 840 atcggctata gtccggtgga gtacgagccg gccatgtgga ataacggtaa cgccacgctg 900 gtacatatcg acgtgctgcc cgcttacgaa gagcgtaatt ataccccgga cgtcgagctg 960 gtcggcaata tcgccgccac cctgaacaaa ctgtctcaac gcatcgacca ccagctggtg 1020 ctctcgccgc aggccgccga gatccttgtc gaccgccagc atcagcggga gctcctcgac 1080 cgccgcggtg cgcacctgaa ccagttcgcg cttcatccgc tgcgcatcgt tcgcgccatg 1140 caggacatcg tcaatagcga tgtcaccctg accgtcgata tggggagctt tcatatctgg 1200 atcgcccgct atctctacag ctttcgcgcc cgtcaggtca tgatttccaa cggtcaacag 1260 accatgggcg tggcgctgcc gtgggcgatt ggcgcctggc tggtcaatcc gcagcgcaaa 1320 gtggtttccg tttccggcga cggcggtttc ctgcagtcca gcatggagct ggagaccgct 1380 gtacggctga aagcgaacgt cctgcatatc atctgggtcg ataacggcta caacatggtg 1440 gcgattcagg aggagaaaaa ataccagcgg ctctccggcg ttgagttcgg cccggtggat 1500 tttaaagtct acgccgaagc cttcggcgcc aaagggtttg cggtagagag cgccgaagcc 1560 cttgagccga cgctgcgggc ggcgatggac gtcgacggcc ccgccgtcgt agccatcccc 1620 gtggattacc gcgataaccc gctgctgatg ggccagctcc atctcagtca actactttga 1680                                                                         1680 <210> 19 <211> 771 <212> DNA <213> Klebsiella oxytoca <400> 19 atgaaaaaag tcgcactcgt caccggcgcg ggccagggta tcggtaaagc tatcgccctt 60 cgtctggtga aagatggttt tgccgtggct atcgccgatt ataacgacgc caccgcgcag 120 gcggtcgctg atgaaattaa ccgcagcggc ggccgggcgc tagcggtgaa ggtggatgtg 180 tctcaacgcg atcaggtttt tgccgccgtc gaacaggcgc gcaagggtct cggcggtttt 240 gacgtgatcg tcaacaacgc cggggttgcg ccctccacac caatcgaaga gattcgcgag 300 gaggtgatcg ataaagtcta caatatcaac gttaaaggcg ttatctgggg catccaggcc 360 gcggtagagg cgtttaaaaa agagggccac ggcggcaaaa ttatcaacgc ctgctcccag 420 gcgggccatg taggtaaccc ggagctggcg gtctatagct ccagtaaatt tgccgtgcgc 480 ggcctgacgc aaaccgccgc ccgcgatctg gcgcatctgg ggattaccgt aaacggctac 540 tgcccgggga tcgtcaaaac cccaatgtgg gcggaaattg accgccaggt ttccgaagcg 600 gcgggtaaac cgctgggcta cggaacccag gagttcgcca aacgcattac ccttgggcgg 660 ctatccgagc cggaagacgt cgcagcctgc gtctcttatc tcgccggtcc ggactccaat 720 tatatgaccg gccaatcgct gctgatcgat ggcggcatgg tatttaacta a 771 <210> 20 <211> 873 <212> DNA <213> Klebsiella oxytoca <400> 20 atggaacttc gttatctgcg ctacttcgtc gccgtcgccg aggcgcggca cttcactaaa 60 gcggcaaaag aacttggtat ctcccagcca ccgctaagtc agcaaattca acggcttgaa 120 agagaaattg gcacaccgct tttccgccga ttaacgcggg gcgtcgagct gacggaagcg 180 ggggagtcgt tttatgagga tgcttgccag attctggcgt taagcgacgc ggcgctggaa 240 aaaaccaagg gaattgcccg cgggctgaac ggtcggctct cgctgggcat taccagctct 300 gatgcttttc atccgcaaat ctttagcctg ttacagcagt ttcagcagag ttatccgggg 360 gtgacgttgc atcaggtcga aggcaatatg gcgacgctga tgggggcgct tggcgaagcg 420 gagctggata ttgcttttgt acgcctgccc tgcgagagca gtaaagcgtt caatctgcgg 480 attatcgatc aagaaccgat ggtgattgcc ctggcgcgtt cgcacccgct atcgtcccac 540 cgcgagctga cgctggagca actgacggac gtggcgccga ttcttttccc gcgtgaagtg 600 gcccctggcc tgtatgagct ggtgttcaac agctatctgc gcgccggtgt tgacgtgcag 660 cgagcctatc agtcatcgca aatatcatcg tcgctcagca tggtggaggc tggcttcggc 720 tttgcgctgg tgccgcagtc gatgacctgc atcacgctcc ccaacgtgag ctatcacccg 780 ctgatgggta caccgctgaa aaccgatatc gctatcgcct ggcggcgcta cgagcgctcg 840 cgcacggtga agcgttttct ggccatgttt taa 873

