KR20150032438A - Method for manufacturing czts based absorber film using chemical bath deposition - Google Patents
Method for manufacturing czts based absorber film using chemical bath deposition Download PDFInfo
- Publication number
- KR20150032438A KR20150032438A KR20130112094A KR20130112094A KR20150032438A KR 20150032438 A KR20150032438 A KR 20150032438A KR 20130112094 A KR20130112094 A KR 20130112094A KR 20130112094 A KR20130112094 A KR 20130112094A KR 20150032438 A KR20150032438 A KR 20150032438A
- Authority
- KR
- South Korea
- Prior art keywords
- thin film
- salt
- precursor
- czts
- complexing agent
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000000224 chemical solution deposition Methods 0.000 title abstract description 5
- 239000006096 absorbing agent Substances 0.000 title 1
- 239000002243 precursor Substances 0.000 claims abstract description 96
- 239000010409 thin film Substances 0.000 claims abstract description 91
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 150000003342 selenium Chemical class 0.000 claims abstract description 26
- 150000003839 salts Chemical class 0.000 claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 150000003463 sulfur Chemical class 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 68
- 239000008139 complexing agent Substances 0.000 claims description 38
- 239000002184 metal Substances 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 229910052717 sulfur Inorganic materials 0.000 claims description 24
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 20
- 239000011593 sulfur Substances 0.000 claims description 20
- 239000012266 salt solution Substances 0.000 claims description 12
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 11
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 11
- 150000003751 zinc Chemical class 0.000 claims description 11
- 150000001879 copper Chemical class 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 9
- 239000012298 atmosphere Substances 0.000 claims description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 3
- MCAHWIHFGHIESP-UHFFFAOYSA-L selenite(2-) Chemical class [O-][Se]([O-])=O MCAHWIHFGHIESP-UHFFFAOYSA-L 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 2
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical group [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 abstract 2
- 239000011669 selenium Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052711 selenium Inorganic materials 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- -1 Cu (In Chemical class 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
- H01L31/0326—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
본 발명은 박막형 화합물 태양전지 분야에 관한 것으로서, 보다 상세하게는 화학 수조 증착법(chemical bath deposition)법을 이용하여 초저가로 CZTS 기반 박막을 제조하는 방법에 관한 것이다.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of thin film type compound solar cells, and more particularly, to a method for manufacturing a CZTS-based thin film at a low cost by using a chemical bath deposition method.
화석 에너지 고갈과 환경 문제로 인하여, 실질적으로 무한한 태양광을 이용할 뿐만 아니라 이산화탄소를 발생시키지 않는 태양전지에 대해 많은 연구개발이 이루어지고 있다. 특히, 최근에는 태양전지의 경제성을 높이기 위해 저가 고효율 태양전지에 연구가 집중되고 있다.Due to the depletion of fossil energy and environmental problems, many researches and developments have been made on solar cells that not only utilize virtually unlimited sunlight but also generate no carbon dioxide. In recent years, in order to increase the economical efficiency of solar cells, researches have been focused on low cost and high efficiency solar cells.
하지만, 현재 태양전지 시장의 주류를 이루고 있는 결정질 실리콘 태양전지는 200㎛ 내외 크기를 가지는 기판을 사용하기 때문에 생산 단가를 낮추는데 한계가 있으며, 특히 원소재로 이용되는 실리콘은 지속적인 대량 공급이 담보되지 못하는 실정이다. 이에 따라 생산 단가를 낮추기 위하여 유리나 유연 기판을 사용하거나 실리콘을 대체할 광흡수 물질을 5㎛ 내외의 얇은 층만을 사용하는 박막형 태양전지가 새로운 대안으로 주목받고 있다.However, since crystalline silicon solar cells, which are currently the mainstream of the solar cell market, use a substrate having a size of about 200 μm, there is a limitation in lowering the production cost. Especially, silicon used as a raw material is not guaranteed to be supplied continuously It is true. Accordingly, a thin film type solar cell using glass or a flexible substrate or a thin layer of about 5 μm as a light absorbing material for replacing silicon has been attracting attention as a new alternative in order to lower the production cost.
최근 독일 신재생 에너지 연구소(ZSW)는 높은 광흡수계수와 화학적 안정성을 가지는 Cu(In,Ga)Se2(CIGS)등의 Se계 화합물 박막을 소재로 활용하여 20.3%라는 높은 변환 효율을 나타내는 태양전지를 발표한바 있고, 이는 향후 산업화 가능성이 높은 것으로 평가받고 있다.In recent years, the German Renewable Energy Laboratory (ZSW) has developed a solar cell with a high conversion efficiency of 20.3% using a thin film of Se compound such as Cu (In, Ga) Se 2 (CIGS) Battery, which is considered highly industrialized in the future.
그러나 비록 CIGS로 대표되는 박막형 화합물 태양전지가 높은 광전 변환 효율을 획득하고 있기는 하지만, 기존의 Si를 기반으로 하는 태양전지와 발전 단가 경쟁을 하기 위해서는 26% 이상의 광전 변환 효율을 확보하여야 할 것이다. 따라서 CIGS 기반 박막을 이용하는 태양전지는 그 양산화에 제한이 있다. 더욱이, CIGS는 In과 Ga의 높은 가격과 Se의 독성으로 인한 제약도 있기 때문에 대량생산에 어려움이 따를 것으로 판단된다.Although thin-film compound solar cells typified by CIGS have achieved high photoelectric conversion efficiency, it is necessary to secure a photoelectric conversion efficiency of 26% or more in order to compete with a conventional Si-based solar cell. Therefore, solar cells using CIGS-based thin films are limited in their mass production. Moreover, CIGS will be difficult to mass-produce because of the high cost of In and Ga and the toxicity of Se.
