KR20150014872A - A method and an apparatus for encoding/decoding a scalable video signal - Google Patents
A method and an apparatus for encoding/decoding a scalable video signal Download PDFInfo
- Publication number
- KR20150014872A KR20150014872A KR1020140095736A KR20140095736A KR20150014872A KR 20150014872 A KR20150014872 A KR 20150014872A KR 1020140095736 A KR1020140095736 A KR 1020140095736A KR 20140095736 A KR20140095736 A KR 20140095736A KR 20150014872 A KR20150014872 A KR 20150014872A
- Authority
- KR
- South Korea
- Prior art keywords
- reference picture
- picture
- layer
- interlayer
- current
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/30—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
- H04N19/34—Scalability techniques involving progressive bit-plane based encoding of the enhancement layer, e.g. fine granular scalability [FGS]
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
본 발명은 스케일러블 비디오 신호 인코딩/디코딩 방법 및 장치에 관한 것이다.The present invention relates to a scalable video signal encoding / decoding method and apparatus.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 응용 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 데이터량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 저장하는 경우, 전송 비용과 저장 비용이 증가하게 된다. 영상 데이터가 고해상도, 고품질화 됨에 따라 발생하는 이러한 문제들을 해결하기 위해서는 고효율의 영상 압축 기술들이 활용될 수 있다.Recently, the demand for high resolution and high quality images such as high definition (HD) image and ultra high definition (UHD) image is increasing in various applications. As the image data has high resolution and high quality, the amount of data increases relative to the existing image data. Therefore, when the image data is transmitted using a medium such as a wired / wireless broadband line or stored using an existing storage medium, The storage cost is increased. High-efficiency image compression techniques can be utilized to solve such problems as image data becomes high-resolution and high-quality.
영상 압축 기술로 현재 픽쳐의 이전 또는 이후 픽쳐로부터 현재 픽쳐에 포함된 화소값을 예측하는 화면 간 예측 기술, 현재 픽쳐 내의 화소 정보를 이용하여 현재 픽쳐에 포함된 화소값을 예측하는 화면 내 예측 기술, 출현 빈도가 높은 값에 짧은 부호를 할당하고 출현 빈도가 낮은 값에 긴 부호를 할당하는 엔트로피 부호화 기술 등 다양한 기술이 존재하고 이러한 영상 압축 기술을 이용해 영상 데이터를 효과적으로 압축하여 전송 또는 저장할 수 있다.An inter picture prediction technique for predicting a pixel value included in a current picture from a previous or a subsequent picture of a current picture by an image compression technique, an intra picture prediction technique for predicting a pixel value included in a current picture using pixel information in the current picture, There are various techniques such as an entropy encoding technique in which a short code is assigned to a value having a high appearance frequency and a long code is assigned to a value having a low appearance frequency. Image data can be effectively compressed and transmitted or stored using such an image compression technique.
한편, 고해상도 영상에 대한 수요가 증가함과 함께, 새로운 영상 서비스로서 입체 영상 컨텐츠에 대한 수요도 함께 증가하고 있다. 고해상도 및 초고해상도의 입체 영상 콘텐츠를 효과적으로 제공하기 위한 비디오 압축 기술에 대하여 논의가 진행되고 있다.On the other hand, demand for high-resolution images is increasing, and demand for stereoscopic image content as a new image service is also increasing. Video compression techniques are being discussed to effectively provide high resolution and ultra-high resolution stereoscopic content.
본 발명은 스케일러블 비디오 신호를 인코딩/디코딩에 있어서, 참조 레이어의 픽쳐를 업샘플링하는 방법 및 장치를 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a method and apparatus for up-sampling a picture of a reference layer in encoding / decoding a scalable video signal.
본 발명은 스케일러블 비디오 신호를 인코딩/디코딩에 있어서, 참조 레이어의 픽쳐를 업샘플링하여 인터레이어 참조 픽쳐를 생성하는 방법 및 장치를 제공하는 것을 목적으로 한다.A method and apparatus for generating an inter-layer reference picture by up-sampling a picture of a reference layer in encoding / decoding a scalable video signal.
본 발명은 스케일러블 비디오 신호를 인코딩/디코딩함에 있어서, 인터레이어 참조 픽쳐를 이용하여 참조 픽쳐 리스트를 구성하는 방법 및 장치를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method and apparatus for constructing a reference picture list using an interlayer reference picture in encoding / decoding a scalable video signal.
본 발명은 스케일러블 비디오 신호를 인코딩/디코딩함에 있어서, 레이어 간 예측을 통해 현재 레이어의 텍스쳐 정보를 효과적으로 유도하는 방법 및 장치를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method and apparatus for effectively deriving texture information of a current layer through inter-layer prediction in encoding / decoding a scalable video signal.
본 발명에 따른 스케일러블 비디오 신호 디코딩 방법 및 장치는, 현재 레이어의 현재 픽쳐에 대응하는 참조 레이어의 대응 픽쳐를 복호화하고, 상기 복호화된 대응 픽쳐를 업샘플링하여 인터레이어 참조 픽쳐를 생성하며, 시간적 참조 픽쳐와 상기 인터레이어 참조 픽쳐를 포함한 참조 픽쳐 리스트를 생성하고, 상기 참조 픽쳐 리스트에 기초하여 상기 현재 픽쳐의 인터 예측을 수행하는 것을 특징으로 한다.A scalable video signal decoding method and apparatus according to the present invention decodes a corresponding picture of a reference layer corresponding to a current picture of a current layer, upsamples the decoded corresponding picture to generate an interlayer reference picture, A reference picture list including the picture and the inter-layer reference picture is generated, and the inter-prediction of the current picture is performed based on the reference picture list.
본 발명에 따른 스케일러블 비디오 신호 디코딩 방법 및 장치에서 시간적 참조 픽쳐는 제1 근거리 참조 픽쳐, 제2 근거리 참조 픽쳐 또는 장거리 참조 픽쳐 중 적어도 하나를 포함하는 것을 특징으로 한다.In the scalable video signal decoding method and apparatus according to the present invention, the temporal reference picture includes at least one of a first near reference picture, a second near reference picture, and a long distance reference picture.
본 발명에 따른 스케일러블 비디오 신호 디코딩 방법 및 장치에서 상기 제1 근거리 참조 픽쳐는 상기 현재 픽쳐의 POC 값보다 POC 값이 작은 근거리 참조 픽쳐를 의미하고, 상기 제2 근거리 참조 픽쳐는 상기 현재 픽쳐의 POC 값보다 POC 값이 큰 근거리 참조 픽쳐를 의미하는 것을 특징으로 한다.In the scalable video signal decoding method and apparatus according to the present invention, the first near reference picture means a near reference picture having a smaller POC value than the POC value of the current picture, and the second near reference picture indicates a POC Quot; value " means a near reference picture having a POC value larger than a value.
본 발명에 따른 스케일러블 비디오 신호 디코딩 방법 및 장치에서 상기 인터레이어 참조 픽쳐는 제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐 중 적어도 하나를 포함하고, 상기 제1 인터레이어 참조 픽쳐는 상기 참조 레이어의 대응 픽쳐를 업샘플링한 픽쳐를 의미하며, 상기 제2 인터레이어 참조 픽쳐는 상기 참조 레이어의 레지듀얼을 이용하여 복원된 픽쳐를 의미하는 것을 특징으로 한다.In the scalable video signal decoding method and apparatus according to the present invention, the interlayer reference picture includes at least one of a first interlayer reference picture and a second interlayer reference picture, And the second interlayer reference picture refers to a picture reconstructed using the residual of the reference layer.
본 발명에 따른 스케일러블 비디오 신호 디코딩 방법 및 장치에서 참조 픽쳐 리스트는 참조 픽쳐 리스트 0 또는 참조 픽쳐 리스트 1 중 적어도 하나를 포함하고, 상기 참조 픽쳐 리스트 0는 상기 제1 근거리 참조 픽쳐, 상기 제1 인터레이어 참조 픽쳐, 상기 제2 근거리 참조 픽쳐, 상기 장거리 참조 픽쳐, 상기 제2 인터레이어 참조 픽쳐의 순서로 구성되고, 상기 참조 픽쳐 리스트 1은 상기 제2 근거리 참조 픽쳐, 상기 제2 인터레이어 참조 픽쳐, 상기 제1 근거리 참조 픽쳐, 상기 장거리 참조 픽쳐, 상기 제1 인터레이어 참조 픽쳐의 순서로 구성되는 것을 특징으로 한다.In the scalable video signal decoding method and apparatus according to the present invention, the reference picture list includes at least one of a
본 발명에 따른 스케일러블 비디오 신호 인코딩 방법 및 장치는, 현재 레이어의 현재 픽쳐에 대응하는 참조 레이어의 대응 픽쳐를 복호화하고, 상기 복호화된 대응 픽쳐를 업샘플링하여 인터레이어 참조 픽쳐를 생성하며, 시간적 참조 픽쳐와 상기 인터레이어 참조 픽쳐를 포함한 참조 픽쳐 리스트를 생성하고, 상기 참조 픽쳐 리스트에 기초하여 상기 현재 픽쳐의 인터 예측을 수행하는 것을 특징으로 한다.A scalable video signal encoding method and apparatus according to the present invention decodes a corresponding picture of a reference layer corresponding to a current picture of a current layer, upsamples the decoded corresponding picture to generate an interlayer reference picture, A reference picture list including the picture and the inter-layer reference picture is generated, and the inter-prediction of the current picture is performed based on the reference picture list.
본 발명에 따른 스케일러블 비디오 신호 인코딩 방법 및 장치에서 시간적 참조 픽쳐는 제1 근거리 참조 픽쳐, 제2 근거리 참조 픽쳐 또는 장거리 참조 픽쳐 중 적어도 하나를 포함하는 것을 특징으로 한다.In the scalable video signal encoding method and apparatus according to the present invention, the temporal reference picture includes at least one of a first near reference picture, a second near reference picture, and a long distance reference picture.
본 발명에 따른 스케일러블 비디오 신호 인코딩 방법 및 장치에서 상기 제1 근거리 참조 픽쳐는 상기 현재 픽쳐의 POC 값보다 POC 값이 작은 근거리 참조 픽쳐를 의미하고, 상기 제2 근거리 참조 픽쳐는 상기 현재 픽쳐의 POC 값보다 POC 값이 큰 근거리 참조 픽쳐를 의미하는 것을 특징으로 한다.In the scalable video signal encoding method and apparatus according to the present invention, the first near reference picture means a near reference picture having a smaller POC value than the POC value of the current picture, and the second near reference picture indicates a POC Quot; value " means a near reference picture having a POC value larger than a value.
본 발명에 따른 스케일러블 비디오 신호 인코딩 방법 및 장치에서 상기 인터레이어 참조 픽쳐는 제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐 중 적어도 하나를 포함하고, 상기 제1 인터레이어 참조 픽쳐는 상기 참조 레이어의 대응 픽쳐를 업샘플링한 픽쳐를 의미하며, 상기 제2 인터레이어 참조 픽쳐는 상기 참조 레이어의 레지듀얼을 이용하여 복원된 픽쳐를 의미하는 것을 특징으로 한다.In the scalable video signal encoding method and apparatus according to the present invention, the interlayer reference picture includes at least one of a first interlayer reference picture and a second interlayer reference picture, And the second interlayer reference picture refers to a picture reconstructed using the residual of the reference layer.
본 발명에 따른 스케일러블 비디오 신호 인코딩 방법 및 장치에서 상기 참조 픽쳐 리스트는 참조 픽쳐 리스트 0 또는 참조 픽쳐 리스트 1 중 적어도 하나를 포함하고, 상기 참조 픽쳐 리스트 0는 상기 제1 근거리 참조 픽쳐, 상기 제1 인터레이어 참조 픽쳐, 상기 제2 근거리 참조 픽쳐, 상기 장거리 참조 픽쳐, 상기 제2 인터레이어 참조 픽쳐의 순서로 구성되고, 상기 참조 픽쳐 리스트 1은 상기 제2 근거리 참조 픽쳐, 상기 제2 인터레이어 참조 픽쳐, 상기 제1 근거리 참조 픽쳐, 상기 장거리 참조 픽쳐, 상기 제1 인터레이어 참조 픽쳐의 순서로 구성되는 것을 특징으로 한다.In the scalable video signal encoding method and apparatus according to the present invention, the reference picture list includes at least one of a
본 발명에 의하면, 참조 레이어의 픽쳐를 효과적으로 업샘플링할 수 있다.According to the present invention, a picture of a reference layer can be effectively upsampled.
본 발명에 의하면, 레지듀얼 예측 기법에 따른 인터레이어 참조 픽쳐를 이용함으로써, 현재 레이어의 레이어 간 예측의 성능을 향상시킬 수 있다.According to the present invention, performance of inter-layer prediction of a current layer can be improved by using an inter-layer reference picture according to a residual prediction technique.
본 발명에 의하면, 인터레이어 참조 픽쳐를 포함한 참조 픽쳐 리스트를 효과적으로 구성할 수 있다.According to the present invention, it is possible to effectively construct a reference picture list including an interlayer reference picture.
본 발명에 의하면, 레이어 간 예측을 통해 현재 레이어의 텍스쳐 정보를 효과적으로 유도할 수 있다.According to the present invention, texture information of a current layer can be effectively guided through inter-layer prediction.
도 1은 본 발명의 일실시예에 따른 부호화 장치를 개략적으로 도시한 블록도이다.
도 2는 본 발명의 일실시예에 따른 복호화 장치를 개략적으로 도시한 블록도이다.
도 3은 본 발명이 적용되는 일실시예로서, 참조 레이어의 대응 픽쳐를 이용하여 현재 레이어의 인터 예측을 수행하는 과정을 도시한 순서도이다.
도 4는 본 발명이 적용되는 일실시예로서, 참조 레이어의 대응 픽쳐를 업샘플링하는 방법을 도시한 순서도이다.
도 5는 본 발명이 적용되는 일실시예로서, 레지듀얼 예측 기법을 통해 현재 픽쳐의 인터레이어 참조 픽쳐를 생성하는 방법을 도시한 것이다.
도 6은 본 발명이 적용되는 일실시예로서, 디코딩 픽쳐 버퍼에 저장되는 근거리 참조 픽쳐(short-term reference picture)를 특정하는 방법을 도시한 것이다.
도 7은 본 발명이 적용되는 일실시예로서, 장거리 참조 픽쳐(long-term reference picture)를 특정하는 방법을 도시한 것이다.
도 8은 본 발명이 적용되는 일실시예로서, 근거리 참조 픽쳐와 장거리 참조 픽쳐를 이용하여 참조 픽쳐 리스트를 구성하는 방법을 도시한 것이다.
도 9 내지 도 15는 본 발명이 적용되는 일실시예로서, 멀티레이어 구조에서 참조 픽쳐 리스트를 구성하는 방법을 도시한 것이다.1 is a block diagram schematically illustrating an encoding apparatus according to an embodiment of the present invention.
2 is a block diagram schematically illustrating a decoding apparatus according to an embodiment of the present invention.
FIG. 3 is a flowchart illustrating a process of inter-prediction of a current layer using a corresponding picture of a reference layer, to which the present invention is applied.
4 is a flowchart illustrating a method of upsampling a corresponding picture of a reference layer according to an embodiment of the present invention.
FIG. 5 illustrates a method of generating an interlayer reference picture of a current picture through a residual prediction technique according to an embodiment of the present invention. Referring to FIG.
FIG. 6 illustrates a method of specifying a short-term reference picture stored in a decoding picture buffer according to an embodiment of the present invention. Referring to FIG.
FIG. 7 illustrates a method of specifying a long-term reference picture according to an embodiment of the present invention. Referring to FIG.
FIG. 8 illustrates a method of constructing a reference picture list using a near reference picture and a long distance reference picture according to an embodiment of the present invention.
9 to 15 illustrate a method of constructing a reference picture list in a multi-layer structure according to an embodiment to which the present invention is applied.
이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately It should be interpreted in accordance with the meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined. Therefore, the embodiments described in this specification and the configurations shown in the drawings are merely the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. Therefore, It is to be understood that equivalents and modifications are possible.
본 명세서에서 어떤 구성 요소가 다른 구성 요소에 “연결되어” 있다거나 “접속되어” 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있는 것을 의미할 수도 있고, 중간에 다른 구성 요소가 존재하는 것을 의미할 수도 있다. 아울러, 본 명세서에서 특정 구성을 “포함”한다고 기술하는 내용은 해당 구성 이외의 구성을 배제하는 것이 아니며, 추가적인 구성이 본 발명의 실시 또는 본 발명의 기술적 사상의 범위에 포함될 수 있음을 의미한다.When an element is referred to herein as being "connected" or "connected" to another element, it may mean directly connected or connected to the other element, Element may be present. In addition, the content of " including " a specific configuration in this specification does not exclude a configuration other than the configuration, and means that additional configurations can be included in the scope of the present invention or the scope of the present invention.
제1, 제2 등의 용어는 다양한 구성들을 설명하는데 사용될 수 있지만, 상기 구성들은 상기 용어에 의해 한정되지 않는다. 상기 용어들은 하나의 구성을 다른 구성으로부터 구별하는 목적으로 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성은 제2 구성으로 명명될 수 있고, 유사하게 제2 구성도 제1 구성으로 명명될 수 있다.The terms first, second, etc. may be used to describe various configurations, but the configurations are not limited by the term. The terms are used for the purpose of distinguishing one configuration from another. For example, without departing from the scope of the present invention, the first configuration may be referred to as the second configuration, and similarly, the second configuration may be named as the first configuration.