Claims (16)

2,3-부탄디올 생산 미생물에 있어서,
피루베이트를 알파-아세토락테이트로 전환하는 경로, 알파-아세토락테이트를 아세토인으로 전환하는 경로 또는 아세토인을 2,3-부탄디올로 전환하는 경로가 촉진된,
2,3-부탄디올 생산용 재조합 미생물.
In the 2,3-butanediol producing microorganism,
A pathway for converting pyruvate to alpha-acetolactate, a pathway for converting alpha-acetolactate to acetone, or a pathway for converting acetone to 2,3-butanediol,
Recombinant microorganism for producing 2,3-butanediol.
제 1항에 있어서,
아세토락테이트 신타제의 활성이 증가함으로써 피루베이트를 알파-아세토락테이트로 전환하는 경로가 촉진되는 것을 특징으로 하는 재조합 미생물.
The method according to claim 1,
Wherein the activity of acetolactate synthase is increased to promote the pathway for converting pyruvate to alpha-acetolactate.
제 1항에 있어서,
아세토락테이트 신타제를 코드하는 유전자인 budB의 발현이 증가함으로써 피루베이트를 알파-아세토락테이트로 전환하는 경로가 촉진되는 것을 특징으로 하는 재조합 미생물.
The method according to claim 1,
Wherein the pathway for converting pyruvate to alpha-acetolactate is promoted by increasing the expression of budB, a gene encoding acetolactate synthase.
제 1항에 있어서,
아세토락테이트 디카복실실레이즈의 활성이 증가함으로써 알파-아세토락테이트를 아세토인으로 전환하는 경로가 촉진되는 것을 특징으로 하는 재조합 미생물.
The method according to claim 1,
Wherein the activity of acetolactate dicarboxylic silage is increased so that a pathway for converting alpha-acetolactate to acetone is promoted.
제 1항에 있어서,
아세토락테이트 디카복실실레이즈를 코드하는 유전자인 budA의 발현이 증가함으로써 아세토락테이트를 아세토인으로 전환하는 경로가 촉진되는 것을 특징으로 하는 재조합 미생물.
The method according to claim 1,
Wherein the pathway for converting acetolactate to acetone is promoted by increasing the expression of budA, a gene encoding acetolactate dicarboxylic silage.
제 1항에 있어서,
아세토인 리덕타제의 활성이 증가함으로써 아세토인을 2,3-부탄디올로 전환하는 경로가 촉진되는 것을 특징으로 하는 재조합 미생물.
The method according to claim 1,
Wherein the pathway for converting acetone to 2,3-butanediol is promoted by increasing the activity of the acetyl reductase.
제 1항에 있어서,
아세토인 리덕타제를 코드하는 유전자인 budC의 발현이 증가함으로써 아세토인을 2,3-부탄디올로 전환하는 경로가 촉진되는 것을 특징으로 하는 재조합 미생물.
The method according to claim 1,
Wherein the expression of budC which is a gene encoding an acetylin reductase is increased so that a pathway for converting acetone to 2,3-butanediol is promoted.
제 1항에 있어서,
피루베이트를 아세틸 코에이로 전환하는 경로, 피루베이트를 포름산으로 전환하는 경로 또는 피루베이트를 락테이트로 전환하는 경로가 억제되는 것을 특징으로 하는 재조합 미생물.
The method according to claim 1,
Wherein the pathway for converting pyruvate to acetyl koide, the pathway for converting pyruvate to formic acid, or the pathway for converting pyruvate to lactate is inhibited.
제 8항에 있어서,
피루베이트-포르메이트 리아제가 억제됨으로써 피루베이트를 아세틸 코에이로 전환하는 경로 또는 피루베이트를 포름산으로 전환하는 경로가 억제되는 것을 특징으로 하는 재조합 미생물.
9. The method of claim 8,
Wherein the pathway for converting pyruvate into acetyl koi or the pathway for converting pyruvate to formic acid is inhibited by suppressing pyruvate-formate lyase.
제 8항에 있어서,
락테이트 디하이드로게나제가 억제됨으로써 피루베이트를 락테이트로 전환하는 경로가 억제되는 것을 특징으로 하는 재조합 미생물.