이러한 CIGS를 대체하기 위하여 CZTS(Cu2ZnSnS4)를 기반하는 흡수 박막 및 그를 적용한 태양전지에 대하여 많은 연구가 이루어지고 있다. CZTS는 CIGS의 In과 Ga를 Zn과 Sn으로 대체하는 것으로서, CIGS와 비슷한 결정구조와 광학적 특성을 갖는다. 따라서, CZTS가 CIGS와 비슷한 변환 효율을 갖게 된다면, 기존의 Si 기반의 태양전지에 대하여 가격 경쟁력을 가질 수 있을 것으로 판단된다. 특히, CZTS 박막의 제조비용이 낮아진다면, 초저가의 CZTS 기반 태양전지를 생산할 수 있을 것으로 예상된다.
In order to replace CIGS, many researches have been made on CZTS (Cu 2 ZnSnS 4 ) based absorption thin films and solar cells using them. CZTS replaces In and Ga of CIGS with Zn and Sn, and has similar crystal structure and optical properties to CIGS. Therefore, if CZTS has a conversion efficiency similar to that of CIGS, it can be expected to have price competitiveness against existing Si-based solar cells. In particular, if the manufacturing cost of the CZTS thin film is lowered, it is expected that the CZTS-based solar cell can be produced at an ultra low price.
본 발명은 종래의 문제점을 감안한 것으로서, 화학 수조 증착법을 이용하여 초저가의 CZTS 기반 박막을 제조하는 방법을 제공한다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a method of manufacturing a CZTS-based thin film at an ultra low price by using chemical vapor deposition.
본 발명은 상술한 개선된 제조방법으로 제조된 CZTS 기반 광흡수 박막을 채용하는 태양전지를 제공한다.
The present invention provides a solar cell employing a CZTS-based light absorbing thin film produced by the above-described improved manufacturing method.
본 발명은 화학 수조 증착법을 이용하여 CZTS 박막을 제조하는 방법을 제공하며, 이는: (a) 수조에 전구체 용액을 준비하는 단계; (b) 상기 전구체 용액에 기판을 넣고 소정 시간 동안 유지하여 상기 기판에 전구체 박막을 형성하는 단계; 및 (c) 상기 전구체 박막이 형성된 기판을 취출하여 열처리하는 단계;를 포함한다.The present invention provides a method of making a CZTS thin film using chemical vapor deposition, comprising: (a) preparing a precursor solution in a water bath; (b) placing a substrate in the precursor solution and holding the precursor solution for a predetermined time to form a precursor thin film on the substrate; And (c) removing and heat-treating the substrate on which the precursor thin film is formed.
상기 단계 (b)에서 상기 전구체 용액은 pH가 7 내지 10일 수 있다.In the step (b), the precursor solution may have a pH of 7 to 10.
상기 단계 (b)에서 상기 전구체 용액의 온도는 60 내지 100일 수 있다.In the step (b), the temperature of the precursor solution may be 60-100.
상기 단계 (b)는 1 내지 4시간 동안 유지하는 것일 수 있다.The step (b) may be maintained for 1 to 4 hours.
상기 단계 (c)는 황화 또는 셀렌화 분위기에서 수행한다.The step (c) is carried out in a sulphide or selenization atmosphere.
하나의 측면에서, 상기 전구체 용액은 구리염, 아연염, 주석염, 황염 또는 셀렌염, 및 착화제를 포함하는 것일 수 있다. 여기서 상기 착화제는 Na2EDTA 또는 Na3citrate일 수 있다.In one aspect, the precursor solution may comprise a copper salt, a zinc salt, a tin salt, a sulfur salt or a selenium salt, and a complexing agent. Wherein the complexing agent may be Na 2 EDTA or Na 3 citrate.
다른 측면에서, 상기 전구체 용액은 구리염, 아연염, 주석염, 및 착화제를 포함하는 것일 수 있다. 여기서, 상기 구리염, 상기 아연염, 및 상기 주석염 각각과 착화제를 혼합한 각각의 용액을 하나로 혼합하되, 몰비로 Cu:Zn:Sn이 2:1:1의 비율이 되도록 혼합하는 것일 수 있다.In another aspect, the precursor solution may comprise a copper salt, a zinc salt, a tin salt, and a complexing agent. Here, each of the solutions obtained by mixing the copper salt, the zinc salt, and the tin salt with the complexing agent may be mixed in a molar ratio of Cu: Zn: Sn of 2: 1: 1 have.
또 다른 측면에서, 상기 단계 (a)에서 복수개의 전구체 용액을 준비하고, 상기 단계 (b)에서 복수개의 전구체 박막을 순차로 적층하는 것일 수 있다.In another aspect, a plurality of precursor solutions may be prepared in step (a), and a plurality of precursor thin films may be sequentially deposited in step (b).
여기서, 상기 복수개의 전구체 용액의 각각은 적어도 하나의 금속염, 착화제, 및 황염 또는 셀렌염을 포함하는 것일 수 있다.Here, each of the plurality of precursor solutions may include at least one metal salt, a complexing agent, and a sulfur or selenium salt.
상기 복수개의 전구체 용액은: 아연염, 착화제, 및 황염 또는 셀렌염을 포함하는 제1전구체 용액: 주석염, 착화제, 및 황염 또는 셀렌염을 포함하는 제2전구체 용액; 및 구리염, 착화제, 및 황염 또는 셀렌염을 포함하는 제3전구체 용액;을 포함하는 것일 수 있다.Said plurality of precursor solutions comprising: a first precursor solution comprising a zinc salt, a complexing agent, and a sulfur or selenium salt: a second precursor solution comprising a tin salt, a complexing agent, and a sulfur or selenium salt; And a third precursor solution comprising a copper salt, a complexing agent, and a sulfur or selenium salt.
상기 제1전구체 용액에 의한 제1전구체 박막, 상기 제2전구체 용액에 의한 제2전구체 박막, 및 상기 제3전구체 용액에 의한 제3전구체 박막의 순서로 적층하는 것일 수 있다.The first precursor thin film by the first precursor solution, the second precursor thin film by the second precursor solution, and the third precursor thin film by the third precursor solution may be laminated in this order.
상기 제1 내지 제3전구체 용액은 해당 금속염, 착화제, 및 황염 또는 셀렌염을 각각 물에 용해한 후, 금속염 용액과 착화제 용액을 먼저 섞고 나서 황염 또는 셀렌염 용액을 섞는 것일 수 있다.The first to third precursor solutions may be prepared by first dissolving the metal salt, the complexing agent, and the sulfur or selenium salt in water, mixing the metal salt solution and the complexing agent solution first, and then mixing the sulfuric acid salt solution or the selenite salt solution.
상기 제1 내지 제3금속염 각각은 0.01 내지 0.4M의 농도를 가지는 것일 수 있다.Each of the first to third metal salts may have a concentration of 0.01 to 0.4M.
상기 황염 또는 셀렌염은 0,05 내지 0,4M의 농도를 가지는 것일 수 있다.The sulfur or selenium salt may have a concentration of 0, 05 to 0, 4M.
상기 착화제는 Na2EDTA 또는 Na3citrate이고, 0.02 내지 0,1M의 농도를 가지는 것일 수 있다.
The complexing agent may be Na 2 EDTA or Na 3 citrate and have a concentration of 0.02 to 0.1 M.
본 발명에 따르면 화학 수조 증착법을 이용하여 초저비용으로 고품질을 가지는 CZTS 박막을 제조할 수 있는 방법이 제공된다. 이러한 CZTS 박막은 태양전지의 광흡수층으로 적용되어 기존의 CIGS 박막을 대체할 수 있다. 또한 본 발명의 제조방법에서는 다양한 예의 화학 수조 방법을 이용할 수 있다.
According to the present invention, there is provided a method of manufacturing a CZTS thin film having high quality at a very low cost by using a chemical water tank deposition method. The CZTS thin film can be used as a light absorbing layer of solar cell to replace the existing CIGS thin film. In the manufacturing method of the present invention, chemical tank methods of various examples can be used.
도 1은 본 발명의 CZTS 박막 제조방법에서 채용하는 화학 수조 증착법을 설명하기 위해 개략적으로 도시한 도면이다.
도 2는 본 발명의 제1실시예에 따른 CZTS 박막의 제조방법을 설명하기 위해 도시한 도면이다.
도 3은 본 발명의 제2실시예에 따른 CZTS 박막의 제조방법을 설명하기 위해 도시한 도면이다.
도 4는 본 발명의 제3실시예에 따른 CZTS 박막의 제조방법을 설명하기 위해 도시한 도면이다.
도 5는 본 발명의 제조방법에 의해 제조된 CZTS 박막을 적용한 태양전지를 개략적으로 도시한 단면도이다.BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic view for explaining a chemical water tank deposition method employed in the CZTS thin film manufacturing method of the present invention. FIG.
FIG. 2 is a view illustrating a method of manufacturing a CZTS thin film according to a first embodiment of the present invention.
FIG. 3 is a view illustrating a method of manufacturing a CZTS thin film according to a second embodiment of the present invention.
4 is a view illustrating a method of manufacturing a CZTS thin film according to a third embodiment of the present invention.
5 is a cross-sectional view schematically showing a solar cell to which the CZTS thin film manufactured by the manufacturing method of the present invention is applied.
이하 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 본 발명의 실시예를 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the embodiments of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.
먼저 도 1을 참조하여 본 발명의 제조방법에서 채용하는 화학 수조 증착법(chemical bath deposition)에 대하여 설명한다. 화학 수조 증착법은 출발 물질을 일정한 용매 속에 녹인 후 온도를 올려서 각 이온들의 화학 반응 상수(Ksp)에 의해 화합물이 합성되는 것을 이용하며, 이때 기판을 수조에 넣어주면 기판 표면에 박막을 증착할 수 있다. 용매는 주로 물을 사용한다. 반응용액을 만들 때 용액의 pH, 착화제(complexing agent)의 유무, 및 농도에 따라서 Ksp 값이 달라지기 때문에, 실험 설계가 중요하다.First, chemical bath deposition employed in the manufacturing method of the present invention will be described with reference to FIG. The chemical vapor deposition method utilizes the fact that the starting material is dissolved in a certain solvent and the compound is synthesized by the chemical reaction constant (Ksp) of each ion by raising the temperature. In this case, the substrate can be deposited on the surface of the substrate by putting it in the water bath . The solvent is mainly water. Experimental design is important because the Ksp value varies depending on the pH of the solution, the presence or absence of the complexing agent, and the concentration of the solution.
본 발명에서는 이러한 화학 수조 증착법을 이용하여 CZTS 박막을 기판에 증착한다. 기판은 후면전극층으로서 예를 들어 Mo층이 형성된 것일 수 있다. 본 발명에 따른 제조방법은 수조에 전구체 용액을 준비하고, 전구체 용액에 기판을 넣고 소정 시간 동안 유지하여 기판에 전구체 박막을 형성한 후, 전구체 박막이 형성된 기판을 취출하여 열처리함으로써 CZTS 박막을 형성한다.In the present invention, a CZTS thin film is deposited on a substrate by using this chemical bath deposition method. The substrate may be, for example, a Mo layer formed as a rear electrode layer. A precursor solution is prepared in a water bath, a precursor solution is prepared in a precursor solution, a precursor thin film is formed on a substrate by holding the precursor solution for a predetermined time, a substrate on which the precursor thin film is formed is removed and heat treatment is performed to form a CZTS thin film .