또한, 본 발명의 실시예에 나타나는 구성부들은 서로 다른 특징적인 기능을 나타내기 위해 독립적으로 도시되는 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성 단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 하나의 구성부를 이루거나, 하나의 구성부가 복수 개의 구성부로 나뉘어져 기능을 수행할 수 있다. 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리 범위에 포함된다.In addition, the components shown in the embodiments of the present invention are shown independently to represent different characteristic functions, and do not mean that the components are composed of separate hardware or software constituent units. That is, each constituent unit is included in each constituent unit for convenience of explanation, and at least two constituent units of each constituent unit may form one constituent unit or one constituent unit may be divided into a plurality of constituent units to perform a function. The integrated embodiments and the separate embodiments of each component are also included in the scope of the present invention unless they depart from the essence of the present invention.
또한, 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.In addition, some of the components are not essential components to perform essential functions in the present invention, but may be optional components only to improve performance. The present invention can be implemented only with components essential for realizing the essence of the present invention, except for the components used for the performance improvement, and can be implemented by only including the essential components except the optional components used for performance improvement Are also included in the scope of the present invention.
비트스트림 내 복수의 레이어(multi-layer)를 지원하는 비디오의 부호화 및 복호화를 스케일러블 비디오 코딩(scalable video coding)이라고 한다. 복수의 레이어 간에는 강한 연관성(correlation)이 존재하기 때문에 이런 연관성을 이용하여 예측을 수행하면 데이터의 중복 요소를 제거할 수 있고, 영상의 부호화 성능을 향상시킬 수 있다. 다른 레이어의 정보를 이용하여 현재 레이어의 예측을 수행하는 것을 이하에서는 레이어 간 예측(inter-layer prediction) 혹은 인터 레이어 예측이라고 표현한다. The coding and decoding of video supporting a plurality of layers (multi-layers) in a bitstream is referred to as scalable video coding. Since there is a strong correlation between a plurality of layers, it is possible to remove redundant elements of data and improve the coding performance of an image by performing prediction using such a relation. Hereinafter, prediction of the current layer using information of another layer is referred to as inter-layer prediction or inter-layer prediction.
복수의 레이어들은 해상도가 상이할 수 있으며, 여기서 해상도는 공간 해상도, 시간 해상도, 이미지 퀄러티 중 적어도 하나를 의미할 수 있다. 인터 레이어 예측 시 해상도의 조절을 위하여 레이어의 업샘플링(up-sampling) 또는 다운샘플링(down sampling)과 같은 리샘플링(resampling)이 수행될 수 있다.
The plurality of layers may have different resolutions, where the resolution may refer to at least one of spatial resolution, temporal resolution, and image quality. Resampling such as up-sampling or down-sampling of a layer may be performed to adjust the resolution in the inter-layer prediction.
도 1은 본 발명의 일 실시예에 따른 부호화 장치를 개략적으로 도시한 블록도이다.1 is a block diagram schematically illustrating an encoding apparatus according to an embodiment of the present invention.
본 발명에 따른 부호화 장치(100)는 상위 레이어에 대한 부호화부(100a)와 하위 레이어에 대한 부호화부(100b)를 포함한다.The
상위 레이어는 현재 레이어 또는 인핸스먼트 레이어(enhancement layer)로 표현될 수 있으며, 하위 레이어는 상위 레이어보다 해상도가 낮은 인핸스먼트 레이어, 베이스 레이어(base layer) 또는 참조 레이어(reference layer)로 표현될 수 있다. 상위 레이어와 하위 레이어는 공간적 해상도, 프레임 레이트에 따른 시간적 해상도 및 컬러 포맷 또는 양자화 크기에 따른 이미지 퀄리티 중 적어도 하나가 서로 다를 수 있다. 레이어 간 예측을 수행하기 위하여 해상도 변경이 필요한 경우 레이어의 업샘플링 또는 다운샘플링이 수행될 수 있다.The upper layer may be represented by a current layer or an enhancement layer and the lower layer may be represented by an enhancement layer, a base layer, or a reference layer having a resolution lower than that of the upper layer . The upper layer and the lower layer may have different spatial resolution, temporal resolution according to the frame rate, and image quality depending on the color format or the quantization size. Upsampling or downsampling of a layer may be performed when a resolution change is required to perform inter-layer prediction.
상위 레이어의 부호화부(100a)는 분할부(110), 예측부(120), 변환부(130), 양자화부(140), 재정렬부(150), 엔트로피 부호화부(160), 역양자화부(170), 역변환부(180), 필터부(190) 및 메모리(195)를 포함할 수 있다.The
하위 레이어의 부호화부(100b)는 분할부(111), 예측부(125), 변환부(131), 양자화부(141), 재정렬부(151), 엔트로피 부호화부(161), 역양자화부(171), 역변환부(181), 필터부(191) 및 메모리(196)를 포함할 수 있다.The lower
부호화부는 이하의 본 발명의 실시예에서 설명하는 영상 부호화 방법에 의해 구현될 수 있으나, 일부의 구성부에서의 동작은 부호화 장치의 복잡도를 낮추기 위해 또는 빠른 실시간 부호화를 위해 수행되지 않을 수 있다. 예를 들어, 예측부에서 화면 내 예측을 수행함에 있어서, 실시간으로 부호화를 수행하기 위해 모든 화면 내 예측 모드 방법을 사용하여 최적의 화면 내 부호화 방법을 선택하는 방법을 사용하지 않고 일부의 제한적인 개수의 화면 내 예측 모드를 사용하여 그 중에서 하나의 화면 내 예측 모드를 최종 화면 내 예측 모드로 선택하는 방법이 사용될 수 있다. 또 다른 예로 화면 내 예측 또는 화면 간 예측을 수행함에 있어 사용되는 예측 블록의 형태를 제한적으로 사용하도록 하는 것도 가능하다. The encoding unit may be implemented by the image encoding method described in the embodiments of the present invention, but operations in some components may not be performed for lowering the complexity of the encoding apparatus or for fast real-time encoding. For example, in performing intra-picture prediction in the prediction unit, it is not necessary to use a method of selecting an optimal intra-picture coding method using all the intra-picture prediction mode methods in order to perform coding in real time, The intra-picture prediction mode may be used as the final intra-picture prediction mode. As another example, it is also possible to restrictively use the type of the prediction block used in intra-picture prediction or inter-picture prediction.
부호화 장치에서 처리되는 블록의 단위는 부호화를 수행하는 부호화 단위, 예측을 수행하는 예측 단위, 변환을 수행하는 변환 단위가 될 수 있다. 부호화 단위는 CU(Coding Unit), 예측 단위는 PU(Prediction Unit), 변환 단위는 TU(Transform Unit)라는 용어로 표현될 수 있다.The unit of the block processed by the encoding apparatus may be a coding unit for performing encoding, a prediction unit for performing prediction, and a conversion unit for performing conversion. The coding unit can be expressed by CU (Coding Unit), the prediction unit by PU (Prediction Unit), and the conversion unit by TU (Transform Unit).
분할부(110, 111)에서는 레이어 영상을 복수의 부호화 블록, 예측 블록 및 변환 블록의 조합으로 분할하고 소정의 기준(예를 들어, 비용 함수)으로 그 중 하나의 부호화 블록, 예측 블록 및 변환 블록의 조합을 선택하여 레이어를 분할할 수 있다. 예를 들어, 레이어 영상에서 부호화 단위를 분할하기 위해서는 쿼드 트리 구조(QuadTree Structure)와 같은 재귀적인 트리 구조를 사용할 수 있다. 이하, 본 발명의 실시예에서는 부호화 블록의 의미를 부호화를 하는 블록이라는 의미뿐만 아니라 복호화를 수행하는 블록이라는 의미로도 사용할 수 있다.In the
예측 블록은 화면 내 예측 또는 화면 간 예측과 같은 예측을 수행하는 단위가 될 수 있다. 화면 내 예측을 수행하는 블록은 2Nx2N, NxN과 같은 정사각형 형태의 블록일 수 있다. 화면 간 예측을 수행하는 블록으로는 2Nx2N, NxN과 같은 정사각형의 형태 또는 2NxN, Nx2N과 같은 직사각형의 형태 또는 비대칭 형태인 AMP (Asymmetric Motion Partitioning)를 사용한 예측 블록 분할 방법이 있다. 예측 블록의 형태에 따라 변환부(115)에서는 변환을 수행하는 방법이 달라질 수 있다.The prediction block may be a unit for performing prediction such as intra-picture prediction or inter-picture prediction. The block for intra prediction may be a square block such as 2Nx2N, NxN. As a block for performing inter picture prediction, there is a prediction block dividing method using AMP (Asymmetric Motion Partitioning), which is a square shape such as 2Nx2N or NxN or a rectangular shape or an asymmetric shape such as 2NxN and Nx2N. The method of performing the transform in the transform unit 115 may vary depending on the type of the prediction block.
부호화부(100a, 100b)의 예측부(120, 125)는 화면 내 예측(intra prediction)을 수행하는 화면 내 예측부(121, 126)와 화면 간 예측(inter prediction)을 수행하는 화면 간 예측부(122, 127)를 포함할 수 있다. 상위 레이어 부호화부(100a)의 예측부(120)는 하위 레이어의 정보를 이용하여 상위 레이어에 대한 예측을 수행하는 레이어 간 예측부(123)를 더 포함할 수 있다. The
예측부(120, 125)는 예측 블록에 대해 화면 간 예측을 사용할 것인지 또는 화면 내 예측을 수행할 것인지를 결정할 수 있다. 화면 내 예측을 수행함에 있어서 예측 블록 단위로 화면 내 예측 모드를 결정하고, 결정된 화면 내 예측 모드에 기초하여 화면 내 예측을 수행하는 과정은 변환 블록 단위로 수행될 수도 있다. 생성된 예측 블록과 원본 블록 사이의 잔차값(잔차 블록)은 변환부(130, 131)로 입력될 수 있다. 또한, 예측을 위해 사용한 예측 모드 정보, 움직임 정보 등은 잔차값과 함께 엔트로피 부호화부(130)에서 부호화되어 복호화 장치에 전달될 수 있다.The
PCM(Pulse Coded Modulation) 부호화 모드를 사용할 경우, 예측부(120, 125)를 통해 예측을 수행하지 않고, 원본 블록을 그대로 부호화하여 복호화부에 전송하는 것도 가능하다.When the PCM (Pulse Coded Modulation) coding mode is used, it is also possible to directly encode the original block and transmit it to the decoding unit without performing the prediction through the
화면 내 예측부(121, 126)에서는 현재 블록(예측 대상이 되는 블록)의 주변에 존재하는 참조 픽셀을 기초로 화면 내 예측된 블록을 생성할 수 있다. 화면 내 예측 방법에서 화면 내 예측 모드는 참조 픽셀을 예측 방향에 따라 사용하는 방향성 예측 모드와 예측 방향을 고려하지 않는 비방향성 모드를 가질 수 있다. 루마 정보를 예측하기 위한 모드와 색차 정보를 예측하기 위한 모드는 종류가 상이할 수 있다. 색차 정보를 예측하기 위해 루마 정보를 예측한 화면 내 예측 모드 또는 예측된 루마 정보를 활용할 수 있다. 만약, 참조 픽셀이 가용하지 않는 경우, 가용하지 않은 참조 픽셀을 다른 픽셀로 대체하고, 이를 사용하여 예측 블록을 생성할 수 있다.
예측 블록은 복수개의 변환 블록을 포함할 수 있는데, 화면 내 예측을 수행 시 예측 블록의 크기와 변환 블록의 크기가 동일할 경우, 예측 블록의 좌측에 존재하는 픽셀, 좌측 상단에 존재하는 픽셀, 상단에 존재하는 픽셀을 기초로 예측 블록에 대한 화면 내 예측을 수행할 수 있다. 하지만, 화면 내 예측을 수행 시 예측 블록의 크기와 변환 블록의 크기가 상이하여 예측 블록의 내부에 복수의 변환 블록이 포함되는 경우, 변환 블록에 인접한 주변 픽셀을 참조 픽셀로 이용하여 화면 내 예측을 수행할 수 있다. 여기서, 변환 블록에 인접한 주변 픽셀은 예측 블록에 인접한 주변 픽셀과 예측 블록 내에 이미 복호화된 픽셀 중 적어도 하나를 포함할 수 있다.The prediction block may include a plurality of transform blocks. When intra prediction is performed, if the size of the prediction block and the size of the transform block are the same, a pixel existing on the left side of the prediction block, In-picture prediction for the prediction block based on the pixels existing in the prediction block. However, when intra prediction is performed, when the size of the prediction block is different from the size of the transform block, when a plurality of transform blocks are included in the prediction block, the intra-picture prediction is performed using the neighboring pixels adjacent to the transform block as reference pixels. Can be performed. Here, the neighboring pixels adjacent to the transform block may include at least one of neighboring pixels adjacent to the prediction block and pixels already decoded in the prediction block.
화면 내 예측 방법은 화면 내 예측 모드에 따라 참조 화소에 MDIS(Mode Dependent Intra Smoothing) 필터를 적용한 후 예측 블록을 생성할 수 있다. 참조 픽셀에 적용되는 MDIS 필터의 종류는 상이할 수 있다. MDIS 필터는 화면 내 예측이 수행되어 화면 내 예측된 블록에 적용되는 추가의 필터로서 참조 픽셀과 예측을 수행 후 생성된 화면 내 예측된 블록에 존재하는 잔차를 줄이는데 사용될 수 있다. MDIS 필터링을 수행함에 있어 참조 픽셀과 화면 내 예측된 블록에 포함된 일부 열에 대한 필터링은 화면 내 예측 모드의 방향성에 따라 다른 필터링을 수행할 수 있다.The intra-picture prediction method can generate a prediction block after applying a mode dependent intra-smoothing (MDIS) filter to the reference picture according to the intra-picture prediction mode. The type of MDIS filter applied to the reference pixel may be different. The MDIS filter can be used to reduce residuals in intra-frame predicted blocks generated after performing intra-prediction and applied to reference pixels and prediction as additional filters applied to intra-frame predicted blocks. In performing MDIS filtering, the filtering of the reference pixel and some columns included in the intra prediction block can perform filtering according to the direction of the intra prediction mode.
화면 간 예측부(122, 127)는 현재 픽쳐의 이전 픽쳐 또는 이후 픽쳐 중 적어도 하나의 픽쳐에 포함된 블록의 정보를 참조하여 예측을 수행할 수 있다. 화면 간 예측부(122, 127)에는 참조 픽쳐 보간부, 움직임 예측부, 움직임 보상부가 포함될 수 있다.The
참조 픽쳐 보간부에서는 메모리(195, 196)로부터 참조 픽쳐 정보를 제공받고 참조 픽쳐에서 정수 화소 이하의 화소 정보를 생성할 수 있다. 루마 화소의 경우, 1/4 화소 단위로 정수 화소 이하의 화소 정보를 생성하기 위해 필터 계수를 달리하는 DCT 기반의 8탭 보간 필터(DCT-based Interpolation Filter)가 사용될 수 있다. 색차 신호의 경우 1/8 화소 단위로 정수 화소 이하의 화소 정보를 생성하기 위해 필터 계수를 달리하는 DCT 기반의 4탭 보간 필터(DCT-based Interpolation Filter)가 사용될 수 있다.In the reference picture interpolating unit, the reference picture information is supplied from the
화면 간 예측부(122, 127)는 참조 픽쳐 보간부에 의해 보간된 참조 픽쳐를 기초로 움직임 예측을 수행할 수 있다. 움직임 벡터를 산출하기 위한 방법으로 FBMA(Full search-based Block Matching Algorithm), TSS(Three Step Search), NTS(New Three-Step Search Algorithm) 등 다양한 방법이 사용될 수 있다. 움직임 벡터는 보간된 화소를 기초로 1/2 또는 1/4 화소 단위의 움직임 벡터 값을 가질 수 있다. 화면 간 예측부(122, 127)에서는 여러 가지 화면 간 예측 방법 중 하나의 화면 간 예측 방법을 적용하여 현재 블록에 대한 예측을 수행할 수 있다. The
화면 간 예측 방법으로는 예를 들어, 스킵(Skip) 방법, 머지(Merge) 방법, MVP(Motion Vector Predictor)를 이용하는 방법 등 다양한 방법이 사용될 수 있다. As the inter-picture prediction method, various methods such as a skip method, a merge method, and a method using a motion vector predictor (MVP) can be used.
화면 간 예측에 있어서 움직임 정보 즉, 참조 인덱스, 움직임 벡터, 레지듀얼 신호 등의 정보는 엔트로피 부호화되어 복호화부에 전달된다. 스킵 모드가 적용되는 경우에는 레지듀얼 신호가 생성되지 아니하므로, 레지듀얼 신호에 대한 변환 및 양자화 과정이 생략될 수 있다.In the inter-picture prediction, information such as motion information, such as reference indices, motion vectors, and residual signals, is entropy-encoded and transmitted to the decoding unit. When the skip mode is applied, a residual signal is not generated, so that the conversion and quantization process for the residual signal may be omitted.
레이어 간 예측부(123)는 하위 레이어의 정보를 이용하여 상위 레이어를 예측하는 레이어 간 예측을 수행한다. 레이어 간 예측부(123)는 하위 레이어의 텍스쳐 정보, 움직임 정보 등을 이용하여 레이어 간 예측(inter-layer prediction)을 수행할 수 있다. The
레이어 간 예측은 하위 레이어의 픽쳐를 참조 픽쳐로 해서 하위 레이어(참조 레이어)의픽쳐에 대한 움직임 정보를 이용하여 상위 레이어의 현재 블록에 대한 예측을 수행할 수 있다. 레이어 간 예측에서 참조 픽쳐로 사용되는 참조 레이어의 픽쳐는 현재 레이어의 해상도에 맞게 샘플링된 픽쳐일 수 있다. 또한, 움직임 정보는 움직임 벡터 및 참조 인덱스를 포함할 수 있다. 이때, 참조 레이어의 픽쳐에 대한 움직임 벡터의 값은 (0,0)으로 설정될 수 있다.Inter-layer prediction can predict a current block of an upper layer using motion information on a picture of a lower layer (reference layer) using a picture of a lower layer as a reference picture. A picture of a reference layer used as a reference picture in inter-layer prediction may be a picture sampled according to the resolution of the current layer. In addition, the motion information may include a motion vector and a reference index. At this time, the value of the motion vector for the picture of the reference layer can be set to (0, 0).
레이어 간 예측의 예로서, 하위 레이어의 픽쳐를 참조 픽쳐로 이용하는 예측 방법을 설명하였으나, 본 발명은 이에 한정되지 않는다. 레이어 간 예측부(123)는 레이어 간 텍스처 예측, 레이어 간 움직임 예측, 레이어 간 신택스 예측 및 레이어 간 차분 예측 등을 수행할 수도 있다.As an example of inter-layer prediction, a prediction method of using a picture of a lower layer as a reference picture has been described, but the present invention is not limited to this. The
레이어 간 텍스처 예측은 참조 레이어의 텍스처를 기반으로 현재 레이어의 텍스처를 유도할 수 있다. 참조 레이어의 텍스처는 현재 레이어의 해상도에 맞춰 샘플링될 수 있으며, 레이어 간 예측부(123)는 샘플링된 참조 레이어의 텍스처를 기반으로 현재 레이어의 텍스처를 예측할 수 있다. Inter-layer texture prediction can derive the texture of the current layer based on the texture of the reference layer. The texture of the reference layer can be sampled according to the resolution of the current layer, and the
레이어 간 움직임 예측은 참조 레이어의 움직임 벡터를 기반으로 현재 레이어의 움직임 벡터를 유도할 수 있다. 이때, 참조 레이어의 움직임 벡터는 현재 레이어의 해상도에 맞게 스케일링될 수 있다. 레이어 간 신택스 예측에서는 참조 레이어의 신택스를 기반으로 현재 레이어의 신택스가 예측될 수 있다. 예컨대, 레이어 간 예측부(123)는 참조 레이어의 신택스를 현재 레이어의 신택스로 이용할 수도 있다. 또한, 레이어 간 차분 예측에서는 참조 레이어의 복원 영상과 현재 레이어의 복원 영상 사이의 차분을 이용하여 현재 레이어의 픽쳐를 복원할 수 있다.The inter-layer motion prediction can derive the motion vector of the current layer based on the motion vector of the reference layer. At this time, the motion vector of the reference layer can be scaled according to the resolution of the current layer. In the inter-layer syntax prediction, the syntax of the current layer can be predicted based on the syntax of the reference layer. For example, the
예측부(120, 125)에서 생성된 예측 블록과 예측 블록의 복원 블록과 차이 값인 잔차값(Residual) 정보를 포함하는 잔차 블록이 생성되며, 잔차 블록은 변환부(130, 131)에 입력된다. A residual block including residue information which is a difference value between the prediction blocks generated by the
변환부(130, 131)에서는 잔차 블록을 DCT(Discrete Cosine Transform) 또는 DST(Discrete Sine Transform)와 같은 변환 방법을 사용하여 변환시킬 수 있다. 잔차 블록을 변환하기 위해 DCT를 적용할지 DST를 적용할지는 잔차 블록을 생성하기 위해 사용된 예측 블록의 화면 내 예측 모드 정보 및 예측 블록의 크기 정보를 기초로 결정할 수 있다. 즉, 변환부(130, 131)에서는 예측 블록의 크기 및 예측 방법에 따라 변환 방법을 다르게 적용할 수 있다.The transforming
양자화부(140, 141)는 변환부(130, 131)에서 주파수 영역으로 변환된 값들을 양자화할 수 있다. 블록에 따라 또는 영상의 중요도에 따라 양자화 계수는 변할 수 있다. 양자화부(140, 141)에서 산출된 값은 역양자화부(170, 17)와 재정렬부(150, 151)에 제공될 수 있다.The
재정렬부(150, 151)는 양자화된 잔차 값에 대해 계수 값의 재정렬을 수행할 수 있다. 재정렬부(150, 151)는 계수 스캐닝(Coefficient Scanning) 방법을 통해 2차원의 블록 형태 계수를 1차원의 벡터 형태로 변경할 수 있다. 예를 들어, 재정렬부(150, 151)에서는 지그-재그 스캔(Zig-Zag Scan)방법을 이용하여 DC 계수부터 고주파수 영역의 계수까지 스캔하여 1차원 벡터 형태로 변경시킬 수 있다. 변환 블록의 크기 및 화면 내 예측 모드에 따라 지그-재그 스캔 방법이 아닌 2차원의 블록 형태 계수를 열 방향으로 스캔하는 수직 스캔 방법, 2차원의 블록 형태 계수를 행 방향으로 스캔하는 수평 스캔 방법이 사용될 수 있다. 즉, 변환 블록의 크기 및 화면 내 예측 모드에 따라 지그-재그 스캔, 수직 방향 스캔 및 수평 방향 스캔 중 어떠한 스캔 방법이 사용될지 여부를 결정할 수 있다.The
엔트로피 부호화부(160, 161)는 재정렬부(150, 151)에 의해 산출된 값들을 기초로 엔트피 부호화를 수행할 수 있다. 엔트로피 부호화는 예를 들어, 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)와 같은 다양한 부호화 방법을 사용할 수 있다.The
엔트로피 부호화부(160, 161)는 재정렬부(150, 151) 및 예측부(120, 125)로부터 부호화 블록의 잔차값 계수 정보 및 블록 타입 정보, 예측 모드 정보, 분할 단위 정보, 예측 블록 정보 및 전송 단위 정보, 움직임 정보, 참조 프레임 정보, 블록의 보간 정보, 필터링 정보 등 다양한 정보를 제공받아 소정의 부호화 방법을 기초로 엔트로피 부호화를 수행할 수 있다. 또한, 엔트로피 부호화부(160, 161)에서는 재정렬부(150, 151)에서 입력된 부호화 단위의 계수값을 엔트로피 부호화할 수 있다. The
엔트로피 부호화부(160, 161)에서는 화면 내 예측 모드 정보에 대한 이진화를 수행하여 현재 블록의 화면 내 예측 모드 정보를 부호화할 수 있다. 엔트로피 부호화부(160, 161)에는 이러한 이진화 동작을 수행하기 위한 코드워드 매핑부가 포함될 수 있고, 화면 내 예측을 수행하는 예측 블록의 크기에 따라 이진화를 다르게 수행할 수 있다. 코드워드 매핑부에서는 코드워드 매핑 테이블이 이진화 동작을 통해 적응적으로 생성되거나 미리 저장되어 있을 수 있다. 또 다른 실시예로 엔트로피 부호화부(160, 161)에서 코드넘 매핑을 수행하는 코드넘 매핑부와 코드워드 매핑을 수행하는 코드워드 매핑부를 이용하여 현재 화면 내 예측 모드 정보를 표현할 수 있다. 코드넘 매핑부와 코드워드 매핑부에서는 코드넘 매핑 테이블과 코드워드 매핑 테이블이 생성되거나 저장되어 있을 수 있다.The
역양자화부(170, 171) 및 역변환부(180, 181)에서는 양자화부(140, 141)에서 양자화된 값들을 역양자화하고 변환부(130, 131)에서 변환된 값들을 역변환 한다. 역양자화부(170, 171) 및 역변환부(180, 181)에서 생성된 잔차값(Residual)은 예측부(120, 125)에 포함된 움직임 추정부, 움직임 보상부 및 화면 내 예측부를 통해서 예측된 예측 블록과 합쳐져 복원 블록(Reconstructed Block)을 생성할 수 있다.The
필터부(190, 191)는 디블록킹 필터, 오프셋 보정부 중 적어도 하나를 포함할 수 있다. The
디블록킹 필터는 복원된 픽쳐에서 블록간의 경계로 인해 생긴 블록 왜곡을 제거할 수 있다. 디블록킹을 수행할지 여부를 판단하기 위해 블록에 포함된 몇 개의 열 또는 행에 포함된 픽셀을 기초로 현재 블록에 디블록킹 필터 적용할지 여부를 판단할 수 있다. 블록에 디블록킹 필터를 적용하는 경우 필요한 디블록킹 필터링 강도에 따라 강한 필터(Strong Filter) 또는 약한 필터(Weak Filter)를 적용할 수 있다. 또한, 디블록킹 필터를 적용함에 있어 수직 필터링 및 수평 필터링을 수행시 수평 방향 필터링 및 수직 방향 필터링이 병행처리가 되도록 할 수 있다.The deblocking filter can remove block distortion caused by the boundary between the blocks in the reconstructed picture. It may be determined whether to apply a deblocking filter to the current block based on pixels included in a few columns or rows included in the block to determine whether to perform deblocking. When a deblocking filter is applied to a block, a strong filter or a weak filter may be applied according to the deblocking filtering strength required. In applying the deblocking filter, horizontal filtering and vertical filtering may be performed concurrently when vertical filtering and horizontal filtering are performed.
오프셋 보정부는 디블록킹을 수행한 영상에 대해 픽셀 단위로 원본 영상과의 오프셋을 보정할 수 있다. 특정 픽쳐에 대한 오프셋 보정을 수행하기 위해 영상에 포함된 픽셀을 일정 영역으로 구분한 후 오프셋을 수행할 영역을 결정하고 해당 영역에 오프셋을 적용하는 방법 또는 각 픽셀의 에지 정보를 고려하여 오프셋을 적용하는 방법을 사용할 수 있다.The offset correction unit may correct the offset of the deblocked image with respect to the original image in units of pixels. In order to perform offset correction for a specific picture, pixels included in an image are divided into a predetermined area, and then an area to be offset is determined, and an offset is applied to the area, or an offset is applied considering edge information of each pixel Can be used.
필터부(190, 191)는 디블록킹 필터, 오프셋 보정을 모두 적용하지 않고 디블록킹 필터만 적용하거나 디블록킹 필터와 오프셋 보정을 둘 다 적용할 수도 있다.The
메모리(195, 196)는 필터부(190, 191)를 통해 산출된 복원 블록 또는 픽쳐를 저장할 수 있고, 저장된 복원 블록 또는 픽쳐는 화면 간 예측을 수행 시 예측부(120, 125)에 제공될 수 있다.The
하위 레이어의 엔트로피 부호화부(100b)에서 출력되는 정보와 상위 레이어의 엔트로피 부호화부(100a)에서 출력되는 정보는 MUX(197)에서 멀티플렉싱되어 비트스트림으로 출력될 수 있다.The information output from the
MUX(197)는 상위 레이어의 부호화부(100a) 또는 하위 레이어의 부호화부(100b)에 포함될 수도 있고, 부호화부(100)와는 별도의 독립적인 장치 또는 모듈로 구현될 수도 있다.
The
도 2는 본 발명의 일 실시예에 따른 복호화 장치를 개략적으로 도시한 블록도이다.2 is a block diagram schematically illustrating a decoding apparatus according to an embodiment of the present invention.
도 2에 도시된 바와 같이, 복호화 장치(200)는 상위 레이어의 복호화부(200a)와 하위 레이어의 복호화부(200b)를 포함한다.As shown in FIG. 2, the
상위 레이어의 복호화부(200a)는 엔트로피 복호화부(210), 재정렬부(220), 역양자화부(230), 역변환부(240), 예측부(250), 필터부(260), 메모리(270)를 포함할 수 있다.The
하위 레이어의 복호화부(200b)는 엔트로피 디코딩부(211), 재정렬부(221), 역양자화부(231), 역변환부(241), 예측부(251), 필터부(261), 메모리(271)를 포함할 수 있다.The lower
부호화 장치로부터 복수의 레이어를 포함하는 비트스트림이 전송되면, DEMUX(280)는 레이어 별로 정보를 디멀티플렉싱하여 각 레이어별 복호화부(200a, 200b)로 전달할 수 있다. 입력된 비트스트림은 부호화 장치와 반대의 절차로 복호화 될 수 있다.When a bitstream including a plurality of layers is transmitted from the encoding apparatus, the
엔트로피 복호화부(210, 211)는 부호화 장치의 엔트로피 부호화부에서 엔트로피 부호화를 수행한 것과 반대의 절차로 엔트로피 복호화를 수행할 수 있다. 엔트로피 복호화부(210, 211)에서 복호화된 정보 중 예측 블록을 생성하기 위한 정보는 예측부(250, 251)로 제공되고 엔트로피 복호화부(210, 211)에서 엔트로피 복호화를 수행한 잔차값은 재정렬부(220, 221)로 입력될 수 있다.The
엔트로피 복호화부(210, 211)에서도 엔트로피 부호화부(160, 161)와 마찬가지로 CABAC 또는 CAVLC 중 적어도 하나의 방법을 사용할 수 있다.As with the
엔트로피 복호화부(210, 211)에서는 부호화 장치에서 수행된 화면 내 예측 및 화면 간 예측에 관련된 정보를 복호화할 수 있다. 엔트로피 복호화부(210, 211)에는 코드워드 매핑부가 포함되어 수신된 코드워드를 화면 내 예측 모드 번호로 생성하기 위한 코드워드 매핑 테이블을 포함될 수 있다. 코드워드 매핑 테이블은 미리 저장되어 있거나 적응적으로 생성될 수 있다. 코드넘 매핑 테이블을 사용할 경우, 코드넘 매핑을 수행하기 위한 코드넘 매핑부가 추가적으로 구비될 수 있다.The
재정렬부(220, 221)는 엔트로피 복호화부(210, 211)에서 엔트로피 복호화된 비트스트림을 부호화부에서 재정렬한 방법을 기초로 재정렬을 수행할 수 있다. 1차원 벡터 형태로 표현된 계수들을 다시 2차원의 블록 형태의 계수로 복원하여 재정렬할 수 있다. 재정렬부(220, 221)에서는 부호화부에서 수행된 계수 스캐닝에 관련된 정보를 제공받고 해당 부호화부에서 수행된 스캐닝 순서에 기초하여 역으로 스캐닝하는 방법을 통해 재정렬을 수행할 수 있다. The
역양자화부(230, 231)는 부호화 장치에서 제공된 양자화 파라미터와 재정렬된 블록의 계수 값을 기초로 역양자화를 수행할 수 있다. The
역변환부(240, 241)는 부호화 장치에서 수행한 양자화 결과에 대해 변환부(130, 131)에서 수행한 DCT 또는 DST에 대해 역 DCT 또는 역 DST를 수행할 수 있다. 역변환은 부호화 장치에서 결정된 전송 단위를 기초로 수행될 수 있다. 부호화 장치의 변환부에서는 DCT와 DST는 예측 방법, 현재 블록의 크기 및 예측 방향 등 복수의 정보에 따라 선택적으로 수행될 수 있고, 복호화 장치의 역변환부(240, 241)에서는 부호화 장치의 변환부에서 수행된 변환 정보를 기초로 역변환을 수행할 수 있다. 변환 수행 시 변환 블록이 아닌 부호화 블록을 기준으로 변환을 수행할 수 있다.The
예측부(250, 251)는 엔트로피 복호화부(210, 211)에서 제공된 예측 블록 생성 관련 정보와 메모리(270, 271)에서 제공된 이전에 복호화된 블록 또는 픽쳐 정보를 기초로 예측 블록을 생성할 수 있다.The
예측부(250, 251)는 예측 단위 판별부, 화면 간 예측부 및 화면 내 예측부를 포함할 수 있다. The
예측 단위 판별부는 엔트로피 복호화부에서 입력되는 예측 단위 정보, 화면 내 예측 방법의 예측 모드 정보, 화면 간 예측 방법의 움직임 예측 관련 정보 등 다양한 정보를 입력 받고 현재 부호화 블록에서 예측 블록을 구분하고, 예측 블록이 화면 간 예측을 수행하는지 아니면 화면 내 예측을 수행하는지 여부를 판별할 수 있다. The prediction unit determination unit receives various information such as prediction unit information input from the entropy decoding unit, prediction mode information of the intra prediction method, motion prediction related information of the inter picture prediction method, and separates prediction blocks in the current coding block. It is possible to determine whether the inter-picture prediction is performed or the intra-picture prediction is performed.
화면 간 예측부는 부호화 장치에서 제공된 현재 예측 블록의 화면 간 예측에 필요한 정보를 이용해 현재 예측 블록이 포함된 현재 픽쳐의 이전 픽쳐 또는 이후 픽쳐 중 적어도 하나의 픽쳐에 포함된 정보를 기초로 현재 예측 블록에 대한 화면 간 예측을 수행할 수 있다. 화면 간 예측을 수행하기 위해 부호화 블록을 기준으로 해당 부호화 블록에 포함된 예측 블록의 움직임 예측 방법이 스킵 모드(Skip Mode), 머지 모드(Merge 모드), MVP(motion vector predictor)를 이용하는 모드(AMVP Mode) 중 어떠한 방법인지 여부를 판단할 수 있다.The inter-picture prediction unit uses the information necessary for the inter-picture prediction of the current prediction block provided by the coding apparatus to predict the current picture based on the information included in at least one of the previous picture of the current picture or the following picture The inter-picture prediction can be performed. In order to perform inter-picture prediction, a motion prediction method of a prediction block included in a coded block based on a coded block is classified into a skip mode, a merge mode, a mode using an MVP (motion vector predictor) Mode) can be determined.
화면 내 예측부는 현재 픽쳐 내의 복원된 픽셀 정보를 기초로 예측 블록을 생성할 수 있다. 예측 블록이 화면 내 예측을 수행한 예측 블록인 경우, 부호화 장치에서 제공된 예측 블록의 화면 내 예측 모드 정보를 기초로 화면 내 예측을 수행할 수 있다. 화면 내 예측부는 현재 블록의 참조 픽셀에 필터링을 수행하는 MDIS 필터, 참조 픽셀을 보간하여 정수값 이하의 픽셀 단위의 참조 픽셀을 생성하는 참조 픽셀 보간부, 현재 블록의 예측 모드가 DC 모드일 경우 필터링을 통해서 예측 블록을 생성하는 DC 필터를 포함할 수 있다. The intra prediction unit can generate a prediction block based on the reconstructed pixel information in the current picture. If the prediction block is a prediction block in which intra prediction is performed, intra prediction can be performed based on intra prediction mode information of the prediction block provided by the encoder. The intra-picture prediction unit includes an MDIS filter that performs filtering on the reference pixels of the current block, a reference pixel interpolator that interpolates reference pixels to generate reference pixels of a pixel unit less than an integer value, Lt; RTI ID = 0.0 > DCF < / RTI >
상위 레이어 복호화부(200a)의 예측부(250)는 하위 레이어의 정보를 이용하여 상위 레이어를 예측하는 레이어 간 예측을 수행하는 레이어 간 예측부를 더 포함할 수 있다. The predicting
레이어 간 예측부는 화면 내 예측 모드 정보, 움직임 정보 등을 이용하여 인터 레이어 예측(inter-layer prediction) 을 수행할 수 있다. The inter-layer prediction unit may perform inter-layer prediction using intra-picture prediction mode information, motion information, and the like.
레이어 간 예측은 하위 레이어의 픽쳐를 참조 픽쳐로 해서 하위 레이어(참조 레이어) 픽쳐에 대한 움직임 정보를 이용하여 상위 레이어의 현재 블록에 대한 예측을 수행할 수 있다. Inter-layer prediction can predict a current block of an upper layer using motion information on a lower layer (reference layer) picture using a picture of a lower layer as a reference picture.
레이어 간 예측에서 참조 픽쳐로 사용되는 참조 레이어의 픽쳐는 현재 레이어의 해상도에 맞게 샘플링된 픽쳐일 수 있다. 또한, 움직임 정보는 움직임 벡터 및 참조 인덱스를 포함할 수 있다. 이때, 참조 레이어의 픽쳐에 대한 움직임 벡터의 값은 (0,0)으로 설정될 수 있다. A picture of a reference layer used as a reference picture in inter-layer prediction may be a picture sampled according to the resolution of the current layer. In addition, the motion information may include a motion vector and a reference index. At this time, the value of the motion vector for the picture of the reference layer can be set to (0, 0).
레이어 간 예측의 예로서, 하위 레이어의 픽쳐를 참조 픽쳐로 이용하는 예측 방법을 설명하였으나, 본 발명은 이에 한정되지 않는다. 레이어 간 예측부(123)는 레이어 간 텍스처 예측, 레이어 간 움직임 예측, 레이어 간 신택스 예측 및 레이어 간 차분 예측 등을 추가로 수행할 수도 있다.As an example of inter-layer prediction, a prediction method of using a picture of a lower layer as a reference picture has been described, but the present invention is not limited to this. The
레이어 간 텍스처 예측은 참조 레이어의 텍스처를 기반으로 현재 레이어의 텍스처를 유도할 수 있다. 참조 레이어의 텍스처는 현재 레이어의 해상도에 맞춰 샘플링될 수 있으며, 레이어 간 예측부는 샘플링된 텍스처를 기반으로 현재 레이어의 텍스처를 예측할 수 있다. 레이어 간 움직임 예측은 참조 레이어의 움직임 벡터를 기반으로 현재 레이어의 움직임 벡터를 유도할 수 있다. 이때, 참조 레이어의 움직임 벡터는 현재 레이어의 해상도에 맞게 스케일링될 수 있다. 레이어 간 신택스 예측에서는 참조 레이어의 신택스를 기반으로 현재 레이어의 신택스가 예측될 수 있다. 예컨대, 레이어 간 예측부(123)는 참조 레이어의 신택스를 현재 레이어의 신택스로 이용할 수도 있다. 또한, 레이어 간 차분 예측에서는 참조 레이어의 복원 영상과 현재 레이어의 복원 영상 사이의 차분을 이용하여 현재 레이어의 픽쳐를 복원할 수 있다.Inter-layer texture prediction can derive the texture of the current layer based on the texture of the reference layer. The texture of the reference layer can be sampled to the resolution of the current layer, and the inter-layer prediction unit can predict the texture of the current layer based on the sampled texture. The inter-layer motion prediction can derive the motion vector of the current layer based on the motion vector of the reference layer. At this time, the motion vector of the reference layer can be scaled according to the resolution of the current layer. In the inter-layer syntax prediction, the syntax of the current layer can be predicted based on the syntax of the reference layer. For example, the
복원된 블록 또는 픽쳐는 필터부(260, 261)로 제공될 수 있다. 필터부(260, 261)는 디블록킹 필터, 오프셋 보정부를 포함할 수 있다.The reconstructed block or picture may be provided to the
부호화 장치로부터 해당 블록 또는 픽쳐에 디블록킹 필터를 적용하였는지 여부에 대한 정보 및 디블록킹 필터를 적용하였을 경우, 강한 필터를 적용하였는지 또는 약한 필터를 적용하였는지에 대한 정보를 제공받을 수 있다. 복호화 장치의 디블록킹 필터에서는 부호화 장치에서 제공된 디블록킹 필터 관련 정보를 제공받고 복호화 장치에서 해당 블록에 대한 디블록킹 필터링을 수행할 수 있다. Information on whether or not a deblocking filter has been applied to the block or picture from the encoding device and information on whether a strong filter or a weak filter is applied can be provided when the deblocking filter is applied. In the deblocking filter of the decoding apparatus, the deblocking filter related information provided by the encoding apparatus is provided, and the decoding apparatus can perform deblocking filtering on the corresponding block.
오프셋 보정부는 부호화시 영상에 적용된 오프셋 보정의 종류 및 오프셋 값정보 등을 기초로 복원된 영상에 오프셋 보정을 수행할 수 있다.The offset correction unit may perform offset correction on the reconstructed image based on the type of offset correction applied to the image and the offset value information during encoding.
메모리(270, 271)는 복원된 픽쳐 또는 블록을 저장하여 참조 픽쳐 또는 참조 블록으로 사용할 수 있도록 할 수 있고 또한 복원된 픽쳐를 출력할 수 있다. The
부호화 장치 및 복호화 장치는 두 개의 레이어가 아닌 세 개 이상의 레이어에 대한 인코딩을 수행할 수 있으며, 이 경우 상위 레이어에 대한 부호화부 및 상위 레이어에 대한 복호화부는 상위 레이어의 개수에 대응하여 복수 개로 마련될 수 있다.
The encoding apparatus and the decoding apparatus can perform encoding on three or more layers instead of two layers. In this case, the encoding unit for the upper layer and the decoding unit for the upper layer are provided in a plurality corresponding to the number of the upper layers .
멀티 레이어 구조를 지원하는 SVC(Scalable Video Coding) 에서는 레이어 간에 연관성이 존재한다. 이 연관성을 이용하여 예측을 수행하면 데이터의 중복 요소를 제거할 수 있고 영상의 부호화 성능을 향상시킬 수 있다. In SVC (Scalable Video Coding) which supports multi-layer structure, there is a relation between layers. By using this association, prediction can be performed to remove redundant elements of data and enhance the image coding performance.
따라서, 부호화/복호화 되는 현재 레이어(인핸스먼트 레이어)의 픽쳐(영상)를 예측할 경우, 현재 레이어의 정보를 이용한 인터 예측 혹은 인트라 예측뿐만 아니라, 다른 레이어의 정보를 이용한 인터 레이어 예측을 수행할 수 있다. Therefore, in the case of predicting a picture (video) of a current layer (enhancement layer) to be encoded / decoded, not only inter prediction or intra prediction using information of the current layer but also interlayer prediction using information of another layer can be performed .
인터 레이어 예측을 수행할 경우, 현재 레이어는 인터 레이어 예측을 위해 사용되는 참조 레이어(reference layer)의 디코딩된 픽쳐를 참조 픽쳐(reference picture)로 사용하여 현재 레이어의 예측 샘플을 생성할 수 있다. In performing inter-layer prediction, the current layer may generate a prediction sample of a current layer using a decoded picture of a reference layer used for inter-layer prediction as a reference picture.
이때, 현재 레이어와 참조 레이어는 공간 해상도, 시간 해상도, 이미지 퀄리티 중 적어도 하나가 서로 다를 수 있기 때문에(즉, 레이어 간 스케일러빌리티 차이 때문에), 디코딩된 참조 레이어의픽쳐는 현재 레이어의 스케일러빌리티에 맞게 리샘플링(resampling)이 수행된 다음 현재 레이어의 인터 레이어 예측을 위한 참조 픽쳐로 사용될 수 있다. 리샘플링은 현재 레이어의 픽쳐 크기에 맞게 참조 레이어 픽쳐의 샘플들을 업샘플링(up-sampling) 또는 다운 샘플링(down sampling)하는 것을 의미한다. At this time, since at least one of the spatial resolution, the temporal resolution, and the image quality may be different between the current layer and the reference layer (i.e., due to the inter-layer scalability difference), the picture of the decoded reference layer, After resampling is performed, it can be used as a reference picture for interlayer prediction of the current layer. Resampling means up-sampling or down-sampling of the samples of the reference layer picture in accordance with the picture size of the current layer.
본 명세서에서, 현재 레이어는 현재 부호화 혹은 복호화가 수행되는 레이어를 말하며, 인핸스먼트 레이어 또는 상위 레이어일 수 있다. 참조 레이어는 현재 레이어가 인터 레이어 예측을 위해 참조하는 레이어를 말하며, 베이스 레이어 또는 하위 레이어일 수 있다. 현재 레이어의 인터 레이어 예측을 위해 사용되는 참조 레이어의 픽쳐(즉, 참조 픽쳐)는 인터 레이어 참조 픽쳐 또는 레이어 간 참조 픽쳐로 지칭될 수 있다.
In this specification, a current layer refers to a layer on which encoding or decoding is currently performed, and may be an enhancement layer or an upper layer. A reference layer is a layer that the current layer refers to for interlayer prediction, and can be a base layer or a lower layer. A picture of a reference layer (i.e., a reference picture) used for inter-layer prediction of the current layer may be referred to as an inter-layer reference picture or a reference picture between layers.
도 3은 본 발명이 적용되는 일실시예로서, 참조 레이어의 대응 픽쳐를 이용하여 현재 레이어의 인터 예측을 수행하는 과정을 도시한 순서도이다.FIG. 3 is a flowchart illustrating a process of inter-prediction of a current layer using a corresponding picture of a reference layer, to which the present invention is applied.
도 3을 참조하면, 현재 레이어의 현재 픽쳐에 대응하는 참조 레이어의 대응 픽쳐를 복원할 수 있다(S300).Referring to FIG. 3, the corresponding picture of the reference layer corresponding to the current picture of the current layer can be restored (S300).
참조 레이어는 베이스 레이어 또는 현재 레이어보다 해상도가 낮은 다른 인핸스먼트 레이어를 의미할 수 있다. 대응 픽쳐는 현재 레이어의 현재 픽쳐와 동일 시간대에 위치한 픽쳐를 의미할 수 있다. The reference layer may refer to a base layer or other enhancement layer having a lower resolution than the current layer. The corresponding picture may mean a picture located in the same time zone as the current picture of the current layer.
예를 들어, 상기 대응 픽쳐는 현재 레이어의 현재 픽쳐와 동일한 POC(picture order count) 정보를 갖는 픽쳐일 수 있다. 상기 대응 픽쳐는 현재 레이어의 현재 픽쳐와 동일한 액세스 유닛(Access Unit, AU)에 속할 수 있다. 상기 대응 픽쳐는 현재 레이어의 현재 픽쳐와 동일한 시간레벨 식별자(TemporalID)를 가질 수 있다. 여기서, 시간레벨 식별자는 시간적 해상도에 따라 스케일러블하게 코딩된 복수 개의 레이어 각각을 특정하는 식별자를 의미할 수 있다.For example, the corresponding picture may be a picture having picture order count (POC) information that is the same as the current picture of the current layer. The corresponding picture may belong to the same access unit (AU) as the current picture of the current layer. The corresponding picture may have the same temporal level identifier (TemporalID) as the current picture of the current layer. Here, the time level identifier may mean an identifier for specifying each of a plurality of scalably coded layers according to a temporal resolution.
S300 단계에서 복원된 대응 픽쳐를 업샘플링하여 인터레이어 참조 픽쳐를 생성할 수 있다(S310).In step S310, the reconstructed corresponding picture is up-sampled to generate an inter-layer reference picture (S310).
여기서, 인터레이어 참조 픽쳐는 현재 픽쳐의 레이어 간 예측을 위한 참조 픽쳐로 이용될 수 있다. 현재 레이어의 현재 픽쳐는 하나의 인터레이어 참조 픽쳐를 이용할 수도 있고, 복수 개의 인터레이어 참조 픽쳐를 이용할 수도 있다. Here, the interlayer reference picture can be used as a reference picture for intra-layer prediction of the current picture. The current picture of the current layer may use one inter-layer reference picture or a plurality of inter-layer reference pictures.
구체적으로, 참조 레이어의 대응 픽쳐를 업샘플링한 픽쳐(이하, 제1 인터레이어 참조 픽쳐라 함)를 인터레이어 참조 픽쳐로 이용할 수 있다. 또는, 참조 레이어의 레지듀얼을 이용하여 복원된 픽쳐(이하, 제2 인터레이어 참조 픽쳐라 함)를 인터레이어 참조 픽쳐를 생성할 수도 있다. 구체적인 업샘플링 방법에 대해서는 도 4를, 그리고 레지듀얼 예측 기법에 따른 인터레이어 참조 픽쳐 생성 방법에 대해서는 도 5를 참조하여 각각 살펴 보기로 한다.Specifically, a picture up-sampled by a corresponding picture of a reference layer (hereinafter referred to as a first inter-layer reference picture) can be used as an inter-layer reference picture. Alternatively, the reconstructed picture (hereinafter, referred to as a second inter-layer reference picture) using the residual of the reference layer may be used to generate an inter-layer reference picture. The concrete up-sampling method will be described with reference to FIG. 4, and the inter-layer reference picture generating method according to the residual prediction method will be described with reference to FIG.
상기 인터레이어 참조 픽쳐 및 시간적 참조 픽쳐를 포함한 참조 픽쳐 리스트를 생성할 수 있다(S320).A reference picture list including the inter-layer reference picture and the temporal reference picture can be generated (S320).
먼저, 참조 픽쳐 리스트는 현재 픽쳐와 동일한 레이어에 속한 참조 픽쳐(이하, 시간적 참조 픽쳐라 한다.)를 포함할 수 있다. 상기 시간적 참조 픽쳐는 현재 픽쳐와 상이한 출력 순서(예를 들어, picture order count, POC)를 가진 픽쳐를 의미할 수 있다. 시간적 참조 픽쳐로 구성된 참조 픽쳐 리스트를 생성하는 방법에 대해서는 도 6 내지 도 8을 참조하여 살펴 보기로 한다.First, the reference picture list may include a reference picture belonging to the same layer as the current picture (hereinafter referred to as a temporal reference picture). The temporal reference picture may refer to a picture having an output order (e.g., picture order count, POC) different from the current picture. A method of generating a reference picture list composed of temporal reference pictures will be described with reference to FIGS. 6 to 8. FIG.
한편, 현재 픽쳐가 레이어 간 예측을 수행하는 경우, 참조 픽쳐 리스트는 인터레이어 참조 픽쳐를 더 포함할 수 있다. 즉, 멀티레이어 구조(예를 들어, 스케일러블 비디오 코딩, 멀티-뷰 비디오 코딩)에서는 인핸스먼트 레이어의 참조 픽쳐로 동일 레이어의 참조 픽쳐뿐만 아니라 다른 레이어의 참조 픽쳐를 이용할 수 있다.On the other hand, when the current picture performs inter-layer prediction, the reference picture list may further include an inter-layer reference picture. That is, in a multi-layer structure (for example, scalable video coding and multi-view video coding), not only reference pictures of the same layer but also reference pictures of other layers can be used as reference pictures of the enhancement layer.