9. The method of claim 8,
Wherein the pathway for converting pyruvate to lactate is inhibited by inhibiting lactate dehydrogenase.
제 8항에 있어서,
피루베이트-포르메이트 리아제를 코드하는 유전자인 pflB 및 락테이트 디하이드로게나제를 코드하는 유전자인 ldhA 중 어느 하나 이상이 결실 또는 억제되는 것을 특징으로 하는 재조합 미생물.
9. The method of claim 8,
Wherein at least one of pflB, which is a gene encoding pyruvate-formate lyase, and ldhA, which is a gene encoding lactate dehydrogenase, is deleted or suppressed.
제 1항에 있어서,
상기 재조합 미생물은 클렙시엘라인 것을 특징으로 하는 재조합 미생물.
The method according to claim 1,
Wherein the recombinant microorganism is Klebsielline.
제 1항에 있어서,
상기 재조합 미생물은 클렙시엘라 옥시토카인 것을 특징으로 하는 재조합 미생물.
The method according to claim 1,
Wherein the recombinant microorganism is Klebsiella oxytocina.
제 1항에 있어서,
상기 재조합 미생물은 2,3-부탄디올의 생산성이 락테이트의 생산성보다 높은 것을 특징으로 하는 재조합 미생물.
The method according to claim 1,
Wherein the recombinant microorganism is characterized in that the productivity of 2,3-butanediol is higher than that of lactate.
제 1항에 있어서,
아세토락테이트 신타제를 코드하는 유전자인 budB, 아세토락테이트 디카복실실레이즈를 코드하는 유전자인 budA 및 아세토인 리덕타제를 코드하는 유전자인 budC로 구성되는 군으로부터 선택되는 둘 이상의 유전자의 발현이 증가되는 것을 특징으로 하는 재조합 미생물.
The method according to claim 1,
The expression of two or more genes selected from the group consisting of budB, which is a gene encoding acetolactate synthase, budA, which is a gene encoding acetolactate dicarboxylic silage, and budC, which is a gene that codes acetone reductase, Wherein the recombinant microorganism is a recombinant microorganism.
제 1항 내지 제 15항 중 어느 한 항의 재조합 미생물을 접종하는 단계;및
상기 재조합 미생물을 배양하는 단계를 포함하는 2,3-부탄디올의 생산 방법.
15. A method for producing a recombinant microorganism, which comprises: inoculating the recombinant microorganism of any one of claims 1 to 15;
And culturing the recombinant microorganism.
KR1020140047683A 2014-04-21 2014-04-21 Recombinant microorganism having enhanced butanediol producing ability and method for producing butanediol using the same KR102109763B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020140047683A KR102109763B1 (en) 2014-04-21 2014-04-21 Recombinant microorganism having enhanced butanediol producing ability and method for producing butanediol using the same
PCT/KR2015/003991 WO2015163682A1 (en) 2014-04-21 2015-04-21 Recombinant microorganism having enhanced ability to produce 2,3-butanediol, and method for producing 2,3-butanediol using same
CN201580033647.7A CN107075462A (en) 2014-04-21 2015-04-21 Recombinant microorganism having enhanced ability to produce 2, 3-butanediol and method for producing 2, 3-butanediol using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140047683A KR102109763B1 (en) 2014-04-21 2014-04-21 Recombinant microorganism having enhanced butanediol producing ability and method for producing butanediol using the same