증착이 이루어지는 동안, 전구체 용액은 pH가 예를 들어 7 내지 10일 수 있고, 온도는 60 내지 100로 유지할 수 있다. 또한 기판을 전구체 용액에 1 내지 4시간 동안 유지하는 것일 수 있다. 이후, 전구체 박막이 형성된 기판을 수조로부터 취출하여 황화 또는 셀렌화 분위기에서 열처리를 수행함으로써 CZTS 박막이 형성된다.During the deposition, the precursor solution may have a pH of, for example, 7 to 10, and the temperature may be maintained at 60 to 100. And maintaining the substrate in the precursor solution for 1 to 4 hours. Thereafter, the CZTS thin film is formed by taking the substrate having the precursor thin film formed thereon out of the water tank and performing the heat treatment in the sulfiding or selenizing atmosphere.
제1실시예First Embodiment
도 2는 본 발명의 제1실시예에 따른 CZTS 박막의 제조방법을 설명하기 위해 도시한 도면이다.FIG. 2 is a view illustrating a method of manufacturing a CZTS thin film according to a first embodiment of the present invention.
도 1 및 도 2를 참조하여, 본 발명의 제1실시예에 따른 CZTS 박막의 제조방법은 수조에 CZTS 박막의 형성에 필요한 모든 물질을 한꺼번에 넣어서 전구체 용액을 생성한다. 이를 테면, 구리염, 아연염, 주석염, 및 황염 또는 셀렌염을 물이 수용된 수조에 투입한다. 이때, 착화제가 같이 투입된다.Referring to FIGS. 1 and 2, a method of manufacturing a CZTS thin film according to a first embodiment of the present invention includes placing all the materials necessary for forming a CZTS thin film into a water tank at a time to produce a precursor solution. For example, a copper salt, a zinc salt, a tin salt, and a sulfur or selenium salt are introduced into a water-containing water tank. At this time, the complexing agent is added together.
금속 전구체는 금속과 염의 결합물을 사용할 수 있고, 염은 예를 들어 acetate, NO3, Cl2, SO4 등이 이용될 수 있다. 황염과 셀렌염은 수용성 염을 사용할 수 있다.As the metal precursor, a combination of a metal and a salt can be used. As the salt, for example, acetate, NO 3 , Cl 2 , SO 4 and the like can be used. Sulfuric salts and selenium salts may use water-soluble salts.
이와 같이 한번에 모든 물질을 수조에 넣어서 증착하는 방법은 물질을 섞는 순서가 중요하다. 금속염이 물에 녹으면 매우 쉽게 S나 Se 이온과 결합하기 때문이다. 이러한 문제를 해결하기 위해서 착화제를 함께 투입한다. 착화제는 예를 들어 Na2EDTA 또는 Na3citrate를 적용할 수 있고, 금속이온과 S나 Se 이온이 결합하는 것 보다 빨리 금속-착화제 결합을 하여 금속과 S나 Se가 결합하는 것을 막아주는 역할을 한다. 따라서 바람직하게는 금속염 용액을 만들어서 금속염 용액과 착화제 용액을 먼저 넣고 나서 황염 또는 셀렌염 용액을 나중에 넣는다.In this way, it is important that the order of mixing the materials is the same as the method of depositing all materials in a tank at once. The reason why the metal salt dissolves in water is that it binds with S or Se ions very easily. To solve this problem, a complexing agent is added together. The complexing agent can, for example, be applied with Na 2 EDTA or Na 3 citrate, which prevents metal and S or Se from bonding with metal-complexing bonds faster than metal ions and S or Se ions It plays a role. Therefore, preferably, a metal salt solution is prepared, and then the metal salt solution and the complexing agent solution are first put into the solution, and then the solution of the salt or selenium salt is added later.
제1실시예서 전구체 용액의 온도는 예를 들어 60 내지 100도로 유지하고, pH는 예를 들어 7 내지 10으로 유지할 수 있다. 기판을 전구체 용액에 침지하여 유지하는 증착시간은 예를 들어 1 내지 4시간일 수 있다. 이러한 제1실시예의 조건에 따르면 대략 200 내지 1000nm 두께의 매우 치밀한 미세구조를 가지는 전구체 박막을 얻을 수 있다.The temperature of the precursor solution in the first embodiment may be maintained at, for example, 60 to 100 degrees, and the pH may be maintained at, for example, 7 to 10. The deposition time for immersing and holding the substrate in the precursor solution may be, for example, 1 to 4 hours. According to the conditions of the first embodiment, a precursor thin film having a very dense microstructure of approximately 200 to 1000 nm thick can be obtained.
이렇게 제작된 전구체 박막을 황화 또는 셀렌화 분위기에서 예를 들어 400 내지 600도 사이의 온도로 예를 들어 1 내지 4시간 열처리를 진행하면 고품질의 CZTS 기반 광흡수층이 얻어지게 된다.
If the precursor thin film thus formed is subjected to a heat treatment at a temperature of, for example, 400 to 600 degrees Celsius, for example, for 1 to 4 hours in a sulfided or selenized atmosphere, a high quality CZTS-based light absorption layer is obtained.
제2실시예Second Embodiment
도 3은 본 발명의 제2실시예에 따른 CZTS 박막의 제조방법을 설명하기 위해 도시한 도면이다.FIG. 3 is a view illustrating a method of manufacturing a CZTS thin film according to a second embodiment of the present invention.
도 1 및 도 3을 참조하여, 본 발명의 제2실시예에 따른 CZTS 박막의 제조방법에서는 먼저 금속염만을 이용하여 전구체 박막을 형성한 후, 황화 또는 셀렌화 분위기에서 열처리함으로써 CZTS 박막을 형성한다.Referring to FIGS. 1 and 3, in a method of manufacturing a CZTS thin film according to a second embodiment of the present invention, a CZTS thin film is formed by first forming a precursor thin film using only a metal salt and then performing heat treatment in a sulfiding or selenizing atmosphere.
이러한 제2실시예는 상술한 제1실시예보다 전구체 박막의 특성 조절이 용이하다는 장점을 갖는다.This second embodiment has an advantage that the characteristics of the precursor thin film can be more easily controlled than in the first embodiment described above.
제2실시예에서는 구리염, 아연염, 주석염, 및 착화제를 포함하는 전구체 용액을 생성한다. 이를 위해, 각각의 금속염과 착화제를 일정한 량으로 혼합한 후, 전체를 혼합한다. 각각의 용액의 비율의 조정은 금속염의 몰비를 통하여 이루어지며, 예를 들어 Cu:Zn:Sn이 2:1:1이 되도록 한다.The second embodiment produces a precursor solution comprising copper salt, zinc salt, tin salt, and complexing agent. To this end, each metal salt and complexing agent are mixed in a certain amount, and then the entire mixture is mixed. The adjustment of the ratio of each solution is made through the molar ratio of the metal salt, for example, Cu: Zn: Sn of 2: 1: 1.
이후, pH를 예를 들어 7 내지 10 사이의 값으로 조절하고, 온도를 예를 들어 60 내지 100도로 유지하면서 증착을 1 내지 4시간 동안 진행한다. 이러한 제2실시예의 조건에서 얻어진 전구체 박막은 대략 200 내지 700nm의 두께를 갖는다.Thereafter, the pH is adjusted to a value between, for example, 7 to 10, and the deposition is continued for 1 to 4 hours while maintaining the temperature at, for example, 60 to 100 degrees. The precursor thin film obtained under the conditions of this second embodiment has a thickness of approximately 200 to 700 nm.
이제 기판을 수조로부터 취출하여 전구체 박막을 황화 또는 셀렌화 분위기에서 400 내지 600 온도로 1 내지 4 시간동안 열처리하면 고품질의 CZTS 기반 광흡수 박막이 얻어진다.
Now, the substrate is taken out of the water tank and the precursor thin film is heat-treated at 400 to 600 ° C for 1 to 4 hours in a sulphiding or selenizing atmosphere to obtain a high-quality CZTS-based light absorbing thin film.
제3실시예Third Embodiment
도 4는 본 발명의 제3실시예에 따른 CZTS 박막의 제조방법을 설명하기 위해 도시한 도면이다.4 is a view illustrating a method of manufacturing a CZTS thin film according to a third embodiment of the present invention.
도 1 및 도 4를 참조하여, 본 발명의 제3실시예에 따른 CZTS 박막 제조방법에서는 복수개의 전구체 박막층을 순차로 형성한 후 이를 열처리함으로써 CZTS 박막을 얻는다.Referring to FIGS. 1 and 4, in the CZTS thin film manufacturing method according to the third embodiment of the present invention, a plurality of precursor thin film layers are sequentially formed and then heat treated to obtain a CZTS thin film.
따라서, 복수개의 전구체 용액을 준비하고, 기판을 침지하여 복수개의 전구체 박막을 순차로 적층한다. 바람직하게 각각의 전구체 용액은 예를 들어 적어도 하나의 금속염, 착화제, 및 황염 또는 셀렌염을 포함할 수 있다.Accordingly, a plurality of precursor solutions are prepared, and the substrate is immersed to sequentially laminate a plurality of precursor thin films. Preferably, each precursor solution may comprise, for example, at least one metal salt, a complexing agent, and a sulfur or selenium salt.
더 바람직하게 복수개의 전구체 용액은 아연염, 착화제, 및 황염 또는 셀렌염을 포함하는 제1전구체 용액과, 주석염, 착화제, 및 황염 또는 셀렌염을 포함하는 제2전구체 용액과, 구리염, 착화제, 및 황염 또는 셀렌염을 포함하는 제3전구체 용액을 포함하는 것일 수 있다.More preferably, the plurality of precursor solutions comprises a first precursor solution comprising a zinc salt, a complexing agent, and a sulfur or selenium salt, a second precursor solution comprising a tin salt, a complexing agent, and a sulfur or selenium salt, , A complexing agent, and a third precursor solution comprising a sulfur or selenium salt.
이들 각 전구체 용액은 각각 분리되어 준비되며, 기판을 순차로 각 전구체 용액에 침지하여 복수층의 전구체 박막을 형성한다.Each of these precursor solutions is separately prepared, and the substrate is sequentially immersed in each precursor solution to form a plurality of precursor thin films.
이를 테면, 기판을 제1전구체 용액에 침지하여 제1전구체 박막을 형성하고, 이어 기판을 제2전구체 용액에 침지하여 제2전구체 박막을 형성하며, 마지막으로 기판을 제3전구체 용액에 침지하여 제3전구체 박막을 형성한다. 이후, 이렇게 복수로 적층된 전구체 박막을 열처리함으로써 CZTS 박막을 얻을 수 있다. 바람직하게 열처리는 황화 또는 셀렌화 분위기에서 수행할 수 있다. 도 4에서 알 수 있는 바와 같이, 제1전구체 박막은 ZnS이고, 제2전구체 박막은 SnS2이며, 제3전구체 박막은 CuS일 수 있다.For example, the substrate is immersed in a first precursor solution to form a first precursor thin film, and then the substrate is immersed in a second precursor solution to form a second precursor thin film. Finally, the substrate is immersed in a third precursor solution 3 precursor thin film. Thereafter, the CZTS thin film can be obtained by heat-treating the precursor thin films laminated in this manner. Preferably the heat treatment can be carried out in a sulphide or selenization atmosphere. 4, the first precursor thin film may be ZnS, the second precursor thin film may be SnS 2 , and the third precursor thin film may be CuS.
각 전구체 용액은 해당 금속염, 착화제, 및 황염 또는 셀렌염을 각각 물에 용해한 후, 금속염 용액과 착화제 용액을 먼저 섞고 나서 황염 또는 셀렌염 용액을 섞을 수 있다. 이를테면, 제1 내지 제3전구체 용액의 경우에, 해당 금속염, 착화제, 및 황염 또는 셀렌염을 각각 물에 용해한 후, 금속염 용액과 착화제 용액을 먼저 섞고 나서 황염 또는 셀렌염 용액을 섞는다. 이는 위에서 설명한 바와 같이 금속과 S 또는 Se가 먼저 결합하는 것을 막기 위해, 금속-착화제 결합을 먼저 형성하는 것이다.Each precursor solution can be prepared by first dissolving the metal salt, the complexing agent, and the sulfur or selenium salt in water, mixing the metal salt solution and the complexing agent solution first, and then mixing the sulfuric salt or selenite salt solution. For example, in the case of the first to third precursor solutions, the metal salt, the complexing agent, and the sulfur or selenium salt are each dissolved in water, and then the metal salt solution and the complexing agent solution are first mixed, and then the sulfuric salt or selenium salt solution is mixed. This is to first form the metal-complexing bond to prevent the metal and S or Se from bonding first, as described above.
여기서, 혼합액 내에서 금속염 각각은 예를 들어 0.01 내지 0.4M의 농도를 갖고, 황염 또는 셀렌염은 예를 들어 0,05 내지 0,4M의 농도를 갖으며, 착화제는 Na2EDTA 또는 Na3citrate로서 예를 들어 0.02 내지 0,1M의 농도를 갖는다.Here, each of the metal salts in the mixed solution has a concentration of, for example, 0.01 to 0.4 M, and the sulfur or selenium salt has a concentration of, for example, 0.05 to 0.4 M, and the complexing agent is Na 2 EDTA or Na 3 Citrate has a concentration of 0.02 to 0.1 M, for example.
이들 복층의 전구체 박막의 적층 순서는 특별한 제약 없이 모든 순서가 가능하지만, ZnS/SnS2/Cu2S이 가장 적절하다. 이는 CZTS의 합성 메커니즘에 따른 것이다. 이를테면, 이들이 저온에서는 Cu2S, ZnS, SnS2로 존재하다가 온도가 향상되면 Cu2SnS3, ZnS 형태로 존재하며, 더 높은 온도에서 CZTS로 합성된다. 이러한 점을 감안하여 SnS2와 Cu가 붙어 있으면 합성이 더 잘 이루어질 수 있다.
The order of lamination of these multi-layered precursor thin films can be all orders without any restriction, but ZnS / SnS 2 / Cu 2 S is most suitable. This is in accordance with the synthesis mechanism of CZTS. For example, they are present as Cu 2 S, ZnS and SnS 2 at low temperatures, and Cu 2 SnS 3 , ZnS forms as temperature increases, and are synthesized as CZTS at higher temperatures. Taking this into consideration, synthesis with SnS 2 and Cu can be made better.
상술한 실시예들에서 온도와 pH는 균일한 박막의 CZTS를 형성하기 위한 적정한 범위를 선택한 것이다. 온도와 pH가 상술한 범위를 벗어나면, 아예 증착이 되지 않거나 커다란 크기(수마이크로 싸이즈)의 입자 형태로 물질이 합성되는 문제점이 있다.
In the above-mentioned embodiments, temperature and pH are selected in a proper range for forming CZTS of uniform thin film. When the temperature and the pH are out of the above range, there is a problem that the material is synthesized in the form of a particle having a large size (several microsize) or not being deposited at all.
태양전지에의 적용Application to solar cells
도 5는 본 발명의 제조방법에 의해 제조된 CZTS 박막을 적용한 태양전지를 개략적으로 도시한 단면도이다.5 is a cross-sectional view schematically showing a solar cell to which the CZTS thin film manufactured by the manufacturing method of the present invention is applied.
상술한 제1 내지 3실시예 중 어느 하나로 제조된 CZTS층 상에 버퍼층으로서 예를 들어 CdS층을 형성한다. CdS층의 제조는 예를 들어 화학 수조 증착법을 적용할 수 있다.For example, a CdS layer is formed as a buffer layer on the CZTS layer manufactured by any one of the first to third embodiments described above. The CdS layer may be prepared by, for example, chemical vapor deposition.
이후, 스퍼터링를 이용하여 i-ZnO를 대략 70nm 정도 증착하고, 그 위에 Al이 도핑된 ZnO, 및 상부 전극으로서 Al을 증착한다.
Thereafter, i-ZnO is deposited to a thickness of about 70 nm using sputtering, and then Al-doped ZnO and Al as an upper electrode are deposited thereon.
이상, 본 발명의 상세한 설명에서는 구체적인 실시예에 관해서 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 당해 분야에서 통상의 지식을 가진 자에게 있어서 자명하다 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments.
Claims (18)
(a) 수조에 전구체 용액을 준비하는 단계;
(b) 상기 전구체 용액에 기판을 넣고 소정 시간 동안 유지하여 상기 기판에 전구체 박막을 형성하는 단계; 및
(c) 상기 전구체 박막이 형성된 기판을 취출하여 열처리하는 단계;를 포함하는,
CZTS 박막의 제조방법.
A method for producing a CZTS thin film comprising:
(a) preparing a precursor solution in a water bath;
(b) placing a substrate in the precursor solution and holding the substrate for a predetermined time to form a precursor thin film on the substrate; And
(c) removing and heat-treating the substrate on which the thin film of the precursor has been formed,
CZTS thin film.
상기 단계 (b)에서 상기 전구체 용액은 pH가 7 내지 10인,
CZTS 박막의 제조방법.
The method according to claim 1,
Wherein the precursor solution in step (b) has a pH of from 7 to 10,
CZTS thin film.
상기 단계 (b)에서 상기 전구체 용액의 온도는 60 내지 100도인,
CZTS 박막의 제조방법.
The method according to claim 1,
Wherein the temperature of the precursor solution in step (b) ranges from 60 to 100,
CZTS thin film.
상기 단계 (b)는 1 내지 4시간 동안 유지하는 것인,
CZTS 박막의 제조방법.
The method according to claim 1,
Wherein said step (b) is maintained for 1 to 4 hours.
CZTS thin film.
상기 단계 (c)는 황화 또는 셀렌화 분위기에서 수행하는 것인,
CZTS 박막의 제조방법.
The method according to claim 1,
Wherein step (c) is carried out in a sulphide or selenization atmosphere,
CZTS thin film.
상기 전구체 용액은 구리염, 아연염, 주석염, 황염 또는 셀렌염, 및 착화제를 포함하는 것인,
CZTS 박막의 제조방법.
The method according to any one of claims 1 to 5,
Wherein the precursor solution comprises a copper salt, a zinc salt, a tin salt, a sulfur salt or a selenium salt, and a complexing agent.
CZTS thin film.
상기 착화제는 Na2EDTA 또는 Na3citrate인,
CZTS 박막의 제조방법.
The method of claim 6,
The complexing agent may be Na 2 EDTA or Na 3 citrate,
CZTS thin film.
상기 전구체 용액은 구리염, 아연염, 주석염, 및 착화제를 포함하는 것인,
CZTS 박막의 제조방법.
The method according to any one of claims 1 to 5,
Wherein the precursor solution comprises a copper salt, a zinc salt, a tin salt, and a complexing agent.
CZTS thin film.
상기 구리염, 상기 아연염, 및 상기 주석염 각각과 착화제를 혼합한 각각의 용액을 하나로 혼합하되, 몰비로 Cu:Zn:Sn이 2:1:1의 비율이 되도록 혼합하는 것인,
CZTS 박막의 제조방법.
The method of claim 8,
Wherein each solution obtained by mixing each of the copper salt, zinc salt, and tin salt with a complexing agent is mixed in a molar ratio of Cu: Zn: Sn of 2: 1:
CZTS thin film.
상기 단계 (a)에서 복수개의 전구체 용액을 준비하고,
상기 단계 (b)에서 복수개의 전구체 박막을 순차로 적층하는 것인,
CZTS 박막의 제조방법.
The method according to any one of claims 1 to 5,
In the step (a), a plurality of precursor solutions are prepared,
Wherein a plurality of precursor thin films are sequentially deposited in step (b).
CZTS thin film.
상기 복수개의 전구체 용액의 각각은 적어도 하나의 금속염, 착화제, 및 황염 또는 셀렌염을 포함하는 것인,
CZTS 박막의 제조방법.
The method of claim 10,
Wherein each of said plurality of precursor solutions comprises at least one metal salt, a complexing agent, and a sulfur or selenium salt.
CZTS thin film.
아연염, 착화제, 및 황염 또는 셀렌염을 포함하는 제1전구체 용액:
주석염, 착화제, 및 황염 또는 셀렌염을 포함하는 제2전구체 용액; 및
구리염, 착화제, 및 황염 또는 셀렌염을 포함하는 제3전구체 용액;을 포함하는 것인,
CZTS 박막의 제조방법.
12. The method of claim 11, wherein the plurality of precursor solutions comprises:
A zinc salt, a complexing agent, and a first precursor solution comprising a sulfur or selenium salt:
A second precursor solution comprising a tin salt, a complexing agent, and a sulfur or selenium salt; And
A third precursor solution comprising a copper salt, a complexing agent, and a sulfur or selenium salt.
CZTS thin film.
상기 제1전구체 용액에 의한 제1전구체 박막, 상기 제2전구체 용액에 의한 제2전구체 박막, 및 상기 제3전구체 용액에 의한 제3전구체 박막의 순서로 적층하는 것인,
CZTS 박막의 제조방법.
The method of claim 12,
The first precursor thin film by the first precursor solution, the second precursor thin film by the second precursor solution, and the third precursor thin film by the third precursor solution.
CZTS thin film.
상기 제1 내지 제3전구체 용액은 해당 금속염, 착화제, 및 황염 또는 셀렌염을 각각 물에 용해한 후, 금속염 용액과 착화제 용액을 먼저 섞고 나서 황염 또는 셀렌염 용액을 섞는 것인,
CZTS 박막의 제조방법.
The method of claim 12,
Wherein the first to third precursor solutions are prepared by first dissolving the metal salt, the complexing agent, and the sulfur or selenium salt in water, mixing the metal salt solution and the complexing agent solution first, and then mixing the sulfuric acid salt solution or the selenite salt solution,
CZTS thin film.
상기 제1 내지 제3금속염 각각은 0.01 내지 0.4M의 농도를 가지는 것인,
CZTS 박막의 제조방법.
The method of claim 12,
Wherein each of the first to third metal salts has a concentration of 0.01 to 0.4M.
CZTS thin film.
상기 황염 또는 셀렌염은 0,05 내지 0,4M의 농도를 가지는 것인,
CZTS 박막의 제조방법.
The method of claim 12,
Wherein the sulfur or selenium salt has a concentration of from 0, 05 to 0,
CZTS thin film.
상기 착화제는 Na2EDTA 또는 Na3citrate이고, 0.02 내지 0,1M의 농도를 가지는 것인,
CZTS 박막의 제조방법.
The method of claim 12,
Wherein the complexing agent is Na2EDTA or Na3citrate and has a concentration of 0.02 to 0.1M.
CZTS thin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130112094A KR101649396B1 (en) | 2013-09-17 | 2013-09-17 | Method for manufacturing czts based absorber film using chemical bath deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130112094A KR101649396B1 (en) | 2013-09-17 | 2013-09-17 | Method for manufacturing czts based absorber film using chemical bath deposition |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150032438A true KR20150032438A (en) | 2015-03-26 |
KR101649396B1 KR101649396B1 (en) | 2016-08-31 |
Family
ID=53025576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130112094A KR101649396B1 (en) | 2013-09-17 | 2013-09-17 | Method for manufacturing czts based absorber film using chemical bath deposition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101649396B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105039937A (en) * | 2015-06-02 | 2015-11-11 | 南昌大学 | Method for preparing copper-zinc-tin-sulfur-selenium film based on aqueous solution |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070015538A (en) | 2004-03-05 | 2007-02-05 | 솔리브로 에이비 | Method and apparatus for in-line process control of the cigs process |
KR20110085721A (en) * | 2010-01-21 | 2011-07-27 | 전남대학교산학협력단 | Method for manufacturing czts film by one step electrodeposition |
-
2013
- 2013-09-17 KR KR1020130112094A patent/KR101649396B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070015538A (en) | 2004-03-05 | 2007-02-05 | 솔리브로 에이비 | Method and apparatus for in-line process control of the cigs process |
KR20110085721A (en) * | 2010-01-21 | 2011-07-27 | 전남대학교산학협력단 | Method for manufacturing czts film by one step electrodeposition |
Non-Patent Citations (3)
Title |
---|
Lorenzo Rovelli et al., "Optimization and Stabilization of Electrodeposited Cu2ZnSnS4 Photocathodes for Solar Water Reduction", Appl. Mater. Interfaces, Vol.5, pp.8018-8024* * |
M. Cao et al., "One-step deposition of Cu2ZnSnS4 thin films for solar cells", Sol. Energy Mater. Sol. Cells, Vol.117, pp.81-86* * |
N.M. Shinde et al., "Low cost and large area novel chemical synthesis of Cu2ZnSnS4(CZTS) thin films", J. Photochem. Photobio. A: Chemistry, Vol.235, pp.14-20* * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105039937A (en) * | 2015-06-02 | 2015-11-11 | 南昌大学 | Method for preparing copper-zinc-tin-sulfur-selenium film based on aqueous solution |
Also Published As
Publication number | Publication date |
---|---|
KR101649396B1 (en) | 2016-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4782880B2 (en) | Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion element, and solar cell | |
JP4611447B1 (en) | Method for manufacturing photoelectric conversion element | |
JP4615067B1 (en) | Photoelectric conversion element and solar cell including the same | |
KR101649396B1 (en) | Method for manufacturing czts based absorber film using chemical bath deposition | |
JP6035122B2 (en) | Photoelectric conversion element and method for producing buffer layer of photoelectric conversion element | |
JP5478474B2 (en) | Photoelectric conversion element and solar cell including the same | |
JP2016056084A (en) | Method for forming thin film chalcogenide layer | |
JP2014130858A (en) | Photoelectric conversion element and process of manufacturing buffer layer of the same | |
JP2012195416A (en) | Method for manufacturing photoelectric conversion element | |
JP2012174759A (en) | Compound semiconductor layer manufacturing method and photoelectric conversion element | |
JP4750228B2 (en) | Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion element, and solar cell | |
KR101835580B1 (en) | Prepration method of CZTS or CZTSe thin film solar cell using co-evaporation and solar cell prepared by the same | |
KR102091566B1 (en) | Method for manufacturing light transmission type compound thin film, compound thin film manufactured therefrom, and solar cell comprising the compound thin film | |
KR101500858B1 (en) | METHOD FOR MANUFACTURING Sn FILM AND CZTS-BASED ABSORBER FILM FOR SOLAR CELL USING ELECTRODEPOSITION | |
JP6169283B2 (en) | Morpholine bath and method for chemically depositing layers | |
US11031517B2 (en) | Method of manufacturing light transmission type compound thin film, compound thin film manufactured therefrom, and solar cell including the same | |
KR102011041B1 (en) | Method for producing compound thin film having surface pattern, compound thin film prepared therefrom, and solar cell comprising the compound thin film | |
WO2013001807A1 (en) | Method for producing buffer layer and method for manufacturing photoelectric conversion element | |
JP6184602B2 (en) | Persulfate bath and method for chemically depositing layers | |
Abdullah et al. | A Review on Development Prospect of CMTS Based Thin Film Solar Cells | |
Hassan et al. | Multi band gap Cu (In, Ga)(S, Se) 2 thin films deposited by spray pyrolysis for high performance solar cell devices | |
JP5878416B2 (en) | Chalcopyrite solar cell and method for manufacturing the same | |
JP2013187265A (en) | Method of manufacturing buffer layer of chalcopyrite solar cell element | |
Martí Valls et al. | Preparation of Cu (In, Ga) Se2 photovoltaic absorbers by an aqueous metal selenite co-precipitation route | |
WO2013005427A1 (en) | Buffer layer, method for manufacturing photoelectric conversion element comprising same, and photoelectric conversion element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20190723 Year of fee payment: 4 |