구체적으로, 참조 레이어에 속한 픽쳐를 참조 픽쳐로 사용할 수 있다. 여기서, 참조 레이어는 참조 레이어 식별자(RefPiclayerId)에 의해 식별될 수 있다. 참조 레이어 식별자는 슬라이스 헤더의 신택스 inter_layer_pred_layer_idc (이하, 인터레이어 지시자)에 기초하여 유도될 수 있다. 인터레이어 지시자는 레이어 간 예측을 위해 현재 픽쳐에 의해 사용되는 픽쳐의 레이어를 나타낼 수 있다. 이와 같이, 참조 레이어 식별자에 의해 특정된 참조 레이어로부터의 인터레이어 참조 픽쳐를 이용하여 참조 픽쳐 리스트를 생성할 수 있으며, 이에 대해서는 도 9 내지 도 15를 참조하여 살펴 보기로 한다.Specifically, a picture belonging to the reference layer can be used as a reference picture. Here, the reference layer can be identified by a reference layer identifier (RefPiclayerId). The reference layer identifier can be derived based on the syntax of the slice header, inter_layer_pred_layer_idc (hereinafter referred to as an interlayer indicator). The interlayer indicator may indicate the layer of the picture used by the current picture for inter-layer prediction. In this way, the reference picture list can be generated using the interlayer reference pictures from the reference layer specified by the reference layer identifiers, which will be described with reference to FIGS. 9 to 15. FIG.
한편, 상기 인터레이어 참조 픽쳐는 제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐 중 적어도 하나를 포함할 수 있다. 즉, 제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐 중 어느 하나를 선택적으로 이용할 수도 있고, 제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐를 모두 이용할 수도 있다.Meanwhile, the interlayer reference picture may include at least one of a first interlayer reference picture and a second interlayer reference picture. That is, either the first interlayer reference picture or the second interlayer reference picture may be selectively used, or both the first interlayer reference picture and the second interlayer reference picture may be used.
예를 들어, 제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐의 선택적 이용을 나타내는 모드 정보를 시그날링할 수 있다. 즉, 모드 정보에 따라 제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐가 현재 픽쳐의 참조 픽쳐로 모두 이용될 수도 있고, 또는 제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐 중 어느 하나가 이용될 수도 있다. 만일, 상기 모드 정보에 따라 제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐 중 어느 하나가 이용되는 경우, 추가적으로 어떤 인터레이어 참조 픽쳐가 이용되는지를 특정하는 플래그 정보를 시그날링할 수 있다. 이와 같이 상기 모드 정보 또는 플래그 정보를 이용하여 복수 개의 인터레이어 참조 픽쳐들을 선택적으로 이용할 수 있다.For example, it is possible to signal the mode information indicating the selective use of the first interlayer reference picture and the second interlayer reference picture. That is, according to the mode information, the first interlayer reference picture and the second interlayer reference picture may both be used as the reference picture of the current picture, or either the first interlayer reference picture or the second interlayer reference picture may be used May be used. If one of the first inter-layer reference picture and the second inter-layer reference picture is used according to the mode information, flag information for specifying which inter-layer reference picture is used may be signaled. In this manner, a plurality of inter-layer reference pictures can be selectively used by using the mode information or flag information.
또는, 상기 선택적 이용을 위해 참조 인덱스를 이용할 수도 있다. 구체적으로, 예측 블록 단위로 참조 인덱스에 의해 제1 인터레이어 참조 픽쳐만이 선택될 수 있고, 또는 제2 인터레이어 참조 픽쳐만이 선택될 수도 있으며, 제1 및 제2 인터레이어 참조 픽쳐가 모두 선택될 수도 있다.Alternatively, a reference index may be used for the selective use. Specifically, only the first inter-layer reference picture may be selected by the reference index in units of prediction blocks, or only the second inter-layer reference picture may be selected, and both the first and second inter- .
참조 픽쳐 리스트에 인터레이어 참조 픽쳐가 추가되는 경우, 참조 픽쳐 리스트에 배열되는 참조 픽쳐의 개수 또는 참조 픽쳐 별로 할당되는 참조 인덱스의 개수의 범위를 변경할 필요가 있다.When an interlayer reference picture is added to the reference picture list, it is necessary to change the number of reference pictures arranged in the reference picture list or the range of the number of reference indices allocated for each reference picture.
여기서, 베이스 레이어에 대한 참조 픽쳐 리스트의 참조 인덱스 최대값을 나타내는 슬라이스 헤더의 신택스인 num_ref_idx_l0_active_minus1과 num_ref_idx_l1_active_minus1의 범위가 0부터 14사이의 값을 가진다고 가정한다.Here, it is assumed that the range of the num_ref_idx_l0_active_minus1 and num_ref_idx_l1_active_minus1 syntaxes of the slice header indicating the reference index maximum value of the reference picture list for the base layer has a value between 0 and 14.
제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐 중 어느 하나를 사용하는 경우에는 현재 레이어에 대한 참조 픽쳐 리스트의 참조 인덱스 최대값을 나타내는 신택스인 num_ref_idx_l0_active_minus1과 num_ref_idx_l1_active_minus1의 범위는 0부터 15 사이의 값으로 정의될 수 있다. 또는, 제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐를 모두 사용하더라도, 2개의 인터레이어 참조 픽쳐가 각기 다른 참조 픽쳐 리스트에 추가되는 경우에는 num_ref_idx_l0_active_minus1과 num_ref_idx_l1_active_minus1의 범위가 0부터 15 사이의 값으로 정의될 수 있다.In the case of using either the first interlayer reference picture or the second interlayer reference picture, the range of the num_ref_idx_l0_active_minus1 and the num_ref_idx_l1_active_minus1 syntaxes indicating the maximum value of the reference index of the reference picture list for the current layer is a value between 0 and 15 Can be defined. Alternatively, even when both the first interlayer reference picture and the second interlayer reference picture are used, when two interlayer reference pictures are added to different reference picture lists, the range of num_ref_idx_l0_active_minus1 and num_ref_idx_l1_active_minus1 is a value between 0 and 15 Can be defined.
예를 들어, 참조 픽쳐 리스트 L0의 시간적 참조 픽쳐의 개수가 15개인 경우에는 제1 또는 제2 인터레이어 참조 픽쳐를 참조 픽쳐 리스트에 추가하면 총 16개의 참조 픽쳐가 존재하고, num_ref_idx_l0_active_minus1의 값은 15가 된다.For example, when the number of temporal reference pictures in the reference picture list L0 is 15, 16 total reference pictures exist when the first or second interlaced reference pictures are added to the reference picture list, and the value of num_ref_idx_l0_active_minus1 is 15 do.
또는, 제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐를 모두 사용하는 경우, 그리고 2개의 인터레이어 참조 픽쳐가 동일한 참조 픽쳐 리스트에 추가되는 경우에는 현재 레이어에 대한 참조 픽쳐 리스트의 참조 인덱스 최대값을 나타내는 신택스인 num_ref_idx_l0_active_minus1과 num_ref_idx_l1_active_minus1의 범위가 0부터 16 사이의 값으로 정의될 수도 있다.Alternatively, when both the first interlayer reference picture and the second interlayer reference picture are used and two interlayer reference pictures are added to the same reference picture list, the reference index maximum value of the reference picture list for the current layer The range of the num_ref_idx_l0_active_minus1 and the num_ref_idx_l1_active_minus1 syntaxes may be defined as a value between 0 and 16.
예를 들어, 참조 픽쳐 리스트 L0의 시간적 참조 픽쳐의 개수가 15이고, 참조 픽쳐 리스트 L0에 제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐를 추가하면 총 17개의 참조 픽쳐가 존재하고, num_ref_idx_l0_active_minus1의 값은 16이 된다.For example, if the number of temporal reference pictures in the reference picture list L0 is 15, and a first interlaced reference picture and a second interlaced reference picture are added to the reference picture list L0, a total of 17 reference pictures exist, and num_ref_idx_l0_active_minus1 The value is 16.
S320 단계에서 생성된 참조 픽쳐 리스트에 기초하여 현재 픽쳐의 인터 예측을 수행할 수 있다(S330).The inter prediction of the current picture may be performed based on the reference picture list generated in step S320 (S330).
구체적으로, 참조 픽쳐 리스트로부터 현재 블록의 참조 인덱스에 대응하는 참조 픽쳐를 선택한다. 선택된 참조 픽쳐는 현재 블록과 동일 레이어에 있는 시간적 참조 픽쳐이거나 참조 레이어의 대응 픽쳐로부터 업샘플링된 인터레이어 참조 픽쳐일 수 있다.Specifically, the reference picture corresponding to the reference index of the current block is selected from the reference picture list. The selected reference picture may be a temporal reference picture in the same layer as the current block or an up-sampled inter-layer reference picture from a corresponding picture of the reference layer.
현재 블록의 모션 벡터에 기초하여 참조 픽쳐 내의 참조 블록을 특정하고, 특정된 참조 블록의 복원된 샘플값 또는 텍스쳐 정보를 이용하여 현재 블록의 샘플값 또는 텍스쳐 정보를 예측할 수 있다. 이 때, 현재 블록의 참조 인덱스에 대응하는 참조 픽쳐가 인터레이어 참조 픽쳐인 경우, 상기 참조 블록은 현재 블록과 동일 위치의 블록일 수 있다. 이를 위해, 현재 블록의 참조 픽쳐가 인터레이어 참조 픽쳐인 경우에는 현재 블록의 모션 벡터를 (0,0)으로 설정할 수도 있다.
The reference block in the reference picture is specified based on the motion vector of the current block and the reconstructed sample value or texture information of the specified reference block is used to predict the sample value or the texture information of the current block. In this case, if the reference picture corresponding to the reference index of the current block is an interlayer reference picture, the reference block may be a block at the same position as the current block. To this end, if the reference picture of the current block is an interlayer reference picture, the motion vector of the current block may be set to (0, 0).
도 4는 본 발명이 적용되는 일실시예로서, 참조 레이어의 대응 픽쳐를 업샘플링하는 방법을 도시한 순서도이다.4 is a flowchart illustrating a method of upsampling a corresponding picture of a reference layer according to an embodiment of the present invention.
도 4를 참조하면, 현재 레이어의 현재 샘플 위치에 대응하는 참조 레이어의 참조 샘플 위치를 유도할 수 있다(S400).Referring to FIG. 4, a reference sample position of a reference layer corresponding to a current sample position of a current layer may be derived (S400).
현재 레이어와 참조 레이어의 해상도가 상이할 수 있으므로, 양자간의 해상도 차이를 고려하여 현재 샘플 위치에 대응하는 참조 샘플 위치를 유도할 수 있다. 즉, 현재 레이어의 픽쳐와 참조 레이어의 픽쳐 간의 가로/세로 비율을 고려할 수 있다. 또한, 참조 레이어의 업샘플링된 픽쳐가 현재 레이어의 픽쳐와 크기가 일치하지 않을 경우가 발생할 수도 있으므로, 이를 보정하기 위한 오프셋이 요구될 수도 있다.Since the resolutions of the current layer and the reference layer may be different, a reference sample position corresponding to the current sample position can be derived taking into account the difference in resolution between them. That is, the aspect ratio between the picture of the current layer and the picture of the reference layer can be considered. In addition, since the upsampled picture of the reference layer may not coincide with the picture of the current layer, an offset for correcting the upsampled picture may be required.
예를 들어, 참조 샘플 위치는 스케일 팩터와 업샘플링된 참조 레이어 오프셋을 고려하여 유도될 수 있다. For example, the reference sample position may be derived taking into account the scale factor and the upsampled reference layer offset.
여기서, 스케일 팩터는 현재 레이어의 현재 픽쳐와 참조 레이어의 대응 픽쳐 간의 너비와 높이의 비율에 기초하여 산출될 수 있다. Here, the scale factor can be calculated based on the ratio of the width and the height between the current picture of the current layer and the corresponding picture of the reference layer.
업샘플링된 참조 레이어 오프셋은 현재 픽쳐의 가장자리에 위치한 어느 하나의 샘플과 인터레이어 참조 픽쳐의 가장자리에 위치한 어느 하나의 샘플 간의 위치 차이 정보를 의미할 수 있다. 예를 들어, 업샘플링된 참조 레이어 오프셋은 현재 픽쳐의 좌상단 샘플과 인터레이어 참조 픽쳐의 좌상단 샘플 간의 수평/수직 방향으로의 위치 차이 정보 및 현재 픽쳐의 우하단 샘플과 인터레이어 참조 픽쳐의 우하단 샘플 간의 수평/수직 방향으로의 위치 차이 정보를 포함할 수 있다.The upsampled reference layer offset may mean position difference information between any one of the samples located at the edge of the current picture and one of the samples located at the edge of the interlayer reference picture. For example, the upsampled reference layer offset includes positional difference information in the horizontal / vertical direction between the upper left sample of the current picture and the upper left sample of the interlayer reference picture, and the difference information between the lower right sample of the current picture and the lower right sample Directional horizontal / vertical directional difference information.
업샘플링된 참조 레이어 오프셋은 비트스트림으로부터 획득될 수 있다. 예를 들어, 업샘플링된 참조 레이어 오프셋은 비디오 파라미터 세트(Video Parameter Set), 시퀀스 파라미터 세트(Sequence Parameter Set), 픽쳐 파라미터 세트(Picture Parameter Set), 슬라이스 헤더(Slice Header) 중 적어도 하나로부터 획득될 수 있다.The upsampled reference layer offset may be obtained from the bitstream. For example, the upsampled reference layer offset may be obtained from at least one of a Video Parameter Set, a Sequence Parameter Set, a Picture Parameter Set, and a Slice Header .
S400 단계에서 유도된 참조 샘플 위치의 위상을 고려하여 업샘플링 필터의 필터 계수를 결정할 수 있다(S410).The filter coefficient of the up-sampling filter may be determined considering the phase of the reference sample position derived in step S400 (S410).
여기서, 업샘플링 필터는 고정된 업샘플링 필터와 적응적 업샘플링 필터 중 어느 하나가 이용될 수 있다.Here, the up-sampling filter may use either a fixed up-sampling filter or an adaptive up-sampling filter.
1. 고정된 업샘플링 필터1. Fixed Upsampling Filter
고정된 업샘플링 필터는 영상의 특징을 고려하지 아니하고, 기 결정된 필터 계수를 가진 업샘플링 필터를 의미할 수 있다. 고정된 업샘플링 필터로 tap 필터가 이용될 수 있으며, 이는 휘도 성분과 색차 성분에 대해서 각각 정의될 수 있다. 이하 표 1 내지 표 2를 참조하여 1/16 샘플 단위의 정확도를 가진 고정된 업샘플링 필터를 살펴 보기로 한다.The fixed up-sampling filter may refer to an up-sampling filter having a predetermined filter coefficient without considering the characteristics of the image. A tap filter can be used as the fixed up-sampling filter, which can be defined for the luminance component and the chrominance component, respectively. A fixed up-sampling filter having an accuracy of 1/16 sample units will be described with reference to Tables 1 to 2 below.
Phase p
표 1은 휘도 성분에 대한 고정된 업샘플링 필터의 필터 계수를 정의한 테이블이다.Table 1 is a table defining the filter coefficients of the fixed up-sampling filter with respect to the luminance component.
상기 표 1에서 보듯이, 휘도 성분에 대한 업샘플링의 경우, 8-tap 필터가 적용된다. 즉, 현재 레이어의 현재 샘플에 대응하는 참조 레이어의 참조 샘플 및 상기 참조 샘플에 인접한 이웃 샘플을 이용하여 인터폴레이션을 수행할 수 있다. 여기서, 이웃 샘플은 인터폴레이션을 수행하는 방향에 따라 특정될 수 있다. 예를 들어, 수평 방향으로 인터폴레이션을 수행하는 경우, 상기 이웃 샘플은 참조 샘플을 기준으로 좌측으로 연속적인 3개의 샘플 및 우측으로 연속적인 4개의 샘플을 포함할 수 있다. 또는, 수직 방향으로 인터폴레이션을 수행하는 경우, 상기 이웃 샘플은 상기 참조 샘플을 기준으로 상단으로 연속적인 3개의 샘플 및 하단으로 연속적인 4개의 샘플을 포함할 수 있다.As shown in Table 1, in the case of upsampling on the luminance component, an 8-tap filter is applied. That is, interpolation can be performed using a reference sample of the reference layer corresponding to the current sample of the current layer and a neighboring sample adjacent to the reference sample. Here, the neighbor samples can be specified according to the direction in which the interpolation is performed. For example, when interpolation is performed in the horizontal direction, the neighboring sample may include three consecutive samples to the left and four consecutive samples to the right based on the reference sample. Alternatively, when interpolation is performed in the vertical direction, the neighboring sample may include three consecutive samples at the top and four consecutive samples at the bottom based on the reference sample.
그리고, 1/16 샘플 단위의 정확도로 인터폴레이션을 수행하므로, 총 16개의 위상이 존재한다. 이는 2배, 1.5배 등 다양한 배율의 해상도를 지원하기 위한 것이다. Since interpolation is performed with an accuracy of 1/16 sample units, there are a total of 16 phases. This is to support resolution of various magnifications such as 2 times and 1.5 times.
또한, 고정된 업샘플링 필터는 각 위상(p) 별로 상이한 필터 계수를 사용할 수 있다. 위상(p)이 0인 경우를 제외하고, 각각의 필터 계수의 크기는 0 내지 63의 범위에 속하도록 정의될 수 있다. 이는 6bits의 정밀도를 가지고 필터링을 수행함을 의미한다. 여기서, 위상(p)이 0이라 함은 1/n 샘플 단위로 인터폴레이션 하는 경우, n배수의 정수 샘플의 위치를 의미한다.In addition, the fixed up-sampling filter may use different filter coefficients for each phase (p). The size of each filter coefficient may be defined to fall within a range of 0 to 63, except when the phase p is zero. This means that the filtering is performed with a precision of 6 bits. Here, the phase (p) of 0 means the position of an integer multiple of n when interpolation is performed in 1 / n sample units.
Phase p
표 2는 색차 성분에 대한 고정된 업샘플링 필터의 필터 계수를 정의한 테이블이다.Table 2 defines the filter coefficients of the fixed up-sampling filter for the chrominance components.
표 2에서 보듯이, 색차 성분에 대한 업샘플링의 경우, 휘도 성분과 달리 4-tap 필터가 적용될 수 있다. 즉, 현재 레이어의 현재 샘플에 대응하는 참조 레이어의 참조 샘플 및 상기 참조 샘플에 인접한 이웃 샘플을 이용하여 인터폴레이션을 수행할 수 있다. 여기서, 이웃 샘플은 인터폴레이션을 수행하는 방향에 따라 특정될 수 있다. 예를 들어, 수평 방향으로 인터폴레이션을 수행하는 경우, 상기 이웃 샘플은 참조 샘플을 기준으로 좌측으로 연속적인 1개의 샘플 및 우측으로 연속적인 2개의 샘플을 포함할 수 있다. 또는, 수직 방향으로 인터폴레이션을 수행하는 경우, 상기 이웃 샘플은 상기 참조 샘플을 기준으로 상단으로 연속적인 1개의 샘플 및 하단으로 연속적인 2개의 샘플을 포함할 수 있다.As shown in Table 2, in case of up-sampling for the chrominance components, a 4-tap filter can be applied unlike the luminance component. That is, interpolation can be performed using a reference sample of the reference layer corresponding to the current sample of the current layer and a neighboring sample adjacent to the reference sample. Here, the neighbor samples can be specified according to the direction in which the interpolation is performed. For example, when interpolation is performed in the horizontal direction, the neighboring sample may include one continuous sample to the left and two consecutive samples to the right based on the reference sample. Alternatively, when interpolation is performed in the vertical direction, the neighboring sample may include one continuous sample at the top and two consecutive samples at the bottom based on the reference sample.
한편, 휘도 성분과 마찬가지로 1/16 샘플 단위의 정확도로 인터폴레이션을 수행하므로 총 16개의 위상이 존재하며, 각 위상(p) 별로 상이한 필터 계수를 사용할 수 있다. 그리고, 위상(p)이 0인 경우를 제외하고 각각의 필터 계수의 크기는 0 내지 62의 범위에 속하도록 정의될 수 있다. 이 역시 6bits의 정밀도를 가지고 필터링을 수행함을 의미한다.On the other hand, as in the case of the luminance component, since interpolation is performed with an accuracy of 1/16 sample units, there are a total of 16 phases, and different filter coefficients can be used for each phase (p). And, the size of each filter coefficient can be defined to fall in the range of 0 to 62, except when the phase (p) is zero. This also means that filtering is performed with a precision of 6 bits.
앞서 휘도 성분에 대해서는 8-tap 필터가, 색차 성분에 대해서는 4-tap 필터가 각각 적용되는 경우를 예로 들어 살펴 보았으나, 이에 한정되지 아니하며, tap 필터의 차수는 코딩 효율을 고려하여 가변적으로 결정될 수 있음은 물론이다.The 8-tap filter is applied to the luminance component and the 4-tap filter is applied to the chrominance component. However, the present invention is not limited to this, and the order of the tap filter may be variably determined in consideration of the coding efficiency Of course it is.
2. 적응적 업샘플링 필터2. Adaptive up-sampling filter
고정된 필터 계수를 사용하지 아니하고, 영상의 특징을 고려하여 인코더에서 최적의 필터 계수를 결정하고, 이를 시그날링하여 디코더로 전송할 수 있다. 이와 같이 인코더에서 적응적으로 결정된 필터 계수를 이용하는 것이 적응적 업샘플링 필터이다. 픽쳐 단위로 영상의 특징이 다르기 때문에, 모든 경우에 고정된 업샘플링 필터를 사용하는 것보다 영상의 특징을 잘 표현할 수 있는 적응적 업샘플링 필터를 사용하면 코딩 효율을 향상시킬 수 있다.It is possible to determine the optimum filter coefficient in the encoder considering the feature of the image without using the fixed filter coefficient, signaling it to the decoder, and transmit it to the decoder. It is the adaptive up-sampling filter that uses adaptively determined filter coefficients in the encoder. Since the characteristics of the image are different in picture units, it is possible to improve the coding efficiency by using an adaptive up-sampling filter capable of expressing characteristics of the image better than using a fixed up-sampling filter in all cases.
S410 단계에서 결정된 필터 계수를 참조 레이어의 대응 픽쳐에 적용하여 인터레이어 참조 픽쳐를 생성할 수 있다(S420).The inter-layer reference picture may be generated by applying the filter coefficient determined in step S410 to the corresponding picture of the reference layer (S420).
구체적으로, 결정된 업샘플링 필터의 필터 계수를 대응 픽쳐의 샘플들에 적용하여 인터폴레이션을 수행할 수 있다. 여기서, 인터폴레이션은 1차적으로 수평 방향으로 수행하고, 수평 방향의 인터폴레이션 후 생성된 샘플에 대해서 2차적으로 수직 방향으로 수행될 수 있다.
Specifically, the filter coefficient of the determined up-sampling filter may be applied to the samples of the corresponding picture to perform interpolation. Here, the interpolation may be performed primarily in the horizontal direction and may be performed in the vertical direction with respect to the sample generated after the interpolation in the horizontal direction.
도 5는 본 발명이 적용되는 일실시예로서, 레지듀얼 예측 기법을 통해 현재 픽쳐의 인터레이어 참조 픽쳐를 생성하는 방법을 도시한 것이다.FIG. 5 illustrates a method of generating an interlayer reference picture of a current picture through a residual prediction technique according to an embodiment of the present invention. Referring to FIG.
레지듀얼 예측 기법이라 함은 참조 레이어의 레지듀얼을 현재 레이어의 예측값으로 이용하는 것이다. 구체적으로, 현재 레이어의 인터레이어 참조 픽쳐를 예측하기 위하여 현재 레이어의 예측값 및 이전에 부호화된 참조 레이어의 레지듀얼을 이용할 수 있다.The residual prediction technique refers to using the residual of the reference layer as a predicted value of the current layer. Specifically, the predicted value of the current layer and the residual of the previously encoded reference layer can be used to predict the interlayer reference picture of the current layer.
도 5를 참조하면, 현재 픽쳐 내 현재 블록의 모션 벡터를 이용하여 현재 블록의 예측값을 획득할 수 있다(S500).Referring to FIG. 5, the predicted value of the current block can be obtained using the motion vector of the current block in the current picture (S500).
구체적으로, 현재 블록의 모션 벡터를 이용하여 현재 블록의 참조 블록을 특정하고, 특정된 참조 블록의 샘플값을 현재 블록의 예측값으로 설정할 수 있다. 여기서, 상기 참조 블록은 현재 블록의 참조 인덱스에 의해 특정된 참조 픽쳐에 포함된 블록을 의미할 수 있다. 상기 참조 픽쳐는 현재 픽쳐와 동일한 레이어에 속할 수 있다.Specifically, the reference block of the current block can be specified using the motion vector of the current block, and the sample value of the specified reference block can be set as the predicted value of the current block. Here, the reference block may refer to a block included in a reference picture specified by a reference index of a current block. The reference picture may belong to the same layer as the current picture.
업샘플링된 대응 픽쳐 내 대응 블록의 샘플값과 상기 대응 블록의 참조 블록의 샘플값 간의 차분값을 획득할 수 있다(S510).The difference value between the sample value of the corresponding block in the upsampled corresponding picture and the sample value of the reference block of the corresponding block may be obtained (S510).
여기서, 상기 대응 블록은 상기 현재 블록과 동일 위치의 블록을 의미할 수 있다. 상기 대응 블록의 참조 블록은 상기 현재 블록의 참조 픽쳐와 동일한 출력순서(예를 들어, POC)를 가진 업샘플링된 참조 레이어의 픽쳐에 포함될 수도 있고, 또는 업샘플링된 상기 대응 블록의 참조 픽쳐에 포함될 수도 있다. 상기 대응 블록의 참조 블록은 상기 현재 블록의 모션 벡터를 이용하여 특정될 수 있다. 즉, 상기 대응 블록의 참조 블록은 상기 현재 블록의 참조 블록과 동일 위치의 블록일 수 있다.Here, the corresponding block may mean a block at the same position as the current block. The reference block of the corresponding block may be included in the picture of the up-sampled reference layer having the same output order (for example, POC) as the reference picture of the current block, or may be included in the reference picture of the up- It is possible. The reference block of the corresponding block may be specified using the motion vector of the current block. That is, the reference block of the corresponding block may be the same block as the reference block of the current block.
상기 S500 단계의 현재 블록의 예측값과 S510 단계의 차분값을 이용하여 현재 블록의 수정된 예측값을 획득할 수 있다(S520).The modified predicted value of the current block may be obtained using the predicted value of the current block in step S500 and the difference value of step S510 (S520).
구체적으로, 상기 차분값에 가중치를 적용하여 가중된 차분값을 획득할 수 있다. 상기 가중된 차분값을 상기 현재 블록의 예측값에 더하여 상기 수정된 예측값을 획득할 수 있다. Specifically, a weighted difference value can be obtained by applying a weight to the difference value. And add the weighted difference value to the predicted value of the current block to obtain the modified predicted value.
여기서, 상기 가중치는 상기 차분값을 스케일링하기 위한 값으로서, 복수 개의 가중치 중 어느 하나가 선택적으로 이용될 수 있다. 예를 들어, 상기 가중치의 값이 0인 경우, 이는 레지듀얼 예측을 이용하지 아니함을 의미할 수 있다. 또는, 가중치의 값이 1인 경우, 이는 상기 차분값을 동일하게 이용하여 레지듀얼 예측을 수행함을 의미할 수 있다. 또는, 가중치의 값이 0.5인 경우, 이는 업샘플링된 대응 픽쳐 내 대응 블록의 샘플값과 상기 대응 블록의 참조 블록의 샘플값 간의 차분 평균값을 이용하여 레지듀얼 예측을 수행함을 의미할 수 있다. Here, the weight is a value for scaling the difference value, and any one of a plurality of weights may be selectively used. For example, if the value of the weight is zero, it may mean that the residual prediction is not used. Alternatively, when the value of the weight is 1, it may mean that the residual prediction is performed using the difference value equally. Alternatively, when the value of the weight is 0.5, it may mean that the residual prediction is performed using the difference average value between the sample value of the corresponding block in the corresponding up-sampled corresponding picture and the sample value of the reference block of the corresponding block.
상술한 가중치의 값들은 일실시예에 불과하며, 다양한 값을 이용하여 상기 차분값을 스케일링하는 것이 가능하다. 이와 같이, 복수 개의 가중치 중 어느 하나를 선택적으로 이용함으로써, 레지듀얼 예측의 정확성을 향상시킬 수 있다.The values of the weights described above are only examples, and it is possible to scale the difference using various values. As described above, by selectively using any one of the plurality of weights, the accuracy of the residual prediction can be improved.
한편, 상기 가중치는 디코더 내의 기결정된 값일 수도 있고, 인코더에서 결정되어 디코더로 전송된 값일 수도 있다.On the other hand, the weight may be a predetermined value in the decoder, or may be a value determined in the encoder and transmitted to the decoder.
S520 단계의 수정된 예측값과 현재 블록의 레지듀얼 샘플값을 이용하여 인터레이어 참조 픽쳐를 생성할 수 있다(S530).An interlayer reference picture may be generated using the modified prediction value of step S520 and the residual sample value of the current block (S530).
여기서, 레지듀얼 샘플값은 현재 블록의 샘플값과 상기 수정된 예측값 간의 차분을 의미할 수 있다. 즉, 상기 수정된 예측값과 상기 레지듀얼 샘플값을 이용하여 복원된 픽쳐를 생성하고, 이를 인터레이어 참조 픽쳐로 사용할 수 있다.Here, the residual sample value may mean the difference between the sample value of the current block and the modified prediction value. That is, the reconstructed picture is generated using the modified prediction value and the residual sample value, and the reconstructed picture can be used as an interlayer reference picture.
예를 들어, 상기 수정된 예측값과 상기 레지듀얼 샘플값을 더하여 복원된 픽쳐를 생성하고, 이를 인터레이어 참조 픽쳐로 사용할 수 있다.
For example, the reconstructed picture may be generated by adding the modified predictive value and the residual sample value, and the reconstructed picture may be used as an inter-layer reference picture.
도 6는 본 발명이 적용되는 일실시예로서, 디코딩 픽쳐 버퍼에 저장되는 근거리 참조 픽쳐를 특정하는 방법을 도시한 것이다.FIG. 6 illustrates a method of specifying a near reference picture stored in a decoding picture buffer according to an embodiment of the present invention. Referring to FIG.
시간적 참조 픽쳐는 디코딩 픽쳐 버퍼(DPB)에 저장될 수 있고, 현재 픽쳐의 인터 예측을 위해 필요한 경우에 참조 픽쳐로 이용될 수 있다. 디코딩 픽쳐 버퍼에 저장된 시간적 참조 픽쳐는 근거리 참조 픽쳐(short-term reference picture)를 포함할 수 있다. 근거리 참조 픽쳐는 현재 픽쳐와 POC 값의 차이가 크지 않은 픽쳐를 의미한다.The temporal reference picture may be stored in the decoding picture buffer (DPB) and used as a reference picture if necessary for inter prediction of the current picture. The temporal reference picture stored in the decoding picture buffer may include a short-term reference picture. The near reference picture means a picture in which the difference between the current picture and the POC value is not large.
현재 시점에서 디코딩 픽쳐 버퍼에 저장해야 하는 근거리 참조 픽쳐를 특정하는 정보는 참조 픽쳐의 출력 순서(POC)와 현재 픽쳐에서 직접 참조하는지 여부를 나타내는 플래그(예를 들어, used_by_curr_pic_s0_flag, used_by_curr_pic_s1_flag)로 구성되어 있고, 이를 참조 픽쳐 세트(reference picture set)라 한다. 구체적으로 상기 used_by_curr_pic_s0_flag[i]의 값이 0인 경우, 근거리 참조 픽쳐 세트 중 i번째 근거리 참조 픽쳐가 현재 픽쳐의 출력 순서(POC)보다 작은 값을 가지면, i번째 근거리 참조 픽쳐는 현재 픽쳐의 참조 픽쳐로 사용되지 아니함을 나타낸다. 그리고, 상기 used_by_curr_pic_s1_flag[i]의 값이 0인 경우, 근거리 참조 픽쳐 세트 중 i번째 근거리 참조 픽쳐가 현재 픽쳐의 출력 순서(POC)보다 큰 값을 가지면, i번째 근거리 참조 픽쳐는 현재 픽쳐의 참조 픽쳐로 사용되지 아니함을 나타낸다.Information specifying the near reference picture to be stored in the decoding picture buffer at the current time is composed of a reference order of picture (POC) and a flag indicating whether to directly refer to the current picture (for example, used_by_curr_pic_s0_flag, used_by_curr_pic_s1_flag) , Which is referred to as a reference picture set. Specifically, when the value of the used_by_curr_pic_s0_flag [i] is 0, if the i-th nearest reference picture in the near reference picture set has a value smaller than the output order (POC) of the current picture, the i-th nearest reference picture is the reference picture Is not used. If the value of the used_by_curr_pic_s1_flag [i] is 0, if the i-th nearest reference picture in the near reference picture set has a value larger than the output order (POC) of the current picture, the i-th nearest reference picture is a reference picture of the current picture Is not used.
도 6을 참조하면, POC 값이 26인 픽쳐의 경우, 인터 예측 시 근거리 참조 픽쳐로 모두 3개의 픽쳐(즉, POC 값이 25, 24, 20인 픽쳐)가 이용될 수 있다. 다만, POC 값이 25인 픽쳐의 used_by_curr_pic_s0_flag 값은 0이므로, POC 값이 25인 픽쳐는 POC 값이 26인 픽쳐의 인터 예측에 직접적으로 사용되지 않는다.Referring to FIG. 6, in the case of a picture having a POC value of 26, all three pictures (i.e., pictures having POC values of 25, 24, and 20) can be used as a near reference picture in inter prediction. However, since the value of used_by_curr_pic_s0_flag of a picture having a POC value of 25 is 0, a picture having a POC value of 25 is not directly used for inter prediction of a picture having a POC value of 26.