Publications (2)

Publication Number Publication Date
KR20150121789A true KR20150121789A (en) 2015-10-30
KR102109763B1 KR102109763B1 (en) 2020-05-13

Family

ID=54332773

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140047683A KR102109763B1 (en) 2014-04-21 2014-04-21 Recombinant microorganism having enhanced butanediol producing ability and method for producing butanediol using the same

Country Status (3)

Country Link
KR (1) KR102109763B1 (en)
CN (1) CN107075462A (en)
WO (1) WO2015163682A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180082079A (en) * 2017-01-10 2018-07-18 경희대학교 산학협력단 Process for preparing 2,3-butanediol using transformant
KR20190027988A (en) * 2017-09-07 2019-03-18 한국해양과학기술원 High-Throughput screening method of microorganism producing 2,3-butanediol
US10858661B2 (en) 2017-01-10 2020-12-08 University-Industry Cooperation Group Of Kyung Hee University Use of Methylomonas sp. DH-1 strain and its transformants

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102133193B1 (en) * 2017-12-01 2020-07-13 지에스칼텍스 주식회사 Recombinant microorganism capable of stimultaneous fermentation of saccharide mixture and production method of diol using the same
CN117701489B (en) * 2024-02-05 2024-05-10 北京绿色康成生物技术有限公司 Method for improving production of 1, 3-butanediol by escherichia coli

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112655A1 (en) * 2008-09-29 2010-05-06 Butamax(Tm) Advanced Biofuels Llc Enhanced pyruvate to 2,3-butanediol conversion in lactic acid bacteria
KR101298988B1 (en) * 2011-05-18 2013-08-26 서강대학교산학협력단 Heterologous Klebsiella pneumoniae strains for producing 2,3-butanediol and manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2646422T3 (en) * 2011-11-21 2017-12-13 Metabolic Explorer Microorganism strains for the production of 2,3-butanediol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112655A1 (en) * 2008-09-29 2010-05-06 Butamax(Tm) Advanced Biofuels Llc Enhanced pyruvate to 2,3-butanediol conversion in lactic acid bacteria
KR101298988B1 (en) * 2011-05-18 2013-08-26 서강대학교산학협력단 Heterologous Klebsiella pneumoniae strains for producing 2,3-butanediol and manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Biotechnology Advances, vol.29, pp.351~364(2011)* *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180082079A (en) * 2017-01-10 2018-07-18 경희대학교 산학협력단 Process for preparing 2,3-butanediol using transformant
US10858661B2 (en) 2017-01-10 2020-12-08 University-Industry Cooperation Group Of Kyung Hee University Use of Methylomonas sp. DH-1 strain and its transformants
KR20190027988A (en) * 2017-09-07 2019-03-18 한국해양과학기술원 High-Throughput screening method of microorganism producing 2,3-butanediol

Also Published As

Publication number Publication date
WO2015163682A1 (en) 2015-10-29
KR102109763B1 (en) 2020-05-13
CN107075462A (en) 2017-08-18

Similar Documents

Publication Publication Date Title
US9169499B2 (en) Flux to acetolactate-derived products in lactic acid bacteria
Lee et al. Fermentative butanol production by Clostridia
AU2010300642B2 (en) Fermentive production of isobutanol using highly effective ketol-acid reductoisomerase enzymes
CA2679989C (en) New micro-organisms for the production of 1,2-propanediol obtained by a combination of evolution and rational design
US20130316414A1 (en) Enhanced pyruvate to 2,3-butanediol conversion in lactic acid bacteria
KR101616171B1 (en) Use of monascus in organic acid production
KR101581504B1 (en) Recombinant microorganism having enhanced butanediol producing ability and method for producing butanediol using the same
KR102109763B1 (en) Recombinant microorganism having enhanced butanediol producing ability and method for producing butanediol using the same
CN105829524B (en) Recombinant microorganism having enhanced D (-) type 2, 3-butanediol productivity and method for producing D (-) type 2, 3-butanediol using the same
US11814663B2 (en) Microorganisms with improved 1,3-propanediol and butyric acid production
KR101551533B1 (en) Recombinant microorganism having enhanced butanediol producing ability and method for producing butanediol using the same
CN114901827A (en) Microorganisms knocking-in at the acetolactate decarboxylase locus
RU2375451C1 (en) RECOMBINANT PLASMID DNA, CONTAINING GENES OF BUTANOL SYNTHESIS FROM Clostridium acetobutylicum (VERSIONS), RECOMBINANT STRAIN Lactobacillus brevis - PRODUCER OF N-BUTANOL (VERSIONS) AND METHOD FOR MICROBIOLOGICAL SYNTHESIS OF N-BUTANOL
EP3788058A1 (en) Materials and methods for differential biosynthesis in species of the genera ralstonia and cupriavidus and organisms related thereto
KR102602060B1 (en) Recombinant microorganism for producing 2,3-butanediol with reduced by-product production and method for producing 2,3-butanediol using the same
KR20120104765A (en) Lactate dehydrogenase deleted mutant of enterobacter aerogenes for enhanced 2,3-butanediol production
JP2006246701A (en) Acetic acid bacterium having enhanced enzyme activity of central metabolic system and method for producing vinegar using the acetic acid bacterium
JP2005040079A (en) Glutathione-dependent type formaldehyde dehydrogenase gene of acetic acid bacterium, microorganism having high level of acetic acid tolerance and method for producing vinegar using the same microorganism
JP2005040064A (en) Protein scdh2, gene encoding the same, microorganism having high acetic acid resistance, and method for producing vinegar using the microorganism

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction