[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20150059864A - method of hydrometeor classification using raw data of X band dual polarization radar - Google Patents

method of hydrometeor classification using raw data of X band dual polarization radar Download PDF

Info

Publication number
KR20150059864A
KR20150059864A KR1020130143456A KR20130143456A KR20150059864A KR 20150059864 A KR20150059864 A KR 20150059864A KR 1020130143456 A KR1020130143456 A KR 1020130143456A KR 20130143456 A KR20130143456 A KR 20130143456A KR 20150059864 A KR20150059864 A KR 20150059864A
Authority
KR
South Korea
Prior art keywords
snr
melting
value
radar
melting layer
Prior art date
Application number
KR1020130143456A
Other languages
Korean (ko)
Other versions
KR101538368B1 (en
Inventor
임상훈
Original Assignee
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원 filed Critical 한국건설기술연구원
Priority to KR1020130143456A priority Critical patent/KR101538368B1/en
Publication of KR20150059864A publication Critical patent/KR20150059864A/en
Application granted granted Critical
Publication of KR101538368B1 publication Critical patent/KR101538368B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology

Landscapes

  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The present invention relates to a method to classify types of hydrometeors by using a correlation coefficient (ρhv), measured propagation phase differential (Ψ_dp(r)) or characteristic of measured propagation phase differential (φ_dp), and a signal to noise ratio (SNR) as input variables input feature vector, shortly a radar measurement vector for fuzzy logic method, disclosing a method to classify hydrometers using X band dual polarization radar composed by having object determining steps, comprising steps of: obtaining a signal to noise ratio (SNR), a correlation coefficient (ρhv), and a measured propagation phase differential (Ψ_dp(r)); classifying a melting layer; calculating a melting layer height and a distribution characteristic (melting depth) after classifying the melting layer, determining a two-dimensional fuzzy function in σ(Ψ_dp)-SNR relation and 10^ρhv-SNR relation, and calculating two fuzzy values (fuzzy function values) by using them; obtaining inference values for each object by using a fuzzy value of height and the prior two fuzzy values (fuzzy function values according to σ(Ψ_dp)-SNR, 10^ρhv-SNR relations); and managing quality and classifying hydrometers by selecting a maximum inference value (Max(RS)) among inference values of each object.

Description

엑스밴드 이중편파 레이더 원시자료를 이용한 강수체 구분 방법{method of hydrometeor classification using raw data of X band dual polarization radar}A method of classifying a precipitation body using x-band dual polarized radar source data using raw data of an X-band dual polarization radar

본 발명은 기상 정보 획득 방법에 관한 것으로, 보다 상세하게는 대상 지역에 대한 강수 관련 기상 정보, 특히 강수체(대기수상체: hydrometeor) 구분 방법에 관한 것이다.The present invention relates to a method for acquiring weather information, and more particularly, to a method for identifying precipitation-related weather information, particularly, a precipitation body (hydrometeor).

기상현상은 생활과 밀접하게 관련되고, 기상현상을 정확히 예측하는 것은 매우 중요한 문제가 된다. 기상현상의 예측능력을 향상시키기 위해 여러 변수를 반영하는 수치예보시스템이 요구되고 있으며, 이런 수치예보를 위한 여러 가지 기법들이 다양하게 개발되고 있다.The meteorological phenomenon is closely related to life, and it is very important to accurately predict the meteorological phenomenon. Numerical forecasting systems that reflect various parameters are required to improve the prediction ability of meteorological phenomena, and various techniques for such numerical forecasting are being developed variously.

수치예보를 위한 기본적인 정보를 얻는 정보원(source)으로 가장 중요한 것이 레이더 자료이며, 레이더 자료를 이용한 강수량 추정, 바람장 추정, 초단시간 강수량 예측 등의 연구 결과는 기상 예보자들이 실시간으로 레이더 자료와 컴퓨터를 이용하여 예보 정확도를 향상시키는 데 도움을 주고 있다.The most important source of information for numerical forecasting is radar data. The results of rainfall estimation, wind field estimation, and first time precipitation estimation using radar data are based on real-time radar data and computer To help improve forecast accuracy.

최근 기상 예측 시스템으로 많은 주목을 받고 있는 이중편파 레이더는 기존의 단일편파 레이더에 비해 관측특성상 강수량 측정 정확도 향상, 강수체 분류, 자료 품질 관리에 많은 장점을 가진다. 따라서, 이런 장점을 활용하기 위해 이와 관련된 많은 연구 개발이 행해지고 있다.Dual polarized radar, which has recently been attracting much attention as a weather forecasting system, has many advantages in improving the accuracy of precipitation measurement, classification of precipitation type, and data quality control in comparison with conventional single polarized radar. Therefore, many research and development related thereto have been carried out in order to take advantage of these advantages.

이중편파 레이더는 전형적으로 수평 편향된 전자기파와 수직 편향된 전자기파를 송신하고, 후방 산란 신호를 수신하며, 이 신호를 분석하여 기상 현상과 관련된 많은 정보를 얻게 된다.Dual polarized radar typically transmit horizontally polarized electromagnetic waves and vertically polarized electromagnetic waves, receive back scattered signals, and analyze this signal to obtain much information related to meteorological phenomena.

강수 입자는 정확한 구형이 아니므로 수평과 수직의 후방산란 연직단면은 같지 않다. 강수를 통과해 전파되는 전자기파는 산란, 차등감쇠(differential attenuation), 차등위상편이(differential phase shift), 비편파(depolarization)를 유발한다. 이런 신호는 전자기파 진행 중에 지속적으로 변화하여 강수입자의 크기, 형태, 방향, 열역학적 위상을 추정하기 위한 정보를 가진다.  Since the precipitation particles are not exact spheres, horizontal and vertical back scattering vertical sections are not the same. Electromagnetic waves propagating through precipitation cause scattering, differential attenuation, differential phase shift, and depolarization. These signals have information to continuously estimate the size, shape, orientation, and thermodynamic phase of a steel importer during electromagnetic wave propagation.

따라서, 레이더 관측을 통해 강수 산정의 정확성 향상, 강수체 분류, 기상 에코(meteolorogical echo)와 비기상 에코(non meteolorogical echo) 구분에 따른 품질 관리가 가능하다. 특히, 편파레이더의 경우 도플러레이더에서 관측되는 반사도(Zh ,v), 도플러속도, 스펙트럼 폭 뿐만 아니라 차등반사도(Zdr), 선형비편파율(LDR), 차등전파위상(φdp), 교차상관계수(ρhv) 등을 관측할 수 있고 물체(대상물은 대개 강수체:대기수상체임)의 종류(특성), 구름물리 연구가 가능하다.Therefore, it is possible to improve the accuracy of precipitation estimation, radar classification, quality control by meteororogical echo and non meteororogical echo classification through radar observation. In particular, in the case of the polarization radar reflectivity observed in the Doppler radar (Z h, v), the Doppler velocity, and differential reflectivity as well as the spectral width (Z dr), linear non-polarization ratio (LDR), the differential propagation phase (φ dp), cross The correlation coefficient (ρ hv ), and the type (characteristics) of the object (the object is usually the precipitation body: the atmospheric water body) and the cloud physics research are possible.

대상물 분류는 대기 수상체 타입을 비교할수록 더 정확해지며, 다른 대기 수상체 타입을 묘사하는 편파 관측 변수는 뚜렷이 정의되거나 겹쳐지지 않아도 관측 변수 값들은 확실히 다르다. 여러 대기 수상체를 함께 고려하면 대기 수상체의 구분이 명확하지 않게 되고 로직(logic)은 부정확하기 쉽다. 때문에 퍼지로직 방법이 대기수상체를 구분하기 위해 사용되었다.(Mandel, 1995)The object classification is more accurate as the atmospheric body types are compared, and the polarization parameters describing the different atmospheric body types are clearly different from the observed parameter values even if they are not clearly defined or overlapped. Considering the various waiting bodies, the distinction of the waiting body becomes unclear and the logic is liable to be inaccurate. For this reason, a fuzzy logic method was used to distinguish the atmospheric bodies (Mandel, 1995)

대기수상체 분류(particle identification: PID) 알고리즘은 비베카난단(Vivekanandan) 등에 의해 1999년 개발되었으며, X밴드 이중편파레이더에서의 대기수상체 분류(PID) 알고리즘 연구도 근래에 많이 연구되고 있다. "2009년 이중편파레이터 집중관측: 대기수상체분류(2009년 한국기상학회 가을 학술대회 논문집, 국립기상연구소 석미경, 남경엽, 조천호)"에는 수평반사도(Zh), 차등반사도(Zdr), 비차등위상(Kdp), 교차상관계수(ρhv), 온도(T), 차등반사도 표준편차, 차등위상 표준편차의 7개 입력변수를 통해 강수 유형을 17개로 구분하는 연구가 개시된다.Airborne particle identification (PID) algorithms have been developed by Vivekanandan et al. In 1999 and research on airborne body classification (PID) algorithms in X-band dual polarization radar has been studied in recent years. (Z h ), differential reflectivity (Z dr ), and non-uniformity (D) were measured in 2009, The study begins by dividing the precipitation type into 17 by seven input variables: equilibrium phase (K dp ), cross correlation coefficient (ρ hv ), temperature (T), differential reflectivity standard deviation, and differential phase standard deviation.

여기서는, 대기 수상체를 분류하기 위해서는 위에 언급하듯이 퍼지 로직(fuzzy logic)이 이용된다. 퍼지 로직을 이용한 PID 알고리즘에 따르면, 먼저 각각의 이중편파(레이더) 변수에 대해 강수 입자 혹은 대기 수상체에 따른 각각의 멤버쉽 함수와 그 값을 구한다(fuzzification). 대개 이 멤버쉽 함수가 바로 퍼지 함수가 되며, 퍼지 함수는 경험이나 통계자료를 통해 얻어지고, 대기 수상체 구분에서는 주로 1차원 사다리꼴 함수(trapezoidal function) 혹은 1차원 베타 함수(Beta function)를 사용하게 된다. 또한 함수값은 0에서 1 사이의 값을 갖는다. Here, fuzzy logic is used to classify the atmospheric bodies as mentioned above. According to the PID algorithm using fuzzy logic, each membership function and its value according to the precipitation particle or the atmospheric body are obtained for each dual polarization (radar) variable (fuzzification). Usually, this membership function becomes a fuzzy function, and the fuzzy function is obtained through experience or statistical data, and the trapezoidal function or the one-dimensional beta function . Also, the function value has a value between 0 and 1.

그리고, 추론 단계에서 각 이중편파 변수(변수의 임계값)와 강수 유형에 따라 멤버쉽 함수가 존재하며, 강수 유형마다의 가중된 합(Q:weighted sum for each particle classification)은 그 강수 유형의 변수별 함수값(관심도:P: interest value)과 변수별 가중치(W:weight)를 곱한 것을 모든 변수에 대하여 합하여 결정될 수 있다.In addition, the membership function exists according to each double polarization variable (the threshold value of the variable) and the precipitation type in the inference step, and the weighted sum for each particle classification (Q) Can be determined by multiplying the function value (interest: P: interest value) by the variable weight (W: weight) for all the variables.

가중된 합의 최대값(Max(Q))을 찾고 이 최대값이 해당 입자의 강수 형태로 결정된다(defuzzyfication).The maximum value of the weighted sum (Max (Q)) is found and this maximum value is determined as the precipitation form of the particle (defuzzyfication).

멤버쉽 함수(함수값)들은 각 에코의 입력변수가 속하는 특별한 변수의 값에 대한 조건부확률(conditional probability)의 경험적인 값으로 정의될 수 있다. 가령, 레이더에서 관측된 수평 반사도(Zh), 차등반사도(Zdr), 선형비편파율(LDR)을 입력 변수로 하고 강우와 우박을 분류하는 예에서, 조건부 강수 분류를 위한 멤버쉽 함수값 P는 강수체 종류와 각 입력 변수에 따라 6개에 대해 0에서 1 사이의 값으로 정해질 수 있다. Membership functions (function values) can be defined as empirical values of the conditional probability for the value of a particular variable to which each echo input variable belongs. For example, in the example where the horizontal reflectivity (Z h ), the differential reflectivity (Z dr ) and the linear non-polarization ratio (LDR) observed in the radar are input variables and rainfall and hail are classified, the membership function value P Can be set to a value between 0 and 1 for six, depending on the precipitation type and each input variable.

다음 단계에서 관측 값에 따라 앞서 정해진 멤버쉽 함수값에 가중치(weight)를 정한다. 가령, 수평 반사도와 차등반사도의 가중치는 단위 수 1이고, 선형비편파율의 가중치는 0.8로 할 수 있다.In the next step, weight is set to the membership function value determined according to the observation value. For example, the weight of the horizontal reflectivity and the differential reflectivity may be 1 and the weight of the linear non-polarization ratio may be 0.8.

그리고, 강우와 우박의 분류를 위한 가중된 합(aggregation value: Q)는 강우에 대한 3개의 별수별 멤버쉽 함수값에 각각의 가중치를 곱한 값을 3개의 변수에 대해 모두 더한다. 따라서, 이런 규칙, 추론 과정을 통해 강우와 우박이라는 강수체에 대해 각각의 가중된 합을 얻을 수 있다.The aggregation value (Q) for the classification of rainfall and hail is obtained by multiplying the membership function values of three different precipitation rates by the respective weights, for all three variables. Thus, through these rules and reasoning processes, we can obtain a weighted sum for rainfall and hail.

강우에 대한 가중된 합이 1.7이고, 우박에 대한 가중된 합이 0.5라면 가장 큰 값은 1.7이므로 이 영역에 대한 대기 수상체는 강우로 정하는 디퍼지화(defuzzification)가 이루어진다.If the weighted sum for rainfall is 1.7 and the weighted sum for hail is 0.5, the largest value is 1.7, so the deflation of the atmospheric water body for this area is determined by rainfall.

이중편파 변수에 적용되는 함수인 멤버쉽 함수는 변수의 임계값에 따라 달라지는 데, 이 멤버쉽 함수의 임계값을 결정하는 것이 대기 수상체 분류 연구의 중요한 부분이 된다.The membership function, which is a function applied to the dual polarization parameter, depends on the threshold value of the variable. The determination of the threshold value of this membership function is an important part of the study of queuing modeling.

그리고, 변수들과 멤버쉽 함수를 구체적으로 결정하고 이들을 결합시켜 특정함수값을 산출하는 퍼지화(fuzzification)하는 퍼지 로직에 대해서는 "편파 레이더 관측에 근거한 대기수상체 분류 : 퍼지 로직 및 뉴로 퍼지 시스템의 개발과 그에 따른 검증 (Classification of Hydrometeors Based on Polarimetric Radar Measurements : Development of Fuzzy Logic and Neuro-Fuzzy System, and In Situ Verification; JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY Volume 17, Hongping Liu and V. Chandrasekar, final form 27 April 1999)"에 개시된 바 있다.For fuzzy logic that determines specific variables and membership functions and combines them to calculate a specific function value, we refer to the concept of "airborne classifications based on polarization radar observations: development of fuzzy logic and neurofuzzy systems And its verification based on the results of the proposed method, and finally, the final form of the radar measurements is presented in the form of a polynomial function of the fuzzy logic. ).

이 논문에는 또한, 아래 수학식 1과 같은 일차원 베타 멤버쉽 함수를 이용하여 이들의 곱의 형태로 형성하는 이차원 베타 멤버쉽 함수(2D-MBF)를 개시하고 있다.This paper also discloses a two-dimensional beta membership function (2D-MBF) that forms a product of these by using a one-dimensional beta membership function as shown in Equation 1 below.

Figure pat00001
Figure pat00001

가령, 수평편파 반사도 Zh에 대한 강우용 일차원 멤버쉽 함수를 frain - zh라 하면 다음의 수학식 2와 같이 표현될 수 있고,For example, if the one-dimensional membership function for rainfall with respect to the horizontal polarization reflectivity Z h is f rain - zh , then it can be expressed by the following Equation 2,

Figure pat00002
Figure pat00002

Zh와 Zdr이 강우에 대한 서로 독립된 변수로 다루어질 때 Zh- Zdr의 2차원의 평면에서 이차원 멤버쉽 함수는 수학식 3과 같이 나타내어 질 수 있으며, 이는 도7과 같은 그래프를 통해 나타내어 질 수 있다.When Z h and Z dr are treated as independent variables for rainfall, the two-dimensional membership function in the two-dimensional plane of Z h - Z dr can be expressed as Equation 3, Can be.

Figure pat00003
Figure pat00003

한편, 이중편파 변수 혹은 매개변수가 되는 차등전파위상(φdp), 교차상관계수(ρhv)는 다음과 같은 일련의 식을 이용하여 얻어질 수 있다.On the other hand, the differential polarization phase (φ dp ) and the cross correlation coefficient (ρ hv ), which are dual polarization parameters or parameters, can be obtained by using the following series of equations.

먼저, 미시물리적 강우체 특성(Microphysical properties of the rain medium)은 강우입자 크기 분포(drop size distribution :DSD)에 의해 기술될 수 있다. First, the microphysical properties of the rain medium can be described by a drop size distribution (DSD).

넓은 영역에서 변화하는 강우 강도(rainfall rates)에서 DSD의 형태를 연구하기 위해 DSD의 자연적 변화는 다음 수학식과 같은 표준화(정규화)된 감마함수에 의해 표현될 수 있다.To study the shape of DSD in varying rainfall rates, the natural variation of DSD can be expressed by a normalized (normalized) gamma function such as:

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

Figure pat00006
Figure pat00006

이때, D0는 등체적 구면 지름(equivolumetric median volume diameter: 단위 mm), μ는 형태 매개변수(shape parameter), NW는 같은 함수량(water content)과 D0를 가지는 지수분포의 정규화된 매개변수(normalized intercept parameter of the exponential distribution)를 의미한다. Where D 0 is the equivolumetric median volume diameter in mm, μ is the shape parameter, N W is the normalized parameter of the exponential distribution with the same water content and D 0 (normalized intercept parameter of the exponential distribution).

강수체 내에서의 레이더 관측은 DSD의 측면에서 표현될 수 있으며, 수평 및 수직 편파에서의 반사도 Zh ,v는 다음 식으로 정의될 수 있다.The radar observations in the precipitation body can be expressed in terms of DSD, and the reflectivity Z h , v in horizontal and vertical polarization can be defined by the following equation.

Figure pat00007
Figure pat00007

이때, λ는 레이더의 파장이고, σh,v는 수평 혹은 수직 편파에서의 레이더 반사단면적(cross section), Kw는 물의 유전상수 인자(dielectric factor of water)로 εr이 물의 복소 유전상수일 때 K w=(εr-1)/(εr+2)로 정의된다.Where λ is the radar wavelength, σ h, v is the radar reflection cross section in horizontal or vertical polarizations, Kw is the dielectric factor of water and ε r is the complex dielectric constant of water Kw = (? R- 1) / (? R + 2).

차등반사도(Zdr)는 수평 및 수직 편파에서의 반사도 인자의 비(ratio of reflectivity factors)로서 다음 식과 같이 정의된다. The differential reflectivity (Z dr ) is defined as the ratio of reflectivity factors in the horizontal and vertical polarizations as:

Figure pat00008
Figure pat00008

그리고, 비위상차등(K,단위 deg/km)은 다음과 같은 식에 의해 정의될 수 있다.And, (to K, unit deg / km) non-phase difference and so on can be defined by the following equation.

Figure pat00009
Figure pat00009

이때, R은 복소수의 실수부분을 의미하며, fh와 fv는 수평과 수직 편파에서의 전방산란 크기이다. Where R is the real part of the complex number, and f h and f v are the forward scattering magnitudes in the horizontal and vertical polarizations.

이중 편파 강우 레이더의 실 측정치는 수평반사도(Zh :mm6/m3), 차등반사도(Zdr:dB), 비차등위상(K:deg/km)이다. Room measurement of dual polarized radar rainfall level is the reflectivity (Z h: mm 6 / m 3), differential reflectivity (Z dr:: dB), and so on odds phase (deg / km in K).

대상 위치 r1과 r2 사이의 차등전파위상(φdp)은 다음 식에서 비차등위상을 이용하여 정의된다.The differential propagation phase? Dp between the target positions r1 and r2 is defined using non-equal phase in the following equation.

Figure pat00010
Figure pat00010

교차상관계수(ρhv)는 수평 및 수직 편파에서의 신호 사이의 상관관계를 나타내며, 다음 식들을 통해 정의된다. The cross correlation coefficient (rho hv ) represents the correlation between signals at the horizontal and vertical polarizations and is defined by the following equations.

Figure pat00011
Figure pat00011

Figure pat00012
Figure pat00012

이때, Shh와 Svv는 후방산란 매트릭스(backscattering matrix; Zrnic, 1991)에서 수평으로 송신하였을 때 수평으로 수신하는 전기장과 수직으로 송신하였을 때 수직으로 수신하는 전기장 사이의 관계변수를 의미하며, 아스테리스크 기호는 공액복소수(complex conjugate)로 위상에서 90°의 차이가 있음을 의미하고, 브라켓 기호는 기대값(expectation element)을 의미한다. 이 변수들의 크기는 레이더 전파 주파수와 대기 수상 입자 크기, 형태, 구성(상태)에 의해 결정된다.In this case, S hh and S vv mean the relationship between the horizontally received electric field when horizontally transmitted and the vertically received electric field when vertically transmitting, in a backscattering matrix (Zrnic, 1991) The struisk symbol is a complex conjugate, meaning that there is a 90 ° difference in phase, and the bracket symbol means the expectation element. The size of these variables is determined by the radar propagation frequency and the atmospheric particle size, shape, and configuration (state).

차등전파위상은 수평 및 수직 전파 위상(propagation phase) 사이의 차이로 수상체의 전방산란특성에 비례한다. 빗방울과 같이 수평 편향 수상체에서는 수평 전파 위상 편이가 수직 전파 위상 편이보다 크다. 또한, 비기상적 에코에서는 수평과 수직 편파의 신호 사이의 빈약한 상관관계로 차등전파위상의 변동은 강수에 있어서의 변동보다 분명히 크게 된다.The differential propagation phase is proportional to the forward scattering characteristics of the vortex due to the difference between the horizontal and vertical propagation phases. In horizontal deflection aids such as raindrops, horizontal propagation phase shift is larger than vertical propagation phase shift. Moreover, in the non-magnetic echo, the fluctuation of the differential propagation phase is clearly larger than the fluctuation in the precipitation due to a weak correlation between the signals of the horizontal and vertical polarizations.

교차상관계수는 개별 수상체의 수평 대비 수직 비율의 변화에 영향을 받는다. 교차상관계수의 값은 비나 초기 빙정에 대해서는 1에 근접하게 된다. 녹는 눈이나 혼합 상태인 경우, 교차상관계수는 1보다 작다. 교차상관계수의 낮은 값은 우박(hail)이나 혼합 상태의 강우나 지형 클러터(clutter) 및 비기상적 산란에 의한 오염을 검출하는 데 사용될 수 있다.The cross correlation coefficient is affected by the variation of the horizontal to vertical ratio of individual bodies. The value of the cross correlation coefficient is close to 1 for rain or initial ice crystal. In the case of melting snow or mixed state, the cross correlation coefficient is less than 1. A low value of the cross correlation coefficient can be used to detect contamination by hail or mixed state rainfall, terrestrial clutter, and non-tropic scattering.

이중편파 레이더는 사용하는 전자기파에 따라 S밴드, C밴드, X밴드 등으로 나눌 수 있는데, X밴드 레이더의 경우 강수에 의한 감쇠 현상이 심해 감쇠에 대한 정확한 감쇄보정이 이루어져야 편파 레이더 자료로 이용할 수 있었다. Dual polarized radar can be divided into S band, C band, and X band according to the electromagnetic wave to be used. In the case of X band radar, the damping due to precipitation is severe and the accurate attenuation correction for attenuation can be used as the polarization radar data .

대한민국 등록특허 제10-1221773호: 이중편파 레이더를 이용한 기상 및 비기상 에코 분류 방법.Korean Patent No. 10-1221773: Method of Classifying Weather and Non-Gaseous Echoes Using Dual Polarized Radar. 대한민국 등록특허 제10-0931950호: 기상레이더의 강수 유형 구분 방법.Korean Patent No. 10-0931950: Method of Classifying Precipitation Type of Weather Radar. 대한민국 등록특허 제10-1131194호: 선박용 X밴드 레이더 네트워크를 이용한 국지강수 레이더 시스템.Korean Registered Patent No. 10-1131194: Local Precipitation Radar System Using Ship X-Band Radar Network.

레이더 활용기술 연구(Ⅰ): 2007, 국립기상연구소 지구환경시스템연구팀 장기호 et. al.Radar Utilization Technology Research (Ⅰ): 2007, National Institute of Meteorological Research. al. X밴드 이중-편파 레이더에 있어서의 강우량 산정: 한국도시방재학회지 2003년 9월 제3권 제3호 한국건설기술연구원 윤강훈.Estimation of Rainfall in X - Band Dual - Polarized Radar: The Korean Institute of Civil Engineers. 2009년 이중편파레이터 집중관측: 대기수상체분류 ; 한국기상학회 가을 학술대회 논문집, 국립기상연구소 석미경, 남경엽, 조천호2009 Intensive observations of dual polarizers: atmospheric aerosol classification; Korea Meteorological Society Autumn Conference, National Meteorological Research Institute Suk Mi Kyung, Nam Kyung Yeop, Cho Chun-ho 편파 레이더 관측에 근거한 대기수상체 분류 : 퍼지 로직 및 뉴로 퍼지 시스템의 개발과 그에 따른 검증 (Classification of Hydrometeors Based on Polarimetric Radar Measurements : Development of Fuzzy Logic and Neuro-Fuzzy System, and In Situ Verification ; JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY Volume 17, Hongping Liu and V. Chandrasekar, final form 27 April 1999.)Airborne Classification Based on Polarized Radar Observation: Development of Fuzzy Logic and Neuro-Fuzzy System and Its Verification (JURANAL OF ATMOSPHERIC) AND OCEANIC TECHNOLOGY Volume 17, Hongping Liu and V. Chandrasekar, final form 27 April 1999.)

본 발명은 감쇄가 큰 X밴드 이중-편파 레이더를 포함하는 통합적 강우 정보 처리 시스템을 이용하여 기상 관측을 함에 있어서 X밴드 이중-편파 레이더의 원시관측자료를 감쇄 보정 없이 사용하여 대기 수상체를 구분하는 방법을 제공하는 것을 목적으로 한다.The present invention relates to an X-band dual-polarized radar system for use with an integrated rainfall information processing system including an attenuated X-band dual-polarized radar to distinguish an atmospheric body by using raw observation data of an X- And a method thereof.

본 발명은 X밴드 이중-편파 레이더를 이용하여 대기 수상체 (강수체)를 구분하고 이를 기반으로 궁극적으로는 강수량 등 필요한 기상 정보를 제공할 수 있도록 하는 것을 목적으로 한다.An object of the present invention is to distinguish an atmospheric body (precipitation body) using an X-band dual-polarized radar, and to provide necessary weather information such as precipitation and the like based thereon.

상기 목적을 달성하기 위한 본 발명의 X밴드 이중-편파 레이더 강수체 구분 방법은, X밴드에서와 같은 고주파수 영역에서 특히 잘 동작하는 것으로, 상관계수(교차상관계수; ρhv), 측정된 차등전파위상(Ψdp(r)) 혹은 차등전파위상(φdp)의 특성 및 신호대잡음비(SNR)를 입력 변수(입력 feature 백터, 즉, 퍼지 로직 기법을 위한 레이더 관측 백터)로 이용하여 대기 수상체의 종류를 구분할 수 있도록 하는 방법으로,X-band of the present invention for achieving the above object, a dual-polarization radar rainfall body nine minutes way, that especially works well in the high frequency region as in the X band, the correlation coefficient (cross-correlation coefficient; ρ hv), the measured differential propagation The characteristics of the phase (Ψ dp (r)) or the differential propagation phase (φ dp ) and the SNR are used as input variables (input feature vector, ie radar observation vector for the fuzzy logic technique) In order to be able to distinguish kinds,

레이더 전자기파 송수신 자료를 통해 초기 입력 자료(변수)로서 신호대잡음비 (SNR), 상관계수(ρhv), 측정된 차등전파위상(Ψdp(r))을 얻는 단계, 녹는 층을 구분하는 단계, 녹는 층을 구분한 후 녹는 층 고도 및 분포특성(녹는 층 깊이 혹은 두께: melting depth)를 산출하고, σ(Ψdp)-SNR 관계와 10ρ hv-SNR 관계의 2차원 퍼지함수를 정하고 이를 이용하여 2개의 퍼지값(퍼지함수값)을 산출하는 퍼지화(fuzzyfication) 단계, 고도(Height)의 퍼지값과 앞서의 2개의 2차원 퍼지값(σ(Ψdp)-SNR, 10ρhv-SNR 관계에 따른 퍼지함수값)을 이용하여 각 대상별로 추론 값을 얻는 단계(inference), 각 대상별 추론 값 가운데 최대 추론값 (Max(RS))을 선택하여 품질관리 및 대기 수상체 구분을 하는 대상 확정 단계를 구비하여 이루어진다.(SNR), correlation coefficient (ρ hv ) and measured differential propagation phase (Ψ dp (r)) as initial input data (variables) through radar electromagnetic wave transmission and reception data, (Ψ dp ) -SNR relationship and a 10 ρ hv- SNR relationship, and then, by using this, the melting depth, A fuzzyfication step of calculating two fuzzy values (a fuzzy function value), a step of calculating the fuzzy values of the heights and the two preceding two-dimensional fuzzy values (? ( Dp ) -SNR, 10 ? Hv- (RS)) of the inference values for each object, and a step of determining the object to classify the quality control and the atmospheric body by selecting the maximum inference value (Max (RS)) among the inference values for each object Respectively.

이때, 레이더 전자기파 송수신을 통해 초기 입력 자료로서 신호대잡음비 (SNR), 상관계수(ρhv), 측정된 차등전파위상(Ψdp)을 얻는 단계에서, 상관계수(ρhv)는 값을 확장하기 위해 10ρ hv로 변환하여 사용하며, 측정된 차등전파위상의 표준편차 σ(Ψdp(r))를 퍼지시스템의 입력자료로 활용한다. 측정된 차등전파위상의 편차는 기존에 잘 알려진 바와 같이 다음의 일반적 수학식을 통해 구해진다.At this time, in obtaining the signal-to-noise ratio (SNR), the correlation coefficient (ρ hv ) and the measured differential propagation phase (Ψ dp ) as initial input data through the radar electromagnetic wave transmission and reception, the correlation coefficient (ρ hv ) 10 ρ hv , and the standard deviation σ (Ψ dp (r)) of the measured differential propagation phase is used as the input data of the fuzzy system. The deviation of the measured differential propagation phase is obtained by the following general formula as well known in the art.

Figure pat00013
Figure pat00013

여기서 N은 편차를 구하는 대상 구간의 샘플링 수 혹은 게이트 수를 의미한다.Where N is the number of samples or the number of gates of the target section for which the deviation is sought.

측정된 차등전파위상(measured differential propagation phase:Ψdp)은 차등전파위상(φdp)과는 다음 수학식과 같은 관계를 가진다.The measured differential propagation phase (Ψ dp ) has a relationship with the differential propagation phase (φ dp ) as shown in the following equation.

Figure pat00014
Figure pat00014

δ는 수평과 수직 편파의 복소 후방산란 진폭들의 편각 차이(arguments of the complex backscattering amplitudes)인 후방 산란 위상(backscatter phase)이다. 따라서, 후방 산란이 큰 경우에는 측정된 차등전파위상을 이용하는 것이 바람직하다.and δ is the backscatter phase, which is the arguments of the complex backscattering amplitudes of the horizontal and vertical polarizations' complex backscattering amplitudes. Therefore, when the back scattering is large, it is preferable to use the measured differential propagation phase.

녹는 층을 구분하는 단계에서는 가령, 도1 및 도2에서 보여지는 것과 같은 σ(Ψdp)-SNR 평면과 10ρ hv-SNR 평면에서의 대기수상체별 경계 영역 구분을 이용하여 해당 측정 데이터가 위 평면의 어느 영역에 속하는가를 확인하여 녹는 층을 구분하고, 녹는 층 영역에 속하는 측정 데이터들을 이용하여 녹는 층의 평균 고도를 구할 수 있다. 즉, 녹는 층을 확인하는 데 신호대잡음비(SNR)을 고려하여 정한다.In the step of dividing the melting layer, for example, using the distinction of the boundary regions of the atmospheric water bodies in the σ (Ψ dp ) -SNR plane and the 10 ρ hv- SNR plane as shown in FIGS. 1 and 2, By identifying the region of the upper plane, the melting layer can be identified, and the average height of the melting layer can be determined using the measurement data belonging to the melting layer region. That is, it is determined in consideration of the signal-to-noise ratio (SNR) to identify the melting layer.

녹는 층을 구분한 후 위 도면들에서의 경계구간과 동일한 σ(Ψdp)-SNR 관계와 10ρ hv-SNR 관계의 2차원 퍼지함수를 이용하여 2개의 퍼지함수값을 산출한다. 2차원 퍼지 함수 결정에는 σ(Ψdp)-SNR 평면과 10ρ hv-SNR 평면에서의 대기수상체별 영역 구분의 경계선을 이용할 수 있다.After dividing the melting layer, two fuzzy function values are calculated by using the same σ (Ψ dp ) -SNR relation and the 10 ρ hv- SNR relation as the boundary sections in the above figures. For the determination of the two-dimensional fuzzy function, we can use the boundaries of the zone separation by the atmospheric body in the σ (Ψ dp ) -SNR plane and the 10 ρ hv- SNR plane.

고도(Height)의 퍼지값 f(H)와 2개의 2차원 퍼지함수값(σ(Ψdp)-SNR, 10ρ hv-SNR에 따르는 베타 멤버쉽 함수값)을 이용하여 각 대상물 혹은 각 대기수상체 종류에 대해 다음 식과 같은 추론 규칙에 의해 추론값을 구한다.Height (Height) fuzzy value f (H) and two two-dimensional spread function value (σ (Ψ dp) -SNR, 10 beta membership function value according to the hv -SNR ρ) the number of each object or each air by using the upper body of the For reason, the inference value is obtained by the inference rule as the following expression.

Figure pat00015
Figure pat00015

마지막으로 최대 추론값 (Max(RS))을 선택하여 품질관리 및 강수체구분을 하는 단계에서는 최대 추론값이 어떤 대기수상체에 대한 것인지 확인하여 그 해당하는 대기 수상체(강수체)를 선택하게 하게 된다.Finally, in the step of selecting the maximum speculation value (Max (RS)) and classifying the quality control and the precipitation object, the maximum speculation value for the atmospheric water body is checked and the corresponding atmospheric water body (precipitation object) is selected .

본 발명에 따르면 이중편파 레이더의 송수신 자료에서 감쇄 보정 없이 원시자료를 직접 이용하여 필요한 이중편파 변수를 얻되, 이들 이중편파 변수 가운데 신호대잡음비를 포함시키고, 이들 변수를 고려한 녹는 층 확정과 2차원 베타 함수 형태의 멤버쉽 함수를 선택하여 이들 변수와 멤버쉽 함수를 기반으로 멤버쉽 함수값을 얻어내고, 이 함수값을 정해진 처리방식 혹은 규칙에 의해 처리하여 그 결과를 정리 비교함으로써 비교적 간단하면서도 실용적인 범위에서 대기 수상체(강수체) 구분을 할 수 있다. According to the present invention, in the transmission and reception data of a dual polarized radar, raw data are directly used without attenuation correction to obtain necessary double polarized parameters. The signal-to-noise ratio is included in these dual polarized parameters, The membership function of the form is selected, the membership function value is obtained based on these variables and the membership function, the function value is processed by the predetermined processing method or rule, and the result is sorted and compared, (Precipitation body) can be classified.

도1 및 도2는 HYDROX 레이더 자료에 의해 SNR과 상관계수, SNR과 측정된 차등전파위상의 표준편차 2차원 평면에서 대기수상체 분류 경계를 나타내는 그래프,
도3 및 도4는 도 1 및 도2의 근거자료로 각 레이더 측정 자료의 SNR과 상관계수, SNR과 측정된 차등전파위상의 표준편차 2차원 평면에서의 분포도,
도5a 내지 도5d는 연구를 수행한 특정 지역 특정 시점에서 얻은 레이더 관측 자료로, 레이더를 중심으로 일정 방위각으로 고도각을 높여가면서 전파를 발송하고 일정 거리 및 고도 영역에서 수신한 전파를 통해 얻은 각 위치에서의 수평반사도, 측정된 차등전파위상, 교차상관계수 및 이들 바탕으로 분류된 대기수상체 종류를 서로 다른 색상으로 표시한 그래프,
도6은는 본 발명 방법의 흐름을 나타내는 흐름도,
도7은 본 발명에 사용될 수 있는 2차원 멤버쉽 베타 함수의 예를 나타내는 그래프이다.
FIGS. 1 and 2 are graphs showing SNR, correlation coefficient, SNR and standard deviation of measured differential phase by HYDROX radar data,
Figs. 3 and 4 are data based on Figs. 1 and 2, showing the SNR and correlation coefficient of each radar measurement data, the SNR and the standard deviation of the measured differential propagation phase,
FIGS. 5A to 5D are radar observation data obtained at a specific point in a specific region in which the research is performed. The radar data are transmitted by raising the elevation angle at a predetermined azimuth angle around the radar, A graph showing the horizontal reflectance at the position, the measured differential propagation phase, the cross correlation coefficient, and the atmospheric water class classified by these bases in different colors,
6 is a flow chart showing the flow of the method of the present invention,
Figure 7 is a graph illustrating an example of a two-dimensional membership beta function that may be used in the present invention.

이하 도면을 참조하면서 실시예를 통해 본 발명을 보다 상세히 설명하기로 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

본 발명은 NOAA 지구 시스템 조사 연구소(Earth System Research Laborator: ESRL)의 캘리포니아에서의 수문 기상학 시험대 (HMT) 서부 2005~2006 시즌 동안의 수문 기상학 연구를 위한 이중 편파 X밴드 레이더(HYDROX)에서 얻어진 자료(data)를 근거로 연구하여 얻어진 것이다.The present invention is based on data obtained from the dual-polarized X-band radar (HYDROX) for hydro-meteorological studies during the 2005-2006 season of the hydrological meteorological test bench (HMT) in the NOAA Earth System Research Laboratory (ESRL) data).

본 발명에서는 수상체(대기 수상체) 구분을 위해 수평 반사도나 차등 반사도와 같이 감쇄의 영향을 받는 변수를 사용하던 기존에 비해 입력 변수로서 새롭게 신호대잡음비(이하 SNR과 혼용한다)를 이용한다. SNR을 이용하는 이유는, SNR에서의 변화로 인한 이중 편파 변수들(parameters)에서의 변동성을 분별하기 위해서이다. 가령, 높은 SNR값을 가진 강우 영역에서는, 상관계수가 눈비 영역과 같은 혼합 상태 영역에서의 상관계수에 비해 높은, 대개 1에 가까운 큰 값이다. In the present invention, a new signal-to-noise ratio (hereinafter referred to as SNR) is used as an input variable in comparison with the conventional method using variables affected by attenuation such as horizontal reflectivity and differential reflectance for separating a water body (atmospheric water body). The reason for using the SNR is to discriminate the variability in the dual polarization parameters due to the change in the SNR. For example, in a rainfall region having a high SNR value, the correlation coefficient is higher than the correlation coefficient in the mixed-state region such as the snowfall region, and is generally a large value close to unity.

그러나, 도3과 같은 자료에서도 볼 수 있듯이 낮은 SNR에서는 강우 속에서의 상관계수가 녹는 강수(혼합 강수)에서의 상관계수 값보다 실제로 작을 수 있어서, 가령 10데시벨(dB)의 강우에서 상관계수는 0.93이고, 반면, 35데시벨의 SNR을 가진 녹는 강수 영역에서의 상관계수는 0.95가 될 수도 있다.However, as can be seen from the data in FIG. 3, at low SNR, the correlation coefficient in the rainfall can be actually smaller than the correlation coefficient in the melting precipitation (mixed precipitation), so that the correlation coefficient at, for example, 10 decibels 0.93, while the correlation coefficient in the melting precipitation region with an SNR of 35 decibels may be 0.95.

도3은 밝은 띠가 보이는 층류 및 대류성 강우가 혼재하는 기간의 SNR과 상관계수 평면에서의 각 관측 결과의 분포를 나타낸다. 파란색 점은 해발 2.5km 위의 모든 데이터를 의미하고, 비, 눈, 혼합형 강수가 포함되어 있다. 붉은색 점은 강수지역에 대한 자료만을 의미한다 (해발 0.8km 와 2.5km 사이). 도3의 자료는 모든 형태의 강수 카레고리에 대한 강우 형태의 카테고리의 분포에 있어서 상당 부분 겹치고 있다는 것을 보여주며, 이는 일정한 상관계수를 사용하여 융해층을 탐색하는 것이 낮은 SNR에 대해서는 적절하지 않다는 것을 의미한다. Fig. 3 shows the distribution of each observation result in the correlation coefficient plane and the SNR in a period in which laminar flow and convective rainfall having a bright band are mixed. The blue dot means all data above 2.5 km above sea level, and includes rain, snow and mixed precipitation. The red dot means only the data for the precipitation area (between 0.8km and 2.5km above sea level). The data in FIG. 3 show that there is a significant overlap in the distribution of the categories of precipitation form for all types of precipitation currecies, indicating that searching for the melting bed using a constant correlation coefficient is not appropriate for low SNR it means.

따라서, SNR을 상관계수와 결합시킴에 의해 SNR 전체 영역에 걸친 혼합 강수로부터 강우를 구분하는 것이 가능하며, 정확한 녹는 층 판단을 위해 필요하다.Therefore, by combining the SNR with the correlation coefficient, it is possible to distinguish rainfall from mixed precipitation over the entire SNR region, and it is necessary for accurate melting layer judgment.

이런 방법은 S밴드(2~4GHz)에서 X밴드(8~12GHz)까지의 상대적으로 높은 주파수대에서 작동될 수 있지만, X 밴드에서의 상관계수(ρhv)와 차등전파위상(φdp)이 더 민감하게 되므로, X밴드와 같은 상대적으로 높은 주파수대에서 더 유용하다. 가령, 이들 값이 반영되는 비차등위상(K:deg/km)은 X밴드에서의 값이 S밴드에서의 값보다 3배까지 크게 된다.In this way the S-band (2 ~ 4GHz) in the X band (8 ~ 12GHz) relatively, but can be operated at high frequencies, the correlation coefficient in the X band (ρ hv) and the differential propagation phase (φ dp) to the more Sensitive, so it is more useful at relatively high frequency bands such as the X band. For example, (in K: deg / km) phase, such as odds that these values are reflected in the value of the X-band is largely up to three times the value at S-band.

지난 십년 이상의 기간동안 이중 편파 레이더 변수에 기초한 많은 대기수상체 구분 방법이 개발되었고, 이들 방법은 주로 S밴드나 C밴드 주파수 용으로 개발되었다. 최근 X밴드에 특화된 이중 편파 관찰 특성을 이용한 방법도 제안되었다. 하지만 본 발명은 X밴드 같은 상대적으로 높은 주파수대에서 적용될 수 있는 보다 견고한 대기수상체 구분 방법을 제시한다.Over the past decade, a number of atmospheric aerodynamic segregation methods based on dual-polar radar parameters have been developed, mainly developed for S-band or C-band frequencies. Recently, a method using dual polarization observation characteristic specific to X band has been proposed. However, the present invention proposes a more robust airborne object classification method that can be applied in relatively high frequency bands such as X-bands.

도6은 본 발명 방법의 일 실시예가 이루어지는 순서를 개략적으로 나타내는 흐름도이다.6 is a flow chart schematically illustrating the sequence in which an embodiment of the method of the present invention is performed.

도6에 따르면, 이 분류 방법은 신호대잡음비 (SNR), 상관계수(ρhv), 차등전파위상(φdp)을 레이더 측정을 통해 얻어 입력요소로 투입하게 되고, 이를 이용하여 네 개의 단순한 목표 범주, 즉, 비기상적(non meteolorogical) 대상물, 강우(rain), 강우/얼음 혼합, 얼음(snow) 입자에 해당하는 값을 출력으로 얻는다.According to Fig. 6, this classification method obtains the signal-to-noise ratio (SNR), the correlation coefficient (rho hv ) and the differential propagation phase ( dp ) through radar measurement and inputs it as an input element, That is, non meteororogical objects, rain, rain / ice mix, and snow particles.

입력 요소 투입 후에는 녹는 층(ML: melting layer) 검출이 이루어지고, 퍼지화(fuzzyfication) 과정이 이루어진다. 퍼지화 과정에서는 σ(φdp)과 SNR의 관계에 기초하는 2차원 베타 멤버쉽 함수, 10ρ hv과 SNR 사이의 관계에 기초하는 2차원 베타 멤버쉽 함수, 고도(H)에 대한 1차원 베타 멤버쉽 함수의 결정과 입력 요소에 대한 함수값을 도출하게 된다. After the input element is inserted, a melting layer (ML) is detected and a fuzzyfication process is performed. In the fuzzification process, a 2D beta membership function based on the relationship between σ (φ dp ) and SNR, a 2D beta membership function based on the relationship between 10 ρ hv and SNR, a 1D beta membership function for altitude (H) And the function value for the input element is derived.

이들 3가지 베타 멤버쉽 함수에 대한 함수값을 도출하면 정해진 규칙에 따라 대기 수상체인 강우, 강우/얼음 혼합, 얼음에 대한 각각의 추론 값을 얻는 추론 단계와 이 추론 값에서 최대값을 선택하여 그 최대값을 미리 정해진 일정 값과 비교하여 품질 관리를 하는 과정(비기상학적 대상물 판별)과 그 최대값을 가지는 대기 수상체를 확인하는 대기수상체 결정 과정(defuzzyfication)이 이루어짐을 알 수 있다.If we derive the function values for these three beta membership functions, we derive the respective inference values for rainfall, rainfall / ice mixing, and ice according to the predetermined rules, (Non-meteorological object discrimination) by comparing the measured value with a preset constant value, and a defuzzification process of confirming the atmospheric water body having the maximum value is performed.

본 발명과 관련하여, 신호대 잡음비를 입력요소로 사용하는 이유는 이미 위에서 언급하였다.In the context of the present invention, the reason for using the signal-to-noise ratio as an input element has already been mentioned above.

측정된 차등전파위상(Ψdp)의 특성은 강수와 지형 클러터(clutter) 및 비정상적 전파(propagation), 생물적 산란(scattering) 사이의 구분에 효율적이다. 이 특성 값은 녹는 입자를 검출하는 데에도 확장될 수 있다. 특성 정보는 다음 식과 같이 방위각과 거리에서의 레이더 관측의 차이의 제곱 평균값(RMS)을 이용하여 얻을 수 있다. The characteristics of the measured differential propagation phase (Ψ dp ) are efficient in distinguishing between precipitation, terrestrial clutter, abnormal propagation, and biological scattering. This property value can also be extended to detect dissolved particles. The characteristic information can be obtained by using the root mean square value (RMS) of the difference of the radar observations at the azimuth and distance as shown in the following equation.

Figure pat00016
Figure pat00016

여기서 r은 대상 영역에 있는 위치를 나타내고 j는 여기서 게이트 단위의 범위(range of the gate length)에 걸쳐 변하며, N은 그 범위 내에서의 구분 게이트의 갯수(number of resolution gate in the range)혹은 자료 입수를 위한 측정 샘플링 갯수를 나타내며 게이트는 임의 방위각으로부터 수신한 레이더 신호를 단위 거리별로 처리할 때 기본이 되는 하나의 단위가 되는 것으로 레이더를 시작점으로 하여 일정 거리별로 하나씩 존재하게 되므로 레이더 신호 처리에서 하나의 픽셀(pixel)을 의미한다고 볼 수 있다. 같은 대상 범위에 대해 짧은 거리 단위로 더 많은 게이트를 상정할수록 해상도가 높은 더 정밀한 자료를 축적할 수 있지만 처리 용량에 제한이 있으므로 증가시키는 것에는 한계가 있다. 가령, 길이 150m(미터)의 7개의 게이트가 사용된다.Where r represents the location in the target area and j varies here over the range of the gate length, N is the number of resolution gates in the range, The number of measured samples for acquisition is indicated. The gate is a unit that becomes a basic unit when processing the radar signals received from arbitrary azimuths by unit distance. Since the radar signals are present one at a certain distance starting from the radar, Of the pixel of interest. The more gates in the same distance range for the same target range, the more accurate the data with higher resolution can be accumulated, but there is a limit to increase the processing capacity. For example, seven gates with a length of 150 meters (meters) are used.

여기서 제안된 방법은 또한, 네 개의 기본적인 과정(respect) 즉, 녹는 층 검출(melting layer detection), 퍼지화(fuzzification), 추론(inference), 디퍼지화(defuzzification: 퍼지 논리와 주어진 퍼지 세트와 이에 대응하는 요소 정도(membership degrees) 내에서 계량화할 수 있는 결과를 도출하는 과정)를 포함하여 구성된다.The proposed method also has four basic respects: melting layer detection, fuzzification, inference, defuzzification, and fuzzy logic, The process of deriving a quantifiable result within the membership degrees.

녹는 층 검출과 관련하여, 아래쪽의 강우 영역으로부터 위쪽의 녹는 영역으로 레이더 빔(beam)이 지나갈 때 상관계수는 급격하게 떨어지며 이런 정보는 녹는 층의 고도와 깊이를 결정하는 데 사용될 수 있다. 통상 '밝은 층' 위쪽은 얼음, 밝은 층 영역은 눈 비 혼합, 밝은 층 아래는 비로 많이 판단된다. 이런 접근방식은 높은 SNR에 대해서 잘 작동한다. With respect to melting layer detection, the correlation coefficient drops sharply as the radar beam passes from the lower rainfall zone to the upper melting zone, and this information can be used to determine the altitude and depth of the melting zone. Usually, the upper part of the 'light layer' is judged to be ice, the bright layer area is mixed with the snow, and the bright layer is judged by the rain. This approach works well for high SNR.

이미 언급하였듯이 낮은 SNR값에서 상관계수는 SNR값에 민감함을 나타낸다. 강우 영역에서조차, 높은 SNR값에 대한 혼합 강수에서의 상관계수값인 0.93에 비해 작은 0.9 같은 상관계수 값이 존재할 수 있다. 일정한 상관계수 기준을 이용한 녹는 층의 표시는 낮은 SNR에서는 적절하게 작용하지 않는다.As already mentioned, correlation coefficients at low SNR values are sensitive to SNR values. Even in the rainfall region, there may be a correlation coefficient value such as 0.9, which is smaller than the correlation coefficient value of 0.93 in mixed precipitation with respect to a high SNR value. The display of the melting layer using a constant correlation coefficient criterion does not work properly at low SNRs.

이런 난점을 극복하기 위해 본 발명에서는 보다 개선된 다음과 같은 녹는 층 검출 방법을 제안하고 있다. 즉, 여기서, 녹는 층은 도1의 10ρ hv-SNR 관계 및 도2의 σ(Ψdp)-SNR 평면에서 각각의 관측 데이타가 어느 경계 영역에 속하게 되는 가를 확인한다. 혼합 강수 영역에 속하는 관측 데이타에서 이들이 어느 고도에 있는 가를 조사하고 그 평균적인 값을 취하면 녹는 층(혼합 강수 영역)의 평균적 고도 및 깊이를 얻어낼 수 있다. 여기서 이용될 도1, 도2와 같은 경계 영역은 사전에 다수 측정 결과에 대한 조사 연구를 통해 확립한다. In order to overcome this difficulty, the present invention proposes the following improved melting layer detection method. That is, the melting layer confirms which boundary region each observation data belongs to in the 10 ρ hv- SNR relationship in FIG. 1 and in the σ (Ψ dp ) -SNR plane in FIG. The average altitude and depth of the melting layer (mixed precipitation area) can be obtained by examining the altitude of these at the observation data belonging to the mixed precipitation area and taking an average value thereof. 1 and 2 to be used here will be established through an investigation on a plurality of measurement results in advance.

검출된 녹는 층의 평균 고도는 후속과정에서 수상체 분류 시스템에서 환경 요소(온도)로서 사용된다. The average height of the detected melting layer is used as the environmental element (temperature) in the cruciform classification system in the subsequent process.

퍼지화와 관련하여, 본 발명의 대기 수상체 분류의 다른 개선점은 σ(Ψdp), SNR, 10ρ hv변수 사용에 의해 두 개의 이차원 베타 멤버쉽 함수(Beta membership fuction)(Liu와 Chandrasekar 논문 참조)를 도입하는 것을 통해 이루어진다.With respect to fuzzification, another improvement of the airborne body classification of the present invention is to use two two-dimensional beta membership functions (see Liu and Chandrasekar's paper) by using σ (Ψ dp ), SNR, 10 ρ hv variables, Lt; / RTI >

도 1 및 도 2는 앞서 언급한 NOAA의 이중 편파 X밴드 레이더 자료 (HYDROX data)를 이용하여 도출한 이차원 베타 멤버쉽 함수를 나타낸다. 특히, 도2는 σ(Ψdp)를 SNR의 함수로 나타내고 도1은 10ρ hv과 SNR 사이의 대응 관계를 나타낸다. 분류 경계는 HYDROX 레이더 데이타를 가지고 얻은 것이다. 그 과정은 SNR에 따른 σ(Ψdp)과 10ρ hv의 평균치 추정과 데이타에 따른 최적 관계를 얻는 것을 포함한다. FIGS. 1 and 2 show a two-dimensional beta membership function derived from the above-mentioned NOAA dual polarized X-band radar data (HYDROX data). In particular, Fig. 2 shows sigma ([Delta] dp ) as a function of SNR and Fig. 1 shows the corresponding relationship between 10rho hv and SNR. The classification boundary is obtained with HYDROX radar data. The process involves estimating the mean value of σ (Ψ dp ) and 10 ρ hv according to the SNR and obtaining the optimum relationship according to the data.

단, 이들 이차원 베타 멤버쉽 함수는 신호 변동과 같은 레이더 시스템의 특성에 의존하는 것을 고려할 필요가 있다. 따라서, 이차원 베타 멤버쉽 함수의 조정이 각 레이더 시스템을 위해 이루어질 수 있고, 또한 조정하는 것이 필요하다. 즉, 기존의 퍼지 로직에서와 마찬가지로 퍼지화 함수는 모든 경우에 통용되는 단일하게 이루어지는 것은 아님을 고려해야 한다. It should be noted, however, that these two-dimensional beta membership functions depend on the characteristics of the radar system, such as signal variations. Therefore, the adjustment of the two-dimensional beta membership function can be made for each radar system, and it is necessary to adjust it. That is, as in the conventional fuzzy logic, it should be considered that the fuzzy function does not consist of a single, commonly used case.

이어지는 추정(rule strength) 단계는 이 실시예에서는 다음 식에 의해 결정된다.The subsequent rule strength step is determined by the following equation in this embodiment.

Figure pat00017
Figure pat00017

이때 f는 퍼지화 함수를 H는 측정 고도를 표시한다. 퍼지화 함수로는 앞서의 수학식 1과 같은 베타 함수로 고도를 변수(x)로 하는 일차원 멤버쉽 함수가 사용될 수 있다. 녹는 층 높이에 따라 이렇게 일차원 멤버쉽 함수가 만들어지면 개별 자료의 구체적 고도 및 강수체 구분에 따라 a, b, m을 맞게 적용시킨 퍼지화 함수값이 얻어질 수 있다.Where f is the fuzzy function and H is the measured altitude. As the fuzzification function, a one-dimensional membership function using the beta function as in Equation (1) and the altitude as the variable (x) can be used. If a one-dimensional membership function is created according to the height of the melting layer, a fuzzy function value can be obtained by applying a, b, and m according to the specific altitude and precipitation classification of the individual data.

f(2D-MBF1), f(2D-MBF2)는 σ(Ψdp)-SNR 관계와 10ρ hv-SNR 관계 각각을 위한 퍼지화 함수로 이차원 베타 멤버쉽 함수를 의미한다. f (2D-MBF1) and f (2D-MBF2) are two-dimensional beta membership functions for the σ (Ψ dp ) -SNR relationship and the 10 ρ hv- SNR relation respectively.

디퍼지화(defuzzification) 단계에서, 만약 최대 추정값이 0.2보다 낮은 경우, 해당 위치의 대상물은 비기상학적이거나 낮은 신호 대상물로 결정된다. 최대 추정값이 0.2보다 높은 경우에는 강우, 얼음/강우 혼합, 얼음의 3 가지 대기 수상체 가운데 이 최대 추정값을 가지는 하나로 결정된다. 이때 기준이 되는 0.2라는 수치는 경험적으로 얻어진 것이다.In the defuzzification phase, if the maximum estimate is lower than 0.2, the object at that location is determined to be a non-meteorological or low signal object. When the maximum estimated value is higher than 0.2, it is determined that one of the three atmospheric circulations of rainfall, ice / rain mixture, and ice has the maximum estimated value. The reference value of 0.2 is obtained empirically.

이러한 대기수상체 분류 방법이 타당한 것인지 기존 자료를 통해 검정할 수 있다. It can be verified through the existing data whether the method of classifying the atmospheric body is valid.

도5a 내지 도5c는 하나의 기상 관측자료로부터 얻어진 수평 반사도(Zh), 상관계수(ρhv), 측정된 차등전파위상(Ψdp)을 묘사하고 있다. 이 자료는 도3, 도4에 나타난 대류성 및 층상의 결합 강수 기간과 같은 기간 중에 수행된 것으로 대략 해발 2.8km 아래에서 이루어지는 강우와 이 고도 이상에서의 강설을 포함하는 것이다. HYDROX 자료와 수직으로 지향하는 S밴드 근처의 전파 관찰 결과로부터 해수면 위 대략 2.8km 의 현저한 녹는 층의 존재를 알려주고 있다.Figures 5A-5C depict the horizontal reflectivity (Zh), the correlation coefficient (rho hv ) and the measured differential propagation phase (Ψ dp ) obtained from one meteorological observation. This data was taken during periods such as the convective and stratified coupled precipitation periods shown in FIGS. 3 and 4, which include rainfall below 2.8 km above sea level and snowfall above this altitude. HYDROX data and radio wave observations near the S band, which are oriented vertically, indicate the presence of a significant melting layer of approximately 2.8 km above sea level.

이런 사실은 본 발명의 수상체 분류 방법을 시험할 완전한 기회를 제공한다. 이 제안된 방법으로부터의 분류 결과는 도5d에 나타난다. 각 패널의 검은 선에 의해 검출된 녹는 층은 X밴드 레이더로부터 대략 18km 범위에서 얻은 관찰 자료와 S밴드 전파 관찰과 비교하였다. S 밴드와 X 밴드에서 관찰된 녹는 영역은 잘 일치하고 있음을 발견할 수 있다. 녹는 층 특성에 근거하여 도5d에 나타난 분류 결과가 적절함을 알 수 있었다.This fact provides a perfect opportunity to test the method of sculpture of the present invention. The result of the classification from the proposed method is shown in Fig. 5D. The melting layer detected by the black lines of each panel was compared with observation data obtained from the X-band radar in the range of approximately 18 km and S band propagation observation. It can be seen that the melting regions observed in the S band and the X band agree well. Based on the properties of the melting layer, the classification results shown in FIG. 5D are appropriate.

이상에서는 한정된 실시예를 통해 본 발명을 설명하고 있으나, 이는 본 발명의 이해를 돕기 위해 예시적으로 설명된 것일 뿐 본원 발명은 이들 특정의 실시예에 한정되지 아니한다. 즉, 당해 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명을 토대로 다양한 변경이나 응용예를 실시할 수 있을 것이며 이러한 변형례나 응용예는 첨부된 특허청구범위에 속함은 당연한 것이다.While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. That is, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

Claims (7)

엑스밴드 이중편파 레이더의 전자기파 송수신 관측 자료를 통해 초기 입력 변수로서 신호대잡음비 (SNR), 상관계수(ρhv), 측정된 차등전파위상(Ψdp(r))을 얻는 단계,
대기상의 녹는 층(혼합강수층)을 구분하고 녹는 층의 고도 및 분포특성(녹는 층 깊이:melting depth)를 산출하는 단계,
상기 입력 변수를 이용하여 측정된 차등전파위상의 표준편차σ(Ψdp)와 10ρ hv를 얻고, σ(Ψdp)-SNR 관계와 10ρ hv-SNR 관계를 나타내는 2차원 퍼지함수를 정하고 상기 2차원 퍼지함수를 이용하여 2개의 퍼지함수값을 산출하는 퍼지화(fuzzyfication) 단계,
각각의 대기수상체에 대해 상기 녹는 층 고도(Height)의 퍼지함수값과 상기 2개의 2차원 퍼지함수값을 이용하여 추론 값(RS)을 얻는 추론 단계(inference),
상기 추론 단계에서 얻은 추론 값 가운데 최대 추론값 (Max(RS))을 선택하여 비기상학적 대상물을 가려내는 품질관리 및 강우, 강우 얼음 혼합, 얼음의 3 가지로 강수체 구분을 하는 디퍼지화(defuzzyfication) 단계를 구비하여 이루어지는 엑스밴드 이중편파 레이더 원시자료를 이용한 강수체 구분 방법.
(SNR), correlation coefficient (ρ hv ) and measured differential propagation phase (Ψ dp (r)) as the initial input variables through the electromagnetic wave transmission and reception observation data of the X-band dual polarization radar,
(Melting precipitation layer) and calculating altitude and distribution characteristics (melting depth) of the melting layer in the atmosphere,
A standard deviation σ (Ψ dp ) and 10 ρ hv of the differential propagation phase measured using the input variable are obtained, a 2-dimensional fuzzy function indicating a σ (Ψ dp ) -SNR relationship and a 10 ρ hv- SNR relation is determined, A fuzzyfication step of calculating two fuzzy function values using a two-dimensional fuzzy function,
An inference step of obtaining an inference value (RS) using the fuzzy function value of the melting layer height and the two two-dimensional fuzzy function values for each atmospheric water body,
The quality control that selects non-meteorological objects by selecting the maximum reasoning value (Max (RS)) among the reasoning values obtained in the above reasoning step, and the defuzzification method which classifies precipitation by three kinds of rainfall, The method comprising the steps of: (a) inputting at least one of a plurality of radar signals to a radar system;
제 1 항에 있어서,
상기 추론 단계에서는 다음 수학식을 추론 규칙으로 이용하여 추론 값을 얻는 것을 특징으로 하는 엑스밴드 이중편파 레이더 원시자료를 이용한 강수체 구분 방법.
Figure pat00018

단, f는 퍼지화 함수, H는 측정 고도를 표시하며, f(2D-MBF1), f(2D-MBF2)는 σ(Ψdp)-SNR 관계와 10ρ hv-SNR 관계를 위한 이차원 베타 멤버쉽 함수 각각을 의미한다.
The method according to claim 1,
Wherein the inference step uses the following equation as an inference rule to obtain an inference value.
Figure pat00018

F (2D-MBF1) and f (2D-MBF2) are two-dimensional beta memberships for the σ (Ψ dp ) -SNR relationship and the 10 ρ hv- SNR relationship. Function.
제 1 항 또는 제 2 항에 있어서
상기 대기상의 녹는 층(혼합강수층)을 구분하고 녹는 층의 고도 및 분포특성(녹는 층 깊이:melting depth)를 산출하는 단계에서는 초기 입력 변수로서 신호대잡음비 (SNR), 상관계수(ρhv), 측정된 차등전파위상(Ψdp(r))을 얻은 개개의 관측 자료가 σ(Ψdp)-SNR 평면 및 10ρ hv-SNR 평면에서 대기 수상체 구분을 위해 결정한 경계 영역 가운데 어디에 속하는지 확인하여 녹는 층 영역에 속하는 관측 자료들을 분류하고, 상기 녹는 층 영역에 속하는 관측 자료들로부터 녹는 층의 평균 고도 및 깊이를 산출하는 것을 특징으로 하는 엑스밴드 이중편파 레이더 원시자료를 이용한 강수체 구분 방법.
The method according to claim 1 or 2, wherein
The SNR, the correlation coefficient (ρ hv ), and the correlation coefficient (ρ hv ) are used as input parameters in the step of calculating the altitude and distribution characteristics (melting depth) of the melting layer The individual observed data obtained from the measured differential propagation phase (Ψ dp (r)) are located in the boundary regions determined for the separation of atmospheric bodies in the σ (Ψ dp ) -SNR plane and the 10 ρ hv- SNR plane Wherein the average height and depth of the melting layer are calculated from the observation data belonging to the melting layer region and the average height and depth of the melting layer are calculated from the observation data belonging to the melting layer region.
엑스밴드 이중편파 레이더의 전자기파 송수신 자료를 통해 초기 입력 변수로서 신호대잡음비 (SNR), 상관계수(ρhv), 차등전파위상(φdp)을 얻는 단계,
대기상의 녹는 층(혼합강수층)을 구분하고 녹는 층의 고도 및 분포특성(녹는 층 깊이:melting depth)를 산출하는 단계,
상기 입력 변수와 차등전파위상 및 측정된 차등전파위상과의 일반 관계식을 이용하여 측정된 차등전파위상의 표준편차 σ(Ψdp)과 10ρ hv를 얻고, σ(Ψdp)-SNR 관계와 10ρ hv-SNR 관계를 나타내는 2차원 퍼지함수를 정하고 상기 2차원 퍼지함수를 이용하여 2개의 퍼지함수값을 산출하는 퍼지화(fuzzyfication) 단계,
상기 퍼지화 단계 후 녹는 층 고도(Height)의 퍼지값과 상기 2개의 2차원 퍼지함수값을 이용하여 추론 값을 얻는 추론 단계(inference),
상기 추론 단계에서 얻은 추론 값 가운데 최대 추론값 (Max(RS))을 선택하여 품질관리 및 강수체 구분을 하는 단계를 구비하여 이루어지는 엑스밴드 이중편파 레이더 원시자료를 이용한 강수체 구분 방법.
(SNR), correlation coefficient (ρ hv ) and differential propagation phase (φ dp ) as initial input variables through the electromagnetic wave transmission and reception data of the X-band dual polarization radar,
(Melting precipitation layer) and calculating altitude and distribution characteristics (melting depth) of the melting layer in the atmosphere,
The standard deviations σ (Ψ dp ) and 10 ρ hv of the differential propagation phase measured using the general relationship between the input variable, the differential propagation phase and the measured differential propagation phase are obtained, and the σ (Ψ dp ) -SNR relation and the 10 a fuzzyfication step of determining a two-dimensional fuzzy function expressing the relation ρ hv- SNR and calculating two fuzzy function values using the two-dimensional fuzzy function,
An inference step of obtaining a reasoning value using the fuzzy value of the melting layer height after the purging step and the two two-dimensional fuzzy function values,
And selecting the maximum speculation value (Max (RS)) among the speculation values obtained in the speculation step to classify the quality control and the precipitation object.
제 4 항에 있어서,
상기 추론 단계에서는 다음 수학식을 추론 규칙으로 이용하여 추론 값을 얻는 것을 특징으로 하는 엑스밴드 이중편파 레이더 원시자료를 이용한 강수체 구분 방법.
Figure pat00019

단, f는 퍼지화 함수, H는 측정고도를 표시하며, f(2D-MBF1), f(2D-MBF2)는 σ(Ψdp)-SNR 관계와 10ρ hv-SNR 관계를 위한 이차원 베타 멤버쉽 함수 각각을 의미한다.
5. The method of claim 4,
Wherein the inference step uses the following equation as an inference rule to obtain an inference value.
Figure pat00019

F (2D-MBF1) and f (2D-MBF2) are two-dimensional beta memberships for the σ (Ψ dp ) -SNR relationship and the 10 ρ hv- SNR relationship. Function.
제 4 항 또는 제 5 항에 있어서,
상기 대기상의 녹는 층(혼합강수층)을 구분하고 녹는 층의 고도 및 분포특성(녹는 층 깊이:melting depth)를 산출하는 단계에서는 초기 입력 변수로서 신호대잡음비 (SNR), 상관계수(ρhv), 측정된 차등전파위상(Ψdp(r))을 얻은 개개의 관측 자료가 σ(Ψdp)-SNR 평면 및 10ρ hv-SNR 평면에서 대기 수상체 구분을 위해 결정한 경계 영역 가운데 어디에 속하는지 확인하여 녹는 층 영역에 속하는 관측 자료들을 분류하고, 상기 녹는 층 영역에 속하는 관측 자료들로부터 녹는 층의 평균 고도 및 깊이를 산출하는 것을 특징으로 하는 엑스밴드 이중편파 레이더 원시자료를 이용한 강수체 구분 방법.
The method according to claim 4 or 5,
The SNR, the correlation coefficient (ρ hv ), and the correlation coefficient (ρ hv ) are used as input parameters in the step of calculating the altitude and distribution characteristics (melting depth) of the melting layer The individual observed data obtained from the measured differential propagation phase (Ψ dp (r)) are located in the boundary regions determined for the separation of atmospheric bodies in the σ (Ψ dp ) -SNR plane and the 10 ρ hv- SNR plane Wherein the average height and depth of the melting layer are calculated from the observation data belonging to the melting layer region and the average height and depth of the melting layer are calculated from the observation data belonging to the melting layer region.
엑스밴드 이중편파 레이더의 전자기파 송수신 자료를 통해 얻은 초기 입력 변수와 퍼지 로직을 이용하여 대상물을 구분하는 방법에 있어서,
상기 초기 입력 변수로 신호대잡음비 (SNR), 상관계수(ρhv), 차등전파위상(φdp) 혹은 측정된 차등전파위상(Ψdp(r))를 이용하며,
상기 대상물로 비기상학적 대상물과 대기수상체로서 강우(비), 강우 얼음 혼합(눈 비 혼합), 얼음을 구분하는 것을 특징으로 하는 엑스밴드 이중편파 레이더 원시자료를 이용한 강수체 구분 방법.
A method for distinguishing objects using initial input variables and fuzzy logic obtained from electromagnetic wave transmission and reception data of an X-band dual polarized radar,
(SNR), a correlation coefficient (rho hv ), a differential propagation phase (? Dp ) or a measured differential propagation phase (? Dp (r)) is used as the initial input parameter,
Wherein the object is classified into rain, rain, ice, and ice as non-meteorological objects and atmospheric water bodies, using the x-band dual polarized radar source data.
KR1020130143456A 2013-11-25 2013-11-25 method of hydrometeor classification using raw data of X band dual polarization radar KR101538368B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130143456A KR101538368B1 (en) 2013-11-25 2013-11-25 method of hydrometeor classification using raw data of X band dual polarization radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130143456A KR101538368B1 (en) 2013-11-25 2013-11-25 method of hydrometeor classification using raw data of X band dual polarization radar

Publications (2)

Publication Number Publication Date
KR20150059864A true KR20150059864A (en) 2015-06-03
KR101538368B1 KR101538368B1 (en) 2015-07-22

Family

ID=53504624

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130143456A KR101538368B1 (en) 2013-11-25 2013-11-25 method of hydrometeor classification using raw data of X band dual polarization radar

Country Status (1)

Country Link
KR (1) KR101538368B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10026163B2 (en) 2015-02-25 2018-07-17 Cale Fallgatter Hydrometeor identification methods and systems
KR20190057594A (en) * 2017-11-20 2019-05-29 경북대학교 산학협력단 Device and Method for Correction of Cross-correlation Coefficient Using Signal-to-noise Ratio and Recording Medium for Performing the Method
CN113466856A (en) * 2021-08-04 2021-10-01 广州市气象台 Forest fire early stage identification and early warning method based on X-band dual-polarization phased array radar
KR102672989B1 (en) * 2024-01-11 2024-06-07 주식회사 엠솔 Precipitation Detection System
KR20240083608A (en) 2022-12-05 2024-06-12 국립부경대학교 산학협력단 Apparatus and Method for Classifying Hydrometeor using Dual Polarization Radar Parameters

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366931B (en) * 2020-05-19 2023-06-30 范思睿 Cloud precipitation refined inversion method based on cloud radar

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10026163B2 (en) 2015-02-25 2018-07-17 Cale Fallgatter Hydrometeor identification methods and systems
KR20190057594A (en) * 2017-11-20 2019-05-29 경북대학교 산학협력단 Device and Method for Correction of Cross-correlation Coefficient Using Signal-to-noise Ratio and Recording Medium for Performing the Method
CN113466856A (en) * 2021-08-04 2021-10-01 广州市气象台 Forest fire early stage identification and early warning method based on X-band dual-polarization phased array radar
KR20240083608A (en) 2022-12-05 2024-06-12 국립부경대학교 산학협력단 Apparatus and Method for Classifying Hydrometeor using Dual Polarization Radar Parameters
KR102672989B1 (en) * 2024-01-11 2024-06-07 주식회사 엠솔 Precipitation Detection System

Also Published As

Publication number Publication date
KR101538368B1 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
KR101431707B1 (en) method of classification and quantification using data of X band dual polarization radar
Gourley et al. A fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations
Hubbert et al. Weather radar ground clutter. Part II: Real-time identification and filtering
Cho et al. Identification and removal of ground echoes and anomalous propagation using the characteristics of radar echoes
KR101538368B1 (en) method of hydrometeor classification using raw data of X band dual polarization radar
Makynen et al. Incidence angle dependence of the statistical properties of C-band HH-polarization backscattering signatures of the Baltic Sea ice
Tang et al. A physically based precipitation–nonprecipitation radar echo classifier using polarimetric and environmental data in a real-time national system
Kouketsu et al. A hydrometeor classification method for X-band polarimetric radar: Construction and validation focusing on solid hydrometeors under moist environments
Lim et al. Precipitation classification and quantification using X-band dual-polarization weather radar: Application in the Hydrometeorology Testbed
Kumjian Weather radars
Adachi et al. Detection of potentially hazardous convective clouds with a dual-polarized C-band radar
Wen et al. A cluster-based method for hydrometeor classification using polarimetric variables. Part I: Interpretation and analysis
Wang et al. C-band polarimetric radar QPE based on specific differential propagation phase for extreme typhoon rainfall
Matrosov et al. Observational and modeling study of ice hydrometeor radar dual-wavelength ratios
Islam et al. Fuzzy logic based melting layer recognition from 3 GHz dual polarization radar: appraisal with NWP model and radio sounding observations
Kalesse et al. Development and validation of a supervised machine learning radar Doppler spectra peak-finding algorithm
Kim et al. Retrieval of three-dimensional raindrop size distribution using X-band polarimetric radar data
Kuster et al. Using ZDR columns in forecaster conceptual models and warning decision-making
Marzano et al. Hydrometeor classification from dual-polarized weather radar: extending fuzzy logic from S-band to C-band data
Deng et al. Stratiform and convective precipitation observed by multiple radars during the DYNAMO/AMIE experiment
Rao et al. Classification of tropical precipitating systems using wind profiler spectral moments. Part I: Algorithm description and validation
Williams et al. Cluster analysis techniques to separate air motion and hydrometeors in vertical incident profiler observations
Brast et al. Detecting the melting layer with a micro rain radar using a neural network approach
Lin et al. Relating the radar bright band and its strength to surface rainfall rate using an automated approach
Yoshikawa et al. Dual-directional radar observation for preliminary assessment of the Ku-band broadband radar network

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 4