이와 같이 참조 픽쳐의 출력 순서(POC)와 현재 픽쳐에 의해서 참조 픽쳐로 이용되는지 여부를 나타내는 플래그에 기초하여 근거리 참조 픽쳐를 특정할 수 있다. Thus, the near reference picture can be specified based on the output order (POC) of the reference picture and the flag indicating whether the current picture is used as the reference picture.
한편, 현재 픽쳐에 대한 참조 픽쳐 세트에 나타나 있지 않은 픽쳐에 대해서는 참조 픽쳐로 사용하지 않는다는 표시(예를 들어, unused for reference)를 할 수 있고, 나아가 디코딩 픽쳐 버퍼에서 제거할 수도 있다.
On the other hand, a picture not shown in the reference picture set for the current picture can be displayed (for example, unused for reference) not to be used as a reference picture, and further removed from the decoding picture buffer.
도 7은 본 발명이 적용되는 일실시예로서, 장거리 참조 픽쳐(long-term reference picture)를 특정하는 방법을 도시한 것이다.FIG. 7 illustrates a method of specifying a long-term reference picture according to an embodiment of the present invention. Referring to FIG.
장거리 참조 픽쳐의 경우에는 현재 픽쳐와 POC 값의 차이가 크기 때문에 POC 값의 최하위 비트(least significant bit, LSB)와 최상위 비트(most significant bit, MSB)를 이용하여 표현할 수 있다. In the case of the long-distance reference picture, since the difference between the current picture and the POC value is large, it can be expressed using the least significant bit (LSB) and the most significant bit (MSB) of the POC value.
따라서, 장거리 참조 픽쳐의 POC 값은 참조 픽쳐의 POC 값의 LSB 값, 현재 픽쳐의 POC 값 및 현재 픽쳐의 POC 값의 MSB와 참조 픽쳐의 POC 값의 MSB 간의 차이를 이용하여 유도될 수 있다.Therefore, the POC value of the long-distance reference picture can be derived by using the difference between the LSB value of the POC value of the reference picture, the POC value of the current picture, and the MSB of the POC value of the current picture and the MSB of the POC value of the reference picture.
예를 들어, 현재 픽쳐의 POC 값이 331이고, LSB로 표현 가능한 최대값이 32이며, 장거리 참조 픽쳐로 POC 값이 308인 픽쳐가 이용된다고 가정한다.For example, it is assumed that the POC value of the current picture is 331, the maximum value that can be represented by the LSB is 32, and the picture having the POC value of 308 is used as the long-distance reference picture.
이 경우, 현재 픽쳐의 POC 값인 331은 32*10+11로 표현할 수 있으며, 이때 10이 MSB 값이 되고, 11이 LSB 값이 된다. 장거리 참조 픽쳐의 POC 값인 308은 32*9+20으로 표현되며, 이때 9는 MSB 값이 되고, 20은 LSB 값이 된다. 이때 장거리 참조 픽쳐의 POC 값은 도 7에 도시된 수식과 같이 유도될 수 있다.
In this case, the
도 8은 본 발명이 적용되는 일실시예로서, 근거리 참조 픽쳐와 장거리 참조 픽쳐를 이용하여 참조 픽쳐 리스트를 구성하는 방법을 도시한 것이다.FIG. 8 illustrates a method of constructing a reference picture list using a near reference picture and a long distance reference picture according to an embodiment of the present invention.
도 8을 참조하면, 시간적 참조 픽쳐를 포함한 참조 픽쳐 리스트는 시간적 참조 픽쳐가 근거리 참조 픽쳐인지 여부와 근거리 참조 픽쳐의 POC 값을 고려하여 생성될 수 있다. 여기서, 참조 픽쳐 리스트는 L0 예측을 위한 참조 픽쳐 리스트 0와 L1 예측을 위한 참조 픽쳐 리스트 1 중 적어도 하나를 포함할 수 있다.Referring to FIG. 8, a reference picture list including a temporal reference picture can be generated in consideration of whether a temporal reference picture is a near reference picture and a POC value of a near reference picture. Here, the reference picture list may include at least one of a
구체적으로, 참조 픽쳐 리스트 0에서는 현재 픽쳐보다 작은 POC 값을 가진 근거리 참조 픽쳐(RefPicSetCurr0), 현재 픽쳐보다 큰 POC 값을 가진 근거리 참조 픽쳐(RefPicSetCurr1), 장거리 참조 픽쳐(RefPicSetLtCurr)의 순서로 배열될 수 있다.Specifically, in the
한편, 참조 픽쳐 리스트 1에서는 현재 픽쳐보다 큰 POC 값을 가진 근거리 참조 픽쳐(RefPicSetCurr1), 현재 픽쳐보다 작은 POC 값을 가진 근거리 참조 픽쳐(RefPicSetCurr0), 장거리 참조 픽쳐(RefPicSetLtCurr)의 순서로 배열될 수 있다.On the other hand, in the
또한, 시간적 참조 픽쳐의 참조 인덱스에 대한 부호화 효율을 향상시키기 위해서 참조 픽쳐 리스트에 포함된 복수 개의 시간적 참조 픽쳐들을 재배열할 수 있다. 이는 리스트 재배열 플래그(list_modification_present_flag)에 기초하여 적응적으로 수행될 수 있다. 여기서, 리스트 재배열 플래그는 참조 픽쳐 리스트 내의 참조 픽쳐들이 재배열되는지 여부를 특정하는 정보이다. 상기 리스트 재배열 플래그는 참조 픽쳐 리스트 0와 참조 픽쳐 리스트 1에 대해서 각각 시그날링될 수 있다.In addition, a plurality of temporal reference pictures included in the reference picture list may be rearranged to improve the coding efficiency of the reference index of the temporal reference picture. This can be performed adaptively based on the list rearrangement flag (list_modification_present_flag). Here, the list rearrangement flag is information for specifying whether or not reference pictures in the reference picture list are rearranged. The list rearrangement flag can be signaled for the
예를 들어, 상기 리스트 재배열 플래그(list_modification_present_flag)의 값이 0인 경우, 참조 픽쳐 리스트 내의 참조 픽쳐들은 재배열되지 아니하며, 리스트 재배열 플래그(list_modification_present_flag)의 값이 1인 경우에 한하여 참조 픽쳐 리스트 내의 참조 픽쳐들은 재배열될 수 있다.For example, when the value of the list rearrangement flag (list_modification_present_flag) is 0, the reference pictures in the reference picture list are not rearranged, and only when the value of the list rearrangement flag (list_modification_present_flag) is 1, The reference pictures can be rearranged.
만일, 리스트 재배열 플래그(list_modification_present_flag)의 값이 1인 경우에는 리스트 엔트리 정보(list_entry[i])를 이용하여 참조 픽쳐 리스트 내의 참조 픽쳐들을 재배열할 수 있다. 여기서, 리스트 엔트리 정보(list_entry[i])는 참조 픽쳐 리스트에서 현재 포지션(즉, i번째 엔트리)에 위치하게 되는 참조 픽쳐의 참조 인덱스를 특정할 수 있다. If the value of the list rearrangement flag (list_modification_present_flag) is 1, the reference pictures in the reference picture list can be rearranged using the list entry information list_entry [i]. Here, the list entry information (list_entry [i]) can specify the reference index of the reference picture to be located at the current position (i.e., the i-th entry) in the reference picture list.
구체적으로, 기 생성된 참조 픽쳐 리스트에서 상기 리스트 엔트리 정보(list_entry[i])에 대응하는 참조 픽쳐를 특정하고, 특정된 참조 픽쳐를 참조 픽쳐 리스트에서 i번째 엔트리에 재배열할 수 있다.Specifically, the reference picture corresponding to the list entry information (list_entry [i]) can be specified in the pre-generated reference picture list, and the specified reference picture can be rearranged to the i-th entry in the reference picture list.
상기 리스트 엔트리 정보는 참조 픽쳐 리스트에 포함된 참조 픽쳐의 개수만큼 또는 참조 픽쳐 리스트의 참조 인덱스 최대값만큼 획득될 수 있다. 또한, 리스트 엔트리 정보는 현재 픽쳐의 슬라이스 타입을 고려하여 획득될 수 있다. 즉, 현재 픽쳐의 슬라이스 타입이 P 슬라이스인 경우에는 참조 픽쳐 리스트 0에 대한 리스트 엔트리 정보(list_entry_l0[i])를 획득하고, 현재 픽쳐의 슬라이스 타입이 B 슬라이스인 경우에는 참조 픽쳐 리스트 1에 대한 리스트 엔트리 정보(list_entry_l1[i])를 추가적으로 획득할 수 있다.
The list entry information can be obtained by the number of reference pictures included in the reference picture list or by the maximum reference index value of the reference picture list. Also, the list entry information can be obtained in consideration of the slice type of the current picture. That is, if the slice type of the current picture is a P slice, the list entry information list_entry_l0 [i] for the
도 9 내지 도 15는 본 발명이 적용되는 일실시예로서, 멀티레이어 구조에서 참조 픽쳐 리스트를 구성하는 방법을 도시한 것이다.9 to 15 illustrate a method of constructing a reference picture list in a multi-layer structure according to an embodiment to which the present invention is applied.
도 9를 참조하면, 멀티레이어 구조에서의 참조 픽쳐 리스트 0는 현재 픽쳐의 POC 값보다 POC 값이 작은 근거리 참조 픽쳐(이하, 제1 근거리 참조 픽쳐라 함), 현재 픽쳐의 POC 값보다 POC 값이 큰 근거리 참조 픽쳐(이하, 제2 근거리 참조 픽쳐라 함), 장거리 참조 픽쳐의 순서로 구성될 수 있다. 참조 픽쳐 리스트 1은 제2 근거리 참조 픽쳐, 제1 근거리 참조 픽쳐, 장거리 참조 픽쳐의 순서로 구성될 수 있다. 그리고, 인터레이어 참조 픽쳐는 참조 픽쳐 리스트 0과 참조 픽쳐 리스트 1에서 장거리 참조 픽쳐 다음에 추가될 수 있다.Referring to FIG. 9, the
다만, 멀티레이어 구조에서 인핸스먼트 레이어의 영상이 베이스 레이어의 영상과 유사한 경우, 인핸스먼트 레이어는 베이스 레이어의 인터레이어 참조 픽쳐를 사용하는 경우가 자주 발생할 수 있다. 이러한 경우 인터레이어 참조 픽쳐를 참조 픽쳐 리스트의 마지막에 추가한다면 참조 픽쳐 리스트의 부호화 성능이 떨어질 수도 있다. 따라서, 도 10 내지 도 15에 도시된 바와 같이, 인터레이어 참조 픽쳐를 장거리 참조 픽쳐 이전에 추가하거나, 복수 개의 인터레이어 참조 픽쳐들을 분리하여 배열함으로써, 참조 픽쳐 리스트의 부호화 성능을 향상시킬 수도 있다.
However, if the enhancement layer image is similar to the base layer image in the multi-layer structure, the enhancement layer may frequently use an interlayer reference picture of the base layer. In this case, if the interlayer reference picture is added to the end of the reference picture list, the coding performance of the reference picture list may be degraded. Therefore, as shown in FIGS. 10 to 15, encoding performance of the reference picture list can be improved by adding an interlayer reference picture before a long-distance reference picture or by arranging a plurality of interlayer reference pictures separately.
인터레이어 참조 픽쳐는 참조 픽쳐 리스트 내의 근거리 참조 픽쳐들 사이에 배열될 수도 있다. The interlayer reference pictures may be arranged between the near reference pictures in the reference picture list.
구체적으로, 멀티레이어 구조에서의 참조 픽쳐 리스트 0는 제1 근거리 참조 픽쳐, 인터레이어 참조 픽쳐, 제2 근거리 참조 픽쳐, 장거리 참조 픽쳐의 순서로 구성될 수 있다. 참조 픽쳐 리스트 1은 제2 근거리 참조 픽쳐, 인터레이어 참조 픽쳐, 제1 근거리 참조 픽쳐, 장거리 참조 픽쳐의 순서로 구성될 수 있다.Specifically, the
한편, 현재 픽쳐의 인터레이어 참조 픽쳐로 복수 개의 인터레이어 참조 픽쳐들이 이용될 수 있다. 예를 들어, 복수 개의 인터레이어 참조 픽쳐는 제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐를 포함할 수 있다. 이 경우, 도 10에 도시된 바와 같이, 참조 픽쳐 리스트 0는 제1 근거리 참조 픽쳐, 제1 인터레이어 참조 픽쳐, 제2 인터레이어 참조 픽쳐, 제2 근거리 참조 픽쳐, 장거리 참조 픽쳐의 순서로 구성될 수 있다. 참조 픽쳐 리스트 1은 제2 근거리 참조 픽쳐, 제2 인터레이어 참조 픽쳐, 제1 인터레이어 참조 픽쳐, 제1 근거리 참조 픽쳐, 장거리 참조 픽쳐의 순서로 구성될 수 있다.On the other hand, a plurality of inter-layer reference pictures can be used as an inter-layer reference picture of the current picture. For example, a plurality of inter-layer reference pictures may include a first inter-layer reference picture and a second inter-layer reference picture. In this case, as shown in Fig. 10, the
또는, 도 11에 도시된 바와 같이, 참조 픽쳐 리스트 0는 제1 근거리 참조 픽쳐, 제2 인터레이어 참조 픽쳐, 제1 인터레이어 참조 픽쳐, 제2 근거리 참조 픽쳐, 장거리 참조 픽쳐의 순서로 구성될 수 있다. 참조 픽쳐 리스트 1은 제2 근거리 참조 픽쳐, 제1 인터레이어 참조 픽쳐, 제2 인터레이어 참조 픽쳐, 제1 근거리 참조 픽쳐, 장거리 참조 픽쳐의 순서로 구성될 수 있다.
Alternatively, as shown in FIG. 11, the
도 10 및 도 11에서는 제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐가 순차적으로 배열되는 경우를 살펴보았으나, 이에 한정되지 아니한다. 즉, 제1 인터레이어 참조 픽쳐와 제2 인터레이어 참조 픽쳐가 순차적으로 배열되지 아니할 수 있으며, 이에 대해서는 이하 도 12 내지 도 15를 참조하여 살펴 보기로 한다.
In FIGS. 10 and 11, the first interlayer reference picture and the second interlayer reference picture are sequentially arranged, but the present invention is not limited thereto. That is, the first interlayer reference picture and the second interlayer reference picture may not be sequentially arranged, and this will be described with reference to FIGS. 12 to 15. FIG.
도 12를 참조하면, 참조 픽쳐 리스트 0는 제1 근거리 참조 픽쳐, 제1 인터레이어 참조 픽쳐, 제2 근거리 참조 픽쳐, 장거리 참조 픽쳐, 제2 인터레이어 참조 픽쳐의 순서로 구성될 수 있다. 참조 픽쳐 리스트 1은 제2 근거리 참조 픽쳐, 제2 인터레이어 참조 픽쳐, 제1 근거리 참조 픽쳐, 장거리 참조 픽쳐, 제1 인터레이어 참조 픽쳐의 순서로 구성될 수 있다.
Referring to FIG. 12, the
도 13을 참조하면, 참조 픽쳐 리스트 0는 제1 근거리 참조 픽쳐, 제2 인터레이어 참조 픽쳐, 제2 근거리 참조 픽쳐, 장거리 참조 픽쳐, 제1 인터레이어 참조 픽쳐의 순서로 구성될 수 있다. 참조 픽쳐 리스트 1은 제2 근거리 참조 픽쳐, 제1 인터레이어 참조 픽쳐, 제1 근거리 참조 픽쳐, 장거리 참조 픽쳐, 제2 인터레이어 참조 픽쳐의 순서로 구성될 수 있다.
Referring to FIG. 13, the
도 14를 참조하면, 참조 픽쳐 리스트 0는 제1 인터레이어 참조 픽쳐, 제1 근거리 참조 픽쳐, 제2 인터레이어 참조 픽쳐, 제2 근거리 참조 픽쳐, 장거리 참조 픽쳐 의 순서로 구성될 수 있다. 참조 픽쳐 리스트 1은 제2 인터레이어 참조 픽쳐, 제2 근거리 참조 픽쳐, 제1 인터레이어 참조 픽쳐, 제1 근거리 참조 픽쳐, 장거리 참조 픽쳐의 순서로 구성될 수 있다.
Referring to FIG. 14, the
도 15를 참조하면, 참조 픽쳐 리스트 0는 제2 인터레이어 참조 픽쳐, 제1 근거리 참조 픽쳐, 제1 인터레이어 참조 픽쳐, 제2 근거리 참조 픽쳐, 장거리 참조 픽쳐 의 순서로 구성될 수 있다. 참조 픽쳐 리스트 1은 제1 인터레이어 참조 픽쳐, 제2 근거리 참조 픽쳐, 제2 인터레이어 참조 픽쳐, 제1 근거리 참조 픽쳐, 장거리 참조 픽쳐의 순서로 구성될 수 있다.
Referring to FIG. 15, the
한편, 도 10 내지 도 15에서는 참조 픽쳐 리스트를 구성하는 일례로 현재 픽쳐보다 POC 값이 작은 근거리 참조 픽쳐, 현재 픽쳐보다 POC 값이 큰 근거리 참조 픽쳐, 장거리 참조 픽쳐, 제1 인터레이어 참조 픽쳐, 제2 인터레이어 참조 픽쳐가 각각 1개인 경우를 도시하고 있으나, 이는 참조 픽쳐들이 배열되는 순서를 도시한 것에 불과하며, 복수 개의 근거리 참조 픽쳐들(즉, 근거리 참조 픽쳐 세트), 장거리 참조 픽쳐들(즉, 장거리 참조 픽쳐 세트), 제1 인터레이어 참조 픽쳐들(즉, 제1 인터레이어 참조 픽쳐 세트), 제2 인터레이어 참조 픽쳐들(즉, 제2 인터레이어 참조 픽쳐 세트)가 이용될 수 있음은 물론이다.On the other hand, in Figs. 10 to 15, as an example of the reference picture list, a near reference picture having a smaller POC value than the current picture, a near reference picture having a larger POC value than the current picture, a long distance reference picture, 2 reference pictures are arranged in the order of reference pictures. However, the reference pictures are arranged in a plurality of short distance reference pictures (i.e., a short distance reference picture set) and long distance reference pictures , A first inter-layer reference picture set), second inter-layer reference pictures (i.e., a second inter-layer reference picture set) Of course.
Claims (15)
상기 복호화된 대응 픽쳐를 업샘플링하여 인터레이어 참조 픽쳐를 생성하는 단계;
시간적 참조 픽쳐와 상기 인터레이어 참조 픽쳐를 포함한 참조 픽쳐 리스트를 생성하는 단계; 및
상기 참조 픽쳐 리스트에 기초하여 상기 현재 픽쳐의 인터 예측을 수행하는 단계를 포함하는 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 방법.Decoding a corresponding picture of a reference layer corresponding to a current picture of a current layer;
Up-sampling the decoded corresponding picture to generate an inter-layer reference picture;
Generating a temporal reference picture and a reference picture list including the inter-layer reference picture; And
And performing inter-prediction of the current picture based on the reference picture list.
상기 제1 근거리 참조 픽쳐는 상기 현재 픽쳐의 POC 값보다 POC 값이 작은 근거리 참조 픽쳐를 의미하고, 상기 제2 근거리 참조 픽쳐는 상기 현재 픽쳐의 POC 값보다 POC 값이 큰 근거리 참조 픽쳐를 의미하는 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 방법.The apparatus of claim 1, wherein the temporal reference picture includes at least one of a first near reference picture, a second near reference picture, and a long distance reference picture,
The first near reference picture means a near reference picture having a POC value smaller than the POC value of the current picture and the second near reference picture means a near reference picture having a POC value larger than the POC value of the current picture Wherein the scalable video signal decoding method comprises the steps of:
상기 제1 인터레이어 참조 픽쳐는 상기 참조 레이어의 대응 픽쳐를 업샘플링한 픽쳐를 의미하고, 상기 제2 인터레이어 참조 픽쳐는 상기 참조 레이어의 레지듀얼을 이용하여 복원된 픽쳐를 의미하는 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 방법.3. The apparatus of claim 2, wherein the interlayer reference picture comprises at least one of a first interlayer reference picture and a second interlayer reference picture,
Wherein the first interlayer reference picture refers to a picture obtained by upsampling the corresponding picture of the reference layer and the second interlayer reference picture refers to a picture reconstructed using the residual of the reference layer A method for decoding a scalable video signal.
상기 참조 픽쳐 리스트 0는 상기 제1 근거리 참조 픽쳐, 상기 제1 인터레이어 참조 픽쳐, 상기 제2 근거리 참조 픽쳐, 상기 장거리 참조 픽쳐, 상기 제2 인터레이어 참조 픽쳐의 순서로 구성되고,
상기 참조 픽쳐 리스트 1은 상기 제2 근거리 참조 픽쳐, 상기 제2 인터레이어 참조 픽쳐, 상기 제1 근거리 참조 픽쳐, 상기 장거리 참조 픽쳐, 상기 제1 인터레이어 참조 픽쳐의 순서로 구성되는 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 방법.4. The apparatus of claim 3, wherein the reference picture list includes at least one of a reference picture list 0 and a reference picture list 1,
The reference picture list 0 is composed of the first near reference picture, the first interlayer reference picture, the second near reference picture, the long distance reference picture and the second interlayer reference picture in this order,
Wherein the reference picture list 1 is composed of the second near reference picture, the second interlayer reference picture, the first near reference picture, the long distance reference picture, and the first interlayer reference picture in order. / RTI >
상기 복호화된 대응 픽쳐를 업샘플링하여 인터레이어 참조 픽쳐를 생성하고, 시간적 참조 픽쳐와 상기 인터레이어 참조 픽쳐를 포함한 참조 픽쳐 리스트를 생성하며, 상기 참조 픽쳐 리스트에 기초하여 상기 현재 픽쳐의 인터 예측을 수행하는 예측부;를 포함하는 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 장치.A lower layer decoding unit decoding a corresponding picture of a reference layer corresponding to a current picture of a current layer; And
Generating an inter-layer reference picture by up-sampling the decoded corresponding picture, generating a temporal reference picture and a reference picture list including the inter-layer reference picture, and performing inter-prediction of the current picture based on the reference picture list And a predicting unit for predicting the scalable video signal.
상기 제1 근거리 참조 픽쳐는 상기 현재 픽쳐의 POC 값보다 POC 값이 작은 근거리 참조 픽쳐를 의미하고, 상기 제2 근거리 참조 픽쳐는 상기 현재 픽쳐의 POC 값보다 POC 값이 큰 근거리 참조 픽쳐를 의미하는 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 장치.The method of claim 5, wherein the temporal reference picture includes at least one of a first near reference picture, a second near reference picture, and a long distance reference picture,
The first near reference picture means a near reference picture having a POC value smaller than the POC value of the current picture and the second near reference picture means a near reference picture having a POC value larger than the POC value of the current picture Wherein the scalable video signal decoding apparatus comprises:
상기 제1 인터레이어 참조 픽쳐는 상기 참조 레이어의 대응 픽쳐를 업샘플링한 픽쳐를 의미하고, 상기 제2 인터레이어 참조 픽쳐는 상기 참조 레이어의 레지듀얼을 이용하여 복원된 픽쳐를 의미하는 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 장치.7. The apparatus of claim 6, wherein the interlayer reference picture includes at least one of a first interlayer reference picture and a second interlayer reference picture,
Wherein the first interlayer reference picture refers to a picture obtained by upsampling the corresponding picture of the reference layer and the second interlayer reference picture refers to a picture reconstructed using the residual of the reference layer A scalable video signal decoding apparatus.
상기 참조 픽쳐 리스트 0는 상기 제1 근거리 참조 픽쳐, 상기 제1 인터레이어 참조 픽쳐, 상기 제2 근거리 참조 픽쳐, 상기 장거리 참조 픽쳐, 상기 제2 인터레이어 참조 픽쳐의 순서로 구성되고,
상기 참조 픽쳐 리스트 1은 상기 제2 근거리 참조 픽쳐, 상기 제2 인터레이어 참조 픽쳐, 상기 제1 근거리 참조 픽쳐, 상기 장거리 참조 픽쳐, 상기 제1 인터레이어 참조 픽쳐의 순서로 구성되는 것을 특징으로 하는 스케일러블 비디오 신호 디코딩 장치.8. The method of claim 7, wherein the reference picture list includes at least one of a reference picture list 0 and a reference picture list 1,
The reference picture list 0 is composed of the first near reference picture, the first interlayer reference picture, the second near reference picture, the long distance reference picture and the second interlayer reference picture in this order,
Wherein the reference picture list 1 is composed of the second near reference picture, the second interlayer reference picture, the first near reference picture, the long distance reference picture, and the first interlayer reference picture in order. A device for decoding a video signal.
상기 복호화된 대응 픽쳐를 업샘플링하여 인터레이어 참조 픽쳐를 생성하는 단계;
시간적 참조 픽쳐 및 상기 인터레이어 참조 픽쳐를 포함한 참조 픽쳐 리스트를 생성하는 단계; 및
상기 참조 픽쳐 리스트에 기초하여 상기 현재 픽쳐의 인터 예측을 수행하는 단계를 포함하는 것을 특징으로 하는 스케일러블 비디오 신호 인코딩 방법.Decoding a corresponding picture of a reference layer corresponding to a current picture of a current layer;
Up-sampling the decoded corresponding picture to generate an inter-layer reference picture;
Generating a temporal reference picture and a reference picture list including the inter-layer reference picture; And
And performing inter-prediction of the current picture based on the reference picture list.
상기 제1 근거리 참조 픽쳐는 상기 현재 픽쳐의 POC 값보다 POC 값이 작은 근거리 참조 픽쳐를 의미하고, 상기 제2 근거리 참조 픽쳐는 상기 현재 픽쳐의 POC 값보다 POC 값이 큰 근거리 참조 픽쳐를 의미하는 것을 특징으로 하는 스케일러블 비디오 신호 인코딩 방법.The apparatus of claim 9, wherein the temporal reference picture includes at least one of a first near reference picture, a second near reference picture, and a long distance reference picture,
The first near reference picture means a near reference picture having a POC value smaller than the POC value of the current picture and the second near reference picture means a near reference picture having a POC value larger than the POC value of the current picture Wherein the scalable video signal encoding method comprises the steps of:
상기 제1 인터레이어 참조 픽쳐는 상기 참조 레이어의 대응 픽쳐를 업샘플링한 픽쳐를 의미하고, 상기 제2 인터레이어 참조 픽쳐는 상기 참조 레이어의 레지듀얼을 이용하여 복원된 픽쳐를 의미하는 것을 특징으로 하는 스케일러블 비디오 신호 인코딩 방법. 11. The apparatus of claim 10, wherein the interlayer reference picture includes at least one of a first interlayer reference picture and a second interlayer reference picture,
Wherein the first interlayer reference picture refers to a picture obtained by upsampling the corresponding picture of the reference layer and the second interlayer reference picture refers to a picture reconstructed using the residual of the reference layer A scalable video signal encoding method.
상기 참조 픽쳐 리스트 0는 상기 제1 근거리 참조 픽쳐, 상기 제1 인터레이어 참조 픽쳐, 상기 제2 근거리 참조 픽쳐, 상기 장거리 참조 픽쳐, 상기 제2 인터레이어 참조 픽쳐의 순서로 구성되고,
상기 참조 픽쳐 리스트 1은 상기 제2 근거리 참조 픽쳐, 상기 제2 인터레이어 참조 픽쳐, 상기 제1 근거리 참조 픽쳐, 상기 장거리 참조 픽쳐, 상기 제1 인터레이어 참조 픽쳐의 순서로 구성되는 것을 특징으로 하는 스케일러블 비디오 신호 인코딩 방법.The method of claim 11, wherein the reference picture list includes at least one of a reference picture list 0 and a reference picture list 1,
The reference picture list 0 is composed of the first near reference picture, the first interlayer reference picture, the second near reference picture, the long distance reference picture and the second interlayer reference picture in this order,
Wherein the reference picture list 1 is composed of the second near reference picture, the second interlayer reference picture, the first near reference picture, the long distance reference picture, and the first interlayer reference picture in order. A method for encoding a video signal.
상기 복호화된 대응 픽쳐를 업샘플링하여 인터레이어 참조 픽쳐를 생성하고, 시간적 참조 픽쳐와 상기 인터레이어 참조 픽쳐를 포함한 참조 픽쳐 리스트를 생성하며, 상기 참조 픽쳐 리스트에 기초하여 상기 현재 픽쳐의 인터 예측을 수행하는 예측부를 포함하되,
상기 시간적 참조 픽쳐는 제1 근거리 참조 픽쳐, 제2 근거리 참조 픽쳐 또는 장거리 참조 픽쳐 중 적어도 하나를 포함하되,
상기 제1 근거리 참조 픽쳐는 상기 현재 픽쳐의 POC 값보다 POC 값이 작은 근거리 참조 픽쳐를 의미하고, 상기 제2 근거리 참조 픽쳐는 상기 현재 픽쳐의 POC 값보다 POC 값이 큰 근거리 참조 픽쳐를 의미하는 것을 특징으로 하는 스케일러블 비디오 신호 인코딩 장치.A lower layer encoding unit for decoding a corresponding picture of a reference layer corresponding to a current picture of a current layer; And
Generating an inter-layer reference picture by up-sampling the decoded corresponding picture, generating a temporal reference picture and a reference picture list including the inter-layer reference picture, and performing inter-prediction of the current picture based on the reference picture list And a prediction unit
Wherein the temporal reference picture includes at least one of a first near reference picture, a second near reference picture, and a long distance reference picture,
The first near reference picture means a near reference picture having a POC value smaller than the POC value of the current picture and the second near reference picture means a near reference picture having a POC value larger than the POC value of the current picture Wherein the scalable video signal encoding apparatus comprises:
상기 제1 인터레이어 참조 픽쳐는 상기 참조 레이어의 대응 픽쳐를 업샘플링한 픽쳐를 의미하고, 상기 제2 인터레이어 참조 픽쳐는 상기 참조 레이어의 레지듀얼을 이용하여 복원된 픽쳐를 의미하는 것을 특징으로 하는 스케일러블 비디오 신호 인코딩 장치.14. The apparatus of claim 13, wherein the interlayer reference picture includes at least one of a first interlayer reference picture and a second interlayer reference picture,
Wherein the first interlayer reference picture refers to a picture obtained by upsampling the corresponding picture of the reference layer and the second interlayer reference picture refers to a picture reconstructed using the residual of the reference layer A scalable video signal encoding apparatus.
상기 참조 픽쳐 리스트 0는 상기 제1 근거리 참조 픽쳐, 상기 제1 인터레이어 참조 픽쳐, 상기 제2 근거리 참조 픽쳐, 상기 장거리 참조 픽쳐, 상기 제2 인터레이어 참조 픽쳐의 순서로 구성되고,
상기 참조 픽쳐 리스트 1은 상기 제2 근거리 참조 픽쳐, 상기 제2 인터레이어 참조 픽쳐, 상기 제1 근거리 참조 픽쳐, 상기 장거리 참조 픽쳐, 상기 제1 인터레이어 참조 픽쳐의 순서로 구성되는 것을 특징으로 하는 스케일러블 비디오 신호 인코딩 장치.
15. The apparatus of claim 14, wherein the reference picture list includes at least one of a reference picture list 0 and a reference picture list 1,
The reference picture list 0 is composed of the first near reference picture, the first interlayer reference picture, the second near reference picture, the long distance reference picture and the second interlayer reference picture in this order,
Wherein the reference picture list 1 is composed of the second near reference picture, the second interlayer reference picture, the first near reference picture, the long distance reference picture, and the first interlayer reference picture in order. A device for encoding a video signal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130090228 | 2013-07-30 | ||
KR20130090228 | 2013-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20150014872A true KR20150014872A (en) | 2015-02-09 |
Family
ID=52571628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140095736A KR20150014872A (en) | 2013-07-30 | 2014-07-28 | A method and an apparatus for encoding/decoding a scalable video signal |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20150014872A (en) |
-
2014
- 2014-07-28 KR KR1020140095736A patent/KR20150014872A/en not_active Application Discontinuation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170339414A1 (en) | Scalable video signal encoding/decoding method and apparatus | |
KR20150133680A (en) | A method and an apparatus for encoding/decoding a scalable video signal | |
KR20140145560A (en) | A method and an apparatus for encoding/decoding a scalable video signal | |
KR20150133683A (en) | A method and an apparatus for encoding and decoding a scalable video signal | |
KR20150075040A (en) | A method and an apparatus for encoding/decoding a multi-layer video signal | |
KR20150133682A (en) | A method and an apparatus for encoding and decoding a scalable video signal | |
KR20150099496A (en) | A method and an apparatus for encoding and decoding a scalable video signal | |
KR20150050409A (en) | A method and an apparatus for encoding and decoding a multi-layer video signal | |
KR20150133681A (en) | A method and an apparatus for encoding and decoding a scalable video signal | |
KR101652072B1 (en) | A method and an apparatus for searching motion information of a multi-layer video | |
KR20150110294A (en) | A method and an apparatus for encoding/decoding a multi-layer video signal | |
KR20150064677A (en) | A method and an apparatus for encoding and decoding a multi-layer video signal | |
KR20150009468A (en) | A method and an apparatus for encoding/decoding a scalable video signal | |
KR20150048077A (en) | A method and an apparatus for encoding/decoding a multi-layer video signal | |
KR20150133684A (en) | A method and an apparatus for encoding and decoding a scalable video signal | |
KR20140145559A (en) | A method and an apparatus for encoding/decoding a scalable video signal | |
KR20150043990A (en) | A method and an apparatus for encoding/decoding a multi-layer video signal | |
KR20150046742A (en) | A method and an apparatus for encoding and decoding a multi-layer video signal | |
KR20150037660A (en) | A method and an apparatus for encoding and decoding a multi-layer video signal | |
KR20150014872A (en) | A method and an apparatus for encoding/decoding a scalable video signal | |
KR20150064675A (en) | A method and an apparatus for encoding/decoding a multi-layer video signal | |
KR20150037659A (en) | A method and an apparatus for encoding/decoding a multi-layer video signal | |
KR20150133685A (en) | A method and an apparatus for encoding/decoding a multi-layer video signal | |
KR20150071653A (en) | A method and an apparatus for encoding/decoding a multi-layer video signal | |
KR20150043989A (en) | A method and an apparatus for encoding/decoding a multi-layer video signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |